JP2002212510A - Trielement curing agent - Google Patents

Trielement curing agent

Info

Publication number
JP2002212510A
JP2002212510A JP2001049431A JP2001049431A JP2002212510A JP 2002212510 A JP2002212510 A JP 2002212510A JP 2001049431 A JP2001049431 A JP 2001049431A JP 2001049431 A JP2001049431 A JP 2001049431A JP 2002212510 A JP2002212510 A JP 2002212510A
Authority
JP
Japan
Prior art keywords
photocatalyst
electrons
curing agent
titanium oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001049431A
Other languages
Japanese (ja)
Inventor
Haruo Kunii
玄雄 国井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001049431A priority Critical patent/JP2002212510A/en
Publication of JP2002212510A publication Critical patent/JP2002212510A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst coating in which a photocatalyst reaction is quickly and strongly caused to degrade pollutants in the environment. SOLUTION: The photocatalyst coating contains titanium oxide, silicon oxide and silicon oxide as the main components of a trielement curing agent, and is cured at ordinary temperature. Since the photocatalyst coating responds to ultraviolet light and visible light to accelerate electrons, a time until exciting the electrons is shortened. When the electrons of the photocatalyst are excited in a short time, the deterioration of electric charge separation can be minimized even under a condition that a large quantity of ultraviolet light is irradiated. Since the copper oxide is compounded, the efficiency of the charge separation is improved, and the recombination of electron holes with electrons produced in the photocatalyst titanium oxide can be prevented to prevent the deterioration of the reaction efficiency. The organic substance-degrading function of the photocatalyst coating is largely improved in comparison with conventional photocatalyst coatings due to these composite factors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は環境の浄化にその特
徴を発揮する常温硬化塗料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-setting paint which exhibits its characteristics in environmental purification.

【0002】[0002]

【従来の技術】従来酸化チタンを配合し常温で硬化する
光触媒塗料が販売されていた。しかし,それらの光触媒
塗料には次のような欠点があった。従来の光触媒塗料
は,親水性の塗膜を形成するため水と馴染みやすく水に
接すると加水分解し短時間で剥離する。これらの塗料を
多孔質の物体(コンクリート,木材)や繊維に塗布する
と付着した水が浸透し内部が濡れる。従来の光触媒塗料
は,塗膜に紫外線が照射されてから反応が起るまでの時
間が長くかかるため,多量の紫外線が照射されても,そ
のほとんどを反応に利用することができなかった。その
ため,多量の紫外線が照射されるほど光触媒反応の量子
効率が低下する結果となり,酸化分解機能が十分に発揮
できなかった。従来の光触媒塗料の塗膜では,光触媒酸
化チタンの内部で生成された電子と正孔の一部が再結合
していた。そのため表面に拡散して反応に関与する電子
と正孔がロスし反応効率が低下していた。
2. Description of the Related Art Conventionally, photocatalytic paints which contain titanium oxide and cure at room temperature have been sold. However, these photocatalytic paints have the following disadvantages. Conventional photocatalytic coatings form a hydrophilic coating film and are easily compatible with water. When they come into contact with water, they hydrolyze and peel off in a short time. When these paints are applied to porous objects (concrete, wood) or fibers, the attached water penetrates and the inside becomes wet. In conventional photocatalytic paints, it takes a long time from the irradiation of a coating film with ultraviolet rays to the start of a reaction, so that even if a large amount of ultraviolet rays are irradiated, most of the photocatalytic coating material cannot be used for the reaction. As a result, the quantum efficiency of the photocatalytic reaction decreases as more ultraviolet rays are irradiated, and the oxidative decomposition function cannot be sufficiently exhibited. In a conventional photocatalytic paint film, some of the electrons and holes generated inside the photocatalytic titanium oxide recombine. As a result, electrons and holes involved in the reaction diffused to the surface were lost, and the reaction efficiency was reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は光触媒反応が
早く,強く起きて環境中の汚染物質を分解する光触媒塗
料を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a photocatalytic paint which has a fast photocatalytic reaction and which strongly occurs to decompose environmental pollutants.

【0004】[0004]

【課題を解決するための手段】本発明は酸化チタン,酸
化ケイ素,酸化銅の三元素の微粉末を主成分とし常温で
硬化する光触媒塗料である。
SUMMARY OF THE INVENTION The present invention is a photocatalytic paint which contains fine powder of three elements, titanium oxide, silicon oxide and copper oxide, as a main component and can be cured at room temperature.

【0005】[0005]

【実施例】以下本発明を実施例をもって説明する。図1
は本発明による三元素硬化剤をガラスに塗布した試料の
透明度と耐水性を示す図である。図2は本発明による三
元素硬化剤を塗布した試料の抗菌試験の結果を示す図で
ある。図3は本発明による三元素硬化剤を含浸させた試
験布が化学物質を分解する機能を示す図である。
The present invention will be described below with reference to examples. Figure 1
FIG. 3 is a view showing the transparency and water resistance of a sample obtained by applying a three-element curing agent according to the present invention to glass. FIG. 2 is a diagram showing the results of an antibacterial test on a sample coated with a three-element curing agent according to the present invention. FIG. 3 is a view showing a function of a test cloth impregnated with a three-element hardener according to the present invention to decompose a chemical substance.

【0006】(実施の形態)本発明による三元素硬化剤
はそれぞれの元素を分散させたA液,B液,C液の三種
類の溶媒を使用時に混合しハケやスプレー機で塗布して
使用する。
(Embodiment) A three-element curing agent according to the present invention is used by mixing three kinds of solvents, A liquid, B liquid and C liquid, in which respective elements are dispersed, and applying the mixture with a brush or a spray machine. I do.

【0007】(しくみと構成部材)本実施例において三
元素硬化剤は酸化チタンと酸化ケイ素およびシランカッ
プリング剤を分散させたA液と,ポリアルキルシロキサ
ンと酸化銅を分散させたB液,およびメチルメトキシシ
ロキサンをイソプロピルアルコールに溶解したC液を混
合して使用するものであり表1にその配合例を示す。
(Mechanism and components) In this embodiment, the three-element curing agent is a solution A in which titanium oxide, silicon oxide and a silane coupling agent are dispersed, a solution B in which polyalkylsiloxane and copper oxide are dispersed, and A mixture of solution C in which methylmethoxysiloxane is dissolved in isopropyl alcohol is used, and Table 1 shows examples of the formulation.

【0008】[0008]

【表1】 [Table 1]

【0009】(塗膜の物性)本発明による三元素硬化剤
は三液を混合してガラスに塗布し常温で乾燥させること
によって無色透明の塗膜を形成する。塗膜は塗布後20
分で乾燥し,3時間後に鉛筆硬度5Hに20時間後に6
Hに硬化する。塗膜と表面に付着した水との接触角は6
5°であり疎水性の域にある。 (協和接触角計(CA−A型)三点測定平均値)
(Physical Properties of Coating Film) The three-element curing agent according to the present invention forms a colorless and transparent coating film by mixing three liquids, applying the mixture to glass, and drying at room temperature. Coating is 20 after application
After 3 hours, the pencil hardness becomes 5H after 6 hours and 6 hours after 20 hours.
Hardens to H. The contact angle between the coating film and water adhering to the surface is 6
5 °, which is in the hydrophobic range. (Kyowa contact angle meter (CA-A type) three-point average)

【0010】(塗膜の耐水性)本発明による三元素硬化
剤を塗布したガラスを水中に浸漬し2400時間経過後
に塗膜の硬度を測定した結果,鉛筆硬度5Hであった。
塗膜は優れた耐水性があり加水分解による硬度の低下が
ほとんどない。
(Water resistance of the coating film) The glass coated with the three-element curing agent according to the present invention was immersed in water, and the hardness of the coating film was measured after 2400 hours. As a result, the pencil hardness was 5H.
The coating has excellent water resistance and hardly decreases in hardness due to hydrolysis.

【0011】(光触媒反応による効力の証明方法)光触
媒酸化チタンにそのバンドギヤップに相当する波長の光
が照射されると価電子帯の電子が励起して伝導帯に上
る。その結果価電子帯に生じた正孔は吸着水と反応して
酸化作用が,電子は表面吸着酸素と反応して還元作用が
起きる。その酸化作用により表面に付着した微生物を殺
菌し有機物を分解して環境を浄化する。本発明による三
元素硬化剤の殺菌力と抗菌性および有機物の分解力を,
抗菌試験と変色試験により以下に証明する。
(Method of Demonstrating Effectiveness by Photocatalytic Reaction) When the photocatalytic titanium oxide is irradiated with light having a wavelength corresponding to the band gap, electrons in the valence band are excited and rise to the conduction band. As a result, the holes generated in the valence band react with the adsorbed water to cause an oxidizing action, and the electrons react with the surface adsorbed oxygen to cause a reducing action. The oxidizing action sterilizes microorganisms attached to the surface and decomposes organic matter to purify the environment. The bactericidal and antibacterial properties of the three-element hardener and the decomposing ability of organic substances according to the present invention
Proven below by antibacterial test and discoloration test.

【0012】(抗菌試験の方法)本発明による三元素硬
化剤を4cm角の合板に塗布した試料を直径15cmの
シャーレに分注した寒天培地に接地した。試料に表2に
示す6種類の試験菌の胞子分散液を噴霧して接種しJI
SZ 2911規格の培養条件で27ワットの蛍光灯の
光を50cmの距離から照射(紫外線強度1μw)しな
がら1ヶ月間培養した。
(Method of Antibacterial Test) A sample in which the three-element curing agent according to the present invention was applied to plywood of 4 cm square was grounded on an agar medium dispensed into a petri dish having a diameter of 15 cm. The samples were sprayed and inoculated with spore dispersions of the six test bacteria shown in Table 2 and inoculated with JI.
Cultivation was performed for one month while irradiating a 27-watt fluorescent light from a distance of 50 cm (ultraviolet light intensity 1 μw) under culture conditions of SZ 2911 standard.

【0013】[0013]

【表2】 [Table 2]

【0014】(抗菌試験結果)図2に示すように寒天培
地には接種した試験菌が繁殖したが試料にはまったく菌
が繁殖しない。これは試料の表面で起きた光触媒反応に
より発生したOHラジカルの酸化力が試験菌を殺滅し分
解した結果である。蛍光灯など室内に存在する程度の紫
外線強度(1μw)でも微生物を殺滅し菌の繁殖を長く
抑制することができることを証明した。
(Results of Antibacterial Test) As shown in FIG. 2, the inoculated test bacteria propagated on the agar medium, but no bacteria propagated on the sample. This is a result of the oxidative power of OH radicals generated by the photocatalytic reaction occurring on the surface of the sample killing and decomposing the test bacteria. It has been proved that microorganisms can be killed and propagation of bacteria can be suppressed for a long time even with an ultraviolet light intensity (1 μw) of such a degree as existing in a room such as a fluorescent lamp.

【0015】(化学物質の分解力)本発明による三元素
硬化剤(KBLコート3E)を白い木綿布に含浸させて
乾燥させた後に表3の試薬を溶解した液を塗布して試験
布を作成した。(表3の試薬は熱分解すると黄変色す
る) 各試験布に,日光(紫外線強度2,000μw)を照射
すると10分後にすべての試験布が黄変色し始め,次第
に濃く変色した。この変色は試薬が分解された結果発現
したものであることを示唆している。そして変色は各試
験布に塗布した試薬の耐熱性に関わらずすべて同時に発
現した。
(Chemical substance decomposing ability) A test cloth is prepared by impregnating a three-element hardener (KBL Coat 3E) according to the present invention into a white cotton cloth and drying, and then applying a liquid in which the reagents shown in Table 3 are dissolved. did. (The reagents in Table 3 discolor yellow when thermally decomposed.) When each test cloth was irradiated with sunlight (ultraviolet light intensity 2,000 μw), all the test cloths began to discolor yellow after 10 minutes and gradually turned deeper. This discoloration suggests that the reagent was developed as a result of decomposition. Then, all the discoloration occurred simultaneously regardless of the heat resistance of the reagent applied to each test cloth.

【0016】[0016]

【表3】 [Table 3]

【0017】(分解力と酸化銅)変色試験の対象として
KBLコート3Eから酸化銅を除いたCK−507と,
光触媒を除いたG−CUを塗布した布,および未処理の
木綿布にそれぞれ試薬(TBZ)を溶解した液を塗布し
日光を照射した。試験布が黄変色する度合と速度を表4
の基準で判定した。その結果表5に示すようにCK−5
07を塗布した試験布は80分後に変色し始めたが,G
−CUと未処理の試験布は24時間経過しても変色しな
かった。(表5) この試験では光触媒を含有しているCK−507を塗布
した試験布だけが変色したが,酸化銅を含有している3
Eに比べて同じ変色度に至るまでの時間は12〜30倍
要した。(試験布5点のバラツキ)
(Decomposition Power and Copper Oxide) CK-507 obtained by removing copper oxide from KBL coat 3E as a target of the discoloration test,
A solution in which a reagent (TBZ) was dissolved was applied to a cloth coated with G-CU excluding the photocatalyst and an untreated cotton cloth, respectively, and irradiated with sunlight. Table 4 shows the degree and speed of yellow discoloration of the test cloth.
Judgment was made based on the following criteria. As a result, as shown in Table 5, CK-5
07 applied to the test cloth began to change color after 80 minutes.
-CU and the untreated test cloth did not discolor even after 24 hours. (Table 5) In this test, only the test cloth coated with CK-507 containing the photocatalyst discolored, but did not contain copper oxide.
It took 12 to 30 times as long to reach the same degree of discoloration as E. (Variation of 5 points of test cloth)

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【表5】 [Table 5]

【0020】(銅と光の吸収)銅は波長350〜600
nmの光を表6に示した比率で反射し,吸収,透過す
る。銅に光が入射すると光の振動電界ができる。その電
界により銅の中の自由電子が加速され励起状態となり集
団的に電位が高い伝導帯に上がる。本発明による三元素
硬化剤の塗膜の中では励起した自由電子(波動)が塗膜
の全域に広がり,第2の金属(酸化チタン)の電子に干
渉し加速する。加速された電子は励起するまでの時間が
短縮されるため,紫外線が照射されると短時間で励起し
光触媒反応が起る。本発明による三元素硬化剤はアナタ
ーゼ型の酸化チタンを使用しているため,可視光には応
答しないが,酸化銅を配合したことにより可視光を利用
し,光触媒反応が起るまでの時間を大幅に短縮すること
ができた。
(Copper and light absorption) Copper has a wavelength of 350 to 600
The light of nm is reflected, absorbed, and transmitted at the ratio shown in Table 6. When light enters copper, an oscillating electric field of light is created. The electric field accelerates the free electrons in the copper to be in an excited state and collectively rise to a conduction band having a high potential. In the coating film of the three-element curing agent according to the present invention, the excited free electrons (waves) spread over the entire coating film and interfere with and accelerate the electrons of the second metal (titanium oxide). The accelerated electrons are reduced in time until excitation, so that when irradiated with ultraviolet light, they are excited in a short time and a photocatalytic reaction occurs. The three-element curing agent according to the present invention does not respond to visible light because it uses anatase-type titanium oxide, but the use of visible light by adding copper oxide reduces the time until a photocatalytic reaction occurs. It could be significantly reduced.

【0021】[0021]

【表6】 [Table 6]

【0022】(量子効率の低下防止)光触媒酸化チタン
の反応の量子効率は紫外線強度が増す程,表7に示した
比率で低下する。従来の光触媒塗料の塗膜は,多量の紫
外線が照射されても電子を励起させるまでの時間がかか
りすぎるため,その多くを反応に利用することができな
かった。本発明による三元素硬化剤の塗膜は広範囲の波
長の光に応答し,塗膜中の多量の電子を早く加速し励起
させることができる。その結果,変色試験において紫外
線の照射量が多い条件下でも量子効率の低下を最小に防
ぎ強力な酸化分解力を短時間で発現した。
(Prevention of Reduction of Quantum Efficiency) The quantum efficiency of the reaction of the photocatalytic titanium oxide decreases at the ratio shown in Table 7 as the intensity of the ultraviolet light increases. Even if a large amount of ultraviolet light is applied to a conventional photocatalytic coating film, it takes too much time to excite electrons, so that much of the film could not be used for the reaction. The coating of the three-element curing agent according to the present invention responds to light of a wide range of wavelengths and can rapidly accelerate and excite a large number of electrons in the coating. As a result, in the discoloration test, even under the condition that the irradiation amount of the ultraviolet ray is large, the decrease in the quantum efficiency was minimized and a strong oxidative decomposition power was developed in a short time.

【0023】[0023]

【表7】 [Table 7]

【0024】(電荷分離)本発明による三元素硬化剤の
塗膜には酸化銅が存在しているため電荷分離の効率が向
上する。電荷分離が良くなると光触媒酸化チタンの内部
で生成された電子と正孔の再結合を防いで,その多くを
光触媒反応に関与させ反応効率の低下を防ぐことができ
る。その結果本発明による三元素硬化剤の塗膜は変色試
験において光触媒反応による酸化還元作用が強力に発現
し試薬を短時間で分解した。
(Charge Separation) The copper oxide is present in the coating film of the three-element curing agent according to the present invention, thereby improving the charge separation efficiency. When charge separation improves, recombination of electrons and holes generated inside the photocatalytic titanium oxide can be prevented, and most of them can participate in the photocatalytic reaction, thereby preventing a reduction in reaction efficiency. As a result, in the coating film of the three-element curing agent according to the present invention, the redox action by the photocatalytic reaction was strongly exhibited in the discoloration test, and the reagent was decomposed in a short time.

【0025】(疎水性の塗膜のメリット)本発明による
三元素硬化剤が形成した塗膜の物性は疎水性であり,疎
水性の塗膜は酸化チタンの表面で生成されたOHラジカ
ルを効率よく表面に拡散させて付着した有機物を分解す
る。
(Advantages of Hydrophobic Coating Film) The physical properties of the coating film formed by the three-element curing agent according to the present invention are hydrophobic, and the hydrophobic coating film efficiently converts OH radicals generated on the surface of titanium oxide. It decomposes organic substances that are well diffused on the surface.

【0026】(汚物の付着が激しい場所に応用)本発明
による三元素硬化剤は紫外線の照射量が多くても汚れの
付着が激しいため,汚物を分解するための時間が足りな
くて浄化できなかった部分に使用すると成果が上る。
(Applied to places where filth adheres heavily) The three-element curing agent according to the present invention cannot be purified due to insufficient adhesion of the filth even if the irradiation amount of ultraviolet rays is large, because there is not enough time to decompose the filth. If you use it for the part, you can get results.

【0027】(水廻りの浄化)本発明による三元素硬化
剤は耐水性が侵れているので水中構造物の汚損防止や水
中の微生物,かび,細菌,ウィルスの殺菌と不純物の分
解に応用することができる。
(Purification around water) Since the three-element curing agent according to the present invention has impaired water resistance, it is applied to prevention of contamination of underwater structures, sterilization of microorganisms, fungi, bacteria and viruses in water and decomposition of impurities. be able to.

【0028】(船底塗料)本発明による三元素硬化剤は
船底に塗布し微生物(スライム菌,藻,貝)の付着防止
に利用することができる。本発明は紫外線より水中深く
入射する可視光を利用して反応を促進させるので,水中
での利用に適する。塗膜の物性は疎水性であり,水との
抵抗が少ないので船の航行性を妨げない。
(Ship bottom paint) The three-element curing agent according to the present invention can be applied to the bottom of a ship and used for preventing adhesion of microorganisms (slime bacteria, algae, shellfish). The present invention promotes the reaction by using visible light that enters deeper into water than ultraviolet light, and is therefore suitable for use in water. The physical properties of the coating are hydrophobic and have little resistance to water, so it does not hinder the ship's navigability.

【0029】[0029]

【発明の効果】以上説明したように本発明による三元素
硬化剤を塗布すると無色透明で硬い塗膜を形成し物体を
保護する。塗膜に光が照射されると強力な光触媒反応が
短時間で起き,表面に接触した微生物や化学物質等が分
解される。その結果,環境を汚染する物質が減少して清
浄な環境となる。今後さまざまな分野で利用されること
が期待される。
As described above, when the three-element curing agent according to the present invention is applied, a colorless, transparent and hard coating film is formed to protect the object. When light is applied to the coating film, a strong photocatalytic reaction occurs in a short time, and microorganisms, chemical substances, and the like that come into contact with the surface are decomposed. As a result, substances that pollute the environment are reduced, resulting in a clean environment. It is expected to be used in various fields in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による三元素硬化剤をガラスに塗布した
図。
FIG. 1 is a diagram in which a three-element curing agent according to the present invention is applied to glass.

【図2】本発明による三元素硬化剤を塗布した合板を試
料として抗菌試験を実施した培養1か月後の図。
FIG. 2 is a diagram after one month of culture in which an antibacterial test was performed using a plywood coated with a three-element hardener according to the present invention as a sample.

【図3】本発明による三元素硬化剤を含浸させた木綿布
に塗布した試薬が分解され黄変色した図。
FIG. 3 is a diagram in which a reagent applied to a cotton cloth impregnated with a three-element curing agent according to the present invention has been decomposed and turned yellow.

【符号の説明】[Explanation of symbols]

1 三元素硬化剤を塗布したガラス 2 塗膜の鉛筆硬度 3 寒天培地 4 シャーレ 5 繁殖した接種菌 6 試料 7 KBLコート3Eを塗布した木綿布 8 KBLコートCK507を塗布した木綿布 9 KBLコートGCuを塗布した木綿布 10 未処理の木綿布 Reference Signs List 1 glass coated with three-element hardener 2 pencil hardness of coating film 3 agar medium 4 petri dish 5 inoculated bacteria 6 sample 7 cotton cloth coated with KBL coat 3E 8 cotton cloth coated with KBL coat CK507 9 cotton cloth coated with KBL coat GCu Coated cotton cloth 10 Untreated cotton cloth

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年8月23日(2001.8.2
3)
[Submission date] August 23, 2001 (2001.8.2
3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】(銅と光の吸収)銅は波長350〜600
nmの光を表6に示した比率で反射しその他を吸収,透
過する。銅に光が入射すると光の振動電界ができる。そ
の電界により銅の中の自由電子が加速され励起状態とな
り集団的に電位が高い伝導帯に上上がる。本発明による
三元素硬化剤の塗膜の中では励起した自由電子(波動)
が塗膜の全域に広がり,酸化チタンの電子を加速する。
加速された電子は励起するまでの時間が短縮されるた
め,紫外線が照射されると短時間で励起し光触媒反応が
起る。本発明による三元素硬化剤はアナターゼ型の酸化
チタンを使用しているため,可視光には応答しないが,
酸化銅を配合したことにより可視光を利用し,光触媒反
応が起るまでの時間を大幅に短縮することができた。
(Copper and light absorption) Copper has a wavelength of 350 to 600
The light of nm is reflected at the ratio shown in Table 6, and the others are absorbed and transmitted. When light enters copper, an oscillating electric field of light is created. The electric field accelerates the free electrons in the copper to be in an excited state and collectively rise to a conduction band having a high potential. Excited free electrons (waves) in the coating of the three-element hardener according to the invention
Spreads throughout the coating film, accelerating the electrons of the titanium oxide .
The accelerated electrons are reduced in time until excitation, so that when irradiated with ultraviolet light, they are excited in a short time and a photocatalytic reaction occurs. Although the three-element curing agent according to the present invention uses anatase-type titanium oxide, it does not respond to visible light,
By incorporating copper oxide, visible light was utilized and the time required for the photocatalytic reaction to occur was significantly reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09D 5/16 C09D 5/16 7/12 7/12 // C03C 17/25 C03C 17/25 A Fターム(参考) 4G059 AA01 AC22 EA01 EA04 EA05 EB05 EB06 4G069 AA03 AA08 BA02A BA02B BA04A BA04B BA48A BB02A BB04A BB04B BC16A BC31A BC31B BC51A BC60A CD10 DA05 EA11 ED04 FA03 FB23 4H011 AA02 BA01 BB18 BC03 BC19 DA23 DH07 4J038 DL031 HA216 HA446 KA06 MA10 NA04 NA05 NA12 PA18 PB14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09D 5/16 C09D 5/16 7/12 7/12 // C03C 17/25 C03C 17/25 A F term (Reference) 4G059 AA01 AC22 EA01 EA04 EA05 EB05 EB06 4G069 AA03 AA08 BA02A BA02B BA04A BA04B BA48A BB02A BB04A BB04B BC16A BC31A BC31B BC51A BC60A CD10 DA05 EA11 ED04 FA03 FB23 401 BC01A02 PA18 PB14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタンと酸化ケイ素および酸化銅を
主成分とし常温で硬化する光触媒塗料
1. A photocatalytic paint containing titanium oxide, silicon oxide and copper oxide as main components and curing at room temperature.
【請求項2】 酸化チタンと金属粉(ジルコニウム,タ
ングステン,アルミニウム,亜鉛等)を分散させた光触
媒塗料
2. A photocatalytic paint in which titanium oxide and metal powder (zirconium, tungsten, aluminum, zinc, etc.) are dispersed.
JP2001049431A 2001-01-19 2001-01-19 Trielement curing agent Pending JP2002212510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049431A JP2002212510A (en) 2001-01-19 2001-01-19 Trielement curing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049431A JP2002212510A (en) 2001-01-19 2001-01-19 Trielement curing agent

Publications (1)

Publication Number Publication Date
JP2002212510A true JP2002212510A (en) 2002-07-31

Family

ID=18910538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049431A Pending JP2002212510A (en) 2001-01-19 2001-01-19 Trielement curing agent

Country Status (1)

Country Link
JP (1) JP2002212510A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196985A (en) * 2002-12-19 2004-07-15 Kbl Eizen Center:Kk Photocatalyst coating
JP2005342706A (en) * 2004-05-07 2005-12-15 Asahi Kagaku Kogyo Co Ltd Catalyst carrying substrate
WO2009130546A1 (en) * 2008-04-24 2009-10-29 Industrial Chem Italia S.R.L. Compositions for the sanitizing anti-pollution, water and oil repellent, protective and polishing treatment of stone materials, their preparation and use
JPWO2011049068A1 (en) * 2009-10-19 2013-03-14 国立大学法人 東京大学 Method for inactivating virus and antiviral property-imparting article
CN105901015A (en) * 2016-05-06 2016-08-31 陈昌 Antibacterial metal oxide composite material and preparation method thereof
JP6283922B1 (en) * 2016-12-16 2018-02-28 パナソニックIpマネジメント株式会社 Photocatalyst material and photocatalyst coating composition
US11326062B2 (en) * 2015-06-26 2022-05-10 Corning Incorporated Colorless copper-containing material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196985A (en) * 2002-12-19 2004-07-15 Kbl Eizen Center:Kk Photocatalyst coating
JP2005342706A (en) * 2004-05-07 2005-12-15 Asahi Kagaku Kogyo Co Ltd Catalyst carrying substrate
JP4495576B2 (en) * 2004-05-07 2010-07-07 朝日化学工業株式会社 Catalyst support substrate
WO2009130546A1 (en) * 2008-04-24 2009-10-29 Industrial Chem Italia S.R.L. Compositions for the sanitizing anti-pollution, water and oil repellent, protective and polishing treatment of stone materials, their preparation and use
JPWO2011049068A1 (en) * 2009-10-19 2013-03-14 国立大学法人 東京大学 Method for inactivating virus and antiviral property-imparting article
JP5854465B2 (en) * 2009-10-19 2016-02-09 国立大学法人 東京大学 Method for inactivating virus and antiviral property-imparting article
US11326062B2 (en) * 2015-06-26 2022-05-10 Corning Incorporated Colorless copper-containing material
CN105901015A (en) * 2016-05-06 2016-08-31 陈昌 Antibacterial metal oxide composite material and preparation method thereof
JP6283922B1 (en) * 2016-12-16 2018-02-28 パナソニックIpマネジメント株式会社 Photocatalyst material and photocatalyst coating composition
JP2018095797A (en) * 2016-12-16 2018-06-21 パナソニックIpマネジメント株式会社 Photocatalyst material and photocatalyst coating composition
WO2018110173A1 (en) * 2016-12-16 2018-06-21 パナソニックIpマネジメント株式会社 Photocatalytic material and photocatalytic coating composition

Similar Documents

Publication Publication Date Title
EP1437397B1 (en) Cleaning agent
RU2434691C2 (en) Object coated by photocatalyst and photo catalytic fluid coat therefor
US7927554B2 (en) Air purifier
CA2371166C (en) Photocatalyst composite comprising fluorinated polymer and process for producing same
CN1125675C (en) Photocatalyst, process for producing the same and multifunctional members
KR101346631B1 (en) Hydrophilic anti-fogging film
JP2002212510A (en) Trielement curing agent
JP3027739B2 (en) Photocatalyst and method for producing the same
JP2008307526A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
KR100348383B1 (en) Method for preparing a solution for formation of titanium oxide film
JP2009263651A (en) Photocatalyst coating composition
JP2003306992A (en) Antifouling panel building material
US11906157B2 (en) Photocatalyst formulations and coatings
WO2022185064A1 (en) Biocidal nanocomposite comprising a photocatalyst
JP3799822B2 (en) Manufacturing method of complex oxide thin film
JP2005082637A (en) Water-based photocatalytic coating
JP7034644B2 (en) Water-based photocatalytic paint and purification method
JP2000070728A (en) Photocatalytic material irradiated with electron beam, its coating material and coating film
JP3647954B2 (en) Light source for illumination with photocatalyst
JP2003010696A (en) Photocatalyst body and method for manufacturing the same
JPH11188272A (en) Photocatalytic body and its production
JP3177124B2 (en) Photocatalytic light source protection material
US11964739B2 (en) Coatings that reduce or prevent barnacle attachment to a marine structure
US20220041258A1 (en) Coatings that reduce or prevent barnacle attachment to a marine structure
US11680506B2 (en) Muffler including an internal photocatalyst and a light source