JP4883913B2 - Photocatalyst and method for producing the same - Google Patents
Photocatalyst and method for producing the same Download PDFInfo
- Publication number
- JP4883913B2 JP4883913B2 JP2005010192A JP2005010192A JP4883913B2 JP 4883913 B2 JP4883913 B2 JP 4883913B2 JP 2005010192 A JP2005010192 A JP 2005010192A JP 2005010192 A JP2005010192 A JP 2005010192A JP 4883913 B2 JP4883913 B2 JP 4883913B2
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst
- oxide
- titanium oxide
- tungsten
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011941 photocatalyst Substances 0.000 title claims description 48
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 53
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 44
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 36
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 23
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 12
- 238000010304 firing Methods 0.000 claims description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 7
- 150000003658 tungsten compounds Chemical class 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 150000002506 iron compounds Chemical class 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 20
- 230000001699 photocatalysis Effects 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000013016 damping Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- -1 platinum group metals Chemical class 0.000 description 4
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 229910011210 Ti—O—N Inorganic materials 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- MQNXVGOQDOOLPI-UHFFFAOYSA-N [W].C(C)(C)OC(C)C Chemical compound [W].C(C)(C)OC(C)C MQNXVGOQDOOLPI-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- VEPSWGHMGZQCIN-UHFFFAOYSA-H ferric oxalate Chemical compound [Fe+3].[Fe+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O VEPSWGHMGZQCIN-UHFFFAOYSA-H 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- YOUIDGQAIILFBW-UHFFFAOYSA-J tetrachlorotungsten Chemical compound Cl[W](Cl)(Cl)Cl YOUIDGQAIILFBW-UHFFFAOYSA-J 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003657 tungsten Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は光触媒およびその製造方法に関し、詳しくは室内の微弱な蛍光灯のような可視光を主体とする光により空気中の有害物質を浄化したり、汚れを分解除去したり、抗菌、防黴作用を発揮し、各種用途に適用可能な光触媒およびその製造方法に関するものである。 The present invention relates to a photocatalyst and a method for producing the photocatalyst, and more particularly, cleans harmful substances in the air by using light mainly composed of visible light such as a weak fluorescent lamp in the room, decomposes and removes dirt, and provides antibacterial and antifungal properties. The present invention relates to a photocatalyst that exhibits an action and can be applied to various uses, and a method for producing the same.
酸化チタン等の光半導性を有した物質にバンドギャップ以上のエネルギーを有した光を照射すると電子と正孔が生成する。これによりスーパーオキサイドやOHラジカル等の強い酸化力を有した酸素種が光触媒の表面に生成して、接触する有害成分等を酸化分解することができる。そこで光触媒を建物の室内外に塗工して太陽光や蛍光灯の光を利用して大気や室内の環境浄化や脱臭、防汚、殺菌などへの応用が進められている。光半導性を有した物質としては一般に光触媒活性が高く化学的に安定な酸化チタンが使用されている。しかしながらアナターゼ形酸化チタンを励起するためには380nm以下の紫外線を照射する必要があり、例えば室内では十分な効果を期待することができなかった。 When a material having photoconductivity such as titanium oxide is irradiated with light having energy higher than the band gap, electrons and holes are generated. As a result, oxygen species having strong oxidizing power such as superoxide and OH radicals are generated on the surface of the photocatalyst, and harmful components and the like that come into contact can be oxidatively decomposed. Thus, photocatalysts are applied to the interior and exterior of buildings, and sunlight and fluorescent light are used to purify the atmosphere and indoor environments, and to apply to deodorization, antifouling, sterilization, and the like. In general, titanium oxide having high photocatalytic activity and being chemically stable is used as the material having photo-conductivity. However, in order to excite the anatase-type titanium oxide, it is necessary to irradiate ultraviolet rays of 380 nm or less, and for example, a sufficient effect cannot be expected indoors.
酸化チタンは紫外線しか利用できないが、可視光を利用できる光半導性物質として硫化カドミウムや酸化タングステンを用いることは公知の技術である。しかしながら、これらバンドギャップの小さい光半導性物質は量子効率が低かったり、光溶解等の安定性に問題があることが知られている。そこで光触媒の性能を向上させるために酸化チタンにPt、Pd、Rh、Ru、Ir等の白金族金属やFe、Co、Ni、Cu、Zn、Ag、Cr、V、W等の各種遷移金属を添加することが検討されている。特に白金族金属の添加は光触媒の活性を高める効果が得られることがよく知られている。例えば酸化チタン等の異方性形状を有する光触媒粒子の表面にハロゲン化白金化合物を担持したことを特徴とする可視光応答型光触媒が例示されている(特許文献1参照)。白金族金属は高価であり微量担持するだけでも光触媒の製造コストアップを招くため好ましくない。
そこで、酸化チタンに窒素や硫黄をドープした可視光応答型光触媒が提案され注目されている。例えば、酸化チタン結晶の酸素サイトの一部を窒素原子で置換すること、または酸化チタン結晶の格子間に窒素原子をドーピングすること、または酸化チタンの結晶粒界に窒素原子をドーピングすること等により酸化チタン結晶に窒素を含有させたTi−O−N構成を有し、可視光領域において光触媒作用を発現する光触媒物質が開示されている(特許文献2参照)。しかしながら、これら光触媒物質を製造するためには(1)酸化チタンをターゲット材料とし、これを窒素ガスを含む雰囲気中で蒸着又はイオンプレーティングした後、アンモニアガスを含む雰囲気中で400℃以上700℃以下の温度で熱処理することや(2)酸化チタンをアンモニアガスを含む雰囲気、あるいは窒素ガスを含む雰囲気、あるいは窒素ガスと水素ガスの混合雰囲気中で熱処理する等の方法が例示されており、特殊な製造装置や製造方法が必要であり適用性に問題があった。
Titanium oxide can use only ultraviolet rays, but it is a known technique to use cadmium sulfide or tungsten oxide as a light-semiconductive substance that can use visible light. However, it is known that these optical semiconductors having a small band gap have low quantum efficiency and problems with stability such as photodissolution. Therefore, in order to improve the performance of the photocatalyst, platinum group metals such as Pt, Pd, Rh, Ru, and Ir and various transition metals such as Fe, Co, Ni, Cu, Zn, Ag, Cr, V, and W are added to titanium oxide. Addition is being considered. In particular, it is well known that the addition of platinum group metals has the effect of enhancing the activity of the photocatalyst. For example, a visible light responsive photocatalyst characterized in that a platinum halide compound is supported on the surface of photocatalyst particles having an anisotropic shape such as titanium oxide (see Patent Document 1). Platinum group metals are expensive, and even if only a small amount is supported, the production cost of the photocatalyst is increased, which is not preferable.
Therefore, a visible light responsive photocatalyst in which titanium oxide is doped with nitrogen or sulfur has been proposed and attracted attention. For example, by replacing part of the oxygen sites of the titanium oxide crystal with nitrogen atoms, doping nitrogen atoms between the lattices of the titanium oxide crystal, or doping nitrogen atoms into the crystal grain boundaries of the titanium oxide crystal, etc. A photocatalytic substance having a Ti—O—N structure in which nitrogen is contained in a titanium oxide crystal and exhibiting a photocatalytic action in the visible light region is disclosed (see Patent Document 2). However, in order to produce these photocatalytic substances, (1) titanium oxide is used as a target material, and this is vapor-deposited or ion-plated in an atmosphere containing nitrogen gas. Examples include heat treatment at the following temperatures and (2) heat treatment of titanium oxide in an atmosphere containing ammonia gas, an atmosphere containing nitrogen gas, or a mixed atmosphere of nitrogen gas and hydrogen gas. A manufacturing apparatus and a manufacturing method are required, and there is a problem in applicability.
また、光触媒性親水性部材の形成方法として基材表面に有機チタネートを塗布し、加水分解および脱水縮重合させ、残留有機基を除去した後、タングステン酸含有水溶液を塗布して400℃以上で焼成することにより、結晶性酸化チタンとTiO2/WO3複合酸化物を生成する方法が提案されている(特許文献3参照)。
現在、光触媒として広く使用されている酸化チタンは光照射により生成した電子と正孔が再結合を起こしにくく優れた光半導性を有しているが、光触媒作用を発現するためには380nm以下の紫外線が必要であり室内の微弱な光では十分な効果が得られなかった。一方、酸化タングステンはバンドギャップが2.5eVであり480nmまでの可視光を利用することができる光触媒として古くから知られている。しかしながら、酸化タングステンは電子と正孔の再結合が起こりやすい特性(量子効率が低い)があり、可視光性能は優れているが紫外照射条件では酸化チタンと比較して見劣りするものであった。また、光溶解性(自己溶解性)があり長期にわたり光触媒効果が得られにくいという問題があり実用レベルで使用されるには至っていない。
In addition, as a method for forming a photocatalytic hydrophilic member, an organic titanate is applied to the surface of a base material, hydrolyzed and dehydrated by condensation polymerization, residual organic groups are removed, and an aqueous solution containing tungstic acid is applied, followed by baking at 400 ° C. Thus, a method for producing crystalline titanium oxide and a TiO 2 / WO 3 composite oxide has been proposed (see Patent Document 3).
Currently, titanium oxide, which is widely used as a photocatalyst, has excellent optical semiconductivity, in which electrons and holes generated by light irradiation hardly cause recombination, but in order to exhibit photocatalysis, it is 380 nm or less. Therefore, sufficient effects could not be obtained with the weak light in the room. On the other hand, tungsten oxide has long been known as a photocatalyst that has a band gap of 2.5 eV and can use visible light up to 480 nm. However, tungsten oxide has a characteristic in which recombination of electrons and holes easily occurs (low quantum efficiency), and has excellent visible light performance, but is inferior to titanium oxide under ultraviolet irradiation conditions. Further, there is a problem that it has photo solubility (self-solubility) and it is difficult to obtain a photocatalytic effect over a long period of time, and it has not been used at a practical level.
また、最近では、酸化チタンに窒素、炭素、硫黄等をドープすることにより可視光に応答性を有している可視光応答型光触媒の提案がされ注目を集めている。例えば、酸化チタンに窒素をドープした光触媒は可視光照射により確かに光触媒効果を発現することが確認されているが、その性能向上効果は十分なものではなかった。また、可視光性能の向上により本来酸化チタンの有している紫外性能の一部を損なうケースもあった。 Recently, a visible light responsive photocatalyst having a response to visible light by doping titanium oxide with nitrogen, carbon, sulfur or the like has been attracting attention. For example, it has been confirmed that a photocatalyst in which titanium oxide is doped with nitrogen surely exhibits a photocatalytic effect by irradiation with visible light, but its performance improvement effect is not sufficient. In addition, there was a case where a part of the ultraviolet performance originally possessed by titanium oxide was impaired by improving the visible light performance.
本発明は、上記現状に鑑み、触媒性能に優れた光触媒およびその製造方法、特に室内や太陽光に含まれる可視光照射により光触媒効果を発現する可視光応答型光触媒およびその製造方法を提供することを目的とするものである。 The present invention provides a photocatalyst excellent in catalytic performance and a method for producing the photocatalyst, and in particular, a visible light responsive photocatalyst that exhibits a photocatalytic effect by irradiation with visible light contained in a room or sunlight, and a method for producing the photocatalyst. It is intended.
本発明者らの研究によれば、酸化チタン、酸化タングステンおよび酸化鉄を特定の割合で配合することにより、上記課題が解決できることがわかった。すなわち、本発明は、(1)比表面積が30〜200m 2 /gのアナターゼ型二酸化チタン粒子にタングステン化合物と鉄化合物とを溶解してなる溶液を含浸させ、次いで、乾燥した後、500〜800℃で焼成して得られる光触媒であって、その含有比が酸化チタン100質量部に対し、酸化タングステンが10〜100質量部、酸化鉄が0.3〜3質量部であることを特徴とする光触媒、(2)酸化タングステンと酸化鉄との割合が、Fe/W(モル比)=0.03/1〜0.3/1の範囲にある上記(1)の光触媒、および(3)タングステン化合物の溶液がメタタングステン酸アンモニウムの水溶液である上記(1)または(2)の光触媒の製造方法である。
According to the study by the present inventors, it has been found that the above problem can be solved by blending titanium oxide, tungsten oxide and iron oxide in a specific ratio. That is, the present invention comprises (1) impregnating an anatase-type titanium dioxide particle having a specific surface area of 30 to 200 m 2 / g with a solution obtained by dissolving a tungsten compound and an iron compound, followed by drying, and then 500 to 800 A photocatalyst obtained by calcining at a temperature of 10 to 100 parts by mass of tungsten oxide and 0.3 to 3 parts by mass of iron oxide with respect to 100 parts by mass of titanium oxide. (2) The photocatalyst according to (1) above, wherein the ratio of tungsten oxide to iron oxide is in the range of Fe / W (molar ratio) = 0.03 / 1 to 0.3 / 1, and ( 3 ) tungsten The method for producing a photocatalyst according to the above ( 1 ) or ( 2 ), wherein the compound solution is an aqueous solution of ammonium metatungstate.
本発明の光触媒は、420nm以上の波長の光で効率よく作用することから、室内の微弱な光によってもホルムアルデヒドやアセトアルデヒドなどの各種有害な有機物を効率よく分解することができる。本発明の光触媒においては、酸化チタンが有している紫外光性能の低下を招くことなく、可視光応答性が飛躍的に向上されている。このため、本発明の光触媒は、可視光および紫外光のいずれに対しても優れた触媒性能を発揮する。 Since the photocatalyst of the present invention works efficiently with light having a wavelength of 420 nm or more, various harmful organic substances such as formaldehyde and acetaldehyde can be efficiently decomposed even by weak indoor light. In the photocatalyst of the present invention, the visible light responsiveness is drastically improved without deteriorating the ultraviolet light performance of titanium oxide. For this reason, the photocatalyst of the present invention exhibits excellent catalytic performance for both visible light and ultraviolet light.
さらに、本発明の光触媒は、酸化チタン粒子にタングステン化合物および鉄化合物の溶液を含浸させた後に、乾燥、焼成するだけで製造できる。このため、特別な生産設備やガス雰囲気をコントロールする必要なく通常の設備で大気中で容易に製造することができる。 Furthermore, the photocatalyst of the present invention can be produced simply by impregnating titanium oxide particles with a solution of a tungsten compound and an iron compound, followed by drying and firing. For this reason, it can manufacture easily in air | atmosphere by a normal installation, without having to control special production equipment and gas atmosphere.
本発明の光触媒は、酸化チタン、酸化タングステンおよび酸化鉄を、それぞれ、TiO2、WO3およびFe2O3として換算して、100質量部、10〜100質量部および0.3〜3質量部、好ましくは100質量部:20〜50質量部:0.5〜1質量部の割合で含有するものである。通常、酸化タングステンおよび酸化鉄は、酸化チタン粒子に担持された形態で存在する。酸化タングステンの割合が、酸化チタン100質量部に対して、10質量部未満では420nm以上の可視光に対する十分な光触媒性能が得られず、一方、100質量部を超えると、酸化チタン粒子への分散担持ができなくなり、増量による効果は小さくなり、しかも紫外光性能が低下する。また、酸化鉄の割合が、酸化チタン100質量部に対して、0.3質量部未満では、可視光および紫外光のいずれに関しても十分な性能向上が得られず、一方、3質量部を超えると増量の効果は認められず、かえって色調も濃くなるので好ましくない。 In the photocatalyst of the present invention, titanium oxide, tungsten oxide and iron oxide are converted into TiO 2 , WO 3 and Fe 2 O 3 , respectively, 100 parts by mass, 10 to 100 parts by mass and 0.3 to 3 parts by mass , Preferably, it contains in the ratio of 100 mass parts: 20-50 mass parts: 0.5-1 mass part. Usually, tungsten oxide and iron oxide are present in a form supported on titanium oxide particles. When the proportion of tungsten oxide is less than 10 parts by mass with respect to 100 parts by mass of titanium oxide, sufficient photocatalytic performance with respect to visible light of 420 nm or more cannot be obtained. On the other hand, when the proportion exceeds 100 parts by mass, dispersion into titanium oxide particles The support becomes impossible, the effect of the increase is reduced, and the ultraviolet light performance is lowered. Further, when the ratio of iron oxide is less than 0.3 parts by mass with respect to 100 parts by mass of titanium oxide, sufficient performance improvement cannot be obtained with respect to both visible light and ultraviolet light, whereas it exceeds 3 parts by mass. The effect of increasing the amount is not recognized, and the color tone becomes darker, which is not preferable.
本発明の光触媒においては、酸化タングステンと酸化鉄との割合が、Fe/W(モル比)=0.03/1〜0.3/1であることが好ましく、より好ましくは0.05/1〜0.2/1である。酸化チタン粒子に酸化タングステンのみを担持したのでは、紫外光性能が低下することはわかっており、酸化鉄を添加することにより、酸化タングステンと酸化チタンとの電荷分離や電荷移動が促進され、その結果、量子収率が向上するものと推定されている。酸化チタン粒子に酸化タングステンおよび酸化鉄を、上記範囲内で、担持させることにより、可視光および紫外光のいずれに対しても良好な光触媒性能を有する光触媒が得られる。 In the photocatalyst of the present invention, the ratio of tungsten oxide to iron oxide is preferably Fe / W (molar ratio) = 0.03 / 1 to 0.3 / 1, more preferably 0.05 / 1. ~ 0.2 / 1. It is known that the performance of ultraviolet light is lowered when only the tungsten oxide is supported on the titanium oxide particles. By adding iron oxide, charge separation and charge transfer between the tungsten oxide and the titanium oxide are promoted. As a result, it is estimated that the quantum yield is improved. By supporting tungsten oxide and iron oxide on the titanium oxide particles within the above range, a photocatalyst having good photocatalytic performance for both visible light and ultraviolet light can be obtained.
本発明の光触媒は、各種方法によって製造することができるが、酸化チタン粒子に酸化タングステンおよび酸化鉄を担持させて製造するのが好ましい。具体的には、例えば、酸化チタン粒子に、タングステン化合物と鉄化合物とを含む溶液を含浸させた後、乾燥し、500〜800℃、好ましくは600〜750℃で焼成すればよい。焼成温度が500℃未満では酸化タングステンや酸化鉄の結晶化が不十分となって十分な可視光性能が得られず、一方、800℃を超えると結晶の相転移や酸化チタンとの複合化が起こり大幅な性能低下を招くため好ましくない。酸化チタンとしては、比表面積が30〜200m2/gのアナターゼ型二酸化チタンが好適に用いられる。比表面積が30m2/g未満では、担持される酸化タングステンの粒子サイズが大きくなるため、酸化チタンとの接合が不十分となり、十分な触媒性能が得られず、また比表面積が200m2/gを超える、アモルファスな酸化チタンとなると、焼成時に酸化タングステンや酸化鉄と固溶化しやすくなり好ましくない。 The photocatalyst of the present invention can be produced by various methods, but is preferably produced by supporting tungsten oxide and iron oxide on titanium oxide particles. Specifically, for example, titanium oxide particles may be impregnated with a solution containing a tungsten compound and an iron compound, dried, and fired at 500 to 800 ° C, preferably 600 to 750 ° C. If the firing temperature is less than 500 ° C., crystallization of tungsten oxide or iron oxide is insufficient and sufficient visible light performance cannot be obtained. On the other hand, if the firing temperature exceeds 800 ° C., crystal phase transition or complexation with titanium oxide occurs. This is not preferable because it causes a significant decrease in performance. As the titanium oxide, anatase-type titanium dioxide having a specific surface area of 30 to 200 m 2 / g is preferably used. When the specific surface area is less than 30 m 2 / g, the particle size of the supported tungsten oxide becomes large, so that bonding with titanium oxide becomes insufficient, and sufficient catalytic performance cannot be obtained, and the specific surface area is 200 m 2 / g. Amorphous titanium oxide exceeding the range is not preferable because it easily dissolves in tungsten oxide or iron oxide during firing.
なお、チタン−ケイ素、チタン−ジルコニウムなどのチタン系複合酸化物も酸化チタンと同様の光半導性を有することが知られており(特公平5−55184号公報参照)、これらチタン系複合酸化物をチタン酸化物に替えて使用することもできる。 Titanium-based composite oxides such as titanium-silicon and titanium-zirconium are known to have the same optical semiconductivity as titanium oxide (see Japanese Patent Publication No. 5-55184). The product can be used in place of titanium oxide.
上記タングステン化合物としては、焼成や加水分解などによって酸化タングステンを生成し得るものであれば、各種原料を使用することができる。例えば、タングステン酸、塩化タングステン、パラタングステン酸アンモニウム、メタタングステン酸アンモニウム、タングストイソプロピルオキシドなどの無機および有機のタングステン塩を用いることができる。酸化タングステンは、使用原料や調製方法等により2〜6価の酸化物になることが知られており、WO、W2O3、W4O11、WO2、W2O5、W3O8、W5O14、およびWO3となるが、本発明の光触媒においては、斜方晶系三酸化タングステン(WO3)の形態にあるのが好ましい。上記タングステン化合物のなかでも、メタタングステン酸アンモニウムが好適に用いられる。その理由は、メタタングステン酸アンモニウムは、焼成によって、結晶に優れた斜方晶系三酸化タングステンを生成し、結果として、可視光光触媒性能に優れた光触媒が得られるからである。 As the tungsten compound, various raw materials can be used as long as they can generate tungsten oxide by firing or hydrolysis. For example, inorganic and organic tungsten salts such as tungstic acid, tungsten chloride, ammonium paratungstate, ammonium metatungstate, and tungsten isopropyl oxide can be used. Tungsten oxide is known to be a divalent to hexavalent oxide depending on the raw materials used, the preparation method, and the like. WO, W 2 O 3 , W 4 O 11 , WO 2 , W 2 O 5 , W 3 O 8 , W 5 O 14 , and WO 3 , but the photocatalyst of the present invention is preferably in the form of orthorhombic tungsten trioxide (WO 3 ). Among the tungsten compounds, ammonium metatungstate is preferably used. The reason for this is that ammonium metatungstate produces orthorhombic tungsten trioxide excellent in crystals by firing, and as a result, a photocatalyst excellent in visible light photocatalytic performance is obtained.
上記鉄化合物としては、焼成や加水分解などによって酸化鉄を生成し得るものであれば、各種原料を使用することができる。例えば、塩化鉄、硝酸鉄、硫酸鉄、酢酸鉄、シュウ酸鉄などの無機および有機の鉄塩を使用することができる。酸化鉄の結晶形態としては、FeO、α−Fe2O3、γ−Fe2O3などの各種結晶形態があることが知られているが、本発明の光触媒においては、α−Fe2O3の形態でチタン酸化物粒子に担持されているのが好ましい。 As the iron compound, various raw materials can be used as long as they can produce iron oxide by firing or hydrolysis. For example, inorganic and organic iron salts such as iron chloride, iron nitrate, iron sulfate, iron acetate, and iron oxalate can be used. As the crystal form of iron oxide, it is known that there are various crystal forms such as FeO, α-Fe 2 O 3 , and γ-Fe 2 O 3. In the photocatalyst of the present invention, α-Fe 2 O It is preferable that the titanium oxide particles are supported in the form 3 .
本発明の光触媒は、室内外の建材等に塗工したりすることにより太陽光や室内光を利用して、大気中の有害物質や臭気物質を分解除去したり、廃水浄化、防汚、抗菌、防黴等の優れた機能を得ることができる。特に420nm以下の可視光に対しても有効的に作用するため従来十分な効果が得られなかった室内照明下においても良好な光触媒効果が得られる。本発明の光触媒を適用する製品としては室内では天井材、壁紙、床材、照明器具、家具、タイル等の建材や衣類、カーテン、絨毯、カーペット、蒲団等が挙げられる。また、室外でも太陽光を有効的に利用できるため路面、ブロック、レンガ、防音壁、遮光壁、ビル側壁、屋根、窓ガラス、ガードレール、道路標識、自動車ボディ、船底等に適用することができる。
(実施例)
本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。
The photocatalyst of the present invention can be applied to indoor and outdoor building materials, etc. to decompose and remove harmful substances and odorous substances in the atmosphere using sunlight and indoor light, and to purify wastewater, antifouling, antibacterial Excellent functions such as fendering can be obtained. In particular, since it works effectively even for visible light of 420 nm or less, a good photocatalytic effect can be obtained even under indoor lighting where a sufficient effect has not been obtained. Examples of products to which the photocatalyst of the present invention is applied include ceiling materials, wallpaper, flooring materials, lighting equipment, furniture, building materials such as tiles, clothing, curtains, carpets, carpets, baskets and the like. Moreover, since sunlight can be effectively used outside, it can be applied to road surfaces, blocks, bricks, soundproof walls, light shielding walls, building side walls, roofs, window glass, guardrails, road signs, automobile bodies, ship bottoms, and the like.
(Example)
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.
市販のメタタングステン酸アンモニウム水溶液(WO3換算濃度50質量%)30gと水100gとに硝酸第二鉄2.5gを溶解した含浸液に酸化チタン(アナターゼ型二酸化チタン、比表面積82m2/g)100gを投入して混合し、100℃で5時間乾燥した後、650℃で5時間焼成して光触媒Aを得た。この触媒Aにおいては、酸化タングステンおよび酸化鉄が、それぞれ、酸化チタン100質量部に対し、15質量部および0.5質量部担持されていた。 Titanium oxide (anatase-type titanium dioxide, specific surface area 82 m 2 / g) was added to an impregnating solution obtained by dissolving 2.5 g of ferric nitrate in 30 g of commercially available ammonium metatungstate aqueous solution (WO 3 equivalent concentration 50 mass%) and 100 g of water. 100 g was added and mixed, dried at 100 ° C. for 5 hours, and then calcined at 650 ° C. for 5 hours to obtain a photocatalyst A. In this catalyst A, tungsten oxide and iron oxide were supported at 15 parts by mass and 0.5 parts by mass with respect to 100 parts by mass of titanium oxide, respectively.
実施例1において、焼成温度を750℃に変更した以外は、実施例1と同様にして光触媒Bを得た。 In Example 1, Photocatalyst B was obtained in the same manner as Example 1 except that the calcination temperature was changed to 750 ° C.
実施例1において、メタタングステン酸アンモニウムおよび硝酸第二鉄の使用量を変更した以外は実施例1と同様にして、各成分の含有割合の異なる、光触媒CおよびDを調製した。 In Example 1, photocatalysts C and D having different contents of each component were prepared in the same manner as in Example 1 except that the amounts of ammonium metatungstate and ferric nitrate were changed.
実施例1において、メタタングステン酸アンモニウムおよび硝酸第二鉄の使用量を変更した以外は実施例1と同様にして、各成分の含有割合の異なる、光触媒Dを調製した。 In Example 1, photocatalysts D having different content ratios of the respective components were prepared in the same manner as in Example 1 except that the amounts of ammonium metatungstate and ferric nitrate were changed.
実施例1において、硝酸第二鉄を添加しなかった以外は、実施例1と同様にして光触媒aを得た。 In Example 1, photocatalyst a was obtained in the same manner as in Example 1 except that ferric nitrate was not added.
市販の酸化タングステン(和光純薬工業製)を触媒bとした。 Commercially available tungsten oxide (manufactured by Wako Pure Chemical Industries) was used as catalyst b.
実施例1で使用した市販の酸化チタンを光触媒cとした。 Commercially available titanium oxide used in Example 1 was used as photocatalyst c.
上記触媒A〜Dおよびa〜cの組成比、焼成温度およびFe/W(モル比)を表1に示す。 Table 1 shows the composition ratio, firing temperature, and Fe / W (molar ratio) of the catalysts A to D and a to c.
実施例1〜4および参考例1〜3で得られた光触媒A〜Dおよび触媒a〜cについて、以下に示す閉鎖系試験方法でアセトアルデヒド分解性能を測定した。試験片は光触媒粉末をエタノールに分散させて塗布量20g/m2となるように150×70mmのガラス板の片面に塗布して60℃で乾燥し作成した。上記試験片を5L反応器に設置し、初期ガス濃度を10ppmになるようにアセトアルデヒドを注入して、光を照射した。なお、光照射条件を以下のように変更して可視光および紫外光照射によるアセトアルデヒド濃度を経時的にガスクロマトグラフィで測定して光触媒性能を比較した。
<可視光性能>
光源として4Wの蛍光灯(東芝FL4D昼光色)2本を用いて反応器外部より照射した。尚、反応器のランプ照射面は石英ガラス表面に紫外線カットフィルム(富士フィルム製、商品名「UV Guard」)を貼り付け420nm以下の紫外線が完全にカットされる条件で性能試験を実施した。各試料においての180分経過後の反応器内のアセトアルデヒド濃度を測定し、結果を可視光光触媒性能として表1に示した。経時後のガス濃度が低いほど可視光による光触媒性能が良好であることを示している。また、実施例3、参考例2および参考例3について、試験におけるアセトアルデヒド濃度の減衰結果を図1に示した。
<紫外光性能>
光源に4Wのブラックライト(東芝FLBLB)を使用し、紫外線カットフィルムを貼らなかった以外は、上記と同様にして、紫外光性能試験を実施した。各試料の30分光照射後の反応器内のアセトアルデヒド濃度を測定した。結果を紫外光光触媒性能として表1に示す。また、実施例3、参考例2および参考例3について、試験におけるアセトアルデヒド濃度の減衰結果を図2に示した。
For the photocatalysts A to D and the catalysts a to c obtained in Examples 1 to 4 and Reference Examples 1 to 3, the acetaldehyde decomposition performance was measured by the closed system test method described below. The test piece was prepared by dispersing photocatalyst powder in ethanol and applying it to one side of a 150 × 70 mm glass plate so as to have a coating amount of 20 g / m 2 and drying at 60 ° C. The test piece was placed in a 5 L reactor, acetaldehyde was injected so that the initial gas concentration was 10 ppm, and light was irradiated. The photocatalytic performance was compared by changing the light irradiation conditions as follows and measuring the acetaldehyde concentration by irradiation with visible light and ultraviolet light over time by gas chromatography.
<Visible light performance>
Irradiation was performed from the outside of the reactor using two 4 W fluorescent lamps (Toshiba FL4D daylight color) as a light source. The lamp irradiation surface of the reactor was subjected to a performance test under the condition that an ultraviolet cut film (trade name “UV Guard” manufactured by Fuji Film Co., Ltd.) was attached to the quartz glass surface and ultraviolet rays of 420 nm or less were completely cut. The acetaldehyde concentration in the reactor after 180 minutes in each sample was measured, and the results are shown in Table 1 as visible light photocatalytic performance. The lower the gas concentration after the lapse of time, the better the photocatalytic performance by visible light. Moreover, about Example 3, Reference example 2, and Reference example 3, the attenuation | damping result of the acetaldehyde density | concentration in a test was shown in FIG.
<Ultraviolet light performance>
An ultraviolet light performance test was carried out in the same manner as described above except that a 4 W black light (Toshiba FLBLB) was used as the light source and no ultraviolet cut film was applied. The acetaldehyde concentration in the reactor after 30 spectral irradiations of each sample was measured. The results are shown in Table 1 as ultraviolet photocatalytic performance. Moreover, about Example 3, Reference example 2, and Reference example 3, the attenuation | damping result of the acetaldehyde density | concentration in a test was shown in FIG.
Claims (3)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005010192A JP4883913B2 (en) | 2005-01-18 | 2005-01-18 | Photocatalyst and method for producing the same |
US11/795,526 US20080119352A1 (en) | 2005-01-18 | 2006-01-17 | Visible Light-Responsive Photocatalyst Composition and Process for Producing the Same |
PCT/JP2006/300559 WO2006077839A1 (en) | 2005-01-18 | 2006-01-17 | Visible light-responsive photocatalyst composition and process for producing the same |
EP06711839A EP1857179A1 (en) | 2005-01-18 | 2006-01-17 | Visible light-responsive photocatalyst composition and process for producing the same |
TW095101707A TW200631660A (en) | 2005-01-18 | 2006-01-17 | Visible light responsive photocatalyst composition and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005010192A JP4883913B2 (en) | 2005-01-18 | 2005-01-18 | Photocatalyst and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006198465A JP2006198465A (en) | 2006-08-03 |
JP4883913B2 true JP4883913B2 (en) | 2012-02-22 |
Family
ID=36956927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005010192A Expired - Fee Related JP4883913B2 (en) | 2005-01-18 | 2005-01-18 | Photocatalyst and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4883913B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010115635A (en) * | 2008-06-05 | 2010-05-27 | Sumitomo Chemical Co Ltd | Photocatalyst dispersion, its method of manufacturing the same and application thereof |
JP2010214234A (en) * | 2009-03-13 | 2010-09-30 | Sumitomo Chemical Co Ltd | Product having photocatalytic body layer, and wallpaper having photocatalytic body layer |
JP5267308B2 (en) * | 2009-04-28 | 2013-08-21 | 信越化学工業株式会社 | Photocatalyst coating liquid that provides a photocatalytic thin film excellent in photoresponsiveness and the photocatalytic thin film |
CN111203247A (en) * | 2020-02-24 | 2020-05-29 | 青岛旭晟东阳新材料有限公司 | Red phosphorus-based semiconductor antibacterial photocatalyst and preparation method thereof |
CN115055188A (en) * | 2022-06-10 | 2022-09-16 | 长安大学 | Composite modified nano TiO for tunnel 2 Tail gas degradation material and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06182218A (en) * | 1992-03-27 | 1994-07-05 | Pentel Kk | Method for oxidation and reduction using composite photocatalyst powder |
JPH09192496A (en) * | 1996-01-12 | 1997-07-29 | Matsushita Electric Works Ltd | Photocatalyst and self-cleaning articles having the same |
JP3255346B2 (en) * | 1996-09-20 | 2002-02-12 | 東陶機器株式会社 | Method for forming photocatalytic hydrophilic member, and photocatalytic hydrophilic member |
JP2002126517A (en) * | 2000-10-20 | 2002-05-08 | Sumitomo Chem Co Ltd | Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same |
JP4250332B2 (en) * | 2000-12-30 | 2009-04-08 | 芳樹 山下 | Visible light reactive titanium oxide, method for producing the same, and method for removing contaminants |
JP3981757B2 (en) * | 2001-11-05 | 2007-09-26 | 住友化学株式会社 | Photocatalyst body and photocatalyst body coating agent using the same |
JP2003171578A (en) * | 2001-12-06 | 2003-06-20 | Sumitomo Chem Co Ltd | Coating liquid and photocatalyst functional product |
JP2003190811A (en) * | 2001-12-27 | 2003-07-08 | Sumitomo Chem Co Ltd | Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same |
JP3908961B2 (en) * | 2002-02-04 | 2007-04-25 | 日本ヘルス工業株式会社 | Purification equipment for lakes and marshes |
JP2004181296A (en) * | 2002-11-29 | 2004-07-02 | Kri Inc | Photocatalyst, its precursor sol solution and manufacturing method for the photocatalyst |
-
2005
- 2005-01-18 JP JP2005010192A patent/JP4883913B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006198465A (en) | 2006-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4883912B2 (en) | Visible light responsive photocatalyst and method for producing the same | |
JP4878141B2 (en) | Composite photocatalyst | |
KR101500593B1 (en) | Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same | |
US20080119352A1 (en) | Visible Light-Responsive Photocatalyst Composition and Process for Producing the Same | |
JP4803180B2 (en) | Titanium oxide photocatalyst, its production method and use | |
KR100945035B1 (en) | Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof | |
JP4957244B2 (en) | Titanium oxide photocatalyst, method for producing the same, and use thereof | |
Tobaldi et al. | Titanium dioxide modified with transition metals and rare earth elements: Phase composition, optical properties, and photocatalytic activity | |
US7846864B2 (en) | Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same | |
US20080105535A1 (en) | Composite Metal Oxide Photocatalyst Exhibiting Responsibility to Visible Light | |
KR20120082899A (en) | Method for inactivating virus and article provided with antiviral properties | |
JP4053911B2 (en) | Photocatalyst and method for producing photocatalyst | |
JP3894144B2 (en) | Titanium oxide photocatalyst and its production method and application | |
JP4135921B2 (en) | Titanium dioxide fine particles and method for producing the same | |
JP2001070800A (en) | Photocatalyst film composition and photocatalyst body using the same | |
JP4842607B2 (en) | Visible light responsive photocatalyst, visible light responsive photocatalyst composition, and method for producing the same | |
JP4883913B2 (en) | Photocatalyst and method for producing the same | |
JP4140770B2 (en) | Titanium dioxide fine particles, method for producing the same, and method for producing visible light active photocatalyst | |
JP2011079713A (en) | Copper ion-modified titanium oxide, method for producing the same, and photocatalyst | |
JP3885248B2 (en) | Photocatalyst composition | |
JP2008062237A (en) | Photocatalytic body, method for producing the same and photocatalytic body coating agent produced by using the same | |
JP3933640B2 (en) | photocatalyst | |
JP2006187677A (en) | Visible light responsible photocatalyst and its manufacturing method | |
JP4496427B2 (en) | Method for producing titanium oxide for visible light responsive photocatalyst | |
JP3908717B2 (en) | How to remove air pollutants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |