JP2010115635A - Photocatalyst dispersion, its method of manufacturing the same and application thereof - Google Patents

Photocatalyst dispersion, its method of manufacturing the same and application thereof Download PDF

Info

Publication number
JP2010115635A
JP2010115635A JP2009024051A JP2009024051A JP2010115635A JP 2010115635 A JP2010115635 A JP 2010115635A JP 2009024051 A JP2009024051 A JP 2009024051A JP 2009024051 A JP2009024051 A JP 2009024051A JP 2010115635 A JP2010115635 A JP 2010115635A
Authority
JP
Japan
Prior art keywords
mass
oxide particles
dispersion
photocatalyst
tungsten oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009024051A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sakatani
能彰 酒谷
Akinori Okusako
顕仙 奥迫
Makoto Murata
誠 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009024051A priority Critical patent/JP2010115635A/en
Priority to KR1020090049060A priority patent/KR20090127084A/en
Priority to TW098118564A priority patent/TW201000208A/en
Priority to AU2009202243A priority patent/AU2009202243A1/en
Priority to CA 2668256 priority patent/CA2668256A1/en
Priority to US12/478,079 priority patent/US20090305879A1/en
Priority to EP09251496A priority patent/EP2130587A3/en
Publication of JP2010115635A publication Critical patent/JP2010115635A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/687Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00525Coating or impregnation materials for metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • C04B2111/00827Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2061Materials containing photocatalysts, e.g. TiO2, for avoiding staining by air pollutants or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst dispersion which can hardly give rise to solid-liquid separation on account of the inhibition of particle flocculation. <P>SOLUTION: The photocatalyst dispersion includes a titanium oxide particles, tungsten oxide particles, phosphoric acid (phosphate) and a dispersion medium. The phosphoric acid (phosphate) content is 0.001 to 0.2 mole times that of the titanium oxide particles. The method of manufacturing the photocatalyst dispersion includes dispersing the titanium oxide particle in the dispersion medium in which the phosphoric acid (phosphate) is dissolved and mixing the obtained titanium oxide particle dispersion with the tungsten oxide particles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸化チタン粒子と酸化タングステン粒子とを含有する光触媒体分散液に関する。   The present invention relates to a photocatalyst dispersion liquid containing titanium oxide particles and tungsten oxide particles.

半導体にバンドギャップ以上のエネルギーを持つ光を照射すると、価電子帯の電子が伝導帯に励起され、価電子帯に正孔が、伝導帯に自由電子がそれぞれ生成する。かかる正孔および自由電子は、それぞれ強い酸化力と還元力を有することから、半導体に接触した分子種に酸化還元作用を及ぼす。この酸化還元作用は光触媒作用と呼ばれており、かかる光触媒作用を示し得る半導体は、光触媒体と呼ばれている。このような光触媒体としては、酸化チタン粒子や酸化タングステン粒子などの粒子状のものが知られている。   When a semiconductor is irradiated with light having energy greater than or equal to the band gap, electrons in the valence band are excited to the conduction band, holes are generated in the valence band, and free electrons are generated in the conduction band. Since such holes and free electrons have strong oxidizing power and reducing power, respectively, they exert a redox action on molecular species in contact with the semiconductor. This redox action is called a photocatalytic action, and a semiconductor that can exhibit such a photocatalytic action is called a photocatalyst. As such a photocatalyst, particulates such as titanium oxide particles and tungsten oxide particles are known.

光触媒酸化チタン粒子や光触媒酸化タングステン粒子は、通常、分散媒中に分散させ、光触媒体分散液として光触媒体層の形成に利用されており、例えば、酸化チタン粒子および酸化タングステン粒子を分散媒中に分散させた光触媒体分散液が開示されている(特許文献1)。かかる光触媒体分散液を基材の表面に塗布することにより、基材表面に、酸化チタン粒子および酸化タングステン粒子を含み、光触媒作用を示す光触媒体層を容易に形成することができる。   Photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles are usually dispersed in a dispersion medium and used as a photocatalyst dispersion to form a photocatalyst layer. For example, titanium oxide particles and tungsten oxide particles are dispersed in a dispersion medium. A dispersed photocatalyst dispersion liquid is disclosed (Patent Document 1). By applying such a photocatalyst dispersion liquid to the surface of the substrate, a photocatalyst layer that includes titanium oxide particles and tungsten oxide particles and exhibits a photocatalytic action can be easily formed on the surface of the substrate.

特開2005−231935号公報JP-A-2005-231935

しかしながら、酸化チタン粒子および酸化タングステン粒子を分散媒中に分散させた従来の光触媒体分散液は、粒子が互いに凝集して固液分離し易いという欠点があった。例えば、光触媒体分散液を輸送、保管する間に該分散液中の粒子が凝集して固液分離が生じると、分散液を基材に塗布するなどして光触媒体層を形成する際に、良好な膜を形成することができず、その結果、充分な光触媒活性を付与できない、といった問題を招くことになる。   However, the conventional photocatalyst dispersion liquid in which titanium oxide particles and tungsten oxide particles are dispersed in a dispersion medium has a drawback that the particles are aggregated with each other and are easily solid-liquid separated. For example, when the photocatalyst dispersion liquid is transported and stored, particles in the dispersion agglomerate and solid-liquid separation occurs, and when the photocatalyst layer is formed by applying the dispersion to a substrate, A good film cannot be formed, and as a result, a problem that sufficient photocatalytic activity cannot be imparted is caused.

そこで、本発明の課題は、粒子の凝集が抑制されて固液分離を起こしにくい光触媒体分散液を提供することにある。   Accordingly, an object of the present invention is to provide a photocatalyst dispersion liquid in which aggregation of particles is suppressed and solid-liquid separation hardly occurs.

本発明者らは、上記課題を解決するべく鋭意研究を重ねた。その結果、酸化チタン粒子および酸化タングステン粒子を分散媒中に分散させた分散液において、酸化チタン粒子に対して特定量のリン酸(塩)を共存させると、粒子の凝集が抑制されることを見出した。さらに、その際、リン酸(塩)は酸化チタン粒子近傍に存在させることが、粒子の凝集を抑制するうえで有効であり、そのように酸化チタン粒子近傍にリン酸(塩)が存在する分散液を得るには、酸化チタン粒子と酸化タングステン粒子との混合に先立ち、リン酸(塩)溶液中に酸化チタン粒子を分散させておけばよいことを見出した。本発明は、これらの知見に基づき完成したものである。   The present inventors have intensively studied to solve the above problems. As a result, in a dispersion liquid in which titanium oxide particles and tungsten oxide particles are dispersed in a dispersion medium, coagulation of particles is suppressed when a specific amount of phosphoric acid (salt) is allowed to coexist with titanium oxide particles. I found it. Further, in this case, it is effective to suppress phosphoric acid (salt) in the vicinity of the titanium oxide particles in order to suppress the aggregation of the particles. It has been found that in order to obtain a liquid, titanium oxide particles may be dispersed in a phosphoric acid (salt) solution prior to mixing of titanium oxide particles and tungsten oxide particles. The present invention has been completed based on these findings.

すなわち、本発明の光触媒体分散液は、酸化チタン粒子、酸化タングステン粒子、リン酸(塩)および分散媒を含み、前記リン酸(塩)の含有量が、前記酸化チタン粒子に対して0.001〜0.2モル倍であることを特徴とする。
本発明の光触媒体分散液の製造方法は、リン酸(塩)を溶解させた分散媒中に酸化チタン粒子を分散させ、得られた酸化チタン粒子分散液と酸化タングステン粒子とを混合することを特徴とする。
本発明の光触媒機能製品は、表面に光触媒体層を備える光触媒機能製品であって、前記光触媒体層が前記本発明の光触媒体分散液を用いて形成されていることを特徴とする。
That is, the photocatalyst dispersion liquid of the present invention contains titanium oxide particles, tungsten oxide particles, phosphoric acid (salt) and a dispersion medium, and the phosphoric acid (salt) content is 0. 0 relative to the titanium oxide particles. It is characterized by being 001 to 0.2 mole times.
The method for producing a photocatalyst dispersion liquid of the present invention comprises dispersing titanium oxide particles in a dispersion medium in which phosphoric acid (salt) is dissolved, and mixing the obtained titanium oxide particle dispersion liquid and tungsten oxide particles. Features.
The photocatalyst functional product of the present invention is a photocatalyst functional product having a photocatalyst layer on the surface, wherein the photocatalyst layer is formed using the photocatalyst dispersion liquid of the present invention.

本発明によれば、粒子の凝集が抑制されて固液分離を起こしにくい光触媒体分散液を提供することができる。そして、この光触媒体分散液を用いれば、高い光触媒活性を示す光触媒体層を容易に形成することが可能になる。   According to the present invention, it is possible to provide a photocatalyst dispersion liquid in which aggregation of particles is suppressed and solid-liquid separation hardly occurs. If this photocatalyst dispersion liquid is used, a photocatalyst layer exhibiting high photocatalytic activity can be easily formed.

(光触媒体分散液)
本発明の光触媒体分散液は、酸化チタン粒子、酸化タングステン粒子、リン酸(塩)および分散媒を含むものである。つまり、本発明の光触媒体分散液は、光触媒作用を有する光触媒体である酸化チタン粒子および酸化タングステン粒子が、リン酸(塩)の存在下で分散媒中に分散したものである。このとき、酸化チタン粒子近傍に存在しているリン酸(塩)は、酸化チタン粒子の表面に吸着した状態になる。この状態の酸化チタン粒子が酸化タングステン粒子と凝集しにくいため、本発明の光触媒体分散液は、粒子の凝集が抑制されたものとなるのである。なお、リン酸(塩)が酸化チタン粒子近傍に存在した光触媒体分散液は、例えば、後述する本発明の光触媒体分散液の製造方法により容易に得られる。
(Photocatalyst dispersion)
The photocatalyst dispersion liquid of the present invention contains titanium oxide particles, tungsten oxide particles, phosphoric acid (salt) and a dispersion medium. That is, the photocatalyst dispersion liquid of the present invention is obtained by dispersing titanium oxide particles and tungsten oxide particles, which are photocatalysts having photocatalytic activity, in a dispersion medium in the presence of phosphoric acid (salt). At this time, phosphoric acid (salt) existing in the vicinity of the titanium oxide particles is adsorbed on the surface of the titanium oxide particles. Since the titanium oxide particles in this state are less likely to aggregate with the tungsten oxide particles, the photocatalyst dispersion liquid of the present invention is one in which particle aggregation is suppressed. In addition, the photocatalyst dispersion liquid in which phosphoric acid (salt) is present in the vicinity of the titanium oxide particles can be easily obtained by, for example, the method for producing the photocatalyst dispersion liquid of the present invention described later.

本発明の光触媒体分散液を構成する酸化チタン粒子は、光触媒作用を示す粒子状の酸化チタンであれば、特に制限はされないが、例えば、メタチタン酸粒子、結晶型がアナターゼ型、ブルッカイト型、ルチル型などである二酸化チタン〔TiO2〕粒子等が挙げられる。なお、酸化チタン粒子は、単独で用いてもよいし、2種以上を併用してもよい。   The titanium oxide particles constituting the photocatalyst dispersion liquid of the present invention are not particularly limited as long as they are particulate titanium oxide exhibiting a photocatalytic action. For example, metatitanic acid particles, crystal type is anatase type, brookite type, rutile Examples thereof include titanium dioxide [TiO2] particles which are molds. In addition, a titanium oxide particle may be used independently and may use 2 or more types together.

メタチタン酸粒子は、例えば、硫酸チタニルの水溶液を加熱して加水分解させる方法により得ることができる。
二酸化チタン粒子は、例えば、(i)硫酸チタニルまたは塩化チタンの水溶液を加熱することなく、これに塩基を加えることにより沈殿物を得、得られた沈殿物を焼成する方法、(ii)チタンアルコキシドに水、酸の水溶液または塩基の水溶液を加えて沈殿物を得、得られた沈殿物を焼成する方法、(iii)メタチタン酸を焼成する方法、などによって得ることができる。これらの方法で得られる二酸化チタン粒子は、焼成する際の焼成温度や焼成時間を調整することにより、アナターゼ型、ブルッカイト型、ルチル型など、所望の結晶型にすることができる。
Metatitanic acid particles can be obtained, for example, by a method in which an aqueous solution of titanyl sulfate is heated and hydrolyzed.
The titanium dioxide particles can be obtained, for example, by (i) a method in which a base is added to this solution without heating an aqueous solution of titanyl sulfate or titanium chloride to obtain a precipitate, and the obtained precipitate is calcined, (ii) titanium alkoxide It is possible to obtain a precipitate by adding water, an aqueous solution of an acid or an aqueous solution of a base to the precipitate, and (iii) a method of baking metatitanic acid, or the like. The titanium dioxide particles obtained by these methods can be made into a desired crystal type such as anatase type, brookite type or rutile type by adjusting the baking temperature and baking time when baking.

また、本発明の光触媒体分散液を構成する酸化チタン粒子は、チタン化合物と塩基とを反応させ、得られた生成物にアンモニアを添加し、熟成した後、固液分離し、固形分を焼成する方法などでも得られる。この方法では、チタン化合物として、例えば、三塩化チタン〔TiCl3〕、四塩化チタン〔TiCl4〕、硫酸チタン〔Ti(SO42・mH2O、0≦m≦20〕、オキシ硫酸チタン〔TiOSO4・nH2O、0≦n≦20〕、オキシ塩化チタン〔TiOCl2〕等を用いることができる。チタン化合物と反応させる塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、アンモニア、ヒドラジン、ヒドロキシルアミン、モノエタノールアミン、非環式アミン化合物、環式脂肪族アミン化合物等を用いることができる。 The titanium oxide particles constituting the photocatalyst dispersion liquid of the present invention are obtained by reacting a titanium compound and a base, adding ammonia to the obtained product, aging, solid-liquid separation, and firing the solid content It can also be obtained by a method such as In this method, examples of titanium compounds include titanium trichloride [TiCl 3 ], titanium tetrachloride [TiCl 4 ], titanium sulfate [Ti (SO 4 ) 2 .mH 2 O, 0 ≦ m ≦ 20], and titanium oxysulfate. [TiOSO 4 · nH 2 O, 0 ≦ n ≦ 20], titanium oxychloride [TiOCl 2 ], or the like can be used. Examples of the base to be reacted with the titanium compound include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, hydrazine, hydroxylamine, monoethanolamine, acyclic amine compound, and cyclic aliphatic amine compound. Can be used.

チタン化合物と塩基との反応は、pH2以上、好ましくはpH3以上であり、pH7以下、好ましくはpH5以下である範囲で行われる。また、そのときの反応温度は、通常90℃以下、好ましくは70℃以下、さらに好ましくは55℃以下である。チタン化合物と塩基との反応は、得られる酸化チタンの粉砕性を向上させるために、過酸化水素存在下で行ってもよい。熟成は、例えば、アンモニアが添加された生成物を攪拌しながら、0℃以上、好ましくは10℃以上であり、110℃以下、好ましくは80℃以下、より好ましくは55℃以下である温度範囲に、1分以上、好ましくは10分以上であり、10時間以内、好ましくは2時間以内の範囲で保持することにより行うことができる。反応および熟成に用いられる塩基(アンモニア)の総量は、水の存在下でチタン化合物を水酸化チタンに変えるのに必要な塩基の化学量論量を超える量であればよいが、塩基の量が多いほど、可視光照射によって高い光触媒活性を示す光触媒体となるので、通常1.1モル倍以上、さらに好ましくは1.5モル倍以上である。一方、塩基の量があまり多くなっても、量に見合った効果は得られないので、その上限は、20モル倍以下、さらには10モル倍以下が適当である。   The reaction between the titanium compound and the base is carried out in the range of pH 2 or higher, preferably pH 3 or higher, pH 7 or lower, preferably pH 5 or lower. Moreover, the reaction temperature at that time is 90 degrees C or less normally, Preferably it is 70 degrees C or less, More preferably, it is 55 degrees C or less. The reaction between the titanium compound and the base may be performed in the presence of hydrogen peroxide in order to improve the grindability of the resulting titanium oxide. Aging is, for example, in a temperature range of 0 ° C. or higher, preferably 10 ° C. or higher, 110 ° C. or lower, preferably 80 ° C. or lower, more preferably 55 ° C. or lower while stirring the product to which ammonia has been added. It is 1 minute or more, preferably 10 minutes or more, and it can be carried out by holding within a range of 10 hours or less, preferably 2 hours or less. The total amount of base (ammonia) used for the reaction and ripening may be an amount that exceeds the stoichiometric amount of the base required to convert the titanium compound to titanium hydroxide in the presence of water. The larger the amount, the higher the photocatalytic activity that shows high photocatalytic activity by irradiation with visible light. On the other hand, even if the amount of the base is too large, an effect commensurate with the amount cannot be obtained. Therefore, the upper limit is suitably 20 mol times or less, and more preferably 10 mol times or less.

熟成された生成物の固液分離は、加圧濾過、減圧濾過、遠心分離、デカンテーションなどで行うことができる。固液分離では、得られる固形分を洗浄する操作をあわせて行うことが好ましい。固液分離された固形分の焼成は、気流焼成炉、トンネル炉、回転炉などを用いて、通常250℃以上、好ましくは270℃以上であり、600℃以下、好ましくは500℃以下、より好ましくは400℃以下の温度範囲で行うことができる。焼成時間は、焼成温度や焼成装置の種類により異なるが、通常10分以上、好ましくは30分以上であり、30時間以内、好ましくは5時間以内である。なお、焼成して得られる酸化チタンには、必要に応じて、タングステン、ニオブ、鉄、ニッケルの酸化物や水酸化物などのような固体酸性を示す化合物や、ランタン、セリウム、カルシウムの酸化物や水酸化物などのような固体塩基性を示す化合物や、インジウム酸化物、ビスマス酸化物のような可視光線を吸収する金属化合物等を担持させてもよい。   Solid-liquid separation of the aged product can be performed by pressure filtration, vacuum filtration, centrifugation, decantation, or the like. In the solid-liquid separation, it is preferable to perform an operation for washing the obtained solid content. The solid-liquid separation of the solid-liquid separated is usually performed at 250 ° C. or higher, preferably 270 ° C. or higher, and 600 ° C. or lower, preferably 500 ° C. or lower, using an airflow firing furnace, tunnel furnace, rotary furnace, or the like. Can be performed in a temperature range of 400 ° C. or lower. The firing time varies depending on the firing temperature and the type of firing apparatus, but is usually 10 minutes or longer, preferably 30 minutes or longer, within 30 hours, preferably within 5 hours. In addition, the titanium oxide obtained by firing includes, if necessary, a compound showing solid acidity such as an oxide or hydroxide of tungsten, niobium, iron, nickel, or an oxide of lanthanum, cerium, or calcium. Alternatively, a compound having solid basicity such as a hydroxide or a metal compound that absorbs visible light such as indium oxide or bismuth oxide may be supported.

本発明の光触媒体分散液を構成する酸化チタン粒子としては、上記の他にも、特開2001−72419号公報、特開2001−190953号公報、特開2001−316116号公報、特開2001−322816号公報、特開2002−29749号公報、特開2002−97019号公報、WO01/10552パンフレット、特開2001−212457公報、特開2002−239395号公報)、WO03/080244パンフレット、WO02/053501パンフレット、特開2007−69093号公報、Chemistry Letters, Vol.32, No.2, P.196-197(2003)、Chemistry Letters, Vol.32, No.4, P.364-365(2003)、Chemistry Letters, Vol.32, No.8, P.772-773(2003)、Chem. Mater., 17, P.1548-1552(2005)等に記載の酸化チタン粒子を用いてもよい。また、特開2001−278625号公報、特開2001−278626号公報、特開2001−278627号公報、特開2001−302241号公報、特開2001−335321号公報、特開2001−354422号公報、特開2002−29750号公報、特開2002−47012号公報、特開2002−60221号公報、特開2002−193618号公報、特開2002−249319号公報などに記載の方法により得られる酸化チタン粒子を用いることもできる。   In addition to the above, the titanium oxide particles constituting the photocatalyst dispersion liquid of the present invention include JP-A-2001-72419, JP-A-2001-190953, JP-A-2001-316116, JP-A-2001-2001. 322816, JP2002-29749, JP200297019, WO01 / 10552 pamphlet, JP2001-212457, JP2002239395), WO03 / 080244 pamphlet, WO02 / 053501 pamphlet. JP 2007-69093 A, Chemistry Letters, Vol. 32, No. 2, P.196-197 (2003), Chemistry Letters, Vol. 32, No. 4, P.364-365 (2003), Chemistry Titanium oxide particles described in Letters, Vol. 32, No. 8, P. 772-773 (2003), Chem. Mater., 17, P. 1548-1552 (2005), etc. may be used. JP 2001-278625 A, JP 2001-278626 A, JP 2001-278627 A, JP 2001-302241 A, JP 2001-335321 A, JP 2001-354422 A, Titanium oxide particles obtained by the methods described in JP 2002-29750 A, JP 2002-47012 A, JP 2002-60221 A, JP 2002-193618 A, JP 2002-249319 A, etc. Can also be used.

前記酸化チタン粒子の粒子径は、特に制限されないが、光触媒作用の観点からは、平均分散粒子径で、通常20〜150nm、好ましくは40〜100nmである。
前記酸化チタン粒子のBET比表面積は、特に制限されないが、光触媒作用の観点からは、通常100〜500m2/g、好ましくは300〜400m2/gである。
The particle diameter of the titanium oxide particles is not particularly limited, but from the viewpoint of photocatalysis, the average dispersed particle diameter is usually 20 to 150 nm, preferably 40 to 100 nm.
BET specific surface area of the titanium oxide particles is not particularly limited, from the viewpoint of photocatalytic activity, usually 100 to 500 m 2 / g, preferably from 300~400m 2 / g.

本発明の光触媒体分散液を構成する酸化タングステン粒子は、光触媒作用を示す粒子状の酸化タングステンであれば、特に制限はされないが、例えば、三酸化タングステン〔WO3〕粒子等が挙げられる。なお、酸化タングステン粒子は、単独で用いてもよいし、2種以上を併用してもよい。 The tungsten oxide particles constituting the photocatalyst dispersion liquid of the present invention are not particularly limited as long as they are particulate tungsten oxide exhibiting a photocatalytic action, and examples thereof include tungsten trioxide [WO 3 ] particles. The tungsten oxide particles may be used alone or in combination of two or more.

三酸化タングステン粒子は、例えば、(i)タングステン酸塩の水溶液に酸を加えることにより、沈殿物としてタングステン酸を得、得られたタングステン酸を焼成する方法、(ii)メタタングステン酸アンモニウム、パラタングステン酸アンモニウムを加熱することにより熱分解する方法、などによって得ることができる。   The tungsten trioxide particles are obtained by, for example, (i) a method in which tungstic acid is obtained as a precipitate by adding an acid to an aqueous solution of tungstate, and the obtained tungstic acid is fired. (Ii) ammonium metatungstate, para It can be obtained by a method of thermally decomposing by heating ammonium tungstate.

前記酸化タングステン粒子の粒子径は、特に制限されないが、光触媒作用の観点からは、平均分散粒子径で、通常50〜200nm、好ましくは80〜130nmである。
前記酸化タングステン粒子のBET比表面積は、特に制限されないが、光触媒作用の観点からは、通常5〜100m2/g、好ましくは20〜50m2/gである。
The particle diameter of the tungsten oxide particles is not particularly limited, but from the viewpoint of photocatalysis, the average dispersed particle diameter is usually 50 to 200 nm, preferably 80 to 130 nm.
BET specific surface area of the tungsten oxide particles is not particularly limited, from the viewpoint of photocatalytic activity, typically 5 to 100 m 2 / g, preferably from 20 to 50 m 2 / g.

本発明の光触媒体分散液において、前記酸化チタン粒子と前記酸化タングステン粒子との比率(酸化チタン粒子:酸化タングステン粒子)は、質量比で、通常4:1〜1:8、好ましくは2:3〜3:2である。   In the photocatalyst dispersion liquid of the present invention, the ratio of the titanium oxide particles to the tungsten oxide particles (titanium oxide particles: tungsten oxide particles) is usually 4: 1 to 1: 8, preferably 2: 3 in mass ratio. ~ 3: 2.

本発明の光触媒体分散液を構成するリン酸(塩)としては、リン酸、もしくはそのアンモニウム塩、ナトリウム塩、カリウム塩等が挙げられるが、これらの中でも特に、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸アンモニウム塩が好ましい。なお、リン酸(塩)は、単独で用いてもよいし、2種以上を併用してもよい。   Examples of the phosphoric acid (salt) constituting the photocatalyst dispersion liquid of the present invention include phosphoric acid or its ammonium salt, sodium salt, potassium salt and the like. Among these, ammonium dihydrogen phosphate, phosphoric acid, among others. Ammonium phosphate salts such as diammonium hydrogen are preferred. In addition, phosphoric acid (salt) may be used independently and may use 2 or more types together.

本発明の光触媒体分散液においては、前記リン酸(塩)の含有量は、前記酸化チタン粒子に対して0.001〜0.2モル倍である。好ましくは、0.01モル倍以上、0.1モル倍以下である。リン酸(塩)の含有量が0.001モル倍未満であると、分散液中の粒子の凝集を充分に抑制することができず、一方、0.2モル倍を超えて用いても、その量に見合っただけのさらなる効果は得られないので、経済的に不利となる。   In the photocatalyst dispersion liquid of the present invention, the phosphoric acid (salt) content is 0.001 to 0.2 mole times the titanium oxide particles. Preferably, they are 0.01 mol times or more and 0.1 mol times or less. When the content of phosphoric acid (salt) is less than 0.001 mol times, aggregation of particles in the dispersion cannot be sufficiently suppressed. Since no further effect corresponding to the amount is obtained, it is economically disadvantageous.

本発明の光触媒体分散液を構成する分散媒は、前記リン酸(塩)を溶解する溶媒であれば特に制限はなく、通常、水を主成分とする水性溶媒が用いられる。具体的には、分散媒は、水単独であってもよいし、水と水溶性有機溶媒との混合溶媒であってもよい。水と水溶性有機溶媒との混合溶媒を用いる場合には、水の含有量が50質量%以上であることが好ましい。水溶性有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどの水溶性アルコール溶媒、アセトン、メチルエチルケトン等が挙げられる。なお、分散媒は、単独で用いてもよいし、2種以上を併用してもよい。   The dispersion medium constituting the photocatalyst dispersion liquid of the present invention is not particularly limited as long as it is a solvent that dissolves the phosphoric acid (salt), and an aqueous solvent mainly containing water is usually used. Specifically, the dispersion medium may be water alone or a mixed solvent of water and a water-soluble organic solvent. When a mixed solvent of water and a water-soluble organic solvent is used, the content of water is preferably 50% by mass or more. Examples of the water-soluble organic solvent include water-soluble alcohol solvents such as methanol, ethanol, propanol, and butanol, acetone, and methyl ethyl ketone. In addition, a dispersion medium may be used independently and may use 2 or more types together.

前記分散媒の含有量は、酸化チタン粒子および酸化タングステン粒子の合計量に対して、通常5〜200質量倍、好ましくは10〜100質量倍である。分散媒が5質量倍未満であると、酸化チタン粒子および酸化タングステン粒子が沈降し易くなり、一方、200質量倍を超えると、容積効率の点で不利となるので、いずれも好ましくない。   The content of the dispersion medium is usually 5 to 200 times by mass, preferably 10 to 100 times by mass with respect to the total amount of titanium oxide particles and tungsten oxide particles. If the dispersion medium is less than 5 mass times, the titanium oxide particles and the tungsten oxide particles are liable to settle, whereas if it exceeds 200 mass times, it is disadvantageous in terms of volumetric efficiency.

本発明の光触媒体分散液は、電子吸引性物質またはその前駆体をも含有することが好ましい。電子吸引性物質とは、光触媒体(すなわち、酸化チタン粒子および酸化タングステン粒子)の表面に担持されて電子吸引性を発揮しうる化合物であり、電子吸引性物質の前駆体とは、光触媒体の表面で電子吸引性物質に遷移しうる化合物(例えば、光照射により電子吸引性物質に還元されうる化合物)である。電子吸引性物質が光触媒体の表面に担持されて存在すると、光の照射により伝導帯に励起された電子と価電子帯に生成した正孔との再結合が抑制され、光触媒作用をより高めることができる。   The photocatalyst dispersion liquid of the present invention preferably contains an electron-withdrawing substance or a precursor thereof. An electron-withdrawing substance is a compound that can be carried on the surface of a photocatalyst (that is, titanium oxide particles and tungsten oxide particles) and can exhibit electron-withdrawing properties. A compound that can transition to an electron-withdrawing substance on the surface (for example, a compound that can be reduced to an electron-withdrawing substance by light irradiation). When an electron-withdrawing substance is supported on the surface of the photocatalyst, recombination of electrons excited in the conduction band by light irradiation and holes generated in the valence band is suppressed, and the photocatalytic action is further enhanced. Can do.

前記電子吸引性物質またはその前駆体は、Cu、Pt、Au、Pd、Ag、Fe、Nb、Ru、Ir、RhおよびCoからなる群より選ばれる1種以上の金属原子を含有してなるものであることが好ましい。より好ましくは、Cu、Pt、AuおよびPdのうちの1種以上の金属原子を含有してなるものである。例えば、前記電子吸引性物質としては、前記金属原子からなる金属、もしくは、これらの金属の酸化物や水酸化物等が挙げられ、電子吸引性物質の前駆体としては、前記金属原子からなる金属の硝酸塩、硫酸塩、ハロゲン化物、有機酸塩、炭酸塩、りん酸塩等が挙げられる。   The electron withdrawing substance or its precursor contains one or more metal atoms selected from the group consisting of Cu, Pt, Au, Pd, Ag, Fe, Nb, Ru, Ir, Rh and Co. It is preferable that More preferably, it contains one or more metal atoms of Cu, Pt, Au and Pd. For example, the electron-withdrawing substance may be a metal made of the metal atom, or an oxide or hydroxide of these metals, and the precursor of the electron-withdrawing substance may be a metal made of the metal atom. Nitrates, sulfates, halides, organic acid salts, carbonates, phosphates, and the like.

電子吸引性物質の好ましい具体例としては、Cu、Pt、Au、Pd等の金属が挙げられる。また、電子吸引性物質の前駆体の好ましい具体例としては、Cuを含む前駆体として、硝酸銅〔Cu(NO3)2〕、硫酸銅〔CuSO4〕、塩化銅〔CuCl2、CuCl〕、臭化銅〔CuBr2、CuBr〕、沃化銅〔CuI〕、沃素酸銅〔CuI26〕、塩化アンモニウム銅〔Cu(NH4) 2Cl4〕、オキシ塩化銅〔Cu2Cl(OH) 3〕、酢酸銅〔CH3COOCu、(CH3COO) 2Cu〕、蟻酸銅〔(HCOO) 2Cu〕、炭酸銅〔CuCO3)、蓚酸銅〔CuC24〕、クエン酸銅〔Cu2647〕、リン酸銅〔CuPO4〕等が;Ptを含む前駆体として、塩化白金〔PtCl2、PtCl4〕、臭化白金〔PtBr2、PtBr4〕、沃化白金〔PtI2、PtI4〕、塩化白金カリウム〔K2(PtCl4)〕、ヘキサクロロ白金酸〔H2PtCl6〕、亜硫酸白金〔H3Pt(SO3) 2OH〕、酸化白金〔PtO2〕、塩化テトラアンミン白金〔Pt(NH3) 4Cl2〕、炭酸水素テトラアンミン白金〔C21446Pt〕、テトラアンミン白金リン酸水素〔Pt(NH3) 4HPO4〕、水酸化テトラアンミン白金〔Pt(NH3) 4(OH) 2〕、硝酸テトラアンミン白金〔Pt(NO3) 2(NH3) 4〕、テトラアンミン白金テトラクロロ白金〔(Pt(NH3) 4)(PtCl4)〕等が;Auを含む前駆体として、塩化金〔AuCl〕、臭化金〔AuBr〕、沃化金〔AuI〕、水酸化金〔Au(OH) 2〕、テトラクロロ金酸〔HAuCl4〕、テトラクロロ金酸カリウム〔KAuCl4〕、テトラブロモ金酸カリウム〔KAuBr4〕、酸化金〔Au23〕等が;Pdを含む前駆体として、例えば、酢酸パラジウム〔(CH3COO) 2Pd〕、塩化パラジウム〔PdCl2〕、臭化パラジウム〔PdBr2〕、沃化パラジウム〔PdI2〕、水酸化パラジウム〔Pd(OH) 2〕、硝酸パラジウム〔Pd(NO3) 2〕、酸化パラジウム〔PdO〕、硫酸パラジウム〔PdSO4〕、テトラクロロパラジウム酸カリウム〔K2(PdCl4)〕、テトラブロモパラジウム酸カリウム〔K2(PdBr4)〕、テトラアンミンパラジウム塩化物〔Pd(NH3)4Cl2〕、テトラアンミンパラジウム臭化物〔Pd(NH3)4Br2〕、テトラアンミンパラジウム硝酸塩〔Pd(NH3)4(NO3)2〕、テトラアンミンパラジウムテトラクロロパラジウム酸〔(Pd(NH3)4)(PdCl4)〕、テトラクロロパラジウム酸アンモニウム〔(NH4)2PdCl4〕等が;それぞれ挙げられる。なお、電子吸引性物質またはその前駆体は、それぞれ単独で用いてもよいし、2種以上を併用してもよい。また、1種以上の電子吸引性物質と1種以上の前駆体とを併用してもよいことは勿論である。 Preferable specific examples of the electron withdrawing substance include metals such as Cu, Pt, Au, and Pd. Moreover, as a preferable specific example of the precursor of an electron withdrawing substance, as a precursor containing Cu, copper nitrate [Cu (NO 3 ) 2 ], copper sulfate [CuSO 4 ], copper chloride [CuCl 2 , CuCl], Copper bromide [CuBr 2 , CuBr], copper iodide [CuI], copper iodate [CuI 2 O 6 ], ammonium chloride [Cu (NH 4 ) 2 Cl 4 ], copper oxychloride [Cu 2 Cl (OH) ) 3 ], copper acetate [CH 3 COOCu, (CH 3 COO) 2 Cu], copper formate [(HCOO) 2 Cu], copper carbonate [CuCO 3 ), copper oxalate [CuC 2 O 4 ], copper citrate [ Cu 2 C 6 H 4 O 7 ], copper phosphate [CuPO 4 ], etc .; as precursors containing Pt, platinum chloride [PtCl 2 , PtCl 4 ], platinum bromide [PtBr 2 , PtBr 4 ], iodide platinum [PtI 2, PtI 4], potassium platinum chloride [K 2 (PtCl 4)], hexose Chloroplatinic acid [H 2 PtCl 6], platinum sulfite [H 3 Pt (SO 3) 2 OH ], platinum oxide [PtO 2], tetraammine platinum chloride [Pt (NH 3) 4 Cl 2], bicarbonate tetraammineplatinum [ C 2 H 14 N 4 O 6 Pt], tetraammineplatinum hydrogen phosphate [Pt (NH 3 ) 4 HPO 4 ], tetraammineplatinum platinum [Pt (NH 3 ) 4 (OH) 2 ], tetraammineplatinum nitrate [Pt ( NO 3 ) 2 (NH 3 ) 4 ], tetraammineplatinum tetrachloroplatinum [(Pt (NH 3 ) 4 ) (PtCl 4 )] and the like; as a precursor containing Au, gold chloride [AuCl], gold bromide [ AuBr], gold iodide [AuI], gold hydroxide [Au (OH) 2 ], tetrachloroauric acid [HAuCl 4 ], potassium tetrachloroaurate [KAuCl 4 ], potassium tetrabromoaurate [KAuBr 4 ], oxidation Gold [Au 2 O 3 ] etc. As precursors containing Pd, for example, palladium acetate [(CH 3 COO) 2 Pd], palladium chloride [PdCl 2 ], palladium bromide [PdBr 2 ], palladium iodide [PdI 2 ], palladium hydroxide [ Pd (OH) 2 ], palladium nitrate [Pd (NO 3 ) 2 ], palladium oxide [PdO], palladium sulfate [PdSO 4 ], potassium tetrachloropalladate [K 2 (PdCl 4 )], potassium tetrabromopalladate [K 2 (PdBr 4 )], tetraammine palladium chloride [Pd (NH 3 ) 4 Cl 2 ], tetraammine palladium bromide [Pd (NH 3 ) 4 Br 2 ], tetraammine palladium nitrate [Pd (NH 3 ) 4 (NO 3) 2], tetraammine palladium tetrachloropalladate [(Pd (NH 3) 4) (PdCl 4) ], tetrachloropalladate Ammonium [(NH 4) 2 PdCl 4] and the like are; like, respectively. In addition, an electron withdrawing substance or its precursor may each be used independently, and may use 2 or more types together. Needless to say, one or more electron-withdrawing substances and one or more precursors may be used in combination.

前記電子吸引性物質またはその前駆体をも含有させる場合、その含有量は、金属原子換算で、酸化チタン粒子および酸化タングステン粒子の合計量100質量部に対して、通常0.005〜0.6質量部、好ましくは0.01〜0.4質量部である。電子吸引性物質またはその前駆体が0.005質量部未満であると、電子吸引性物質による光触媒活性の向上効果が充分に得られないおそれがあり、一方、0.6質量部を超えると、却って光触媒作用が低下するおそれがある。   When the electron-withdrawing substance or its precursor is also contained, the content is usually 0.005 to 0.6 with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of metal atoms. Part by mass, preferably 0.01 to 0.4 part by mass. If the electron-withdrawing substance or its precursor is less than 0.005 parts by mass, the effect of improving the photocatalytic activity by the electron-withdrawing substance may not be sufficiently obtained, while if it exceeds 0.6 parts by mass, On the contrary, the photocatalytic action may be reduced.

本発明の光触媒体分散液は、本発明の効果を損なわない範囲で、従来公知の各種添加剤を含んでいてもよい。なお、添加剤は、それぞれ単独で用いてもよいし、2種以上を併用してもよい。   The photocatalyst dispersion liquid of the present invention may contain conventionally known various additives as long as the effects of the present invention are not impaired. In addition, an additive may each be used independently and may use 2 or more types together.

前記添加剤としては、例えば、光触媒作用を向上させる目的で添加されるものが挙げられる。このような光触媒作用向上効果を目的とした添加剤としては、具体的には、非晶質シリカ、シリカゾル、水ガラス、オルガノポリシロキサンなどの珪素化合物;非晶質アルミナ、アルミナゾル、水酸化アルミニウムなどのアルミニウム化合物;ゼオライト、カオリナイトのようなアルミノ珪酸塩;酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどのアルカリ土類金属酸化物またはアルカリ度類金属水酸化物;リン酸カルシウム、モレキュラーシーブ、活性炭、有機ポリシロキサン化合物の重縮合物、リン酸塩、フッ素系ポリマー、シリコン系ポリマー、アクリル樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂;等が挙げられる。
さらに、前記添加剤としては、光触媒体分散液を基材表面に塗布した際に光触媒体(酸化チタン粒子および酸化タングステン粒子)をより強固に基材の表面に保持させるためのバインダー等を用いることもできる(例えば、特開平8−67835号公報、特開平9−25437号公報、特開平10−183061号公報、特開平10−183062号公報、特開平10−168349号公報、特開平10−225658号公報、特開平11−1620号公報、特開平11−1661号公報、特開2004−059686号公報、特開2004−107381号公報、特開2004−256590号公報、特開2004−359902号公報、特開2005−113028号公報、特開2005−230661号公報、特開2007−161824号公報など参照)。
Examples of the additive include those added for the purpose of improving the photocatalytic action. Specific examples of such additives for improving the photocatalytic effect include silicon compounds such as amorphous silica, silica sol, water glass, and organopolysiloxane; amorphous alumina, alumina sol, aluminum hydroxide, and the like. Aluminosilicates such as zeolite and kaolinite; alkaline earth metal oxides such as magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide Or alkali metal hydroxides: calcium phosphate, molecular sieve, activated carbon, polycondensate of organic polysiloxane compound, phosphate, fluoropolymer, silicone polymer, acrylic resin, polyester resin, melamine resin, urethane resin, alkyd Fats; and the like.
Further, as the additive, a binder for holding the photocatalyst (titanium oxide particles and tungsten oxide particles) more firmly on the surface of the substrate when the photocatalyst dispersion liquid is applied to the surface of the substrate is used. (For example, JP-A-8-67835, JP-A-9-25437, JP-A-10-183061, JP-A-10-183062, JP-A-10-168349, JP-A-10-225658. Publication No. 11-1620, No. 11-1661, No. 2004-059686, No. 2004-107381, No. 2004-256590, No. 2004-359902. JP, 2005-113028, JP, 2005-230661, JP, 2007-1618. See, for 4 JP).

本発明の光触媒体分散液は、その水素イオン濃度が、通常pH2.0〜pH7.0、好ましくはpH3.0〜pH6.0である。水素イオン濃度がpH2.0未満であると、酸性が強すぎて取扱いが面倒であり、一方、pH7.0を超えると、酸化タングステン粒子が溶解するおそれがあるので、いずれも好ましくない。光触媒体分散液の水素イオン濃度は、通常、酸を加えることにより調整すればよい。水素イオン濃度の調整に用いることのできる酸としては、例えば、硝酸、塩酸、硫酸、リン酸、ギ酸、酢酸、蓚酸等が挙げられる。   The hydrogen ion concentration of the photocatalyst dispersion liquid of the present invention is usually pH 2.0 to pH 7.0, preferably pH 3.0 to pH 6.0. When the hydrogen ion concentration is less than pH 2.0, the acidity is too strong and the handling is troublesome. On the other hand, when the pH exceeds 7.0, the tungsten oxide particles may be dissolved. The hydrogen ion concentration of the photocatalyst dispersion liquid may be usually adjusted by adding an acid. Examples of the acid that can be used for adjusting the hydrogen ion concentration include nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, and the like.

(光触媒体分散液の製造方法)
本発明の光触媒体分散液の製造方法は、リン酸(塩)を溶解させた分散媒中に酸化チタン粒子を分散させ、得られた酸化チタン粒子分散液と酸化タングステン粒子とを混合するものである。このように、酸化チタン粒子を、酸化タングステン粒子と混合する前にあらかじめリン酸(塩)を溶解させた分散媒に分散させておくことにより、酸化チタン粒子の表面はリン酸(塩)が吸着した状態となる。この状態の酸化チタン粒子は酸化タングステン粒子と凝集しにくいため、本発明の製造方法により得られた光触媒体分散液は、粒子の凝集が抑制されたものとなる。
(Method for producing photocatalyst dispersion)
The method for producing a photocatalyst dispersion liquid of the present invention comprises dispersing titanium oxide particles in a dispersion medium in which phosphoric acid (salt) is dissolved, and mixing the obtained titanium oxide particle dispersion liquid and tungsten oxide particles. is there. As described above, by dispersing the titanium oxide particles in a dispersion medium in which phosphoric acid (salt) is dissolved in advance before mixing with the tungsten oxide particles, phosphoric acid (salt) is adsorbed on the surface of the titanium oxide particles. It will be in the state. Since the titanium oxide particles in this state are difficult to aggregate with the tungsten oxide particles, the photocatalyst dispersion liquid obtained by the production method of the present invention is one in which particle aggregation is suppressed.

リン酸(塩)を溶解させた分散媒中に酸化チタン粒子を分散させて酸化チタン粒子分散液を得る際には、両者を混合した後さらに分散処理を施すことが好ましい。分散処理には、例えば、媒体撹拌式分散機を用いるなど、従来公知の方法を採用することができる。なお、酸化チタン粒子を分散させるリン酸(塩)含有分散媒を調製するに際しては、リン酸(塩)の使用量は(光触媒体分散液)の項で前述したリン酸(塩)の含有量の範囲とすればよい。   When titanium oxide particles are dispersed in a dispersion medium in which phosphoric acid (salt) is dissolved to obtain a titanium oxide particle dispersion, it is preferable to perform a dispersion treatment after mixing the two. For the dispersion treatment, a conventionally known method can be employed, for example, using a medium stirring type disperser. In preparing a phosphoric acid (salt) -containing dispersion medium in which titanium oxide particles are dispersed, the amount of phosphoric acid (salt) used is the phosphoric acid (salt) content described above in the section of (photocatalyst dispersion). It may be in the range.

前記酸化タングステン粒子は、そのまま前記酸化チタン粒子分散液に混合してもよいが、分散媒中に分散させて酸化タングステン粒子分散液としたのちに前記酸化チタン粒子分散液と混合することが好ましい。酸化タングステン粒子を分散媒に分散させる際には、両者を混合した後さらに分散処理を施すことが好ましい。分散処理には、例えば、媒体撹拌式分散機を用いるなど、従来公知の方法を採用することができる。
なお、酸化チタン粒子分散液と酸化タングステン粒子分散液とを混合する場合、両分散液に用いる分散媒の種類は、混合後の分散媒が(光触媒体分散液)の項で前述した分散媒の通りとなる限り、同じであってもよいし、異なっていてもよい。また、両分散液における分散媒の使用量も、最終的に得られる光触媒体分散液における分散媒の含有量が(光触媒体分散液)の項で前述した通りとなる範囲であれば、特に制限されない。
The tungsten oxide particles may be mixed with the titanium oxide particle dispersion as it is. However, it is preferable that the tungsten oxide particles are dispersed in a dispersion medium to form a tungsten oxide particle dispersion and then mixed with the titanium oxide particle dispersion. When dispersing the tungsten oxide particles in the dispersion medium, it is preferable to further disperse them after mixing them. For the dispersion treatment, a conventionally known method can be employed, for example, using a medium stirring type disperser.
When mixing the titanium oxide particle dispersion and the tungsten oxide particle dispersion, the type of the dispersion medium used for both dispersions is the same as that of the dispersion medium described above in the section (Photocatalyst dispersion). As long as it becomes a street, it may be the same or different. Also, the amount of the dispersion medium used in both dispersions is not particularly limited as long as the content of the dispersion medium in the finally obtained photocatalyst dispersion liquid is in the range described above in the section of (photocatalyst dispersion liquid). Not.

酸化チタン粒子分散液と酸化タングステン粒子とを混合するに際しては、両者の使用量は、酸化チタン粒子と酸化タングステン粒子との比率が(光触媒体分散液)の項で前述した範囲となるようにすればよい。   When mixing the titanium oxide particle dispersion and the tungsten oxide particles, the amount of both used should be such that the ratio of the titanium oxide particles to the tungsten oxide particles is in the range described above in the section of (photocatalyst dispersion). That's fine.

本発明の光触媒体分散液の製造方法は、電子吸引性物質またはその前駆体を添加する工程を含むことが好ましい。ここで、電子吸引性物質またはその前駆体の添加は、前記酸化チタン粒子分散液に対して行ってもよいし、前記酸化タングステン粒子分散液に対して行ってもよいし、前記酸化チタン粒子分散液と前記酸化タングステン粒子分散液もしくは酸化タングステン粒子とを混合した後の分散液に対して行ってもよいが、高い光触媒活性を得る観点からは、電子吸引性物質またはその前駆体は前記酸化タングステン粒子分散液に添加するのが好ましい。
なお、電子吸引性物質またはその前駆体を添加する場合、その添加量は、最終的に得られる光触媒体分散液における電子吸引性物質またはその前駆体の含有量が(光触媒体分散液)の項で前述した範囲となるようにすればよい。
The method for producing a photocatalyst dispersion liquid of the present invention preferably includes a step of adding an electron withdrawing substance or a precursor thereof. Here, the addition of the electron withdrawing substance or the precursor thereof may be performed on the titanium oxide particle dispersion, the tungsten oxide particle dispersion, or the titanium oxide particle dispersion. However, from the standpoint of obtaining high photocatalytic activity, the electron-withdrawing substance or its precursor is the tungsten oxide. It is preferable to add to the particle dispersion.
In addition, when adding an electron withdrawing substance or its precursor, the addition amount is the term of the content of the electron withdrawing substance or its precursor in the finally obtained photocatalyst dispersion liquid (photocatalyst dispersion liquid). In this case, the range may be set as described above.

前記電子吸引性物質の前駆体を添加した場合には、その添加後に光照射を行うことが好ましい。照射する光としては、特に制限はなく、可視光線でもよいし、紫外線でもよい。光照射を行うことにより、光励起によって生成した電子によって前駆体が還元されて電子吸引性物質となり、光触媒体粒子(酸化チタン粒子および酸化タングステン粒子)の表面に担持される。なお、前記前駆体を添加した場合に、たとえ光照射を行なわなくても、得られた光触媒体分散液により形成された光触媒体層に光が照射された時点で電子吸引性物質へ変換されることになるので、その光触媒能が損なわれることはない。   When the precursor of the electron-withdrawing substance is added, it is preferable to perform light irradiation after the addition. There is no restriction | limiting in particular as light to irradiate, Visible light may be sufficient and an ultraviolet-ray may be sufficient. By performing light irradiation, the precursor is reduced by electrons generated by photoexcitation to become an electron-withdrawing substance, and is supported on the surface of the photocatalyst particles (titanium oxide particles and tungsten oxide particles). When the precursor is added, the photocatalyst layer formed from the obtained photocatalyst dispersion liquid is converted into an electron-withdrawing substance when light is irradiated to the photocatalyst layer formed by the obtained photocatalyst dispersion liquid. As a result, the photocatalytic ability is not impaired.

前記光照射は、前記前駆体の添加後であれば、どの段階で行なってもよいが、好ましくは、酸化チタン粒子分散液と酸化タングステン粒子との混合前に行なうのがよい。
また、前記電子吸引性物質の前駆体を添加した場合には、より効率よく電子吸引性物質を得る目的で、光照射の前に、本発明効果を損なわない範囲で、適宜、メタノールやエタノールや蓚酸等を加えることもできる。
The light irradiation may be performed at any stage as long as it is after the addition of the precursor, but is preferably performed before mixing the titanium oxide particle dispersion and the tungsten oxide particles.
In addition, when the electron-withdrawing substance precursor is added, for the purpose of obtaining the electron-withdrawing substance more efficiently, methanol, ethanol, Succinic acid or the like can also be added.

なお、本発明の光触媒体分散液の製造方法においては、(光触媒体分散液)の項で前述した各種添加剤を添加することもできる。その場合、それら添加剤の添加はどの段階で行なってもよいが、例えば、酸化チタン粒子分散液と酸化タングステン粒子分散液もしくは酸化タングステン粒子との混合後に行なうことが好ましい。   In the method for producing a photocatalyst dispersion liquid of the present invention, various additives described above in the section of (photocatalyst dispersion liquid) can also be added. In that case, the addition of these additives may be performed at any stage, but for example, it is preferably performed after mixing the titanium oxide particle dispersion and the tungsten oxide particle dispersion or the tungsten oxide particles.

(光触媒機能製品)
本発明の光触媒機能製品は、前記本発明の光触媒体分散液を用いて形成された光触媒体層を表面に備えるものである。ここで、光触媒体層は、光触媒作用を示す光触媒体、すなわち酸化チタン粒子および酸化タングステン粒子からなる。そして、本発明の光触媒体分散液が電子吸引性物質またはその前駆体を含む場合には、当該電子吸引性物質またはその前駆体は、酸化チタン粒子および酸化タングステン粒子の表面に担持される。なお、担持された前駆体は、例えば光が照射されることなどによって、電子吸引性物質に遷移する。
(Photocatalytic functional products)
The photocatalyst functional product of the present invention is provided with a photocatalyst layer formed on the surface using the photocatalyst dispersion liquid of the present invention. Here, the photocatalyst layer is composed of a photocatalyst exhibiting a photocatalytic action, that is, titanium oxide particles and tungsten oxide particles. And when the photocatalyst body dispersion liquid of this invention contains an electron withdrawing substance or its precursor, the said electron withdrawing substance or its precursor is carry | supported on the surface of a titanium oxide particle and a tungsten oxide particle. The supported precursor transitions to an electron-withdrawing substance, for example, when irradiated with light.

前記光触媒体層は、例えば、本発明の光触媒体分散液を基材(製品)の表面に塗布した後、分散媒を揮発させるなど、従来公知の成膜方法によって形成することができる。光触媒体層の膜厚は、特に制限されるものではなく、通常、その用途等に応じて、数百nm〜数mmまで適宜設定すればよい。光触媒体層は、基材(製品)の内表面または外表面であれば、どの部分に形成されていてもよいが、例えば、光(可視光線)が照射される面であって、かつ悪臭物質が発生する箇所と連続または断続して空間的につながる面に形成されていることが好ましい。なお、基材(製品)の材質は、形成される光触媒体層を実用に耐えうる強度で保持できる限り、特に制限されるものではなく、例えば、プラスチック、金属、セラミックス、木材、コンクリート、紙など、あらゆる材料からなる製品を対象にすることができる。   The photocatalyst layer can be formed by a conventionally known film formation method, for example, after applying the photocatalyst dispersion of the present invention to the surface of a substrate (product) and volatilizing the dispersion medium. The film thickness of the photocatalyst body layer is not particularly limited, and usually may be appropriately set from several hundred nm to several mm according to the application. The photocatalyst layer may be formed on any part as long as it is an inner surface or an outer surface of the base material (product). For example, the photocatalyst layer is a surface irradiated with light (visible light), and a malodorous substance. It is preferably formed on a surface that is continuously or intermittently connected to a place where the occurrence occurs. The material of the base material (product) is not particularly limited as long as the formed photocatalyst layer can be held at a strength that can be practically used. For example, plastic, metal, ceramics, wood, concrete, paper, etc. , Products made of any material can be targeted.

本発明の光触媒機能製品の具体例としては、例えば、天井材、タイル、ガラス、壁紙、壁材、床等の建築資材、自動車内装材(自動車用インストルメントパネル、自動車用シート、自動車用天井材)、冷蔵庫やエアコン等の家電製品、衣類やカーテン等の繊維製品などが挙げられる。   Specific examples of the photocatalytic functional product of the present invention include, for example, building materials such as ceiling materials, tiles, glass, wallpaper, wall materials, floors, automobile interior materials (automobile instrument panels, automotive seats, automotive ceiling materials, etc. ), Home appliances such as refrigerators and air conditioners, and textile products such as clothes and curtains.

本発明の光触媒機能製品は、屋外においては勿論のこと、蛍光灯やナトリウムランプのような可視光源からの光しか受けない屋内環境においても、光照射によって高い触媒作用を示す。したがって、本発明の光触媒体分散液を、例えば病院の天井材、タイル、ガラスなどに塗布して乾燥させると、屋内照明による光照射によって、ホルムアルデヒドやアセトアルデヒドなどの揮発性有機物、アルデヒド類、メルカプタン類、アンモニアなどの悪臭物質、窒素酸化物の濃度を低減させ、さらには黄色ブドウ球菌や大腸菌等の病原菌等を分解、除去することができる。   The photocatalytic functional product of the present invention exhibits a high catalytic action by light irradiation not only outdoors but also in an indoor environment receiving only light from a visible light source such as a fluorescent lamp and a sodium lamp. Therefore, when the photocatalyst dispersion liquid of the present invention is applied to, for example, hospital ceiling materials, tiles, and glass, and dried, volatile organic substances such as formaldehyde and acetaldehyde, aldehydes, and mercaptans are obtained by light irradiation by indoor lighting. In addition, the concentration of malodorous substances such as ammonia and nitrogen oxides can be reduced, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be decomposed and removed.

以下、本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

なお、実施例および比較例における各物性の測定およびその光触媒活性の評価については、以下の方法で行った。   In addition, about the measurement of each physical property in an Example and a comparative example, and the evaluation of the photocatalytic activity, it performed with the following method.

<結晶型>
X線回折装置(リガク社製「RINT2000/PC」)を用いてX線回折スペクトルを測定し、そのスペクトルから結晶型を決定した。
<Crystal type>
An X-ray diffraction spectrum was measured using an X-ray diffractometer (“RINT2000 / PC” manufactured by Rigaku Corporation), and a crystal type was determined from the spectrum.

<BET比表面積>
比表面積測定装置(湯浅アイオニクス社製「モノソーブ」)を用いて窒素吸着法により測定した。
<BET specific surface area>
It measured by the nitrogen adsorption method using the specific surface area measuring apparatus ("Monosorb" by Yuasa Ionics Co., Ltd.).

<平均分散粒子径>
サブミクロン粒度分布測定装置(コールター社製「N4Plus」)を用いて粒度分布を測定し、この装置に付属のソフトにより自動的に単分散モード解析して得られた結果を、平均分散粒子径(nm)とした。
<Average dispersed particle size>
The particle size distribution was measured using a sub-micron particle size distribution measuring device (“N4Plus” manufactured by Coulter, Inc.), and the result obtained by performing the monodisperse mode analysis automatically with the software attached to this device was used as the average dispersed particle size nm).

<光触媒活性の評価:アセトアルデヒドの分解>
光触媒活性は、蛍光灯の光の照射下でのアセトアルデヒドの分解反応における一次反応速度定数を測定することにより評価した。
まず、光触媒活性測定用の試料を作製した。すなわち、ガラス製シャーレ(外径70mm、内径66mm、高さ14mm、容量約48mL)に、得られた光触媒体分散液を、底面の単位面積あたりの固形分換算の滴下量が1g/m2となるように滴下し、シャーレの底面全体に均一となるように展開した。次いで、このシャーレを110℃の乾燥機内で大気中1時間保持することにより乾燥させて、ガラス製シャーレの底面に光触媒体層を形成した。この光触媒体層に、紫外線強度が2mW/cm2となるようにブラックライトからの紫外線を16時間照射して、これを光触媒活性測定用試料とした。
<Evaluation of photocatalytic activity: decomposition of acetaldehyde>
The photocatalytic activity was evaluated by measuring a first-order reaction rate constant in the decomposition reaction of acetaldehyde under irradiation of light from a fluorescent lamp.
First, a sample for measuring photocatalytic activity was prepared. That is, in a glass petri dish (outer diameter: 70 mm, inner diameter: 66 mm, height: 14 mm, capacity: about 48 mL), the obtained photocatalyst dispersion liquid has a dripping amount in terms of solid content per unit area of the bottom surface of 1 g / m 2 . It dripped so that it might become, and it developed so that it might become uniform to the whole bottom face of a petri dish. Next, this petri dish was dried by holding it in the air at 110 ° C. for 1 hour in the atmosphere to form a photocatalyst layer on the bottom of the glass petri dish. This photocatalyst layer was irradiated with ultraviolet light from a black light for 16 hours so that the ultraviolet intensity was 2 mW / cm 2, and this was used as a sample for photocatalytic activity measurement.

次に、この光触媒活性測定用試料をシャーレごとガスバッグ(内容積3L)の中に入れて密閉し、次いで、このガスバッグ内を真空にした後、酸素と窒素との体積比が1:4である混合ガス1.8Lを封入し、さらにその中に1容量%でアセトアルデヒドを含む窒素ガス9mLを封入して、暗所で室温下1時間保持した。その後、市販の白色蛍光灯を光源とし、測定用試料近傍での照度が1000ルクス(ミノルタ社製照度計「T−10」で測定)となるようにガスバッグの外から蛍光灯の光を照射し、アセトアルデヒドの分解反応を行った。このとき、測定試料近傍の紫外光の強度は6.5μW/cm2(トプコン社製紫外線強度計「UVR−2」に、同社製受光部「UD−36」を取り付けて測定)であった。蛍光灯の光照射を開始してから1.5時間毎にガスバッグ内のガスをサンプリングし、アセトアルデヒドの濃度をガスクロマトグラフ(島津製作所社製「GC−14A」)にて測定した。そして、照射時間に対するアセトアルデヒドの残存濃度から一次反応速度定数を算出し、これをアセトアルデヒド分解能として評価した。この一次反応速度定数が大きいほど、アセトアルデヒドの分解能(すなわち光触媒活性)が高いと言える。 Next, the sample for photocatalytic activity measurement was put together with the petri dish in a gas bag (internal volume 3 L) and sealed, and then the inside of the gas bag was evacuated, and the volume ratio of oxygen to nitrogen was 1: 4. Was mixed with 1.8 L of mixed gas, and 9 mL of nitrogen gas containing acetaldehyde at 1 vol% was sealed therein, and the mixture was kept in the dark at room temperature for 1 hour. After that, using a commercially available white fluorescent lamp as the light source, irradiate the fluorescent lamp light from the outside of the gas bag so that the illuminance near the measurement sample is 1000 lux (measured with the illuminometer “T-10” manufactured by Minolta) Then, the decomposition reaction of acetaldehyde was performed. At this time, the intensity of the ultraviolet light in the vicinity of the measurement sample was 6.5 μW / cm 2 (measured by attaching a light receiving unit “UD-36” manufactured by the company to a UV intensity meter “UVR-2” manufactured by Topcon Corporation). The gas in the gas bag was sampled every 1.5 hours after the light irradiation of the fluorescent lamp was started, and the concentration of acetaldehyde was measured with a gas chromatograph (“GC-14A” manufactured by Shimadzu Corporation). Then, a first-order reaction rate constant was calculated from the residual concentration of acetaldehyde with respect to the irradiation time, and this was evaluated as acetaldehyde resolution. It can be said that the higher the first-order reaction rate constant is, the higher the resolution (that is, photocatalytic activity) of acetaldehyde is.

<光触媒活性の評価:ホルムアルデヒドの分解>
光触媒活性は、蛍光灯の光の照射下でのホルムアルデヒドの分解反応における一次反応速度定数を測定することにより評価した。
まず、光触媒活性測定用の試料を作製した。すなわち、ガラス製シャーレ(外径70mm、内径66mm、高さ14mm、容量約48mL)に、得られた光触媒体分散液を、底面の単位面積あたりの固形分換算の滴下量が1g/m2となるように滴下し、シャーレの底面全体に均一となるように展開した。次いで、このシャーレを110℃の乾燥機内で大気中1時間保持することにより乾燥させて、ガラス製シャーレの底面に光触媒体層を形成した。この光触媒体層に、紫外線強度が2mW/cm2となるようにブラックライトからの紫外線を16時間照射して、これを光触媒活性測定用試料とした。
<Evaluation of photocatalytic activity: decomposition of formaldehyde>
The photocatalytic activity was evaluated by measuring the first-order rate constant in the decomposition reaction of formaldehyde under the irradiation of light from a fluorescent lamp.
First, a sample for measuring photocatalytic activity was prepared. That is, in a glass petri dish (outer diameter: 70 mm, inner diameter: 66 mm, height: 14 mm, capacity: about 48 mL), the obtained photocatalyst dispersion liquid has a dripping amount in terms of solid content per unit area of the bottom surface of 1 g / m 2 . It dripped so that it might become, and it developed so that it might become uniform to the whole bottom face of a petri dish. Next, this petri dish was dried by holding it in the air at 110 ° C. for 1 hour in the atmosphere to form a photocatalyst layer on the bottom of the glass petri dish. This photocatalyst layer was irradiated with ultraviolet light from a black light for 16 hours so that the ultraviolet intensity was 2 mW / cm 2, and this was used as a sample for photocatalytic activity measurement.

次に、この光触媒活性測定用試料をシャーレごとガスバッグ(内容積1L)の中に入れて密閉し、次いで、このガスバッグ内を真空にした後、酸素を0.12L封入し、さらにその中に濃度100ppmでホルムアルデヒドを含む窒素ガス0.48Lを封入して、暗所で室温下45分間保持した。その後、市販の白色蛍光灯を光源とし、測定用試料近傍での照度が6000ルクス(ミノルタ社製照度計「T−10」で測定)となるようにガスバッグの外から蛍光灯の光を照射し、ホルムアルデヒドの分解反応を行った。このとき、測定試料近傍の紫外光の強度は40μW/cm2(トプコン社製紫外線強度計「UVR−2」に、同社製受光部「UD−36」を取り付けて測定)であった。蛍光灯の光照射を開始してから15分毎にガスバッグ内のガスをサンプリングし、ホルムアルデヒドの濃度をガスクロマトグラフ(アジレントテクノロジー社製「Agilent3000マイクロGC」)にて測定した。そして、照射時間に対するホルムアルデヒドの残存濃度から一次反応速度定数を算出し、これをホルムアルデヒド分解能として評価した。この一次反応速度定数が大きいほど、ホルムアルデヒドの分解能(すなわち光触媒活性)が高いと言える。 Next, the sample for measuring photocatalytic activity is put in a gas bag (internal volume 1 L) together with the petri dish, and then the inside of the gas bag is evacuated, and then 0.12 L of oxygen is sealed therein, and further, Was filled with 0.48 L of nitrogen gas containing formaldehyde at a concentration of 100 ppm, and kept in the dark at room temperature for 45 minutes. Then, using a commercially available white fluorescent lamp as the light source, irradiate the fluorescent lamp from the outside of the gas bag so that the illuminance in the vicinity of the measurement sample is 6000 lux (measured with the illuminometer “T-10” manufactured by Minolta). Then, decomposition reaction of formaldehyde was performed. At this time, the intensity of the ultraviolet light in the vicinity of the measurement sample was 40 μW / cm 2 (measured by attaching the UV receiver “UD-36” manufactured by the company to the UV intensity meter “UVR-2” manufactured by Topcon Corporation). The gas in the gas bag was sampled every 15 minutes after the light irradiation of the fluorescent lamp was started, and the concentration of formaldehyde was measured with a gas chromatograph (“Agilent 3000 Micro GC” manufactured by Agilent Technologies). Then, a first-order reaction rate constant was calculated from the remaining concentration of formaldehyde with respect to the irradiation time, and this was evaluated as formaldehyde resolution. It can be said that the larger the first-order reaction rate constant, the higher the formaldehyde resolution (ie, photocatalytic activity).

(製造例1−酸化チタン粒子分散液の調製)
pH電極と、このpH電極に接続され、25質量%アンモニア水を供給してpHを一定に調整する機構を有するpHコントローラーとを備えた反応容器(すなわち、この反応容器では、容器内の液のpHが設定値より低くなると、アンモニア水が供給されはじめ、pHが設定値になるまで連続供給される)に、イオン交換水30kgを入れ、pHコントローラーの設定値をpH4とした。他方、オキシ硫酸チタン75kgをイオン交換水50kgに溶解させた後、得られた水溶液に冷却下で35%過酸化水素水30kgを添加して、混合溶液を調製した。この混合溶液を、上記反応容器内を42rpmで攪拌しながら、該反応容器に530mL/分で添加し、pHコントローラーにより反応容器に供給されるアンモニア水と反応させた。このとき、反応温度(反応容器の内温)は20℃〜30℃の範囲であった。混合溶液の添加終了後、引き続き、反応容器内を攪拌しながら1時間保持し、次いで、25質量%アンモニア水を供給して、スラリー状の生成物を得た。得られたスラリー状の生成物を濾過し、リンス洗浄した後、固形物(ケーキ)を得た。なお、反応容器に供給されたアンモニア水の合計量は90kgであり、オキシ硫酸チタンを水酸化チタンに変えるために必要な理論量の2倍であった。
(Production Example 1-Preparation of titanium oxide particle dispersion)
A reaction vessel comprising a pH electrode and a pH controller connected to the pH electrode and having a mechanism for adjusting the pH to a constant level by supplying 25% by mass of aqueous ammonia (that is, in this reaction vessel, When the pH became lower than the set value, ammonia water began to be supplied and continuously supplied until the pH reached the set value), and 30 kg of ion-exchanged water was added, and the set value of the pH controller was set to pH 4. On the other hand, after dissolving 75 kg of titanium oxysulfate in 50 kg of ion-exchanged water, 30 kg of 35% hydrogen peroxide solution was added to the obtained aqueous solution under cooling to prepare a mixed solution. The mixed solution was added to the reaction vessel at 530 mL / min while stirring the reaction vessel at 42 rpm, and reacted with ammonia water supplied to the reaction vessel by a pH controller. At this time, the reaction temperature (internal temperature of the reaction vessel) was in the range of 20 ° C to 30 ° C. After the addition of the mixed solution was completed, the inside of the reaction vessel was kept for 1 hour with stirring, and then 25% by mass ammonia water was supplied to obtain a slurry product. The obtained slurry-like product was filtered and rinsed, and then a solid (cake) was obtained. The total amount of ammonia water supplied to the reaction vessel was 90 kg, which was twice the theoretical amount required to change titanium oxysulfate to titanium hydroxide.

上記で得られた固形物(ケーキ)をステンレス製バット(30cm×40cm)12枚に2.3kgずつ分け入れ、このバット12枚を箱型乾燥機(旭科学製「スーパーテンプオーブン HP−60」、内容積:216リットル)に入れて、40m3/hrの乾燥空気流通下、115℃で5時間保持した後、引き続き250℃で5時間保持することにより乾燥を行ない、BET表面積が18.0m2/gの乾燥粉末を得た。このときの乾燥機内の最大水蒸気分圧は27.4kPaであった。得られた乾燥粉末を350℃の空気雰囲気下で2時間焼成し、その後、室温まで冷却して、粒子状光触媒体である酸化チタン粉末を合計22kg得た。 The solid matter (cake) obtained above was divided into 2.3 kg each in 12 stainless steel bats (30 cm × 40 cm), and the 12 bats were put into a box-type dryer (“Supertempo oven HP-60” manufactured by Asahi Kagaku). , Inner volume: 216 liters) and kept at 115 ° C. for 5 hours under a flow of dry air of 40 m 3 / hr, followed by drying at 250 ° C. for 5 hours to achieve a BET surface area of 18.0 m 2. / G dry powder was obtained. The maximum water vapor partial pressure in the dryer at this time was 27.4 kPa. The obtained dry powder was calcined in an air atmosphere at 350 ° C. for 2 hours, and then cooled to room temperature to obtain a total of 22 kg of titanium oxide powder as a particulate photocatalyst.

次に、イオン交換水87.6kgにリン酸二水素アンモニウム950g(和光特級試薬)を溶解させ、さらに上記で得られた酸化チタン粉末22kgを加えて混合物を得た。この混合物を、媒体攪拌式分散機(シンマルエンタープライゼス製「ダイノーミルKDL−PILOT A型」)を用いて下記の条件で分散処理して、酸化チタン粒子分散液を得た。
分散媒体:直径0.3mmのジルコニア製ビーズ 4.2kg
処理温度:20℃
合計処理時間:約240分間
攪拌速度:周速8m/秒
流速:2L/分
処理液循環:あり
Next, 950 g of ammonium dihydrogen phosphate (Wako Special Grade Reagent) was dissolved in 87.6 kg of ion-exchanged water, and 22 kg of the titanium oxide powder obtained above was further added to obtain a mixture. This mixture was subjected to dispersion treatment under the following conditions using a medium stirring type disperser (“Dynomill KDL-PILOT A type” manufactured by Shinmaru Enterprises Co., Ltd.) to obtain a titanium oxide particle dispersion.
Dispersion medium: Zirconia beads with a diameter of 0.3 mm 4.2 kg
Processing temperature: 20 ° C
Total treatment time: about 240 minutes Stirring speed: peripheral speed 8m / sec Flow rate: 2L / min Treatment liquid circulation: yes

さらに、上記で得られた酸化チタン粒子分散液に、媒体攪拌式分散機(コトブキ技研社製「ウルトラアペックスミルUAM−5」)を用いて下記条件で2回目の分散処理を施した。
分散媒体:直径0.05mmのジルコニア製ビーズ13kg
処理温度:20℃
合計処理時間:約400分間
回転数:2000rpm
流速:1L/分
処理液循環:あり
Furthermore, the titanium oxide particle dispersion obtained above was subjected to a second dispersion treatment under the following conditions using a medium stirring type disperser (“Ultra Apex Mill UAM-5” manufactured by Kotobuki Giken Co., Ltd.).
Dispersion medium: 13 kg of zirconia beads having a diameter of 0.05 mm
Processing temperature: 20 ° C
Total processing time: about 400 minutes Rotation speed: 2000 rpm
Flow rate: 1L / min Treatment liquid circulation: Yes

得られた酸化チタン粒子分散液中のリン酸アンモニウム塩の含有量は、酸化チタン粒子に対して0.03モル倍である。また、上記で得られた分散液を遠心分離して粗粒分を除去したところ、平均分散粒子径は84nmであった。また、得られた分散液の固形分濃度が10質量%になるように水で調整したところ、この分散液のpHは6.9であった。なお、分散処理前の混合物中の固形分と、分散処理(上記2回目の分散処理)後の分散液中の固形分とについて、X線回折スペクトルをそれぞれ測定して比較したところ、どちらも結晶型はアナターゼ型であり、分散処理による結晶型の変化は見られなかった。   The content of ammonium phosphate in the obtained titanium oxide particle dispersion is 0.03 mol times with respect to the titanium oxide particles. Moreover, when the dispersion liquid obtained above was centrifuged to remove coarse particles, the average dispersed particle diameter was 84 nm. Moreover, when it adjusted with water so that solid content concentration of the obtained dispersion liquid might be 10 mass%, pH of this dispersion liquid was 6.9. The solid content in the mixture before the dispersion treatment and the solid content in the dispersion after the dispersion treatment (the second dispersion treatment above) were measured and compared with each other. The type was anatase type, and no change in crystal type due to dispersion treatment was observed.

(製造例2−酸化タングステン粒子分散液の調製)
パラタングステン酸アンモニウム(日本無機化学製)を空気中700℃で6時間焼成して、粒子状光触媒体である酸化タングステン粉末を得た。
次に、イオン交換水4kgに、上記で得られた酸化タングステン粉末1kgを加えて混合物を得た。この混合物を、媒体攪拌式分散機(コトブキ技研社製「ウルトラアペックスミル UAM−1 1009」)を用いて下記の条件で分散処理して、酸化タングステン粒子分散液を得た。
分散媒体:直径0.05mmのジルコニア製ビーズ1.85kg
攪拌速度:周速12.6m/秒
流速:0.25L/分
合計処理時間:約50分
(Production Example 2-Preparation of tungsten oxide particle dispersion)
Ammonium paratungstate (manufactured by Nippon Inorganic Chemical Co., Ltd.) was calcined in air at 700 ° C. for 6 hours to obtain a tungsten oxide powder as a particulate photocatalyst.
Next, 1 kg of the tungsten oxide powder obtained above was added to 4 kg of ion-exchanged water to obtain a mixture. This mixture was subjected to a dispersion treatment under the following conditions using a medium stirring type disperser (“Ultra Apex Mill UAM-1 1009” manufactured by Kotobuki Giken Co., Ltd.) to obtain a tungsten oxide particle dispersion.
Dispersion medium: 1.85 kg of zirconia beads having a diameter of 0.05 mm
Stirring speed: peripheral speed 12.6 m / sec Flow rate: 0.25 L / min Total processing time: about 50 minutes

得られた酸化タングステン粒子分散液における酸化タングステン粒子の平均分散粒子径は114nmであった。また、得られた分散液の固形分濃度が10質量%になるように水で調整したところ、この分散液のpHは3.0であった。また、この分散液の一部を真空乾燥することにより得られた固形分のBET比表面積は34m2/gであった。なお、分散処理前の混合物中の固形分と、分散処理後の分散液中の固形分とについて、X線回折スペクトルをそれぞれ測定して比較したところ、どちらも結晶型はWO3であり、分散処理による結晶型の変化は見られなかった。 The average dispersed particle diameter of the tungsten oxide particles in the obtained tungsten oxide particle dispersion was 114 nm. Moreover, when it adjusted with water so that solid content concentration of the obtained dispersion liquid might be 10 mass%, pH of this dispersion liquid was 3.0. Moreover, the BET specific surface area of solid content obtained by vacuum-drying a part of this dispersion liquid was 34 m < 2 > / g. In addition, when the solid content in the mixture before the dispersion treatment and the solid content in the dispersion liquid after the dispersion treatment were measured and compared with each other, the crystal form was WO 3 and both were dispersed. There was no change in crystal form due to treatment.

(実施例1)
製造例1で得た酸化チタン粒子分散液と、製造例2で得た酸化タングステン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは4.8であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.095h-1であった。
Example 1
Mix the titanium oxide particle dispersion obtained in Production Example 1 and the tungsten oxide particle dispersion obtained in Production Example 2 so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). As a result, a photocatalyst dispersion liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 4.8. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.095 h −1 .

(比較例1)
製造例1で得た酸化チタン粒子分散液に代えて、市販の酸化チタン粒子分散液(石原産業社製「STS−01」、硝酸含有、平均分散粒子径:50nm)を用いたこと以外は、実施例1と同様に操作して、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは1.9であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に凝集粒子が生成し、固液分離が起こった。
(Comparative Example 1)
In place of the titanium oxide particle dispersion obtained in Production Example 1, a commercially available titanium oxide particle dispersion (“STS-01” manufactured by Ishihara Sangyo Co., Ltd., nitric acid-containing, average dispersed particle diameter: 50 nm) was used. The photocatalyst dispersion liquid was obtained in the same manner as in Example 1. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 1.9. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, aggregated particles were generated during storage, and solid-liquid separation occurred.

(実施例2)
製造例1で得た酸化チタン粒子分散液と、製造例2で得た酸化タングステン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合した。次いで、ヘキサクロロ白金酸(H2PtCl6)の水溶液を、ヘキサクロロ白金酸が白金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.03質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の5質量%となるように加えて、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であった。
この時点で、得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
(Example 2)
Mix the titanium oxide particle dispersion obtained in Production Example 1 and the tungsten oxide particle dispersion obtained in Production Example 2 so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). did. Next, the aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) is 0.03 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum atoms. In addition, methanol was added so that the concentration thereof was 5% by mass of the total solvent to obtain a photocatalyst dispersion. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration of 5% by mass).
At this point, when the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

さらに、上記光触媒体分散液30gを100mLビーカーに移し、攪拌しながら、超高圧水銀灯(ウシオ電機製、ランプハウス:「MPL−25101」、超高圧水銀灯:「USH−250BY」、ランプ電源:「HB−25103BY」)にて光照射(紫外線照射)を2時間行うことにより、光触媒体分散液中のヘキサクロロ白金酸を白金に還元して、光触媒体分散液を得た。この光照射後の光触媒体分散液のpHは4.6であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.129h-1であった。
Further, 30 g of the above photocatalyst dispersion liquid was transferred to a 100 mL beaker, and while stirring, an ultrahigh pressure mercury lamp (manufactured by USHIO INC., Lamp house: “MPL-25101”, ultrahigh pressure mercury lamp: “USH-250BY”, lamp power supply: “HB −25103BY ”) was subjected to light irradiation (ultraviolet irradiation) for 2 hours to reduce hexachloroplatinic acid in the photocatalyst dispersion liquid to platinum, thereby obtaining a photocatalyst dispersion liquid. The pH of the photocatalyst dispersion after the light irradiation was 4.6.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.129 h −1 .

(実施例3)
ヘキサクロロ白金酸(H2PtCl6)水溶液の使用量を、ヘキサクロロ白金酸が白金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.06質量部となるようにしたこと以外は、実施例2と同様に操作して、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であった。
この時点で、得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
(Example 3)
The amount of hexachloroplatinic acid (H 2 PtCl 6 ) aqueous solution used is 0.06 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum atoms. A photocatalyst dispersion liquid was obtained in the same manner as in Example 2 except that. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration of 5% by mass).
At this point, when the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

さらに、上記光触媒体分散液30gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、光触媒体分散液中のヘキサクロロ白金酸を白金に還元して、光触媒体分散液を得た。この光照射後の光触媒体分散液のpHは4.5であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.132h-1であった。
Further, 30 g of the above photocatalyst dispersion liquid was transferred to a 100 mL beaker, and light irradiation was carried out in the same manner as in Example 2 to reduce hexachloroplatinic acid in the photocatalyst dispersion liquid to platinum, thereby producing a photocatalyst dispersion liquid. Got. The pH of the photocatalyst dispersion liquid after the light irradiation was 4.5.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the obtained photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.132 h −1 .

(実施例4)
ヘキサクロロ白金酸(H2PtCl6)水溶液の使用量を、ヘキサクロロ白金酸が白金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.1質量部となるようにしたこと以外は、実施例2と同様に操作して、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であった。
この時点で、得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Example 4
The amount of hexachloroplatinic acid (H 2 PtCl 6 ) aqueous solution used is 0.1 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum atoms. A photocatalyst dispersion liquid was obtained in the same manner as in Example 2 except that. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration of 5% by mass).
At this point, when the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

さらに、上記光触媒体分散液30gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、光触媒体分散液中のヘキサクロロ白金酸を白金に還元して、光触媒体分散液を得た。この光照射後の光触媒体分散液のpHは4.3であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.128h-1であった。
Further, 30 g of the above photocatalyst dispersion liquid was transferred to a 100 mL beaker, and light irradiation was carried out in the same manner as in Example 2 to reduce hexachloroplatinic acid in the photocatalyst dispersion liquid to platinum, thereby producing a photocatalyst dispersion liquid. Got. The pH of the photocatalyst dispersion liquid after the light irradiation was 4.3.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.128 h −1 .

(実施例5)
ヘキサクロロ白金酸(H2PtCl6)水溶液に代えて、テトラクロロ金酸(HAuCl)の水溶液を、テトラクロロ金酸が金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.03質量部となるように加えたこと以外は、実施例2と同様に操作して、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であった。
この時点で、得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
(Example 5)
Instead of an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ), an aqueous solution of tetrachloroauric acid (HAuCl 4 ) was used, and the total amount of tetrachloroauric acid used as titanium atoms and tungsten oxide particles in terms of gold atoms was 100 parts by mass. A photocatalyst dispersion liquid was obtained in the same manner as in Example 2 except that 0.03 part by mass was added. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration of 5% by mass).
At this point, when the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

さらに、上記光触媒体分散液30gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、光触媒体分散液中のテトラクロロ金酸を金に還元して、光触媒体分散液を得た。この光照射後の光触媒体分散液のpHは4.1であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.109h-1であった。
Further, 30 g of the above photocatalyst dispersion liquid was transferred to a 100 mL beaker and subjected to light irradiation in the same manner as in Example 2 to reduce the tetrachloroauric acid in the photocatalyst dispersion liquid to gold, thereby dispersing the photocatalyst dispersion. A liquid was obtained. The pH of the photocatalyst dispersion after the light irradiation was 4.1.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.109 h −1 .

(実施例6)
製造例2で得た酸化タングステン粒子分散液に、ヘキサクロロ白金酸(H2PtCl6)の水溶液を、ヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.03質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の6.5質量%となるように加えて、ヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は3.3質量部(固形分濃度3.3質量%)であった。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
(Example 6)
An aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) is added to the tungsten oxide particle dispersion obtained in Production Example 2, and the hexachloroplatinic acid is converted to platinum atoms in an amount of 0.03 mass per 100 mass parts of the tungsten oxide particles used. In addition, methanol was added so that the concentration thereof was 6.5% by mass of the total solvent, to obtain a hexachloroplatinic acid-containing tungsten oxide particle dispersion. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 3.3 parts by mass (solid content concentration: 3.3% by mass).
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記ヘキサクロロ白金酸含有酸化タングステン粒子分散液22.5gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、分散液中のヘキサクロロ白金酸を白金に還元して、白金含有酸化タングステン粒子分散液を得た。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Next, 22.5 g of the hexachloroplatinic acid-containing tungsten oxide particle dispersion is transferred to a 100 mL beaker, and light irradiation is performed in the same manner as in Example 2 to reduce the hexachloroplatinic acid in the dispersion to platinum. A platinum-containing tungsten oxide particle dispersion was obtained.
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記白金含有酸化タングステン粒子分散液と、製造例1で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の白金の含有量は、白金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.015質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは4.6であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.131h-1であった。
Next, the platinum-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 1 are mixed so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (Thus, the platinum content in the dispersion was 0.015 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum atoms). A liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 4.6. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the obtained photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.131 h −1 .

(実施例7)
ヘキサクロロ白金酸(H2PtCl6)水溶液の使用量を、ヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.06質量部となるようにしたこと以外は、実施例6と同様に操作して、ヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は5質量部(固形分濃度5質量%)であった。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
(Example 7)
Implementation was carried out except that the amount of hexachloroplatinic acid (H 2 PtCl 6 ) used was 0.06 parts by mass with respect to 100 parts by mass of tungsten oxide particles in terms of platinum atoms. In the same manner as in Example 6, a hexachloroplatinic acid-containing tungsten oxide particle dispersion was obtained. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 5 parts by mass (solid content concentration 5% by mass).
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記ヘキサクロロ白金酸含有酸化タングステン粒子分散液22.5gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、分散液中のヘキサクロロ白金酸を白金に還元して、白金含有酸化タングステン粒子分散液を得た。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Next, 22.5 g of the hexachloroplatinic acid-containing tungsten oxide particle dispersion is transferred to a 100 mL beaker, and light irradiation is performed in the same manner as in Example 2 to reduce the hexachloroplatinic acid in the dispersion to platinum. A platinum-containing tungsten oxide particle dispersion was obtained.
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記白金含有酸化タングステン粒子分散液と、製造例1で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の白金の含有量は、白金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.03質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは4.6であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.125h-1であった。
Next, the platinum-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 1 are mixed so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (Thus, the platinum content in the dispersion was 0.03 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum atoms), and photocatalyst dispersion A liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 4.6. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.125 h −1 .

(実施例8)
ヘキサクロロ白金酸(H2PtCl6)水溶液の使用量を、ヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.12質量部となるようにしたこと以外は、実施例6と同様に操作して、ヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は5質量部(固形分濃度5質量%)であった。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
(Example 8)
Except that the amount of hexachloroplatinic acid (H 2 PtCl 6 ) aqueous solution used was 0.12 parts by mass with respect to 100 parts by mass of tungsten oxide particles in terms of platinum atoms in terms of hexachloroplatinic acid. In the same manner as in Example 6, a hexachloroplatinic acid-containing tungsten oxide particle dispersion was obtained. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 5 parts by mass (solid content concentration 5% by mass).
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記ヘキサクロロ白金酸含有酸化タングステン粒子分散液22.5gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、分散液中のヘキサクロロ白金酸を白金に還元して、白金含有酸化タングステン粒子分散液を得た。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Next, 22.5 g of the hexachloroplatinic acid-containing tungsten oxide particle dispersion is transferred to a 100 mL beaker, and light irradiation is performed in the same manner as in Example 2 to reduce the hexachloroplatinic acid in the dispersion to platinum. A platinum-containing tungsten oxide particle dispersion was obtained.
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記白金含有酸化タングステン粒子分散液と、製造例1で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の白金の含有量は、白金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.06質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは4.5であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.114h-1であった。
Next, the platinum-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 1 are mixed so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (As a result, the platinum content in the dispersion was 0.06 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum atoms), and photocatalyst dispersion A liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 4.5. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the obtained photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.114 h −1 .

(実施例9)
ヘキサクロロ白金酸(H2PtCl6)水溶液の使用量を、ヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.2質量部となるようにしたこと以外は、実施例6と同様に操作して、ヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は5質量部(固形分濃度5質量%)であった。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Example 9
Except that the amount of hexachloroplatinic acid (H 2 PtCl 6 ) used was 0.2 parts by mass with respect to 100 parts by mass of tungsten oxide particles in terms of platinum atoms. In the same manner as in Example 6, a hexachloroplatinic acid-containing tungsten oxide particle dispersion was obtained. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 5 parts by mass (solid content concentration 5% by mass).
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記ヘキサクロロ白金酸含有酸化タングステン粒子分散液22.5gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、分散液中のヘキサクロロ白金酸を白金に還元して、白金含有酸化タングステン粒子分散液を得た。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Next, 22.5 g of the hexachloroplatinic acid-containing tungsten oxide particle dispersion is transferred to a 100 mL beaker, and light irradiation is performed in the same manner as in Example 2 to reduce the hexachloroplatinic acid in the dispersion to platinum. A platinum-containing tungsten oxide particle dispersion was obtained.
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記白金含有酸化タングステン粒子分散液と、製造例1で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の白金の含有量は、白金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.1質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは4.3であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.120h-1であった。
Next, the platinum-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 1 are mixed so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (Thus, the platinum content in the dispersion was 0.1 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum atoms). A liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 4.3. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.120 h −1 .

(実施例10)
製造例2で得た酸化タングステン粒子分散液に、テトラクロロ金酸(HAuCl4)の水溶液を、テトラクロロ金酸が金原子換算で酸化タングステン粒子の使用量100質量部に対して0.03質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の6.5質量%となるように加えて、テトラクロロ金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は3.3質量部(固形分濃度3.3質量%)であった。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
(Example 10)
To the tungsten oxide particle dispersion obtained in Production Example 2, an aqueous solution of tetrachloroauric acid (HAuCl 4 ) is added in an amount of 0.03 mass per 100 parts by mass of tungsten oxide particles in terms of gold atoms in terms of tetrachloroauric acid. Further, methanol was added so that the concentration thereof was 6.5% by mass of the total solvent to obtain a tetrachloroauric acid-containing tungsten oxide particle dispersion. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 3.3 parts by mass (solid content concentration: 3.3% by mass).
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記テトラクロロ金酸含有酸化タングステン粒子分散液22.5gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、分散液中のテトラクロロ金酸を金に還元して、金含有酸化タングステン粒子分散液を得た。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Next, 22.5 g of the tetrachloroauric acid-containing tungsten oxide particle dispersion is transferred to a 100 mL beaker, and light irradiation is performed in the same manner as in Example 2 to reduce tetrachloroauric acid in the dispersion to gold. Thus, a gold-containing tungsten oxide particle dispersion was obtained.
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記金含有酸化タングステン粒子分散液と、製造例1で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の金の含有量は、金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.015質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは4.5であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.106h-1であった。
Next, the gold-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 1 are mixed so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (Thus, the gold content in the dispersion was 0.015 parts by mass in terms of gold atoms with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles). A liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 4.5. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.106 h −1 .

(実施例11)
テトラクロロ金酸(HAuCl4)水溶液の使用量を、テトラクロロ金酸が金原子換算で酸化タングステン粒子の使用量100質量部に対して0.12質量部となるようにしたこと以外は、実施例10と同様に操作して、テトラクロロ金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は5質量部(固形分濃度5質量%)であった。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
(Example 11)
Implementation was carried out except that the amount of tetrachloroauric acid (HAuCl 4 ) aqueous solution used was 0.12 parts by mass with respect to 100 parts by mass of tungsten oxide particles in terms of gold atoms. In the same manner as in Example 10, a tetrachloroauric acid-containing tungsten oxide particle dispersion was obtained. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 5 parts by mass (solid content concentration 5% by mass).
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記テトラクロロ金酸含有酸化タングステン粒子分散液22.5gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、分散液中のテトラクロロ金酸を金に還元して、金含有酸化タングステン粒子分散液を得た。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Next, 22.5 g of the tetrachloroauric acid-containing tungsten oxide particle dispersion is transferred to a 100 mL beaker, and light irradiation is performed in the same manner as in Example 2 to reduce tetrachloroauric acid in the dispersion to gold. Thus, a gold-containing tungsten oxide particle dispersion was obtained.
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記金含有酸化タングステン粒子分散液と、製造例1で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の金の含有量は、金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.06質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは4.5であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.141h-1であった。
Next, the gold-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 1 are mixed so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (Thus, the gold content in the dispersion was 0.06 parts by mass in terms of gold atoms with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles). A liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 4.5. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.141 h −1 .

(実施例12)
テトラクロロ金酸(HAuCl4)水溶液の使用量を、テトラクロロ金酸が金原子換算で酸化タングステン粒子の使用量100質量部に対して0.2質量部となるようにしたこと以外は、実施例10と同様に操作して、テトラクロロ金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は5質量部(固形分濃度5質量%)であった。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Example 12
Implementation was carried out except that the amount of tetrachloroauric acid (HAuCl 4 ) aqueous solution used was 0.2 parts by mass with respect to 100 parts by mass of tungsten oxide particles in terms of gold atoms. In the same manner as in Example 10, a tetrachloroauric acid-containing tungsten oxide particle dispersion was obtained. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 5 parts by mass (solid content concentration 5% by mass).
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記テトラクロロ金酸含有酸化タングステン粒子分散液22.5gを100mLビーカーに移し、実施例2と同様に操作して光照射を行うことにより、分散液中のテトラクロロ金酸を金に還元して、金含有酸化タングステン粒子分散液を得た。
この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。
Next, 22.5 g of the tetrachloroauric acid-containing tungsten oxide particle dispersion is transferred to a 100 mL beaker, and light irradiation is performed in the same manner as in Example 2 to reduce tetrachloroauric acid in the dispersion to gold. Thus, a gold-containing tungsten oxide particle dispersion was obtained.
At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記金含有酸化タングステン粒子分散液と、製造例1で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の金の含有量は、金原子換算で酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.1質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは4.4であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.146h-1であった。
Next, the gold-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 1 are mixed so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (Thus, the gold content in the dispersion was 0.1 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of gold atoms). A liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 4.4. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.146 h −1 .

(製造例3−酸化チタン粒子分散液の調製)
リン酸二水素アンモニウム(和光特級試薬)0.086gを水 47.1gに溶解させ、得られたリン酸二水素アンモニウム水溶液に、硫酸チタニルの加熱加水分解により得られたメタチタン酸の固形物(ケーキ)(TiOとして固形分濃度46.8質量%)12.82gを混合した。このとき、リン酸二水素アンモニウムの量は、メタチタン酸1モルに対して0.01 モルであった。得られた混合物を、媒体攪拌式粉砕機(五十嵐機械製作所製「4TSG−1/8」)を用いて下記の条件で分散処理して、酸化チタン粒子分散液を得た。
媒体:直径0.05mmのジルコニア製ビーズ 190g
処理温度:20℃
処理時間:1時間
回転数:2000rpm
(Production Example 3-Preparation of titanium oxide particle dispersion)
0.086 g of ammonium dihydrogen phosphate (Wako Special Grade Reagent) was dissolved in 47.1 g of water, and the resulting ammonium dihydrogen phosphate aqueous solution was obtained by subjecting titanyl sulfate to thermal hydrolysis to a solid product (cake) of metatitanic acid. ) (Solid content concentration 46.8% by mass as TiO 2 ) 12.82 g was mixed. At this time, the amount of ammonium dihydrogen phosphate was 0.01 mol with respect to 1 mol of metatitanic acid. The obtained mixture was subjected to a dispersion treatment under the following conditions using a medium stirring pulverizer (“4TSG-1 / 8” manufactured by Igarashi Machinery Co., Ltd.) to obtain a titanium oxide particle dispersion.
Medium: 190 g zirconia beads with a diameter of 0.05 mm
Processing temperature: 20 ° C
Processing time: 1 hour Rotation speed: 2000 rpm

得られた酸化チタン粒子分散液中の酸化チタン粒子の平均分散粒子径は92nmであり、分散液のpHは7.8 であった。なお、分散処理前の混合物と分散処理後の分散液との一部を真空乾燥して固形分を得、各固形分のX線回折スペクトルをそれぞれ測定して比較したところ、どちらも結晶型はアナターゼ型であり、分散処理による結晶型の変化は見られなかった。   The average dispersed particle diameter of the titanium oxide particles in the obtained titanium oxide particle dispersion was 92 nm, and the pH of the dispersion was 7.8. A part of the mixture before the dispersion treatment and the dispersion after the dispersion treatment were vacuum-dried to obtain a solid content, and the X-ray diffraction spectrum of each solid content was measured and compared. It was anatase type, and no change in crystal form due to dispersion treatment was observed.

(製造例4−酸化タングステン粒子分散液の調製)
イオン交換水4kgに、粒子状の光触媒体である酸化タングステン粉末(日本無機化学製)1kgを加えて混合して混合物を得た。この混合物を、媒体攪拌式分散機(コトブキ技研社製「ウルトラアペックスミル UAM−1 1009」)を用いて下記の条件で分散処理して、酸化タングステン粒子分散液を得た。
分散媒体:直径0.05mmのジルコニア製ビーズ1.85kg
攪拌速度:周速12.6m/秒
流速:0.25L/分
合計処理時間:約50分
(Production Example 4-Preparation of tungsten oxide particle dispersion)
1 kg of tungsten oxide powder (manufactured by Nippon Inorganic Chemical Co., Ltd.), which is a particulate photocatalyst, was added to 4 kg of ion exchange water and mixed to obtain a mixture. This mixture was subjected to a dispersion treatment under the following conditions using a medium stirring type disperser (“Ultra Apex Mill UAM-1 1009” manufactured by Kotobuki Giken Co., Ltd.) to obtain a tungsten oxide particle dispersion.
Dispersion medium: 1.85 kg of zirconia beads having a diameter of 0.05 mm
Stirring speed: peripheral speed 12.6 m / sec Flow rate: 0.25 L / min Total processing time: about 50 minutes

得られた酸化タングステン粒子分散液における酸化タングステン粒子の平均分散粒子径は118nmであった。また、この分散液の一部を真空乾燥して固形分を得たところ、得られた固形分のBET比表面積は40m2/gであった。なお、分散処理の前の混合物についても同様に真空乾燥して固形分を得、分散処理前の混合物の固形分と分散処理後の分散液の固形分について、X線回折スペクトルをそれぞれ測定して比較したところ、どちらも結晶型はWO3であり、分散処理による結晶型の変化は見られなかった。この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。 The average dispersed particle diameter of the tungsten oxide particles in the obtained tungsten oxide particle dispersion was 118 nm. Moreover, when a part of this dispersion was vacuum-dried to obtain a solid content, the BET specific surface area of the obtained solid content was 40 m 2 / g. Similarly, the mixture before the dispersion treatment is also vacuum-dried to obtain a solid content, and X-ray diffraction spectra are respectively measured for the solid content of the mixture before the dispersion treatment and the solid content of the dispersion after the dispersion treatment. As a result of comparison, the crystal form of both was WO 3 , and no change in crystal form due to dispersion treatment was observed. At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

(実施例13)
製造例4で得た酸化タングステン粒子分散液に、ヘキサクロロ白金酸(H2PtCl6)の水溶液を、ヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.12質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の6.25質量%となるように加えて、ヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は11.4質量部(固形分濃度11.4質量%)であった。
(Example 13)
An aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) is added to the tungsten oxide particle dispersion obtained in Production Example 4, and the hexachloroplatinic acid is converted to platinum atoms in an amount of 0.12 mass per 100 mass parts of the tungsten oxide particles used. In addition, methanol was added so that the concentration thereof was 6.25% by mass of the total solvent, to obtain a hexachloroplatinic acid-containing tungsten oxide particle dispersion. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 11.4 parts by mass (solid content concentration 11.4% by mass).

次いで、上記ヘキサクロロ白金酸含有酸化タングステン粒子分散液480gを1Lビーカーに移し、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を3時間行うことにより、分散液中のヘキサクロロ白金酸を白金に還元して、白金含有酸化タングステン粒子分散液を得た。この光照射後の光触媒体分散液のpHは2.4であった。 この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。   Next, 480 g of the hexachloroplatinic acid-containing tungsten oxide particle dispersion is transferred to a 1 L beaker and stirred, while stirring, a high pressure mercury lamp (manufactured by USHIO, high pressure mercury lamp: “UM-102”, high pressure mercury lamp lighting device: “UM-103B- B ") was subjected to light irradiation (ultraviolet irradiation) for 3 hours to reduce the hexachloroplatinic acid in the dispersion to platinum to obtain a platinum-containing tungsten oxide particle dispersion. The pH of the photocatalyst dispersion after the light irradiation was 2.4. At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage.

次いで、上記白金含有酸化タングステン粒子分散液と、製造例3で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の白金の含有量は、白金原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.06質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は5質量部(固形分濃度5質量%)であり、pHは3.6であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(アセトアルデヒドの分解)を評価したところ、一次反応速度定数は0.182h-1であった。
Next, the platinum-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 3 are mixed so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (Thus, the platinum content in the dispersion was 0.06 parts by mass in terms of platinum atoms with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles), and the photocatalyst. A dispersion was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 5 parts by mass (solid content concentration 5% by mass), and the pH was 3.6. .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of acetaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.182 h −1 .

(実施例14)
製造例4で得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は0.644h-1であった。
(Example 14)
When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid obtained in Production Example 4 was evaluated, the first-order rate constant was 0.644 h −1 .

(実施例15)
製造例4で得た酸化タングステン粒子分散液に、ヘキサクロロ白金酸(H2PtCl6)ヘキサクロロ白金酸(H2PtCl6)の水溶液を、ヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.096質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の1.1質量%となるように加えて、ヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)を、水により10.2質量部(固形分濃度10.2質量%)に調整した。
(Example 15)
In the tungsten oxide particle dispersion obtained in Production Example 4, an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) hexachloroplatinic acid (H 2 PtCl 6 ) is used, and the amount of tungsten oxide particles used in terms of platinum atoms is 100 Add to 0.096 parts by mass with respect to parts by mass, and further add methanol so that the concentration is 1.1% by mass of the total solvent to obtain a hexachloroplatinic acid-containing tungsten oxide particle dispersion. It was. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was adjusted to 10.2 parts by mass (solid content concentration 10.2% by mass) with water.

次いで、上記ヘキサクロロ白金酸含有酸化タングステン粒子分散液30gを100mLビーカーに移し、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を30分間行うことにより、分散液中のヘキサクロロ白金酸を白金に還元して、白金含有酸化タングステン粒子分散液を得た。   Next, 30 g of the above hexachloroplatinic acid-containing tungsten oxide particle dispersion was transferred to a 100 mL beaker and stirred, while stirring, a high pressure mercury lamp (manufactured by USHIO, high pressure mercury lamp: “UM-102”, high pressure mercury lamp lighting device: “UM-103B- B ") was irradiated with light (ultraviolet irradiation) for 30 minutes to reduce the hexachloroplatinic acid in the dispersion to platinum to obtain a platinum-containing tungsten oxide particle dispersion.

次いで、上記白金含有酸化タングステン粒子分散液に、塩化パラジウム(PdCl2)の塩酸水溶液(PdCl2粉末0.252gを、濃度1mol/Lの塩酸水溶液9.41gと水90.43gからなる水溶液に溶解)を、塩化パラジウムがパラジウム原子換算で酸化タングステン粒子の使用量100質量部に対して0.024質量部となるように加え、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を30分間行うことにより、分散液中の塩化パラジウムをパラジウムに還元して、パラジウム及び白金含有酸化タングステン粒子分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化タングステン粒子との合計量)は10.0質量部(固形分濃度10.0質量%)であった。この光照射後の光触媒体分散液のpHは2.2であった。 Next, a palladium chloride (PdCl 2 ) hydrochloric acid aqueous solution (PdCl 2 powder 0.252 g) was dissolved in the platinum-containing tungsten oxide particle dispersion in an aqueous solution composed of 9.41 g of hydrochloric acid aqueous solution having a concentration of 1 mol / L and 90.43 g of water. ) Is added so that the palladium chloride is 0.024 parts by mass with respect to 100 parts by mass of the tungsten oxide particles in terms of palladium atoms, and is stirred, and a high pressure mercury lamp (manufactured by Ushio Electric, high pressure mercury lamp: “UM- 102 ”, high-pressure mercury lamp lighting device:“ UM-103B-B ”), by performing light irradiation (ultraviolet irradiation) for 30 minutes, palladium chloride in the dispersion is reduced to palladium, and palladium and platinum-containing oxidation A tungsten particle dispersion was obtained. The solid content (total amount with the tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 10.0 parts by mass (solid content concentration 10.0% by mass). The pH of the photocatalyst dispersion after the light irradiation was 2.2.

次いで、上記パラジウム及び白金含有酸化タングステン粒子分散液と、製造例3で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の白金及びパラジウムの含有量は、白金及びパラジウム原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対してそれぞれ0.048質量部と0.012質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に調整した。pHは3.9であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は1.05h-1であった。
Next, the palladium- and platinum-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 3 are set so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (By this, the content of platinum and palladium in the dispersion is 0.048 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum and palladium atoms, respectively) And 0.012 parts by mass) to obtain a photocatalyst dispersion. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass). The pH was 3.9.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 1.05 h −1 .

(実施例16)
製造例4で得た酸化タングステン粒子分散液に、ヘキサクロロ白金酸(H2PtCl6)ヘキサクロロ白金酸(H2PtCl6)の水溶液を、ヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.096質量部となるように加え、引き続き、実施例15の塩化パラジウム(PdCl2)の塩酸水溶液を、塩化パラジウムがパラジウム原子換算で酸化タングステン粒子の使用量100質量部に対して0.024質量部となるように加えた。その後、さらに、メタノールを、その濃度が全溶媒の1.1質量%となるように加えて、ヘキサクロロ白金酸及び塩化パラジウム含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)を、水により10.0質量部(固形分濃度10.0質量%)に調整した。
(Example 16)
In the tungsten oxide particle dispersion obtained in Production Example 4, an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) hexachloroplatinic acid (H 2 PtCl 6 ) is used, and the amount of tungsten oxide particles used in terms of platinum atoms is 100 Subsequently, the aqueous hydrochloric acid solution of palladium chloride (PdCl 2 ) of Example 15 was added to 100 parts by mass of tungsten oxide particles in terms of palladium atoms. It added so that it might become 0.024 mass part with respect to it. Thereafter, methanol was further added so that the concentration thereof was 1.1% by mass of the total solvent to obtain a tungsten oxide particle dispersion containing hexachloroplatinic acid and palladium chloride. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was adjusted to 10.0 parts by mass (solid content concentration 10.0% by mass) with water.

次いで、上記ヘキサクロロ白金酸及び塩化パラジウム含有酸化タングステン粒子分散液30gを100mLビーカーに移し、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を1時間行うことにより、分散液中のヘキサクロロ白金酸を白金に還元し、塩化パラジウムがパラジウムに還元して、白金及びパラジウム含有酸化タングステン粒子分散液を得た。この光照射後の光触媒体分散液のpHは2.3であった。 Next, 30 g of the above-mentioned hexachloroplatinic acid and palladium chloride-containing tungsten oxide particle dispersion was transferred to a 100 mL beaker, and while stirring, a high-pressure mercury lamp (manufactured by USHIO INC., High-pressure mercury lamp: “UM-102”, high-pressure mercury lamp lighting device: “UM” -103B-B ") is subjected to light irradiation (ultraviolet irradiation) for 1 hour, whereby hexachloroplatinic acid in the dispersion is reduced to platinum, palladium chloride is reduced to palladium, and platinum and palladium-containing tungsten oxide particles. A dispersion was obtained. The pH of the photocatalyst dispersion after the light irradiation was 2.3.

次いで、上記白金及びパラジウム含有酸化タングステン粒子分散液と、製造例3で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の白金及びパラジウムの含有量は、白金及びパラジウム原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対してそれぞれ0.048質量部と0.012質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に調整した。pHは3.9であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は0.959h-1であった。
Next, the platinum and palladium-containing tungsten oxide particle dispersion liquid and the titanium oxide particle dispersion liquid obtained in Production Example 3 are set so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (By this, the content of platinum and palladium in the dispersion is 0.048 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum and palladium atoms, respectively) And 0.012 parts by mass) to obtain a photocatalyst dispersion. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass). The pH was 3.9.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.959 h −1 .

(実施例17)
製造例4で得た酸化タングステン粒子分散液に、ヘキサクロロ白金酸(H2PtCl6)ヘキサクロロ白金酸(H2PtCl6)の水溶液を、ヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.048質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の1.1質量%となるように加えて、ヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)を、水により10.5質量部(固形分濃度10.5質量%)に調整した。
(Example 17)
In the tungsten oxide particle dispersion obtained in Production Example 4, an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) hexachloroplatinic acid (H 2 PtCl 6 ) is used, and the amount of tungsten oxide particles used in terms of platinum atoms is 100 In addition to adding 0.048 parts by mass with respect to parts by mass, methanol is further added so that the concentration thereof becomes 1.1% by mass of the total solvent to obtain a hexachloroplatinic acid-containing tungsten oxide particle dispersion. It was. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was adjusted to 10.5 parts by mass (solid content concentration 10.5% by mass) with water.

次いで、上記ヘキサクロロ白金酸含有酸化タングステン粒子分散液30gを100mLビーカーに移し、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を30分間行うことにより、分散液中のヘキサクロロ白金酸を白金に還元して、白金含有酸化タングステン粒子分散液を得た。 Next, 30 g of the above hexachloroplatinic acid-containing tungsten oxide particle dispersion was transferred to a 100 mL beaker and stirred, while stirring, a high pressure mercury lamp (manufactured by USHIO, high pressure mercury lamp: “UM-102”, high pressure mercury lamp lighting device: “UM-103B- B ") was irradiated with light (ultraviolet irradiation) for 30 minutes to reduce the hexachloroplatinic acid in the dispersion to platinum to obtain a platinum-containing tungsten oxide particle dispersion.

次いで、上記白金含有酸化タングステン粒子分散液に、実施例15で用いた塩化パラジウム(PdCl2)の塩酸水溶液を、塩化パラジウムがパラジウム原子換算で酸化タングステン粒子の使用量100質量部に対して0.072質量部となるように加え、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を30分間行うことにより、分散液中の塩化パラジウムをパラジウムに還元して、パラジウム及び白金含有酸化タングステン粒子分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化タングステン粒子との合計量)は10.0質量部(固形分濃度10.0質量%)であった。この光照射後の光触媒体分散液のpHは2.0であった。 Next, the hydrochloric acid aqueous solution of palladium chloride (PdCl 2 ) used in Example 15 was added to the platinum-containing tungsten oxide particle dispersion solution in an amount of 0.000 parts by mass with respect to 100 parts by mass of the tungsten oxide particles in terms of palladium atoms. In addition to being 072 parts by mass, while stirring, light irradiation (ultraviolet irradiation) with a high pressure mercury lamp (manufactured by USHIO, high pressure mercury lamp: “UM-102”, high pressure mercury lamp lighting device: “UM-103B-B”) ) For 30 minutes to reduce palladium chloride in the dispersion to palladium to obtain a palladium and platinum-containing tungsten oxide particle dispersion. The solid content (total amount with the tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was 10.0 parts by mass (solid content concentration 10.0% by mass). The pH of the photocatalyst dispersion liquid after the light irradiation was 2.0.

次いで、上記パラジウム及び白金含有酸化タングステン粒子分散液と、製造例3で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の白金及びパラジウムの含有量は、白金及びパラジウム原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対してそれぞれ0.024質量部と0.036質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に調整した。pHは3.8であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は0.976h-1であった。
Next, the palladium- and platinum-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 3 are set so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (By this, the platinum and palladium contents in the dispersion liquid are each 0.024 parts by mass in terms of platinum and palladium atoms with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles used. And a photocatalyst dispersion liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass). The pH was 3.8.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.976 h −1 .

(実施例18)
製造例4で得た酸化タングステン粒子分散液に、ヘキサクロロ白金酸(H2PtCl6)ヘキサクロロ白金酸(H2PtCl6)の水溶液を、ヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.024質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の1.1質量%となるように加えて、ヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)を、水により10.7質量部(固形分濃度10.7質量%)に調整した。
(Example 18)
In the tungsten oxide particle dispersion obtained in Production Example 4, an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) hexachloroplatinic acid (H 2 PtCl 6 ) is used, and the amount of tungsten oxide particles used in terms of platinum atoms is 100 In addition to 0.024 parts by mass with respect to parts by mass, methanol is further added so that the concentration thereof becomes 1.1% by mass of the total solvent to obtain a hexachloroplatinic acid-containing tungsten oxide particle dispersion. It was. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was adjusted to 10.7 parts by mass (solid content concentration 10.7% by mass) with water.

次いで、上記ヘキサクロロ白金酸含有酸化タングステン粒子分散液30gを100mLビーカーに移し、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を30分間行うことにより、分散液中のヘキサクロロ白金酸を白金に還元して、白金含有酸化タングステン粒子分散液を得た。   Next, 30 g of the above hexachloroplatinic acid-containing tungsten oxide particle dispersion was transferred to a 100 mL beaker and stirred, while stirring, a high pressure mercury lamp (manufactured by USHIO, high pressure mercury lamp: “UM-102”, high pressure mercury lamp lighting device: “UM-103B- B ") was irradiated with light (ultraviolet irradiation) for 30 minutes to reduce the hexachloroplatinic acid in the dispersion to platinum to obtain a platinum-containing tungsten oxide particle dispersion.

次いで、上記白金含有酸化タングステン粒子分散液に、実施例15で用いた塩化パラジウム(PdCl2)の塩酸水溶液を、塩化パラジウムがパラジウム原子換算で酸化タングステン粒子の使用量100質量部に対して0.096質量部となるように加え、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を30分間行うことにより、分散液中の塩化パラジウムをパラジウムに還元して、パラジウム及び白金含有酸化タングステン粒子分散液を得た。この光照射後の光触媒体分散液のpHは2.0であった。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は10.0質量部(固形分濃度10.0質量%)であった。 Next, the hydrochloric acid aqueous solution of palladium chloride (PdCl 2 ) used in Example 15 was added to the platinum-containing tungsten oxide particle dispersion solution in an amount of 0.000 parts by mass with respect to 100 parts by mass of the tungsten oxide particles in terms of palladium atoms. In addition to 096 parts by mass, with stirring, light irradiation (ultraviolet irradiation) with a high pressure mercury lamp (manufactured by USHIO, high pressure mercury lamp: “UM-102”, high pressure mercury lamp lighting device: “UM-103B-B”) ) For 30 minutes to reduce palladium chloride in the dispersion to palladium to obtain a palladium and platinum-containing tungsten oxide particle dispersion. The pH of the photocatalyst dispersion liquid after the light irradiation was 2.0. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 10.0 parts by mass (solid content concentration 10.0% by mass).

次いで、上記パラジウム及び白金含有酸化タングステン粒子分散液と、製造例3で得た酸化チタン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の白金及びパラジウムの含有量は、白金及びパラジウム原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対してそれぞれ0.012質量部と0.048質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に調整した。pHは3.7であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は0.982h-1であった。
Next, the palladium- and platinum-containing tungsten oxide particle dispersion and the titanium oxide particle dispersion obtained in Production Example 3 are set so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (By this, the content of platinum and palladium in the dispersion is 0.012 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum and palladium atoms, respectively) And a photocatalyst dispersion liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass). The pH was 3.7.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.982 h −1 .

(実施例19)
製造例3で得た酸化チタン粒子分散液に、実施例15で用いた塩化パラジウム(PdCl2)の塩酸水溶液を、塩化パラジウムがパラジウム原子換算で酸化チタン粒子の使用量100質量部に対して0.12質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の1.1質量%となるように加えて、塩化パラジウム含有酸化チタン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化チタン粒子の量)を、水により5質量部(固形分濃度5質量%)に調整した。
(Example 19)
To the titanium oxide particle dispersion obtained in Production Example 3, the hydrochloric acid aqueous solution of palladium chloride (PdCl 2 ) used in Example 15 was added to 100 parts by mass of palladium oxide in terms of palladium atoms with respect to 100 parts by mass of titanium oxide particles. In addition to adding 12 parts by mass, methanol was added so that the concentration was 1.1% by mass of the total solvent to obtain a palladium chloride-containing titanium oxide particle dispersion. The solid content (amount of titanium oxide particles) contained in 100 parts by mass of this dispersion was adjusted to 5 parts by mass (solid content concentration of 5% by mass) with water.

次いで、上記塩化パラジウム含有酸化チタン粒子分散液30gを100mLビーカーに移し、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を1時間行うことにより、分散液中の塩化パラジウムをパラジウムに還元して、パラジウム含有酸化チタン粒子分散液を得た。この光照射後の光触媒体分散液のpHは7.3であった。   Next, 30 g of the above palladium chloride-containing titanium oxide particle dispersion was transferred to a 100 mL beaker, and while stirring, a high-pressure mercury lamp (manufactured by USHIO, high-pressure mercury lamp: “UM-102”, high-pressure mercury lamp lighting device: “UM-103B-B” )), Light irradiation (ultraviolet irradiation) was performed for 1 hour, whereby palladium chloride in the dispersion was reduced to palladium to obtain a palladium-containing titanium oxide particle dispersion. The pH of the photocatalyst dispersion liquid after this light irradiation was 7.3.

次いで、上記パラジウム含有酸化チタン粒子分散液と、実施例13で得た白金含有酸化タングステン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中のパラジウム及び白金の含有量は、パラジウム及び白金原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して共に0.06質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に水で調整した。pHは3.8であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は1.08h-1であった。
Next, the palladium-containing titanium oxide particle dispersion liquid and the platinum-containing tungsten oxide particle dispersion liquid obtained in Example 13 are set so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (By this, the content of palladium and platinum in the dispersion is 0.06 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of palladium and platinum atoms) Thus, a photocatalyst dispersion liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass) with water. The pH was 3.8.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 1.08 h −1 .

(実施例20)
実施例19で得たパラジウム含有酸化チタン粒子分散液と、実施例13で得た白金含有酸化タングステン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が3:1(質量比)となるように混合して(これにより、分散液中のパラジウム及び白金の含有量は、パラジウム及び白金原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して、それぞれ0.09質量部及び0.03質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に水で調整した。pHは4.5であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は1.79h-1であった。
(Example 20)
The palladium-containing titanium oxide particle dispersion obtained in Example 19 and the platinum-containing tungsten oxide particle dispersion obtained in Example 13 had a ratio of titanium oxide particles to tungsten oxide particles of 3: 1 (mass ratio). (Accordingly, the content of palladium and platinum in the dispersion is 0 for each 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of palladium and platinum atoms. 0.09 parts by mass and 0.03 parts by mass), to obtain a photocatalyst dispersion liquid. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass) with water. The pH was 4.5.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 1.79 h −1 .

(実施例21)
製造例3で得た酸化チタン粒子分散液に、実施例15で用いた塩化パラジウム(PdCl2)の塩酸水溶液を、塩化パラジウムがパラジウム原子換算で酸化チタン粒子の使用量100質量部に対して0.06質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の1.1質量%となるように加えて、塩化パラジウム含有酸化チタン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化チタン粒子の量)を、水で5質量部(固形分濃度5質量%)に調整した。
(Example 21)
To the titanium oxide particle dispersion obtained in Production Example 3, the hydrochloric acid aqueous solution of palladium chloride (PdCl 2 ) used in Example 15 was added to 100 parts by mass of palladium oxide in terms of palladium atoms with respect to 100 parts by mass of titanium oxide particles. 0.06 parts by mass, and methanol was further added so that the concentration was 1.1% by mass of the total solvent to obtain a palladium chloride-containing titanium oxide particle dispersion. The solid content (amount of titanium oxide particles) contained in 100 parts by mass of this dispersion was adjusted to 5 parts by mass (solid content concentration of 5% by mass) with water.

次いで、上記塩化パラジウム含有酸化チタン粒子分散液30gを100mLビーカーに移し、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を1時間行うことにより、分散液中の塩化パラジウムをパラジウムに還元して、パラジウム含有酸化チタン粒子分散液を得た。この光照射後の光触媒体分散液のpHは7.8であった。   Next, 30 g of the above palladium chloride-containing titanium oxide particle dispersion was transferred to a 100 mL beaker, and while stirring, a high-pressure mercury lamp (manufactured by USHIO, high-pressure mercury lamp: “UM-102”, high-pressure mercury lamp lighting device: “UM-103B-B” )), Light irradiation (ultraviolet irradiation) was performed for 1 hour, whereby palladium chloride in the dispersion was reduced to palladium to obtain a palladium-containing titanium oxide particle dispersion. The pH of the photocatalyst dispersion after the light irradiation was 7.8.

次いで、上記パラジウム含有酸化チタン粒子分散液と、実施例13で得た白金含有酸化タングステン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中のパラジウム及び白金の含有量は、パラジウム及び白金原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して、パラジウムが0.03質量部、白金が0.06質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に水で調整した。pHは4.0であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は0.901h-1であった。
Next, the palladium-containing titanium oxide particle dispersion liquid and the platinum-containing tungsten oxide particle dispersion liquid obtained in Example 13 are set so that the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). (Accordingly, the content of palladium and platinum in the dispersion is 0.03 palladium relative to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of palladium and platinum atoms. Mass part, platinum became 0.06 mass part), and the photocatalyst body dispersion liquid was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass) with water. The pH was 4.0.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.901 h −1 .

(実施例22)
実施例19で得たパラジウム含有酸化チタン粒子分散液と、実施例13で得た白金含有酸化タングステン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が3:1(質量比)となるように混合して(これにより、分散液中のパラジウム及び白金の含有量は、パラジウム及び白金原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して、それぞれ0.045質量部及び0.03質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に水で調整した。pHは4.8であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は0.978h-1であった。
(Example 22)
The palladium-containing titanium oxide particle dispersion obtained in Example 19 and the platinum-containing tungsten oxide particle dispersion obtained in Example 13 had a ratio of titanium oxide particles to tungsten oxide particles of 3: 1 (mass ratio). (Accordingly, the content of palladium and platinum in the dispersion is 0 for each 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of palladium and platinum atoms. 045 parts by mass and 0.03 parts by mass), to obtain a photocatalyst dispersion. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass) with water. The pH was 4.8.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.978 h −1 .

(実施例23)
製造例3で得た酸化チタン粒子分散液に、テトラクロロ金酸(HAuCl4)水溶液を、テトラクロロ金酸が金原子換算で酸化チタン粒子の使用量100質量部に対して0.06質量部となるように加え、さらに、メタノールを、その濃度が全溶媒の1.1質量%となるように加えて、テトラクロロ金酸含有酸化チタン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化チタン粒子の量)は5.1質量部(固形分濃度5.1質量%)であった。
次いで、上記テトラクロロ金酸含有酸化チタン粒子分散液30gを100mLビーカーに移し、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を30分間行うことにより、分散液中のテトラクロロ金酸を金に還元して、金含有酸化チタン粒子分散液を得た。
(Example 23)
To the titanium oxide particle dispersion obtained in Production Example 3, a tetrachloroauric acid (HAuCl 4 ) aqueous solution is added in an amount of 0.06 parts by mass with respect to 100 parts by mass of titanium oxide particles in terms of gold atoms. Further, methanol was added so that the concentration thereof was 1.1% by mass of the total solvent to obtain a tetrachloroauric acid-containing titanium oxide particle dispersion. The solid content (amount of titanium oxide particles) contained in 100 parts by mass of this dispersion was 5.1 parts by mass (solid content concentration 5.1% by mass).
Subsequently, 30 g of the above tetrachloroauric acid-containing titanium oxide particle dispersion was transferred to a 100 mL beaker and stirred, while stirring, a high pressure mercury lamp (manufactured by USHIO, high pressure mercury lamp: “UM-102”, high pressure mercury lamp lighting device: “UM-103B” -B ") was subjected to light irradiation (ultraviolet irradiation) for 30 minutes to reduce the tetrachloroauric acid in the dispersion to gold to obtain a gold-containing titanium oxide particle dispersion.

次いで、上記金含有化チタン粒子分散液に、実施例15で用いた塩化パラジウム(PdCl2)の塩酸水溶液を、塩化パラジウムがパラジウム原子換算で酸化チタン粒子の使用量100質量部に対して0.06質量部となるように加え、攪拌しながら、高圧水銀灯(ウシオ電機製、高圧水銀灯:「UM−102」、高圧水銀ランプ点灯装置:「UM−103B−B」)にて光照射(紫外線照射)を30分間行うことにより、分散液中の塩化パラジウムをパラジウムに還元して、パラジウム及び金含有酸化チタン粒子分散液を得た。この光照射後の光触媒体分散液のpHは7.7であった。この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。この分散液100質量部中に含まれる固形分(酸化チタン粒子の量)は5.00質量部(固形分濃度5.00質量%)であった。 Subsequently, the hydrochloric acid aqueous solution of palladium chloride (PdCl 2 ) used in Example 15 was added to the gold-containing titanium particle dispersion liquid in an amount of 0.000 parts by mass with respect to 100 parts by mass of the titanium oxide particles in terms of palladium atoms. Light irradiation (ultraviolet irradiation) with high pressure mercury lamp (manufactured by USHIO INC., High pressure mercury lamp: “UM-102”, high pressure mercury lamp lighting device: “UM-103B-B”) while stirring to be 06 parts by mass ) For 30 minutes to reduce palladium chloride in the dispersion to palladium to obtain a palladium and gold-containing titanium oxide particle dispersion. The pH of the photocatalyst dispersion liquid after the light irradiation was 7.7. At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. The solid content (amount of titanium oxide particles) contained in 100 parts by mass of this dispersion was 5.00 parts by mass (solid content concentration of 5.00% by mass).

次いで、上記パラジウム及び金含有酸化チタン粒子分散液と、実施例13で得た白金含有酸化タングステン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して(これにより、分散液中の金、パラジウム及び白金の含有量は、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して、金とパラジウムが原子換算で0.03質量部、白金が原子換算で0.06質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に水で調整した。pHは4.2であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は1.20h-1であった。
Subsequently, the palladium-and-gold-containing titanium oxide particle dispersion and the platinum-containing tungsten oxide particle dispersion obtained in Example 13 have a ratio of titanium oxide particles to tungsten oxide particles of 1: 1 (mass ratio). (Thus, the content of gold, palladium and platinum in the dispersion is 0 for gold and palladium in terms of atoms with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles used. 0.03 parts by mass, platinum was 0.06 parts by mass in terms of atoms), and a photocatalyst dispersion was obtained. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass) with water. The pH was 4.2.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 1.20 h −1 .

(実施例24)
実施例21で得たパラジウム及び金含有酸化チタン粒子分散液と、実施例13で得た白金含有酸化タングステン粒子分散液とを、酸化チタン粒子と酸化タングステン粒子との比率が3:1(質量比)となるように混合して(これにより、分散液中の金、パラジウム及び白金の含有量は、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して、金とパラジウムが原子換算で0.045質量部、白金が原子換算で0.03質量部となった)、光触媒体分散液を得た。この光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)を5質量部(固形分濃度5質量%)に水で調整した。pHは5.1であった。
得られた光触媒体分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は1.89h-1であった。
(Example 24)
The palladium and gold-containing titanium oxide particle dispersion obtained in Example 21 and the platinum-containing tungsten oxide particle dispersion obtained in Example 13 had a ratio of titanium oxide particles to tungsten oxide particles of 3: 1 (mass ratio). (The content of gold, palladium, and platinum in the dispersion is such that the total amount of titanium oxide particles and tungsten oxide particles used is 100 parts by mass with respect to gold and palladium atoms. 0.045 parts by mass in terms of conversion and 0.03 parts by mass of platinum in terms of atoms), and a photocatalyst dispersion. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst dispersion liquid was adjusted to 5 parts by mass (solid content concentration of 5% by mass) with water. The pH was 5.1.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 1.89 h −1 .

(実施例25)
製造例3で得た酸化チタン粒子分散液と製造例4で得た酸化タングステン粒子分散液を、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合した。次に、この分散液に、ヘキサクロロ白金酸(H2PtCl6)水溶液と実施例15で用いた塩化パラジウム水溶液を、ヘキサクロロ白金酸及び塩化パラジウムが、白金及びパラジウム原子換算で、酸化チタン粒子と酸化タングステン粒子の合計使用量100質量部に対してそれぞれ0.048質量部と0.012質量部となるように加えて、ヘキサクロロ白金酸及び塩化パラジウム含有酸化チタン粒子及び酸化タングステン粒子分散液を得た。この分散液に水を加えて、光触媒体分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)が5質量部(固形分濃度5質量%)となるように水で調整して、酸化チタン粒子及び酸化タングステン粒子分散液を得た。pHは3.8であった。この時点で、得られた分散液を20℃で3時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性(ホルムアルデヒドの分解)を評価したところ、一次反応速度定数は0.813h-1であった。
(Example 25)
The titanium oxide particle dispersion obtained in Production Example 3 and the tungsten oxide particle dispersion obtained in Production Example 4 were mixed so that the ratio of titanium oxide particles to tungsten oxide particles was 1: 1 (mass ratio). Next, to this dispersion, hexachloroplatinic acid (H 2 PtCl 6 ) aqueous solution and the palladium chloride aqueous solution used in Example 15 were mixed with hexachloroplatinic acid and palladium chloride in terms of platinum and palladium atoms and oxidized with titanium oxide particles. In addition to 0.048 parts by mass and 0.012 parts by mass with respect to 100 parts by mass of the total amount of tungsten particles used, hexachloroplatinic acid and palladium chloride-containing titanium oxide particles and a tungsten oxide particle dispersion were obtained. . Water is added to this dispersion so that the solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of the photocatalyst dispersion becomes 5 parts by mass (solid content concentration 5% by mass). The mixture was adjusted with water to obtain a titanium oxide particle and tungsten oxide particle dispersion. The pH was 3.8. At this time, when the obtained dispersion was stored at 20 ° C. for 3 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity (decomposition of formaldehyde) of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order reaction rate constant was 0.813 h −1 .

(参考例1)
実施例1〜25で得た光触媒体分散液を、それぞれ、天井材に塗布し、その後、乾燥して分散媒を揮発させ、表面に光触媒体層を形成すると、屋内照明による光照射により、屋内空間におけるホルムアルデヒド、アセトアルデヒド、アセトン、トルエン等の揮発性有機物濃度や悪臭物質の濃度を低減することができ、さらに、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることができる。
(Reference Example 1)
Each of the photocatalyst dispersion liquids obtained in Examples 1 to 25 was applied to a ceiling material, and then dried to volatilize the dispersion medium to form a photocatalyst layer on the surface. The concentration of volatile organic substances such as formaldehyde, acetaldehyde, acetone, and toluene in the space and the concentration of malodorous substances can be reduced, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed.

(参考例2)
実施例1〜25で得た光触媒体分散液を、それぞれ、タイルに塗布し、その後、乾燥して分散媒を揮発させ、表面に光触媒体層を形成すると、屋内照明による光照射により、屋内空間におけるホルムアルデヒド、アセトアルデヒド、トルエン、アセトン等の揮発性有機物濃度や悪臭物質の濃度を低減することができ、さらに、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることができる。
(Reference Example 2)
Each of the photocatalyst dispersion liquids obtained in Examples 1 to 25 was applied to a tile, and then dried to volatilize the dispersion medium to form a photocatalyst layer on the surface. The concentration of volatile organic substances such as formaldehyde, acetaldehyde, toluene, and acetone and the concentration of malodorous substances can be reduced, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed.

(参考例3)
実施例1〜25で得た光触媒体分散液をそれぞれガラスに塗布し、その後、乾燥して分散媒を揮発させ、表面に光触媒体層を形成すると、屋内照明による光照射により、屋内空間におけるホルムアルデヒド、アセトアルデヒド、トルエン、アセトン等の揮発性有機物濃度や悪臭物質の濃度を低減することができ、さらに、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることができる。
(Reference Example 3)
Each of the photocatalyst dispersion liquids obtained in Examples 1 to 25 was applied to glass, and then dried to volatilize the dispersion medium to form a photocatalyst layer on the surface. Further, the concentration of volatile organic substances such as acetaldehyde, toluene, and acetone and the concentration of malodorous substances can be reduced, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed.

(参考例4)
実施例1〜25で得た光触媒体分散液をそれぞれ壁紙に塗布し、その後、乾燥して分散媒を揮発させ、表面に光触媒体層を形成すると、屋内照明による光照射により、屋内空間におけるホルムアルデヒド、アセトアルデヒド、トルエン、アセトン等の揮発性有機物濃度や悪臭物質の濃度を低減することができ、さらに、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることができる。
(Reference Example 4)
Each of the photocatalyst dispersion liquids obtained in Examples 1 to 25 was applied to wallpaper, then dried to volatilize the dispersion medium, and a photocatalyst layer was formed on the surface. Further, the concentration of volatile organic substances such as acetaldehyde, toluene, and acetone and the concentration of malodorous substances can be reduced, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed.

(参考例5)
実施例1〜25で得た光触媒体分散液をそれぞれ床に塗布し、その後、乾燥して分散媒を揮発させ、表面に光触媒体層を形成すると、屋内照明による光照射により、屋内空間におけるホルムアルデヒド、アセトアルデヒド、トルエン、アセトン等の揮発性有機物濃度や悪臭物質の濃度を低減することができ、さらに、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることができる。
(Reference Example 5)
When the photocatalyst dispersion liquid obtained in each of Examples 1 to 25 was applied to the floor and then dried to volatilize the dispersion medium to form a photocatalyst layer on the surface, formaldehyde in an indoor space was formed by light irradiation with indoor lighting. Further, the concentration of volatile organic substances such as acetaldehyde, toluene, and acetone and the concentration of malodorous substances can be reduced, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed.

(参考例6)
実施例1〜25で得た光触媒体分散液を自動車用インストルメントパネル、自動車用シート、自動車天井材などの自動車内装材の表面に塗布し、その後、乾燥して分散媒を揮発させ、表面に光触媒体層を形成すると、車内照明による光照射により、車内空間におけるホルムアルデヒド、アセトアルデヒド、トルエン、アセトン等の揮発性有機物濃度や悪臭物質の濃度を低減することができ、さらに、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることができる。
(Reference Example 6)
The photocatalyst dispersion liquid obtained in Examples 1 to 25 was applied to the surface of an automotive interior material such as an automotive instrument panel, an automotive seat, and an automotive ceiling material, and then dried to volatilize the dispersion medium, When the photocatalyst layer is formed, the concentration of volatile organic substances such as formaldehyde, acetaldehyde, toluene, acetone, and malodorous substances in the interior space can be reduced by light irradiation from the interior lighting. Can kill the pathogens.

(参考例7)
実施例1〜25で得た光触媒体分散液をそれぞれエアコンの表面に塗布し、その後、乾燥して分散媒を揮発させ、表面に光触媒体層を形成すると、屋内照明による光照射により、屋内空間におけるホルムアルデヒド、アセトアルデヒド、トルエン、アセトン等の揮発性有機物濃度や悪臭物質の濃度を低減することができ、さらに、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることができる。
(Reference Example 7)
Each of the photocatalyst dispersion liquids obtained in Examples 1 to 25 was applied to the surface of an air conditioner, and then dried to volatilize the dispersion medium to form a photocatalyst layer on the surface. The concentration of volatile organic substances such as formaldehyde, acetaldehyde, toluene, and acetone and the concentration of malodorous substances can be reduced, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed.

(参考例8)
実施例1〜25で得た光触媒体分散液をそれぞれ冷蔵庫に塗布し、その後、乾燥して分散媒を揮発させ、表面に光触媒体層を形成すると、屋内照明や冷蔵庫内の光源による光照射により、冷蔵庫におけるエチレン等の揮発性有機物濃度や悪臭物質の濃度を低減することができ、さらに、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることができる。
(Reference Example 8)
When the photocatalyst dispersion liquid obtained in each of Examples 1 to 25 was applied to a refrigerator and then dried to volatilize the dispersion medium and a photocatalyst layer was formed on the surface, it was irradiated by light from indoor lighting or a light source in the refrigerator. The concentration of volatile organic substances such as ethylene and the concentration of malodorous substances in the refrigerator can be reduced, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed.

Claims (10)

酸化チタン粒子、酸化タングステン粒子、リン酸(塩)および分散媒を含み、前記リン酸(塩)の含有量が、前記酸化チタン粒子に対して0.001〜0.2モル倍であることを特徴とする光触媒体分散液。   It contains titanium oxide particles, tungsten oxide particles, phosphoric acid (salt) and a dispersion medium, and the phosphoric acid (salt) content is 0.001 to 0.2 mol times the titanium oxide particles. Characteristic photocatalyst dispersion liquid. 電子吸引性物質またはその前駆体をも含む、請求項1記載の光触媒体分散液。   The photocatalyst dispersion liquid according to claim 1, which also contains an electron-withdrawing substance or a precursor thereof. 前記電子吸引性物質またはその前駆体は、Cu、Pt、Au、Pd、Ag、Fe、Nb、Ru、Ir、RhおよびCoからなる群より選ばれる1種以上の金属原子を含有してなる、請求項2記載の光触媒体分散液。   The electron-withdrawing substance or its precursor contains one or more metal atoms selected from the group consisting of Cu, Pt, Au, Pd, Ag, Fe, Nb, Ru, Ir, Rh, and Co. The photocatalyst dispersion liquid according to claim 2. リン酸(塩)を溶解させた分散媒中に酸化チタン粒子を分散させ、得られた酸化チタン粒子分散液と酸化タングステン粒子とを混合することを特徴とする光触媒体分散液の製造方法。   A method for producing a photocatalyst dispersion, comprising dispersing titanium oxide particles in a dispersion medium in which phosphoric acid (salt) is dissolved, and mixing the obtained titanium oxide particle dispersion and tungsten oxide particles. 前記酸化タングステン粒子は、分散媒中に分散させて酸化タングステン粒子分散液としたのちに前記酸化チタン粒子分散液と混合する、請求項4記載の光触媒体分散液の製造方法。   The method for producing a photocatalyst dispersion liquid according to claim 4, wherein the tungsten oxide particles are dispersed in a dispersion medium to form a tungsten oxide particle dispersion liquid, and then mixed with the titanium oxide particle dispersion liquid. 電子吸引性物質またはその前駆体を添加する工程を含む、請求項4または5記載の光触媒体分散液の製造方法。   The method for producing a photocatalyst dispersion according to claim 4 or 5, comprising a step of adding an electron-withdrawing substance or a precursor thereof. 前記電子吸引性物質またはその前駆体は、前記酸化タングステン粒子分散液に添加する、請求項6記載の光触媒体分散液の製造方法。   The method for producing a photocatalyst dispersion liquid according to claim 6, wherein the electron withdrawing substance or a precursor thereof is added to the tungsten oxide particle dispersion liquid. 前記電子吸引性物質の前駆体を添加したのちに、光照射を行う、請求項6または7記載の光触媒体分散液の製造方法。   The method for producing a photocatalyst dispersion liquid according to claim 6 or 7, wherein light irradiation is performed after the precursor of the electron-withdrawing substance is added. 前記光照射は、酸化チタン粒子分散液と酸化タングステン粒子との混合前に行なう、請求項8記載の光触媒体分散液の製造方法。   The method for producing a photocatalyst dispersion liquid according to claim 8, wherein the light irradiation is performed before mixing the titanium oxide particle dispersion liquid and the tungsten oxide particles. 表面に光触媒体層を備える光触媒機能製品であって、前記光触媒体層が請求項1〜3のいずれかに記載の光触媒体分散液を用いて形成されていることを特徴とする光触媒機能製品。   A photocatalyst functional product comprising a photocatalyst layer on the surface, wherein the photocatalyst layer is formed using the photocatalyst dispersion liquid according to any one of claims 1 to 3.
JP2009024051A 2008-06-05 2009-02-04 Photocatalyst dispersion, its method of manufacturing the same and application thereof Pending JP2010115635A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009024051A JP2010115635A (en) 2008-06-05 2009-02-04 Photocatalyst dispersion, its method of manufacturing the same and application thereof
KR1020090049060A KR20090127084A (en) 2008-06-05 2009-06-03 Photocatalyst dispersion liquid and process for producing the same
TW098118564A TW201000208A (en) 2008-06-05 2009-06-04 Photocatalyst dispersion liquid and process for producing the same
AU2009202243A AU2009202243A1 (en) 2008-06-05 2009-06-04 Photocatalyst dispersion liquid and process for producing the same
CA 2668256 CA2668256A1 (en) 2008-06-05 2009-06-04 Photocatalyst dispersion liquid and process for producing the same
US12/478,079 US20090305879A1 (en) 2008-06-05 2009-06-04 Photocatalyst dispersion liquid and process for producing the same
EP09251496A EP2130587A3 (en) 2008-06-05 2009-06-05 Photocatalyst dispersion liquid and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008148404 2008-06-05
JP2008265422 2008-10-14
JP2009024051A JP2010115635A (en) 2008-06-05 2009-02-04 Photocatalyst dispersion, its method of manufacturing the same and application thereof

Publications (1)

Publication Number Publication Date
JP2010115635A true JP2010115635A (en) 2010-05-27

Family

ID=41082574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024051A Pending JP2010115635A (en) 2008-06-05 2009-02-04 Photocatalyst dispersion, its method of manufacturing the same and application thereof

Country Status (6)

Country Link
US (1) US20090305879A1 (en)
EP (1) EP2130587A3 (en)
JP (1) JP2010115635A (en)
KR (1) KR20090127084A (en)
AU (1) AU2009202243A1 (en)
TW (1) TW201000208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045519A (en) * 2010-08-30 2012-03-08 Sekisui Jushi Co Ltd Method for manufacturing photocatalyst dispersion, and method for manufacturing photocatalyst

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730400B2 (en) * 2007-10-09 2011-07-20 住友化学株式会社 Photocatalyst dispersion
JP5082950B2 (en) * 2008-03-13 2012-11-28 住友化学株式会社 Method for decomposing volatile aromatic compounds
JP2010180303A (en) 2009-02-04 2010-08-19 Sumitomo Chemical Co Ltd Hydrophilizing agent, method of producing the same, and use of the same
JP4829321B2 (en) * 2009-03-31 2011-12-07 株式会社東芝 Photocatalyst
JP2011005475A (en) * 2009-05-29 2011-01-13 Sumitomo Chemical Co Ltd Photocatalyst dispersion liquid and photocatalyst functional product using the same
WO2014118372A1 (en) 2013-02-02 2014-08-07 Joma International A/S An aqueous dispersion comprising tio2 particles
CN104525236A (en) * 2014-12-24 2015-04-22 陕西科技大学 Process for preparing nanometer titanium dioxide ternary photocatalyst doped with nitrogen and rare earth elements
CN115888846B (en) * 2023-02-15 2024-03-29 昆明理工大学 Composite photocatalyst and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10114545A (en) * 1996-08-22 1998-05-06 Toto Ltd Photocatalytic hydrophilic member, its production and photocatalytic hydrophilic coating composition
JP2001070800A (en) * 1999-09-07 2001-03-21 Sharp Corp Photocatalyst film composition and photocatalyst body using the same
JP2005054139A (en) * 2003-08-07 2005-03-03 Ishihara Sangyo Kaisha Ltd Coating material to carry photocatalyst and photocatalyst body using the same
JP2005144383A (en) * 2003-11-18 2005-06-09 Koto Seishoku Kk Photocatalyst-processed sheet
JP2006198465A (en) * 2005-01-18 2006-08-03 Nippon Shokubai Co Ltd Photocatalyst and its production method

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
JP2776259B2 (en) 1994-08-31 1998-07-16 松下電工株式会社 Antibacterial inorganic paint
JPH08318166A (en) * 1995-05-25 1996-12-03 Agency Of Ind Science & Technol Immobilized photocatalyst and method for immobilizing photocatalyst
JPH0925437A (en) 1995-07-12 1997-01-28 Matsushita Electric Works Ltd Antimicrobial inorganic coating material
JP3682506B2 (en) 1996-10-30 2005-08-10 Jsr株式会社 Coating composition
JP3493959B2 (en) 1996-10-30 2004-02-03 Jsr株式会社 Composition for coating
JP3182107B2 (en) * 1996-12-13 2001-07-03 松下電工株式会社 Functional coatings, their production methods and applications
JPH10168349A (en) 1997-12-26 1998-06-23 Matsushita Electric Works Ltd Antimicrobial inorganic coating
KR20010079672A (en) * 1998-08-21 2001-08-22 추후제출 Visible radiation type photocatalyst and production method thereof
JP3252136B2 (en) 1998-08-21 2002-01-28 有限会社環境デバイス研究所 Visible light type photocatalyst and method for producing the same
DE69930399T2 (en) * 1998-09-30 2006-12-07 Nippon Sheet Glass Co., Ltd. PHOTOCATORATORY ITEMS FOR PREVENTING CONSTROGENSES AND DEPOSITS, METHOD FOR PRODUCING THE ARTICLE
JP3959213B2 (en) * 1999-06-30 2007-08-15 住友化学株式会社 Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
EP1205245A4 (en) * 1999-08-05 2005-01-19 Toyoda Chuo Kenkyusho Kk Photocatalytic material and photocatalytic article
JP2001190953A (en) 1999-10-29 2001-07-17 Sumitomo Chem Co Ltd Titanium oxide, photocatalyst body formed by using it, and photocatalyst body coating agent
TWI279254B (en) * 1999-10-29 2007-04-21 Sumitomo Chemical Co Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
JP3959226B2 (en) 2000-02-24 2007-08-15 住友化学株式会社 Photocatalyst body and photocatalyst body coating agent
JP4103324B2 (en) 2000-03-06 2008-06-18 住友化学株式会社 Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP2001302241A (en) 2000-04-24 2001-10-31 Sumitomo Chem Co Ltd Method for producing titanium oxide
JP2001354422A (en) 2000-06-13 2001-12-25 Sumitomo Chem Co Ltd Method for manufacturing titanium oxide
JP2001278626A (en) 2000-03-31 2001-10-10 Sumitomo Chem Co Ltd Method of producing titanium oxide
JP2001278625A (en) 2000-03-31 2001-10-10 Sumitomo Chem Co Ltd Method of producing titanium oxide
JP2001278627A (en) 2000-03-31 2001-10-10 Sumitomo Chem Co Ltd Method of producing titanium oxide
CN1210100C (en) * 2000-03-31 2005-07-13 住友化学工业株式会社 Method for preparing titanium dioxide
JP2001335321A (en) * 2000-05-24 2001-12-04 Sumitomo Chem Co Ltd Titanium hydroxide, and photocatalyst and coating agent prepared therewith
JP2002029750A (en) 2000-07-12 2002-01-29 Sumitomo Chem Co Ltd Titanium oxysulfate and method for producing titanium dioxide by using the same
JP2002029749A (en) 2000-07-13 2002-01-29 Sumitomo Chem Co Ltd Titanium dioxide, photocatalytic body using the same and photocatalytic body coating agent
JP3949374B2 (en) 2000-07-17 2007-07-25 住友化学株式会社 Titanium oxide, photocatalyst and photocatalyst coating using the same
JP2002047012A (en) 2000-07-31 2002-02-12 Sumitomo Chem Co Ltd Method of manufacturing titanium oxide
US6726891B2 (en) * 2000-07-31 2004-04-27 Sumitomo Chemical Company, Limited Titanium oxide production process
JP2002060221A (en) 2000-08-21 2002-02-26 Sumitomo Chem Co Ltd Method for producing titanium oxide
JP4078479B2 (en) 2000-12-21 2008-04-23 住友化学株式会社 Method for producing titanium oxide
JP2002193618A (en) * 2000-12-25 2002-07-10 Sumitomo Chem Co Ltd Titanium hydroxide, coating agent using the same, and method of producing titanium oxide
US7060643B2 (en) * 2000-12-28 2006-06-13 Showa Denko Kabushiki Kaisha Photo-functional powder and applications thereof
ATE395134T1 (en) 2000-12-28 2008-05-15 Showa Denko Kk HIGHLY ACTIVE PHOTOCATALYST
US6887816B2 (en) * 2000-12-28 2005-05-03 Showa Denko K.K. Photocatalyst
EP1354628B1 (en) * 2000-12-28 2008-05-14 Showa Denko K.K. Powder exhibiting optical function and use thereof
JP3987289B2 (en) 2001-02-15 2007-10-03 石原産業株式会社 Photocatalyst, method for producing the same, and photocatalyst using the same
JP2003013007A (en) * 2001-06-29 2003-01-15 Nippon Unicar Co Ltd Coating composition and building material using the same
US7378371B2 (en) * 2001-12-21 2008-05-27 Show A Denko K.K. Highly active photocatalyst particles, method of production therefor, and use thereof
US7414009B2 (en) * 2001-12-21 2008-08-19 Showa Denko K.K. Highly active photocatalyst particles, method of production therefor, and use thereof
EP1504816A4 (en) * 2002-03-25 2010-11-24 Osaka Titanium Technologies Co Titanium oxide photocatalyst, process for producing the same and application
JP4199490B2 (en) 2002-07-26 2008-12-17 パナソニック電工株式会社 Coating material composition
JP2004107381A (en) 2002-09-13 2004-04-08 Matsushita Electric Works Ltd Coating material composition and coated product thereof
JP4352721B2 (en) 2003-02-24 2009-10-28 パナソニック電工株式会社 Functional inorganic paint and its coating composition
US7255831B2 (en) * 2003-05-30 2007-08-14 Carrier Corporation Tungsten oxide/titanium dioxide photocatalyst for improving indoor air quality
JP2004359902A (en) 2003-06-06 2004-12-24 Matsushita Electric Works Ltd Photocatalytic coating material
JP2005113028A (en) 2003-10-08 2005-04-28 Jsr Corp Coating composition and structure
JP4507066B2 (en) 2004-02-18 2010-07-21 多木化学株式会社 Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body
JP2005230661A (en) 2004-02-18 2005-09-02 Jsr Corp Photocatalyst composition for visible light and coating film containing photocatalyst for visible light
JP2007069093A (en) 2005-09-06 2007-03-22 Mitsui Chemicals Inc Rutile type titanium dioxide ultrafine particle photocatalyst
JP5336694B2 (en) 2005-12-12 2013-11-06 パナソニック株式会社 Painted
JP4783315B2 (en) * 2006-03-10 2011-09-28 住友化学株式会社 Photocatalyst dispersion
JP4730400B2 (en) * 2007-10-09 2011-07-20 住友化学株式会社 Photocatalyst dispersion
JP5082950B2 (en) * 2008-03-13 2012-11-28 住友化学株式会社 Method for decomposing volatile aromatic compounds
JP2010180303A (en) * 2009-02-04 2010-08-19 Sumitomo Chemical Co Ltd Hydrophilizing agent, method of producing the same, and use of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10114545A (en) * 1996-08-22 1998-05-06 Toto Ltd Photocatalytic hydrophilic member, its production and photocatalytic hydrophilic coating composition
JP2001070800A (en) * 1999-09-07 2001-03-21 Sharp Corp Photocatalyst film composition and photocatalyst body using the same
JP2005054139A (en) * 2003-08-07 2005-03-03 Ishihara Sangyo Kaisha Ltd Coating material to carry photocatalyst and photocatalyst body using the same
JP2005144383A (en) * 2003-11-18 2005-06-09 Koto Seishoku Kk Photocatalyst-processed sheet
JP2006198465A (en) * 2005-01-18 2006-08-03 Nippon Shokubai Co Ltd Photocatalyst and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045519A (en) * 2010-08-30 2012-03-08 Sekisui Jushi Co Ltd Method for manufacturing photocatalyst dispersion, and method for manufacturing photocatalyst

Also Published As

Publication number Publication date
AU2009202243A1 (en) 2009-12-24
TW201000208A (en) 2010-01-01
EP2130587A2 (en) 2009-12-09
EP2130587A3 (en) 2011-05-11
KR20090127084A (en) 2009-12-09
US20090305879A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP2010115635A (en) Photocatalyst dispersion, its method of manufacturing the same and application thereof
JP2011005475A (en) Photocatalyst dispersion liquid and photocatalyst functional product using the same
JP2011036770A (en) Method for producing noble metal-supported photocatalyst particle
EP2133311B1 (en) Zirconium oxalate sol
JP2010180303A (en) Hydrophilizing agent, method of producing the same, and use of the same
US20160332147A1 (en) Photocatalyst material and method for producing same
CN103079700A (en) Tungsten oxide photocatalyst and method for producing the same
JP2012110831A (en) Photocatalyst for decomposing volatile aromatic compound, and product having photocatalytic function
JP2011078930A (en) Photocatalyst dispersion and photocatalyst functional product using the same
JP2011132626A (en) Textile product supporting photocatalyst
JP2011020009A (en) Photocatalyst body for decomposing volatile aromatic compound, and functional product of photocatalyst
JP2011178930A (en) Photocatalytic coating liquid and article having photocatalytic layer coated with the coating liquid
JP5313051B2 (en) Zirconium oxalate sol
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP2010214309A (en) Photocatalytic body-dispersed liquid and application thereof
CN101596460A (en) Photocatalyst dispersion liquid and manufacture method thereof
JP2010215781A (en) Precoating liquid for photocatalyst layer, wallpaper intermediate including photocatalyst layer with precoating liquid applied thereto, and wallpaper including photocatalyst layer
JP5113723B2 (en) Photocatalyst dispersion
JP2010120805A (en) Photocatalytic body dispersion
JP5512223B2 (en) Noble metal-supported photocatalyst particle dispersion and photocatalyst functional product
JP2011050802A (en) Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
JP2012017238A (en) Method for producing oxide particle dispersion liquid, oxide particle dispersion liquid, and photocatalyst functional product
JP2010270543A (en) Product with photocatalytic body layer
CA2668256A1 (en) Photocatalyst dispersion liquid and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528