JP2006198465A - Photocatalyst and its production method - Google Patents

Photocatalyst and its production method Download PDF

Info

Publication number
JP2006198465A
JP2006198465A JP2005010192A JP2005010192A JP2006198465A JP 2006198465 A JP2006198465 A JP 2006198465A JP 2005010192 A JP2005010192 A JP 2005010192A JP 2005010192 A JP2005010192 A JP 2005010192A JP 2006198465 A JP2006198465 A JP 2006198465A
Authority
JP
Japan
Prior art keywords
photocatalyst
titanium oxide
oxide
mass
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005010192A
Other languages
Japanese (ja)
Other versions
JP4883913B2 (en
Inventor
Shinya Kitaguchi
真也 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2005010192A priority Critical patent/JP4883913B2/en
Priority to TW095101707A priority patent/TW200631660A/en
Priority to EP06711839A priority patent/EP1857179A1/en
Priority to PCT/JP2006/300559 priority patent/WO2006077839A1/en
Priority to US11/795,526 priority patent/US20080119352A1/en
Publication of JP2006198465A publication Critical patent/JP2006198465A/en
Application granted granted Critical
Publication of JP4883913B2 publication Critical patent/JP4883913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a visible light response type photocatalyst cleaning a harmful substance in air by a light containing a visible light such as an indoor slightly weak fluorescent lamp as a main body, decomposing/removing stain, exhibiting anti-bacterial and mildew-proof action and applicable to various kinds of use, and its production method. <P>SOLUTION: A titanium oxide particle is carried with tungsten oxide and iron oxide at a ratio of 10-100 pts.mass and 0.3-3 pts.mass based on 100 pts.mass of titanium oxide, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光触媒およびその製造方法に関し、詳しくは室内の微弱な蛍光灯のような可視光を主体とする光により空気中の有害物質を浄化したり、汚れを分解除去したり、抗菌、防黴作用を発揮し、各種用途に適用可能な光触媒およびその製造方法に関するものである。   The present invention relates to a photocatalyst and a method for producing the photocatalyst, and more particularly, cleans harmful substances in the air by using light mainly composed of visible light such as a weak fluorescent lamp in the room, decomposes and removes dirt, The present invention relates to a photocatalyst that exerts its action and can be applied to various uses and a method for producing the same.

酸化チタン等の光半導性を有した物質にバンドギャップ以上のエネルギーを有した光を照射すると電子と正孔が生成する。これによりスーパーオキサイドやOHラジカル等の強い酸化力を有した酸素種が光触媒の表面に生成して、接触する有害成分等を酸化分解することができる。そこで光触媒を建物の室内外に塗工して太陽光や蛍光灯の光を利用して大気や室内の環境浄化や脱臭、防汚、殺菌などへの応用が進められている。光半導性を有した物質としては一般に光触媒活性が高く化学的に安定な酸化チタンが使用されている。しかしながらアナターゼ形酸化チタンを励起するためには380nm以下の紫外線を照射する必要があり、例えば室内では十分な効果を期待することができなかった。   When a material having photoconductivity such as titanium oxide is irradiated with light having energy higher than the band gap, electrons and holes are generated. As a result, oxygen species having strong oxidizing power such as superoxide and OH radicals are generated on the surface of the photocatalyst, and harmful components and the like that come into contact can be oxidatively decomposed. Thus, photocatalysts are applied to the interior and exterior of buildings, and sunlight and fluorescent light are used to purify the atmosphere and indoor environments, deodorization, antifouling, and sterilization. In general, titanium oxide having high photocatalytic activity and chemically stable is used as the material having photo-conductivity. However, in order to excite the anatase-type titanium oxide, it is necessary to irradiate ultraviolet rays of 380 nm or less, and for example, a sufficient effect cannot be expected indoors.

酸化チタンは紫外線しか利用できないが、可視光を利用できる光半導性物質として硫化カドミウムや酸化タングステンを用いることは公知の技術である。しかしながら、これらバンドギャップの小さい光半導性物質は量子効率が低かったり、光溶解等の安定性に問題があることが知られている。そこで光触媒の性能を向上させるために酸化チタンにPt、Pd、Rh、Ru、Ir等の白金族金属やFe、Co、Ni、Cu、Zn、Ag、Cr、V、W等の各種遷移金属を添加することが検討されている。特に白金族金属の添加は光触媒の活性を高める効果が得られることがよく知られている。例えば酸化チタン等の異方性形状を有する光触媒粒子の表面にハロゲン化白金化合物を担持したことを特徴とする可視光応答型光触媒が例示されている(特許文献1参照)。白金族金属は高価であり微量担持するだけでも光触媒の製造コストアップを招くため好ましくない。
そこで、酸化チタンに窒素や硫黄をドープした可視光応答型光触媒が提案され注目されている。例えば、酸化チタン結晶の酸素サイトの一部を窒素原子で置換すること、または酸化チタン結晶の格子間に窒素原子をドーピングすること、または酸化チタンの結晶粒界に窒素原子をドーピングすること等により酸化チタン結晶に窒素を含有させたTi−O−N構成を有し、可視光領域において光触媒作用を発現する光触媒物質が開示されている(特許文献2参照)。しかしながら、これら光触媒物質を製造するためには(1)酸化チタンをターゲット材料とし、これを窒素ガスを含む雰囲気中で蒸着又はイオンプレーティングした後、アンモニアガスを含む雰囲気中で400℃以上700℃以下の温度で熱処理することや(2)酸化チタンをアンモニアガスを含む雰囲気、あるいは窒素ガスを含む雰囲気、あるいは窒素ガスと水素ガスの混合雰囲気中で熱処理する等の方法が例示されており、特殊な製造装置や製造方法が必要であり適用性に問題があった。
Titanium oxide can use only ultraviolet rays, but it is a known technique to use cadmium sulfide or tungsten oxide as a light-semiconductive substance that can use visible light. However, it is known that these optical semiconductors having a small band gap have low quantum efficiency and problems with stability such as photodissolution. Therefore, in order to improve the performance of the photocatalyst, platinum group metals such as Pt, Pd, Rh, Ru, and Ir and various transition metals such as Fe, Co, Ni, Cu, Zn, Ag, Cr, V, and W are added to titanium oxide. Addition is being considered. In particular, it is well known that the addition of platinum group metals has the effect of enhancing the activity of the photocatalyst. For example, a visible light responsive photocatalyst characterized in that a platinum halide compound is supported on the surface of photocatalyst particles having an anisotropic shape such as titanium oxide (see Patent Document 1). Platinum group metals are expensive, and even if only a small amount is supported, the production cost of the photocatalyst is increased, which is not preferable.
Therefore, a visible light responsive photocatalyst in which titanium oxide is doped with nitrogen or sulfur has been proposed and attracted attention. For example, by replacing part of the oxygen sites of the titanium oxide crystal with nitrogen atoms, doping nitrogen atoms between the lattices of the titanium oxide crystal, or doping nitrogen atoms into the crystal grain boundaries of the titanium oxide crystal, etc. A photocatalytic substance having a Ti—O—N structure in which nitrogen is contained in a titanium oxide crystal and exhibiting a photocatalytic action in the visible light region is disclosed (see Patent Document 2). However, in order to produce these photocatalytic substances, (1) titanium oxide is used as a target material, and this is vapor-deposited or ion-plated in an atmosphere containing nitrogen gas, and then 400 ° C. or higher and 700 ° C. in an atmosphere containing ammonia gas. Examples include heat treatment at the following temperatures and (2) heat treatment of titanium oxide in an atmosphere containing ammonia gas, an atmosphere containing nitrogen gas, or a mixed atmosphere of nitrogen gas and hydrogen gas. A manufacturing apparatus and a manufacturing method are required, and there is a problem in applicability.

また、光触媒性親水性部材の形成方法として基材表面に有機チタネートを塗布し、加水分解および脱水縮重合させ、残留有機基を除去した後、タングステン酸含有水溶液を塗布して400℃以上で焼成することにより、結晶性酸化チタンとTiO/WO複合酸化物を生成する方法が提案されている(特許文献3参照)。
現在、光触媒として広く使用されている酸化チタンは光照射により生成した電子と正孔が再結合を起こしにくく優れた光半導性を有しているが、光触媒作用を発現するためには380nm以下の紫外線が必要であり室内の微弱な光では十分な効果が得られなかった。一方、酸化タングステンはバンドギャップが2.5eVであり480nmまでの可視光を利用することができる光触媒として古くから知られている。しかしながら、酸化タングステンは電子と正孔の再結合が起こりやすい特性(量子効率が低い)があり、可視光性能は優れているが紫外照射条件では酸化チタンと比較して見劣りするものであった。また、光溶解性(自己溶解性)があり長期にわたり光触媒効果が得られにくいという問題があり実用レベルで使用されるには至っていない。
In addition, as a method for forming a photocatalytic hydrophilic member, an organic titanate is applied to the surface of a base material, hydrolyzed and dehydrated by condensation polymerization, residual organic groups are removed, an aqueous solution containing tungstic acid is applied, and firing is performed at 400 ° C. or higher. Thus, a method for producing crystalline titanium oxide and a TiO 2 / WO 3 composite oxide has been proposed (see Patent Document 3).
Currently, titanium oxide, which is widely used as a photocatalyst, has excellent optical semiconductivity, in which electrons and holes generated by light irradiation hardly cause recombination, but in order to exhibit photocatalysis, it is 380 nm or less. Therefore, sufficient effects could not be obtained with the weak light in the room. On the other hand, tungsten oxide has long been known as a photocatalyst that has a band gap of 2.5 eV and can use visible light up to 480 nm. However, tungsten oxide has a characteristic in which recombination of electrons and holes easily occurs (low quantum efficiency) and has excellent visible light performance, but it is inferior to titanium oxide under ultraviolet irradiation conditions. Further, there is a problem that it has photo solubility (self-solubility) and it is difficult to obtain a photocatalytic effect over a long period of time, and it has not been used at a practical level.

また、最近では、酸化チタンに窒素、炭素、硫黄等をドープすることにより可視光に応答性を有している可視光応答型光触媒の提案がされ注目を集めている。例えば、酸化チタンに窒素をドープした光触媒は可視光照射により確かに光触媒効果を発現することが確認されているが、その性能向上効果は十分なものではなかった。また、可視光性能の向上により本来酸化チタンの有している紫外性能の一部を損なうケースもあった。   Recently, a visible light responsive photocatalyst having a response to visible light by doping titanium oxide with nitrogen, carbon, sulfur or the like has been attracting attention. For example, it has been confirmed that a photocatalyst obtained by doping titanium oxide with nitrogen surely exhibits a photocatalytic effect by irradiation with visible light, but its performance improvement effect is not sufficient. In addition, there was a case where a part of the ultraviolet performance originally possessed by titanium oxide was impaired by improving the visible light performance.

特開2004−73910号公報JP 2004-73910 A WO01/10552号公報WO01 / 10552 gazette 特開平10−95635号公報JP-A-10-95635

本発明は、上記現状に鑑み、触媒性能に優れた光触媒およびその製造方法、特に室内や太陽光に含まれる可視光照射により光触媒効果を発現する可視光応答型光触媒およびその製造方法を提供することを目的とするものである。   The present invention provides a photocatalyst excellent in catalytic performance and a method for producing the photocatalyst, and in particular, a visible light responsive photocatalyst that exhibits a photocatalytic effect by irradiation with visible light contained in a room or sunlight, and a method for producing the same It is intended.

本発明者らの研究によれば、酸化チタン、酸化タングステンおよび酸化鉄を特定の割合で配合することにより、上記課題が解決できることがわかった。すなわち、本発明は、(1)酸化チタン、酸化タングステンおよび酸化鉄を、それぞれ、100質量部、10〜100質量部および0.3〜3質量部の割合で含有することを特徴とする光触媒、(2)酸化タングステンと酸化鉄との割合が、Fe/W(モル比)=0.03/1〜0.3/1の範囲にある上記(1)の光触媒、(3)酸化チタン粒子に、タングステン化合物と鉄化合物とを溶解してなる溶液を含浸させ、次いで、乾燥した後、500〜800℃で焼成することを特徴とする上記(1)または(2)の光触媒の製造方法、(4)酸化チタン粒子が30〜200m/gの比表面積を有するアナターゼ型二酸化チタンである上記(3)の光触媒の製造方法、および(5)タングステン化合物の溶液がメタタングステン酸アンモニウムの水溶液である上記(3)または(4)の光触媒の製造方法である。 According to the study by the present inventors, it has been found that the above problem can be solved by blending titanium oxide, tungsten oxide and iron oxide in a specific ratio. That is, the present invention includes (1) a photocatalyst characterized by containing titanium oxide, tungsten oxide and iron oxide in proportions of 100 parts by mass, 10 to 100 parts by mass and 0.3 to 3 parts by mass, respectively. (2) The ratio of tungsten oxide to iron oxide in the range of Fe / W (molar ratio) = 0.03 / 1 to 0.3 / 1, the photocatalyst of (1) above, and (3) titanium oxide particles (1) A method for producing a photocatalyst according to (1) or (2) above, wherein a solution obtained by dissolving a tungsten compound and an iron compound is impregnated, then dried and then calcined at 500 to 800 ° C. 4) a method of manufacturing a photocatalyst of the titanium oxide particles are anatase type titanium dioxide having a specific surface area of 30~200m 2 / g (3), and (5) the solution metatungstate tungsten compound ammonia An aqueous solution of beam is a manufacturing method of the photocatalyst of (3) or (4).

本発明の光触媒は、420nm以上の波長の光で効率よく作用することから、室内の微弱な光によってもホルムアルデヒドやアセトアルデヒドなどの各種有害な有機物を効率よく分解することができる。本発明の光触媒においては、酸化チタンが有している紫外光性能の低下を招くことなく、可視光応答性が飛躍的に向上されている。このため、本発明の光触媒は、可視光および紫外光のいずれに対しても優れた触媒性能を発揮する。   Since the photocatalyst of the present invention works efficiently with light having a wavelength of 420 nm or more, various harmful organic substances such as formaldehyde and acetaldehyde can be efficiently decomposed even by weak indoor light. In the photocatalyst of the present invention, the visible light responsiveness is drastically improved without deteriorating the ultraviolet light performance of titanium oxide. For this reason, the photocatalyst of the present invention exhibits excellent catalytic performance for both visible light and ultraviolet light.

さらに、本発明の光触媒は、酸化チタン粒子にタングステン化合物および鉄化合物の溶液を含浸させた後に、乾燥、焼成するだけで製造できる。このため、特別な生産設備やガス雰囲気をコントロールする必要なく通常の設備で大気中で容易に製造することができる。   Furthermore, the photocatalyst of the present invention can be produced simply by impregnating titanium oxide particles with a solution of a tungsten compound and an iron compound, followed by drying and firing. For this reason, it can manufacture easily in air | atmosphere by a normal installation, without having to control special production equipment and gas atmosphere.

本発明の光触媒は、酸化チタン、酸化タングステンおよび酸化鉄を、それぞれ、TiO、WOおよびFeとして換算して、100質量部、10〜100質量部および0.3〜3質量部、好ましくは100質量部:20〜50質量部:0.5〜1質量部の割合で含有するものである。通常、酸化タングステンおよび酸化鉄は、酸化チタン粒子に担持された形態で存在する。酸化タングステンの割合が、酸化チタン100質量部に対して、10質量部未満では420nm以上の可視光に対する十分な光触媒性能が得られず、一方、100質量部を超えると、酸化チタン粒子への分散担持ができなくなり、増量による効果は小さくなり、しかも紫外光性能が低下する。また、酸化鉄の割合が、酸化チタン100質量部に対して、0.3質量部未満では、可視光および紫外光のいずれに関しても十分な性能向上が得られず、一方、3質量部を超えると増量の効果は認められず、かえって色調も濃くなるので好ましくない。 In the photocatalyst of the present invention, titanium oxide, tungsten oxide and iron oxide are converted into TiO 2 , WO 3 and Fe 2 O 3 , respectively, 100 parts by mass, 10 to 100 parts by mass and 0.3 to 3 parts by mass , Preferably, it contains in the ratio of 100 mass parts: 20-50 mass parts: 0.5-1 mass part. Usually, tungsten oxide and iron oxide are present in a form supported on titanium oxide particles. When the proportion of tungsten oxide is less than 10 parts by mass with respect to 100 parts by mass of titanium oxide, sufficient photocatalytic performance with respect to visible light of 420 nm or more cannot be obtained. On the other hand, when the proportion exceeds 100 parts by mass, dispersion into titanium oxide particles The support becomes impossible, the effect of the increase is reduced, and the ultraviolet light performance is lowered. Further, when the ratio of iron oxide is less than 0.3 parts by mass with respect to 100 parts by mass of titanium oxide, sufficient performance improvement cannot be obtained with respect to both visible light and ultraviolet light, whereas it exceeds 3 parts by mass. The effect of increasing the amount is not recognized, and the color tone becomes darker, which is not preferable.

本発明の光触媒においては、酸化タングステンと酸化鉄との割合が、Fe/W(モル比)=0.03/1〜0.3/1であることが好ましく、より好ましくは0.05/1〜0.2/1である。酸化チタン粒子に酸化タングステンのみを担持したのでは、紫外光性能が低下することはわかっており、酸化鉄を添加することにより、酸化タングステンと酸化チタンとの電荷分離や電荷移動が促進され、その結果、量子収率が向上するものと推定されている。酸化チタン粒子に酸化タングステンおよび酸化鉄を、上記範囲内で、担持させることにより、可視光および紫外光のいずれに対しても良好な光触媒性能を有する光触媒が得られる。   In the photocatalyst of the present invention, the ratio of tungsten oxide to iron oxide is preferably Fe / W (molar ratio) = 0.03 / 1 to 0.3 / 1, more preferably 0.05 / 1. ~ 0.2 / 1. It is known that the performance of ultraviolet light is lowered when only the tungsten oxide is supported on the titanium oxide particles. By adding iron oxide, charge separation and charge transfer between the tungsten oxide and the titanium oxide are promoted. As a result, it is estimated that the quantum yield is improved. By supporting tungsten oxide and iron oxide on the titanium oxide particles within the above range, a photocatalyst having good photocatalytic performance for both visible light and ultraviolet light can be obtained.

本発明の光触媒は、各種方法によって製造することができるが、酸化チタン粒子に酸化タングステンおよび酸化鉄を担持させて製造するのが好ましい。具体的には、例えば、酸化チタン粒子に、タングステン化合物と鉄化合物とを含む溶液を含浸させた後、乾燥し、500〜800℃、好ましくは600〜750℃で焼成すればよい。焼成温度が500℃未満では酸化タングステンや酸化鉄の結晶化が不十分となって十分な可視光性能が得られず、一方、800℃を超えると結晶の相転移や酸化チタンとの複合化が起こり大幅な性能低下を招くため好ましくない。酸化チタンとしては、比表面積が30〜200m/gのアナターゼ型二酸化チタンが好適に用いられる。比表面積が30m/g未満では、担持される酸化タングステンの粒子サイズが大きくなるため、酸化チタンとの接合が不十分となり、十分な触媒性能が得られず、また比表面積が200m/gを超える、アモルファスな酸化チタンとなると、焼成時に酸化タングステンや酸化鉄と固溶化しやすくなり好ましくない。 The photocatalyst of the present invention can be produced by various methods, but is preferably produced by supporting tungsten oxide and iron oxide on titanium oxide particles. Specifically, for example, titanium oxide particles may be impregnated with a solution containing a tungsten compound and an iron compound, then dried, and fired at 500 to 800 ° C, preferably 600 to 750 ° C. If the firing temperature is less than 500 ° C, crystallization of tungsten oxide or iron oxide is insufficient and sufficient visible light performance cannot be obtained. On the other hand, if the firing temperature exceeds 800 ° C, crystal phase transition or complexation with titanium oxide occurs. This is not preferable because it causes a significant performance degradation. As the titanium oxide, anatase-type titanium dioxide having a specific surface area of 30 to 200 m 2 / g is preferably used. When the specific surface area is less than 30 m 2 / g, the particle size of the supported tungsten oxide becomes large, so that bonding with titanium oxide becomes insufficient, and sufficient catalytic performance cannot be obtained, and the specific surface area is 200 m 2 / g. Amorphous titanium oxide exceeding the range is not preferable because it easily dissolves in tungsten oxide or iron oxide during firing.

なお、チタン−ケイ素、チタン−ジルコニウムなどのチタン系複合酸化物も酸化チタンと同様の光半導性を有することが知られており(特公平5−55184号公報参照)、これらチタン系複合酸化物をチタン酸化物に替えて使用することもできる。   Titanium-based composite oxides such as titanium-silicon and titanium-zirconium are known to have the same optical semiconductivity as titanium oxide (see Japanese Patent Publication No. 5-55184). The product can be used in place of titanium oxide.

上記タングステン化合物としては、焼成や加水分解などによって酸化タングステンを生成し得るものであれば、各種原料を使用することができる。例えば、タングステン酸、塩化タングステン、パラタングステン酸アンモニウム、メタタングステン酸アンモニウム、タングストイソプロピルオキシドなどの無機および有機のタングステン塩を用いることができる。酸化タングステンは、使用原料や調製方法等により2〜6価の酸化物になることが知られており、WO、W、W11、WO、W、W、W14、およびWOとなるが、本発明の光触媒においては、斜方晶系三酸化タングステン(WO)の形態にあるのが好ましい。上記タングステン化合物のなかでも、メタタングステン酸アンモニウムが好適に用いられる。その理由は、メタタングステン酸アンモニウムは、焼成によって、結晶に優れた斜方晶系三酸化タングステンを生成し、結果として、可視光光触媒性能に優れた光触媒が得られるからである。 As the tungsten compound, various raw materials can be used as long as they can generate tungsten oxide by firing or hydrolysis. For example, inorganic and organic tungsten salts such as tungstic acid, tungsten chloride, ammonium paratungstate, ammonium metatungstate, and tungsten isopropyl oxide can be used. Tungsten oxide is known to be a divalent to hexavalent oxide depending on the raw materials used, the preparation method, and the like. WO, W 2 O 3 , W 4 O 11 , WO 2 , W 2 O 5 , W 3 O 8 , W 5 O 14 , and WO 3 , but the photocatalyst of the present invention is preferably in the form of orthorhombic tungsten trioxide (WO 3 ). Among the tungsten compounds, ammonium metatungstate is preferably used. The reason for this is that ammonium metatungstate produces orthorhombic tungsten trioxide excellent in crystals by firing, and as a result, a photocatalyst excellent in visible light photocatalytic performance is obtained.

上記鉄化合物としては、焼成や加水分解などによって酸化鉄を生成し得るものであれば、各種原料を使用することができる。例えば、塩化鉄、硝酸鉄、硫酸鉄、酢酸鉄、シュウ酸鉄などの無機および有機の鉄塩を使用することができる。酸化鉄の結晶形態としては、FeO、α−Fe、γ−Feなどの各種結晶形態があることが知られているが、本発明の光触媒においては、α−Feの形態でチタン酸化物粒子に担持されているのが好ましい。 As the iron compound, various raw materials can be used as long as they can produce iron oxide by firing or hydrolysis. For example, inorganic and organic iron salts such as iron chloride, iron nitrate, iron sulfate, iron acetate, and iron oxalate can be used. As the crystal form of iron oxide, it is known that there are various crystal forms such as FeO, α-Fe 2 O 3 , and γ-Fe 2 O 3. In the photocatalyst of the present invention, α-Fe 2 O It is preferable that the titanium oxide particles are supported in the form 3 .

本発明の光触媒は、室内外の建材等に塗工したりすることにより太陽光や室内光を利用して、大気中の有害物質や臭気物質を分解除去したり、廃水浄化、防汚、抗菌、防黴等の優れた機能を得ることができる。特に420nm以下の可視光に対しても有効的に作用するため従来十分な効果が得られなかった室内照明下においても良好な光触媒効果が得られる。本発明の光触媒を適用する製品としては室内では天井材、壁紙、床材、照明器具、家具、タイル等の建材や衣類、カーテン、絨毯、カーペット、蒲団等が挙げられる。また、室外でも太陽光を有効的に利用できるため路面、ブロック、レンガ、防音壁、遮光壁、ビル側壁、屋根、窓ガラス、ガードレール、道路標識、自動車ボディ、船底等に適用することができる。
(実施例)
本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。
The photocatalyst of the present invention can be applied to indoor and outdoor building materials, etc. to decompose and remove harmful substances and odorous substances in the atmosphere using sunlight and indoor light, and to purify wastewater, antifouling, antibacterial Excellent functions such as fendering can be obtained. In particular, since it works effectively even for visible light of 420 nm or less, a good photocatalytic effect can be obtained even under indoor lighting where a sufficient effect has not been obtained. Examples of products to which the photocatalyst of the present invention is applied include ceiling materials, wallpaper, flooring materials, lighting equipment, furniture, building materials such as tiles, clothing, curtains, carpets, carpets, baskets and the like. Moreover, since sunlight can be effectively used outside, it can be applied to road surfaces, blocks, bricks, soundproof walls, light shielding walls, building side walls, roofs, window glass, guardrails, road signs, automobile bodies, ship bottoms, and the like.
(Example)
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.

市販のメタタングステン酸アンモニウム水溶液(WO換算濃度50質量%)30gと水100gとに硝酸第二鉄2.5gを溶解した含浸液に酸化チタン(アナターゼ型二酸化チタン、比表面積82m/g)100gを投入して混合し、100℃で5時間乾燥した後、650℃で5時間焼成して光触媒Aを得た。この触媒Aにおいては、酸化タングステンおよび酸化鉄が、それぞれ、酸化チタン100質量部に対し、15質量部および0.5質量部担持されていた。 Titanium oxide (anatase-type titanium dioxide, specific surface area 82 m 2 / g) was impregnated with 2.5 g of ferric nitrate dissolved in 30 g of a commercially available ammonium metatungstate aqueous solution (WO 3 equivalent concentration 50 mass%) and 100 g of water. 100 g was added and mixed, dried at 100 ° C. for 5 hours, and then calcined at 650 ° C. for 5 hours to obtain a photocatalyst A. In this catalyst A, tungsten oxide and iron oxide were supported at 15 parts by mass and 0.5 parts by mass with respect to 100 parts by mass of titanium oxide, respectively.

実施例1において、焼成温度を750℃に変更した以外は、実施例1と同様にして光触媒Bを得た。   In Example 1, Photocatalyst B was obtained in the same manner as Example 1 except that the calcination temperature was changed to 750 ° C.

実施例1において、メタタングステン酸アンモニウムおよび硝酸第二鉄の使用量を変更した以外は実施例1と同様にして、各成分の含有割合の異なる、光触媒CおよびDを調製した。   In Example 1, photocatalysts C and D having different contents of each component were prepared in the same manner as in Example 1 except that the amounts of ammonium metatungstate and ferric nitrate were changed.

実施例1において、メタタングステン酸アンモニウムおよび硝酸第二鉄の使用量を変更した以外は実施例1と同様にして、各成分の含有割合の異なる、光触媒Dを調製した。   In Example 1, photocatalysts D having different content ratios of the respective components were prepared in the same manner as in Example 1 except that the amounts of ammonium metatungstate and ferric nitrate were changed.

参考例1Reference example 1

実施例1において、硝酸第二鉄を添加しなかった以外は、実施例1と同様にして光触媒aを得た。   In Example 1, photocatalyst a was obtained in the same manner as in Example 1 except that ferric nitrate was not added.

参考例2Reference example 2

市販の酸化タングステン(和光純薬工業製)を触媒bとした。   Commercially available tungsten oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used as catalyst b.

参考例3Reference example 3

実施例1で使用した市販の酸化チタンを光触媒cとした。   The commercially available titanium oxide used in Example 1 was used as the photocatalyst c.

上記触媒A〜Dおよびa〜cの組成比、焼成温度およびFe/W(モル比)を表1に示す。   Table 1 shows the composition ratio, firing temperature, and Fe / W (molar ratio) of the catalysts A to D and a to c.

試験例1Test example 1

実施例1〜4および参考例1〜3で得られた光触媒A〜Dおよび触媒a〜cについて、以下に示す閉鎖系試験方法でアセトアルデヒド分解性能を測定した。試験片は光触媒粉末をエタノールに分散させて塗布量20g/mとなるように150×70mmのガラス板の片面に塗布して60℃で乾燥し作成した。上記試験片を5L反応器に設置し、初期ガス濃度を10ppmになるようにアセトアルデヒドを注入して、光を照射した。なお、光照射条件を以下のように変更して可視光および紫外光照射によるアセトアルデヒド濃度を経時的にガスクロマトグラフィで測定して光触媒性能を比較した。
<可視光性能>
光源として4Wの蛍光灯(東芝FL4D昼光色)2本を用いて反応器外部より照射した。尚、反応器のランプ照射面は石英ガラス表面に紫外線カットフィルム(富士フィルム製、商品名「UV Guard」)を貼り付け420nm以下の紫外線が完全にカットされる条件で性能試験を実施した。各試料においての180分経過後の反応器内のアセトアルデヒド濃度を測定し、結果を可視光光触媒性能として表1に示した。経時後のガス濃度が低いほど可視光による光触媒性能が良好であることを示している。また、実施例3、参考例2および参考例3について、試験におけるアセトアルデヒド濃度の減衰結果を図1に示した。
<紫外光性能>
光源に4Wのブラックライト(東芝FLBLB)を使用し、紫外線カットフィルムを貼らなかった以外は、上記と同様にして、紫外光性能試験を実施した。各試料の30分光照射後の反応器内のアセトアルデヒド濃度を測定した。結果を紫外光光触媒性能として表1に示す。また、実施例3、参考例2および参考例3について、試験におけるアセトアルデヒド濃度の減衰結果を図2に示した。
For the photocatalysts A to D and the catalysts a to c obtained in Examples 1 to 4 and Reference Examples 1 to 3, the acetaldehyde decomposition performance was measured by the closed system test method shown below. The test piece was prepared by dispersing photocatalyst powder in ethanol and applying it to one side of a 150 × 70 mm glass plate so as to have a coating amount of 20 g / m 2 and drying at 60 ° C. The test piece was placed in a 5 L reactor, acetaldehyde was injected so that the initial gas concentration was 10 ppm, and light was irradiated. The photocatalytic performance was compared by changing the light irradiation conditions as follows and measuring the acetaldehyde concentration by irradiation with visible light and ultraviolet light over time by gas chromatography.
<Visible light performance>
Irradiation was performed from the outside of the reactor using two 4 W fluorescent lamps (Toshiba FL4D daylight color) as a light source. The lamp irradiation surface of the reactor was subjected to a performance test under the condition that an ultraviolet cut film (trade name “UV Guard” manufactured by Fuji Film Co., Ltd.) was attached to the quartz glass surface and ultraviolet rays of 420 nm or less were completely cut. The acetaldehyde concentration in the reactor after 180 minutes in each sample was measured, and the results are shown in Table 1 as visible light photocatalytic performance. The lower the gas concentration after the lapse of time, the better the photocatalytic performance by visible light. Moreover, about Example 3, Reference example 2, and Reference example 3, the attenuation | damping result of the acetaldehyde density | concentration in a test was shown in FIG.
<Ultraviolet light performance>
An ultraviolet light performance test was carried out in the same manner as described above except that a 4 W black light (Toshiba FLBLB) was used as the light source and no ultraviolet cut film was attached. The acetaldehyde concentration in the reactor after 30 spectral irradiations of each sample was measured. The results are shown in Table 1 as ultraviolet photocatalytic performance. Moreover, about Example 3, Reference example 2, and Reference example 3, the attenuation | damping result of the acetaldehyde density | concentration in a test was shown in FIG.

Figure 2006198465
上記結果から、本発明の光触媒は、可視光および紫外光のいずれに対しても優れた触媒活性を発揮することがわかる。
Figure 2006198465
From the above results, it can be seen that the photocatalyst of the present invention exhibits excellent catalytic activity for both visible light and ultraviolet light.

実施例3、参考例2および参考例3の可視光性能試験における、アセトアルデヒド濃度の経時的減衰を示すグラフである。It is a graph which shows attenuation | damping with time of the acetaldehyde density | concentration in the visible light performance test of Example 3, Reference Example 2, and Reference Example 3. 実施例3、参考例2および参考例3の紫外光性能試験における、アセトアルデヒド濃度の経時的減衰を示すグラフである。It is a graph which shows attenuation | damping with time of the acetaldehyde density | concentration in the ultraviolet-light performance test of Example 3, Reference Example 2, and Reference Example 3.

Claims (5)

酸化チタン、酸化タングステンおよび酸化鉄を、それぞれ、100質量部、10〜100質量部および0.3〜3質量部の割合で含有することを特徴とする光触媒。 A photocatalyst comprising titanium oxide, tungsten oxide, and iron oxide in proportions of 100 parts by mass, 10 to 100 parts by mass, and 0.3 to 3 parts by mass, respectively. 酸化タングステンと酸化鉄との割合が、Fe/W(モル比)=0.03/1〜0.3/1の範囲にある請求項1記載の光触媒。 The photocatalyst according to claim 1, wherein the ratio of tungsten oxide to iron oxide is in the range of Fe / W (molar ratio) = 0.03 / 1 to 0.3 / 1. 酸化チタン粒子に、タングステン化合物と鉄化合物とを溶解してなる溶液を含浸させ、次いで、乾燥した後、500〜800℃で焼成することを特徴とする請求項1または2記載の光触媒の製造方法。 The method for producing a photocatalyst according to claim 1 or 2, wherein the titanium oxide particles are impregnated with a solution obtained by dissolving a tungsten compound and an iron compound, then dried and then calcined at 500 to 800 ° C. . 酸化チタン粒子が30〜200m/gの比表面積を有するアナターゼ型二酸化チタンである請求項3記載の光触媒の製造方法。 The method for producing a photocatalyst according to claim 3, wherein the titanium oxide particles are anatase-type titanium dioxide having a specific surface area of 30 to 200 m 2 / g. タングステン化合物の溶液がメタタングステン酸アンモニウムの水溶液である請求項3または4記載の光触媒の製造方法。

The method for producing a photocatalyst according to claim 3 or 4, wherein the tungsten compound solution is an aqueous solution of ammonium metatungstate.

JP2005010192A 2005-01-18 2005-01-18 Photocatalyst and method for producing the same Expired - Fee Related JP4883913B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005010192A JP4883913B2 (en) 2005-01-18 2005-01-18 Photocatalyst and method for producing the same
TW095101707A TW200631660A (en) 2005-01-18 2006-01-17 Visible light responsive photocatalyst composition and method for manufacturing the same
EP06711839A EP1857179A1 (en) 2005-01-18 2006-01-17 Visible light-responsive photocatalyst composition and process for producing the same
PCT/JP2006/300559 WO2006077839A1 (en) 2005-01-18 2006-01-17 Visible light-responsive photocatalyst composition and process for producing the same
US11/795,526 US20080119352A1 (en) 2005-01-18 2006-01-17 Visible Light-Responsive Photocatalyst Composition and Process for Producing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010192A JP4883913B2 (en) 2005-01-18 2005-01-18 Photocatalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006198465A true JP2006198465A (en) 2006-08-03
JP4883913B2 JP4883913B2 (en) 2012-02-22

Family

ID=36956927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010192A Expired - Fee Related JP4883913B2 (en) 2005-01-18 2005-01-18 Photocatalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4883913B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115635A (en) * 2008-06-05 2010-05-27 Sumitomo Chemical Co Ltd Photocatalyst dispersion, its method of manufacturing the same and application thereof
JP2010214234A (en) * 2009-03-13 2010-09-30 Sumitomo Chemical Co Ltd Product having photocatalytic body layer, and wallpaper having photocatalytic body layer
JP2010254887A (en) * 2009-04-28 2010-11-11 Shin-Etsu Chemical Co Ltd Photocatalyst-coating liquid that gives thin photocatalyst film excellent in optical responsivity, and the photocatalyst thin film
CN111203247A (en) * 2020-02-24 2020-05-29 青岛旭晟东阳新材料有限公司 Red phosphorus-based semiconductor antibacterial photocatalyst and preparation method thereof
CN115055188A (en) * 2022-06-10 2022-09-16 长安大学 Composite modified nano TiO for tunnel 2 Tail gas degradation material and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182218A (en) * 1992-03-27 1994-07-05 Pentel Kk Method for oxidation and reduction using composite photocatalyst powder
JPH09192496A (en) * 1996-01-12 1997-07-29 Matsushita Electric Works Ltd Photocatalyst and self-cleaning articles having the same
JPH1095635A (en) * 1996-09-20 1998-04-14 Toto Ltd Formation of photocatalytic hydrophobic member and photocatalytic hydrophobic member
JP2002126517A (en) * 2000-10-20 2002-05-08 Sumitomo Chem Co Ltd Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same
JP2002211928A (en) * 2000-12-30 2002-07-31 Altra:Kk Visible light-reactive titanium dioxide, method for producing the same and method for removing contaminant
JP2003135974A (en) * 2001-11-05 2003-05-13 Sumitomo Chem Co Ltd Photocatalyst material and photocatalyst coating agent prepared by using the same
JP2003171578A (en) * 2001-12-06 2003-06-20 Sumitomo Chem Co Ltd Coating liquid and photocatalyst functional product
JP2003190811A (en) * 2001-12-27 2003-07-08 Sumitomo Chem Co Ltd Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP2003225657A (en) * 2002-02-04 2003-08-12 Nihon Hels Industry Corp Cleaning apparatus for lakes and marshes
JP2004181296A (en) * 2002-11-29 2004-07-02 Kri Inc Photocatalyst, its precursor sol solution and manufacturing method for the photocatalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182218A (en) * 1992-03-27 1994-07-05 Pentel Kk Method for oxidation and reduction using composite photocatalyst powder
JPH09192496A (en) * 1996-01-12 1997-07-29 Matsushita Electric Works Ltd Photocatalyst and self-cleaning articles having the same
JPH1095635A (en) * 1996-09-20 1998-04-14 Toto Ltd Formation of photocatalytic hydrophobic member and photocatalytic hydrophobic member
JP2002126517A (en) * 2000-10-20 2002-05-08 Sumitomo Chem Co Ltd Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same
JP2002211928A (en) * 2000-12-30 2002-07-31 Altra:Kk Visible light-reactive titanium dioxide, method for producing the same and method for removing contaminant
JP2003135974A (en) * 2001-11-05 2003-05-13 Sumitomo Chem Co Ltd Photocatalyst material and photocatalyst coating agent prepared by using the same
JP2003171578A (en) * 2001-12-06 2003-06-20 Sumitomo Chem Co Ltd Coating liquid and photocatalyst functional product
JP2003190811A (en) * 2001-12-27 2003-07-08 Sumitomo Chem Co Ltd Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP2003225657A (en) * 2002-02-04 2003-08-12 Nihon Hels Industry Corp Cleaning apparatus for lakes and marshes
JP2004181296A (en) * 2002-11-29 2004-07-02 Kri Inc Photocatalyst, its precursor sol solution and manufacturing method for the photocatalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115635A (en) * 2008-06-05 2010-05-27 Sumitomo Chemical Co Ltd Photocatalyst dispersion, its method of manufacturing the same and application thereof
JP2010214234A (en) * 2009-03-13 2010-09-30 Sumitomo Chemical Co Ltd Product having photocatalytic body layer, and wallpaper having photocatalytic body layer
JP2010254887A (en) * 2009-04-28 2010-11-11 Shin-Etsu Chemical Co Ltd Photocatalyst-coating liquid that gives thin photocatalyst film excellent in optical responsivity, and the photocatalyst thin film
CN111203247A (en) * 2020-02-24 2020-05-29 青岛旭晟东阳新材料有限公司 Red phosphorus-based semiconductor antibacterial photocatalyst and preparation method thereof
CN115055188A (en) * 2022-06-10 2022-09-16 长安大学 Composite modified nano TiO for tunnel 2 Tail gas degradation material and preparation method thereof

Also Published As

Publication number Publication date
JP4883913B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4883912B2 (en) Visible light responsive photocatalyst and method for producing the same
KR101500593B1 (en) Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
JP4878141B2 (en) Composite photocatalyst
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
US7846864B2 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
US20080119352A1 (en) Visible Light-Responsive Photocatalyst Composition and Process for Producing the Same
US8603302B2 (en) Photocatalytic material, method of decomposing organic substance, interior member, air cleaning device, and device for producing oxidizing agent
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
US20080105535A1 (en) Composite Metal Oxide Photocatalyst Exhibiting Responsibility to Visible Light
TWI476043B (en) Photocatalytic materials and process for producing the same
KR20120082899A (en) Method for inactivating virus and article provided with antiviral properties
JP4135921B2 (en) Titanium dioxide fine particles and method for producing the same
JP4053911B2 (en) Photocatalyst and method for producing photocatalyst
JP4842607B2 (en) Visible light responsive photocatalyst, visible light responsive photocatalyst composition, and method for producing the same
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JP4140770B2 (en) Titanium dioxide fine particles, method for producing the same, and method for producing visible light active photocatalyst
JP4883913B2 (en) Photocatalyst and method for producing the same
JP4135907B2 (en) Visible light active photocatalyst particles
CN1261204C (en) Preparation of air purifier for visible light responded titanium dioxide photocatalytic chamber
JP2005206412A (en) Titanium dioxide particulate and titanium dioxide porous material
JP5888340B2 (en) Photocatalyst and method for producing photocatalyst
JP3933640B2 (en) photocatalyst
JP2006187677A (en) Visible light responsible photocatalyst and its manufacturing method
JP3908717B2 (en) How to remove air pollutants
KR101582233B1 (en) Ozone decomposition catalysts, manufacturing method same and method for decomposing ozone by using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees