JP4507066B2 - Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body - Google Patents
Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body Download PDFInfo
- Publication number
- JP4507066B2 JP4507066B2 JP2004041977A JP2004041977A JP4507066B2 JP 4507066 B2 JP4507066 B2 JP 4507066B2 JP 2004041977 A JP2004041977 A JP 2004041977A JP 2004041977 A JP2004041977 A JP 2004041977A JP 4507066 B2 JP4507066 B2 JP 4507066B2
- Authority
- JP
- Japan
- Prior art keywords
- sol
- titanium oxide
- tungsten
- tungsten oxide
- tio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 76
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 title claims description 74
- 229910001930 tungsten oxide Inorganic materials 0.000 title claims description 74
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims description 70
- 239000011248 coating agent Substances 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 230000003287 optical effect Effects 0.000 title claims description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 47
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 38
- 239000002245 particle Substances 0.000 claims description 24
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 24
- 229910021529 ammonia Inorganic materials 0.000 claims description 21
- 150000003658 tungsten compounds Chemical class 0.000 claims description 18
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 11
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 9
- 150000003608 titanium Chemical class 0.000 claims description 3
- 238000000034 method Methods 0.000 description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 18
- 230000008859 change Effects 0.000 description 15
- 229910052721 tungsten Inorganic materials 0.000 description 15
- 239000010937 tungsten Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 13
- 239000011941 photocatalyst Substances 0.000 description 13
- 239000002002 slurry Substances 0.000 description 13
- 239000012528 membrane Substances 0.000 description 11
- 239000010409 thin film Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- 238000000108 ultra-filtration Methods 0.000 description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000001699 photocatalysis Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- XFVGXQSSXWIWIO-UHFFFAOYSA-N chloro hypochlorite;titanium Chemical compound [Ti].ClOCl XFVGXQSSXWIWIO-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- -1 first Chemical compound 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000009501 film coating Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 238000007540 photo-reduction reaction Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 150000003657 tungsten Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
- C03C1/006—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
- C03C1/008—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/212—TiO2
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/213—SiO2
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/219—CrOx, MoOx, WOx
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/71—Photocatalytic coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/113—Deposition methods from solutions or suspensions by sol-gel processes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/116—Deposition methods from solutions or suspensions by spin-coating, centrifugation
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
- Paints Or Removers (AREA)
Description
本発明は酸化タングステンを含有する酸化チタンゾルおよびその製造方法、更にはそれらを含むコーティング剤およびそれを塗布してなる光機能体に関するものである。 The present invention relates to a titanium oxide sol containing tungsten oxide, a method for producing the same, a coating agent containing them, and an optical functional body formed by applying the coating agent.
酸化チタンは紫外線を照射することにより酸化還元作用を発現し、有害物質を分解したり、抗菌性、超親水現象を示したりする光触媒効果を有することが知られており、この効果を利用した工業製品の開発が盛んに行われている。光触媒効果は太陽光に含まれる数%程度の紫外線のエネルギーを利用することから、光触媒反応は、非常にゆっくりした反応であり、且つその反応は、紫外線照射時にのみ生起する為、一般的な化学合成に用いられる触媒反応とは趣が大きく異なる。それ故に現在の光触媒は、可視光のエネルギーを有効利用できる機能の向上が強く望まれており、その改良技術も数多く提案されている。 Titanium oxide is known to have a photocatalytic effect that exhibits redox action by irradiating ultraviolet rays, decomposes harmful substances, exhibits antibacterial properties, and superhydrophilic phenomena. Product development is actively underway. Since the photocatalytic effect uses about several percent of ultraviolet energy contained in sunlight, the photocatalytic reaction is a very slow reaction, and the reaction occurs only during UV irradiation, so it is a common chemistry. The taste is greatly different from the catalytic reaction used in the synthesis. Therefore, the present photocatalyst is strongly desired to improve the function of effectively using the energy of visible light, and many improved techniques have been proposed.
例えば窒素をドープして吸収波長を長波長側にシフトさせる窒素ドープ型酸化チタンが提案されているが、この酸化チタンは、従来の酸化チタンよりも紫外線励起による量子効率が大幅に悪化し、可視光と紫外光を含む光源の場合、必ずしも絶対性能が向上するわけではない。一方、可視光の応答性とは別に、光触媒の機能を高める検討も多く行われている。その一例として、酸化タングステンについては、各種の光触媒効果を高めることが報告されている。例えば、タングステン等の固体酸が表面に担持された光触媒体は容易に親水化できること、且つ長期間にわたりその親水性を維持できることが報告されている(例えば、特許文献1参照)。 For example, nitrogen-doped titanium oxide that has been doped with nitrogen to shift the absorption wavelength to the longer wavelength side has been proposed, but this titanium oxide has a much worse quantum efficiency due to ultraviolet excitation than conventional titanium oxide, and is visible. In the case of a light source including light and ultraviolet light, the absolute performance is not necessarily improved. On the other hand, apart from the response of visible light, many studies have been made to enhance the function of the photocatalyst. As an example, tungsten oxide has been reported to enhance various photocatalytic effects. For example, it has been reported that a photocatalyst having a solid acid such as tungsten supported on its surface can be easily hydrophilized and can maintain its hydrophilicity for a long period of time (see, for example, Patent Document 1).
更にまた、光触媒性酸化チタンに非晶質酸化タングステンを並存させ、同様な効果を期待する報告もなされている(例えば、特許文献2参照)。この報告書には、非晶質酸化タングステンの一例として、非晶質酸化タングステン粒子を懸濁したゾルが挙げられているが、これは非晶質酸化タングステンの微粒子をシリカゾル、アルミナゾル等のゾル状物質に懸濁したものと推定されるが、このような懸濁状ゾルと酸化チタンゾルとの混合物で構成されるコーティング剤では、それ自体が透明でなく、また後述する本発明のような均一透明な薄膜を製造することはできない。 Furthermore, there has been a report in which amorphous tungsten oxide coexists with photocatalytic titanium oxide to expect the same effect (for example, see Patent Document 2). In this report, as an example of amorphous tungsten oxide, a sol in which amorphous tungsten oxide particles are suspended is cited. This is because the amorphous tungsten oxide fine particles are made into a sol form such as silica sol, alumina sol or the like. Although it is presumed to be suspended in the substance, the coating agent composed of a mixture of such a suspended sol and a titanium oxide sol is not transparent per se and is uniform and transparent as in the present invention described later. A thin film cannot be manufactured.
また、高度の親水性を有する光触媒性親水性部材を形成する方法として、基材表面に、有機チタネートを塗布した後、有機チタネートを加水分解及び脱水縮重合させた後、残留有機基を除去し、その後、タングステン酸含有水溶液を塗布し、400℃以上で焼成することにより、結晶性酸化チタンとTiO2/WO3複合酸化物を生成させる方法が報告されている(例えば、特許文献3参照)。 In addition, as a method of forming a photocatalytic hydrophilic member having a high degree of hydrophilicity, after applying organic titanate to the substrate surface, hydrolyzing and dehydrating condensation polymerization of organic titanate, and then removing residual organic groups. Then, a method of generating crystalline titanium oxide and TiO 2 / WO 3 composite oxide by applying a tungstic acid-containing aqueous solution and baking at 400 ° C. or higher has been reported (for example, see Patent Document 3). .
しかしながら、これらの技術は酸化チタンの薄膜を形成させた後、その表面に改めてタングステンを付着させ、熱処理して酸化タングステンとすることから、工程が複雑で且つ高温の熱処理工程が必要であることが大きな問題であった。また、最近では、タングステン酸アンモニウム溶液を酸化チタン粉末上に含浸した後、焼成して酸化タングステンを担持させることで、光触媒に可視光の応答性を付与せしめた技術が開示されている(例えば、特許文献4参照)。 However, in these techniques, after forming a thin film of titanium oxide, tungsten is attached again to the surface and heat-treated to form tungsten oxide. Therefore, the process is complicated and a high-temperature heat treatment process is required. It was a big problem. In addition, recently, a technique has been disclosed in which a photocatalyst is imparted with visible light responsiveness by impregnating an ammonium tungstate solution on a titanium oxide powder and then firing to support tungsten oxide (for example, (See Patent Document 4).
特許文献4で開示されている含浸担持法は不均一触媒を製造するための一般的な方法であり、酸化チタン上に酸化タングステンを容易に担持させることができる。しかしながら、原料にタングステンの水溶性塩類を用いていることから、やはり300℃以上の高温で焼成してタングステンを酸化させる必要があり、実際390℃で焼成する旨が記載されている。その結果、焼成後得られる複合体は数ミクロン以上の粒子となり、ガラスやプラスチックフイルムなどの高い透明性や意匠性を必要とする用途に対してはその使用が限定される。
また、可視光線で高い活性を示す光触媒体として、酸化チタン表面に鉄酸化物と共に酸性金属酸化物(例えば、タングステン)を含む光触媒体が開発されているが、高温焼成が必要であり、この光触媒体による薄膜製造は困難であると推定される(例えば、特許文献5参照)。
The impregnation supporting method disclosed in Patent Document 4 is a general method for producing a heterogeneous catalyst, and tungsten oxide can be easily supported on titanium oxide. However, since a water-soluble salt of tungsten is used as a raw material, it is necessary to oxidize tungsten by baking at a high temperature of 300 ° C. or higher. As a result, the composite obtained after firing becomes particles of several microns or more, and its use is limited for applications requiring high transparency and design such as glass and plastic film.
In addition, as a photocatalyst exhibiting high activity with visible light, a photocatalyst including an acidic metal oxide (for example, tungsten) along with iron oxide on the surface of titanium oxide has been developed. However, this photocatalyst requires high-temperature firing. It is estimated that it is difficult to manufacture a thin film by a body (for example, see Patent Document 5).
ところで、酸化タングステン含有酸化チタンの応用はこれら以外にも検討されており、例えば、ステンレスの防錆、暗所抗菌性、調光ガラス等への応用が考えられている(非特許文献1参照)。
上述してきた有害物質の分解、親水、防錆、抗菌、調光等の用途はすべて酸化タングステンと酸化チタンの併用効果によるものであるが、基材上に形成される薄膜コーティング材料は、光触媒能の観点から粒子径が小さく、透明性が高いことが望まれている。一方、その施工に関しては、基材上に酸化チタンと酸化タングステンを含む透明な薄膜コーティングを一工程で且つ低温で形成できる方法が切望されている。これらの要求を満足させるためには、酸化タングステンを含有する酸化チタンゾルを用いるか、互いに相溶する酸化タングステンゾルと酸化チタンゾルを混合して用いるかのどちらかの方法が考えられるが、酸化チタンゾルは多くの種類が市販されているものの、酸化タングステン単独または酸化タングステンと酸化チタンの両者を含有するゾルはこれまでなく、両者を含む薄膜を得るためには、前記のごとく酸化タングステンを異なる工程で積層、担持させ高温で熱処理するか、酸化チタンゾルにタングステンを含む水溶液を混合、塗布して、熱処理するしかなかった。この様な課題を解決するため、酸化タングステンゾルまたは酸化タングステンを含有する酸化チタンゾルの開発が強く望まれていた。
By the way, the application of tungsten oxide-containing titanium oxide has been studied in addition to these, and for example, the application to stainless steel rust prevention, antibacterial properties in the dark, and light control glass is considered (see Non-Patent Document 1). .
The above-mentioned uses such as decomposition of harmful substances, hydrophilicity, rust prevention, antibacterial, and light control are all due to the combined effect of tungsten oxide and titanium oxide, but the thin film coating material formed on the substrate has photocatalytic activity. From this viewpoint, it is desired that the particle diameter is small and the transparency is high. On the other hand, regarding the construction, there is a strong demand for a method capable of forming a transparent thin film coating containing titanium oxide and tungsten oxide on a base material in one step at a low temperature. In order to satisfy these requirements, either a titanium oxide sol containing tungsten oxide or a mixture of a tungsten oxide sol and a titanium oxide sol that are compatible with each other can be considered. Although many types are commercially available, there has never been a sol containing tungsten oxide alone or both tungsten oxide and titanium oxide. To obtain a thin film containing both, tungsten oxide is laminated in different steps as described above. The heat treatment must be carried out at a high temperature or by mixing and applying an aqueous solution containing tungsten to the titanium oxide sol. In order to solve such problems, development of a tungsten oxide sol or a titanium oxide sol containing tungsten oxide has been strongly desired.
本発明は、上述の問題点に鑑み、酸化タングステン含有酸化チタン透明膜を一工程で且つ低温で作成するための新しい酸化タングステン含有酸化チタンゾルおよびその製造方法、またそれを用いた透明性コーティング剤を提供するものである。 In view of the above-mentioned problems, the present invention provides a new tungsten oxide-containing titanium oxide sol for producing a tungsten oxide-containing titanium oxide transparent film in a single step at a low temperature, a method for producing the same, and a transparent coating agent using the same. It is to provide.
発明者らは、光触媒の性能向上、機能付与等に効果のある酸化タングステンを含有する酸化チタンゾルの製造方法について鋭意検討した結果、透明性が高い酸化タングステン含有酸化チタンゾルを開発するに至たり、本発明を完成したものである。
すなわち、本発明は、紫外線照射前の反射色の色質指数b値をb1、紫外線照射後の反射色の色質指数b値をb2としたとき、b2―b1<0であって、且つ、酸化タングステン含有量がWO 3 として酸化チタン(TiO 2 )に対しWO 3 / TiO 2 (モル比)=0.0003〜0.070である酸化タングステン含有酸化チタンゾルに関する。また、本発明は水溶性チタン塩の分解で得られたチタン酸ゲルと、NH3/TiO2(モル比)=0.05〜0.5のアンモニアと、WO3/TiO2(モル比)=0.0003〜0.070のタングステン化合物とを含む溶液を100〜160℃で熱処理してなる酸化タングステン含有酸化チタンゾルの製造方法に関する。更には、本発明は、本発明の酸化タングステン含有酸化チタンゾルからなるコーティング剤、及びそれを塗布してなる光機能体に関する。
As a result of intensive studies on a method for producing a titanium oxide sol containing tungsten oxide that is effective in improving the performance of the photocatalyst and imparting functions, the inventors have developed a highly transparent tungsten oxide-containing titanium oxide sol. The invention has been completed.
That is, in the present invention, b2−b1 <0 , where b1 is the color quality index b value of the reflected color before ultraviolet irradiation, and b2 is the color quality index b value of the reflected color after ultraviolet irradiation , and oxide content tungsten regarding WO 3 / TiO 2 (molar ratio) = 0.0003 to 0.070 and a tungsten oxide-containing titanium oxide sol to titanium oxide (TiO 2) as WO 3. In addition, the present invention provides a titanic acid gel obtained by decomposition of a water-soluble titanium salt, ammonia having NH 3 / TiO 2 (molar ratio) = 0.05 to 0.5, and WO 3 / TiO 2 (molar ratio) = 0.0003 to 0.070. The present invention relates to a method for producing a tungsten oxide-containing titanium oxide sol obtained by heat-treating a solution containing a tungsten compound at 100 to 160 ° C. Furthermore, this invention relates to the coating agent which consists of a tungsten oxide containing titanium oxide sol of this invention, and the optical function body formed by apply | coating it.
本発明のゾルは、粒子径の小さいゾル形態の酸化タングステンを含有した酸化チタンゾルからなり、このゾルを基材に塗布した後、乾燥するだけで高温で焼成することなく光触媒能の優れた透明性の高い薄膜を簡単に形成することができる。 The sol of the present invention comprises a titanium oxide sol containing tungsten oxide in the form of a sol having a small particle diameter, and after applying this sol to a substrate, it is simply dried and baked at a high temperature and has excellent photocatalytic activity. Can be easily formed.
以下、本発明を詳細に説明する。
本発明のゾルは、紫外線照射前の反射色の色質指数b値をb1、紫外線照射後の反射色の色質指数b値をb2としたとき、b2−b1<0であって、且つ、酸化タングステン含有量がWO 3 として酸化チタン(TiO 2 )に対しWO 3 / TiO 2 (モル比)=0.0003〜0.070である酸化タングステン含有酸化チタンゾルに関する。
Hereinafter, the present invention will be described in detail.
The sol of the present invention has b2−b1 <0 , where b1 is the color quality index b value of the reflected color before ultraviolet irradiation, and b2 is the color quality index b value of the reflected color after ultraviolet irradiation , and oxide content tungsten regarding WO 3 / TiO 2 (molar ratio) = 0.0003 to 0.070 and a tungsten oxide-containing titanium oxide sol to titanium oxide (TiO 2) as WO 3.
酸化タングステンは6価の三酸化タングステン(WO3)が最も安定であり一般に黄色の粉末であるが、水中で光を当てたりすると還元されて青色に変色する。この変色現象は、W4O11あるいはW10O29とも云われる低位の酸化物を生じることに起因しており酸化タングステン(WO3)特有の反応である。そして、この光反応が酸化タングステンの光機能発現の原因であると考えられている。一方、酸化タングステンの前駆体であるタングステン酸(H2WO4)やタングステン酸アンモニウムはこの様な変化を起こさないため、前述したように高温焼成して酸化タングステンとする必要がある。ところで本発明の酸化タングステン含有酸化チタンゾルは、紫外線照射による変色を色差計によって測定した時、紫外線照射前の反射色の色質指数b値をb1、照射後の反射色の色質指数b値をb2としたとき、b2−b1<0となることを特徴とする。この条件は、酸化タングステンの光還元反応に対応しており、上記条件を満たすことで、ゾルは低位酸化物由来の青色を示す。紫外線照射の条件は、特に制限されないが、例えば360nmにおける紫外線強度が2mW/cm2程度のブラックライトを1時間照射する程度のエネルギーで十分である。色差測定時の試料の状態はゾル溶液でも、あるいはそれを100℃程度で乾燥した粉末状でもよく、いずれも還元に伴う変色による反射色のb値の変化を確認することができる。本発明においては、後記「紫外線照射前後の色質指数b値の測定」による。
As the tungsten oxide, hexavalent tungsten trioxide (WO 3 ) is the most stable and is generally a yellow powder, but when it is exposed to light in water, it is reduced and turns blue. This discoloration phenomenon is caused by the formation of a lower oxide, also called W 4 O 11 or W 10 O 29, and is a reaction unique to tungsten oxide (WO 3 ). And this photoreaction is considered to be the cause of the optical function expression of tungsten oxide. On the other hand, tungstic acid (H 2 WO 4 ) and ammonium tungstate, which are precursors of tungsten oxide, do not cause such a change. Therefore, as described above, it is necessary to perform high-temperature firing to form tungsten oxide. By the way, the tungsten oxide-containing titanium oxide sol of the present invention has b1 as the color quality index b value of the reflected color before ultraviolet irradiation, and b1 as the reflected color color after irradiation. When b2, b2−b1 <0. This condition corresponds to the photoreduction reaction of tungsten oxide, and by satisfying the above condition, the sol shows a blue color derived from a lower oxide. The conditions for ultraviolet irradiation are not particularly limited, but for example, energy sufficient to irradiate black light having an ultraviolet intensity of about 2 mW / cm 2 at 360 nm for 1 hour is sufficient. The state of the sample at the time of color difference measurement may be a sol solution or a powder obtained by drying it at about 100 ° C. In either case, it is possible to confirm the change in b value of the reflected color due to discoloration accompanying reduction. In the present invention, it is based on the following “measurement of color quality index b value before and after ultraviolet irradiation”.
本発明のゾルは酸化タングステン含有量がWO3として酸化チタン(TiO2)に対してWO3/TiO2(モル比)=0.0003〜0.070であることを特徴とし、好ましくは0.001〜0.050の範囲である。これ以下の酸化タングステン含有量では酸化タングステン由来の機能を発現できず、これ以上の量ではゾルが増粘、ゲル化等を引き起こす傾向が強いため安定なゾルを製造することができないだけでなく、酸化チタンゾル粒子の生成を阻害する傾向にある。本発明のゾルの粒子径に関しては、後述する動的散乱法で測定する平均粒子径は、5〜100nm、好ましくは10〜50nm、より好ましくは15〜30nmである。本発明のゾルは、チンダル現象を呈しており、その形態に関しては、酸化チタンゾルと酸化タングステンゾルの混合物か、両酸化物の複合ゾルか定かでないが系全体で上記粒子径の範囲内にある。更に本発明のゾルは透明薄膜を付与することができ、酸化チタンの固形分濃度が1質量%時のヘイズ率が50%以下、好ましくは30%以下であることを特徴とする。ヘイズ率は市販の透過型の色差計を用い、光路長1cmの透明セルに本発明のゾルを入れて測定する。ヘイズ率とは濁りを表す指標であり、この値が50%以上であればこのゾルを用いて成膜したとき、膜に濁りを生じるため好ましくなく、透明性に優れた膜を得るためにはヘイズ率が50%以下であることが好ましい。 The sol of the present invention is characterized in that the tungsten oxide content is WO 3 / WO 3 / TiO 2 (molar ratio) = 0.0003 to 0.070 with respect to titanium oxide (TiO 2 ), preferably in the range of 0.001 to 0.050. is there. If the content of tungsten oxide is less than this, the function derived from tungsten oxide cannot be expressed, and if the amount is higher than this, not only can the stable sol not be produced because the sol tends to cause thickening, gelation, etc. It tends to inhibit the production of titanium oxide sol particles. Regarding the particle size of the sol of the present invention, the average particle size measured by the dynamic scattering method described later is 5 to 100 nm, preferably 10 to 50 nm, more preferably 15 to 30 nm. The sol of the present invention exhibits a Tyndall phenomenon, and the form thereof is not limited to a mixture of titanium oxide sol and tungsten oxide sol, or a composite sol of both oxides, but the entire system is within the above particle diameter range. Furthermore, the sol of the present invention is capable of providing a transparent thin film, and is characterized in that the haze ratio when the solid content concentration of titanium oxide is 1% by mass is 50% or less, preferably 30% or less. The haze ratio is measured by putting the sol of the present invention in a transparent cell having an optical path length of 1 cm using a commercially available transmissive color difference meter. The haze rate is an index representing turbidity, and if this value is 50% or more, it is not preferable because a film becomes turbid when it is formed using this sol, and in order to obtain a film with excellent transparency The haze ratio is preferably 50% or less.
次に本発明の酸化タングステン含有酸化チタンゾルの製造方法に関しては、水溶性チタン塩の分解で得られたチタン酸ゲルと、NH3/TiO2(モル比)=0.05〜0.5のアンモニアと、WO3/TiO2(モル比)=0.0003〜0.070のタングステン化合物とを含む溶液を100〜160℃で熱処理して製造することを骨子としているが、本発明のゾルの製造方法について以下に詳細に説明する。 Next, regarding the method for producing a tungsten oxide-containing titanium oxide sol of the present invention, titanic acid gel obtained by decomposition of a water-soluble titanium salt, NH 3 / TiO 2 (molar ratio) = 0.05 to 0.5 ammonia, WO 3 / TiO 2 (molar ratio) = 0.0003 to 0.070 A solution containing a tungsten compound is heat-treated at 100 to 160 ° C., but the production method of the sol of the present invention will be described in detail below. .
本発明の酸化タングステン含有酸化チタンゾルはチタンの水溶性塩を分解して得られたチタン酸ゲルを酸化チタンの前駆体原料として使用する。チタンの水溶性塩とは塩化チタン、オキシ塩化チタン、硫酸チタン、オキシ硫酸チタンなどが例示できる。チタンの水溶性塩の分解には、熱分解や中和分解等が例示でき、例えば、熱分解によるメタチタン酸、中和分解による正チタン酸などが本発明のチタン酸ゲルに該当する。特に中和分解で得られる正チタン酸ゲルは本発明の透明性の高い光触媒ゾルに適したチタン酸ゲルを与える。今、そのチタン酸ゲルの製法の一例を述べれば、水で希釈したオキシ塩化チタンを酸化チタン(TiO2)として0.1〜10質量%の水溶液とし、これを常温〜80℃の範囲でアンモニア水と混合することによって、白色の沈殿物が得られる。このとき、使用するアンモニア水は0.5〜10質量%の濃度が好ましく、オキシ塩化チタン水溶液に含まれる塩素量(Cl)に対するアンモニア量(NH3)がモル比で1.0〜2.0となる量を用いればよい。添加方法は特に限定されず、アンモニア水にオキシ塩化チタンを加えても良いし、オキシ塩化チタンにアンモニア水を加えても良い。得られたスラリーからアンモニウム塩を洗浄除去することにより本発明で使用するチタン酸ゲルを得ることができる。一方、タングステン化合物としては酸化タングステン、タングステン酸、タングステン酸アンモニウム塩等を例示することできる。タングステン酸アンモニウム塩としては、パラタングステン酸アンモニウム、メタタングステン酸アンモニウムなどを使用することができる。 The tungsten oxide-containing titanium oxide sol of the present invention uses a titanic acid gel obtained by decomposing a water-soluble salt of titanium as a precursor material for titanium oxide. Examples of the water-soluble salt of titanium include titanium chloride, titanium oxychloride, titanium sulfate, and titanium oxysulfate. Examples of the decomposition of the water-soluble salt of titanium include thermal decomposition and neutralization decomposition. For example, metatitanic acid by thermal decomposition, regular titanic acid by neutralization decomposition, and the like correspond to the titanate gel of the present invention. In particular, a normal titanate gel obtained by neutralization decomposition provides a titanate gel suitable for the highly transparent photocatalyst sol of the present invention. Now, an example of a method for producing the titanic acid gel is as follows. Titanium oxychloride diluted with water is made into a 0.1 to 10% by mass aqueous solution as titanium oxide (TiO 2 ), and this is treated with ammonia water in the range of room temperature to 80 ° C. By mixing, a white precipitate is obtained. At this time, the concentration of ammonia water to be used is preferably 0.5 to 10% by mass, and the ammonia amount (NH 3 ) with respect to the chlorine amount (Cl) contained in the titanium oxychloride aqueous solution is 1.0 to 2.0 in molar ratio. Good. The addition method is not particularly limited, and titanium oxychloride may be added to ammonia water, or ammonia water may be added to titanium oxychloride. By washing and removing ammonium salt from the obtained slurry, the titanic acid gel used in the present invention can be obtained. On the other hand, examples of the tungsten compound include tungsten oxide, tungstic acid, ammonium tungstate, and the like. As the ammonium tungstate, ammonium paratungstate, ammonium metatungstate, or the like can be used.
次に、ゾルの原料となる前記チタン酸ゲルとタングステン化合物はアンモニアの存在下で均一に混合される。3成分の混合方法、混合順序については特に制限されないが、全成分を均一に混合することが特に重要である。例えば酸化チタンとして0.1〜15質量%に濃度調整されたチタン酸ゲルスラリーに、先ず、モル比でNH3/TiO2=0.05〜0.5のアンモニア、より好ましくは0.08〜0.3のアンモニアを含有させる。アンモニア量がNH3/TiO2=0.05よりも少ない場合は、熱処理してもスラリーが解膠しないため、所望するゾルが得られない。また、NH3/TiO2=0.5よりも大きい場合は増粘、ゲル化し易く、ハンドリング性が悪くなる可能性があるため、工業的に安定製造する条件ではない。アンモニアの添加は水溶液で添加するのが最も簡便であり、添加濃度に関しては特段限定されない。本発明で特に注意すべき点は、アンモニア量とは、反応系内に存在する全アンモニア量を意味していることである。即ち、前記チタン酸ゲルのスラリー中に中和分解で用いたアンモニアが残存する場合やタングステン酸アンモニウムをタングステン原料として使用する場合は、それらのアンモニアを合算して反応系全体のアンモニア量が上記範囲内になるように考慮してアンモニアを添加しなければならない。 Next, the titanate gel and the tungsten compound, which are raw materials for the sol, are uniformly mixed in the presence of ammonia. The mixing method and mixing order of the three components are not particularly limited, but it is particularly important to uniformly mix all the components. For example, in a titanic acid gel slurry whose concentration is adjusted to 0.1 to 15% by mass as titanium oxide, first, ammonia having a molar ratio of NH 3 / TiO 2 = 0.05 to 0.5, more preferably 0.08 to 0.3, is contained. When the amount of ammonia is less than NH 3 / TiO 2 = 0.05, the slurry is not peptized even after heat treatment, and thus the desired sol cannot be obtained. On the other hand, when NH 3 / TiO 2 = 0.5 or more, it is not a condition for industrially stable production because it tends to thicken and gel, and the handleability may deteriorate. Ammonia is most easily added as an aqueous solution, and the concentration of addition is not particularly limited. A point to be particularly noted in the present invention is that the ammonia amount means the total ammonia amount present in the reaction system. That is, when the ammonia used in the neutralization decomposition remains in the slurry of the titanate gel or when ammonium tungstate is used as the tungsten raw material, the ammonia amount in the entire reaction system is added by adding the ammonia. Ammonia must be added so that it is within.
タングステン化合物の量はチタン酸ゲルの酸化チタン(TiO2)に対して酸化タングステン(WO3)としてモル比0.0003〜0.070の割合であることが好ましく、望ましくは、0.001〜0.05の範囲が好ましい。これ以下の量の酸化タングステンになるとタングステンの使用効果がほとんどなくなる。一方、これ以上の酸化タングステンを酸化チタンに含有させても、もはや量に応じた効果が期待できないばかりか、安定なゾルができないので好ましくない。タングステン化合物の添加の形態は固体でも溶液でも良いが、固体の場合は撹拌等によってタングステンを十分溶解させることが必要となる。特に、酸化タングステンを用いる場合、溶解しにくい為、十分に撹拌して溶解させる必要があり、アンモニア水溶液に溶解させてから用いる方が操作上より好ましい。また、タングステン酸アンモニウムを用いる場合には、チタン酸ゲルスラリーが一時的に増粘する可能性があることから、必要であれば希釈して混合すればよい。本発明で重要なことは、タングステン化合物がチタン酸ゲル、アンモニアを含むスラリー中に完全に溶解していることである。 The amount of the tungsten compound is preferably in a molar ratio of 0.0003 to 0.070 as tungsten oxide (WO 3 ) with respect to titanium oxide (TiO 2 ) in the titanate gel, and preferably in the range of 0.001 to 0.05. If the amount of tungsten oxide is less than this, the effect of using tungsten is almost lost. On the other hand, adding more tungsten oxide than this to the titanium oxide is not preferable because an effect corresponding to the amount can no longer be expected and a stable sol cannot be obtained. The form of addition of the tungsten compound may be a solid or a solution, but in the case of a solid, it is necessary to sufficiently dissolve tungsten by stirring or the like. In particular, when tungsten oxide is used, it is difficult to dissolve it. Therefore, it is necessary to dissolve it with sufficient stirring, and it is preferable to use it after it is dissolved in an aqueous ammonia solution. In addition, when ammonium tungstate is used, the titanate gel slurry may temporarily increase in viscosity. Therefore, it may be diluted and mixed if necessary. What is important in the present invention is that the tungsten compound is completely dissolved in the slurry containing titanate gel and ammonia.
この様にして均一混合したチタン酸ゲル、アンモニア及びタングステン化合物は1〜10質量%(TiO2、NH3、WO3としての合量)に濃度調製して熱処理することにより本発明のゾルを得ることができる。熱処理温度に関しては、100℃〜160℃、好ましくは110〜140℃で水熱処理することにより、機能性、透明性及び安定性の高いゾルを得ることができる。熱処理温度が100℃よりも低い場合はゾル化反応が起こらないか、あるいは粘調な濁りの強いゾルができるため好ましくなく、反対に熱処理温度が160℃よりも高い場合にはもはや処理温度に見合った効果が期待できないばかりか、ゾルが増粘したり、粒子が沈殿したりするので好ましくない。熱処理時間に関しては、チタン酸ゲルがゾルになる為の十分な時間が必要であるが、通常は2〜12時間の範囲である。この熱処理の間にチタン酸ゲルはアナターゼ型酸化チタンゾル粒子となり、タングステン化合物は酸化タングステンとなる。熱処理後は全体が透明になり、ゾルの特徴であるチンダル現象を示すようになる。 The sol of the present invention is obtained by adjusting the concentration of the titanate gel, ammonia and tungsten compound uniformly mixed in this way to 1 to 10% by mass (total amount as TiO 2 , NH 3 , WO 3 ) and heat-treating. be able to. With regard to the heat treatment temperature, a sol having high functionality, transparency and stability can be obtained by hydrothermal treatment at 100 ° C. to 160 ° C., preferably 110 to 140 ° C. If the heat treatment temperature is lower than 100 ° C, it is not preferable because a sol reaction does not occur or a thick turbid and strongly sol can be formed. Conversely, if the heat treatment temperature is higher than 160 ° C, it is no longer suitable for the treatment temperature. In addition, the sol cannot be expected, and the sol thickens or particles precipitate, which is not preferable. Regarding the heat treatment time, sufficient time for the titanic acid gel to become a sol is required, but it is usually in the range of 2 to 12 hours. During this heat treatment, the titanate gel becomes anatase-type titanium oxide sol particles, and the tungsten compound becomes tungsten oxide. After the heat treatment, the whole becomes transparent and shows the Tyndall phenomenon which is a characteristic of the sol.
ところで、本発明のゾル中のタングステンは前述したように固体の酸化タングステンと同じ光還元性を示すことから酸化タングステンの形態を有していると判断される。例えば、本発明の方法でタングステン化合物を添加しない方法で得たアナターゼ型酸化チタンゾルに更にタングステン化合物を加えても、更には、この混合物を本発明に示す条件で再度熱処理してもb2−b1<0を満たさない。また、タングステン酸やタングステン酸アンモニウム塩の水溶液のみを本発明の条件で水熱処理を行なっても酸化タングステンのゾルは得られない。以上のことから、本発明の酸化タングステン含有酸化チタンゾルはチタン酸ゲルとアンモニアとタングステン化合物の存在下で熱処理するときにのみ生成すると考えられる。また、一般に、コロイド粒子はしばしば限外濾過膜によって扱われ、数nm以上の粒子は限外濾過膜を通過することができないことが特徴であるが、タングステン酸をアンモニア水に溶解させた溶液やタングステン酸アンモニウム水溶液等のタングステン化合物溶液はそのままの状態あるいは本発明の熱処理条件で処理された場合においても、分画分子量10000の限外濾過膜を容易に通過する。また、チタン酸ゲルスラリーにアンモニア、タングステン化合物を添加、混合した状態のスラリーを上記濾過膜で濾過しても、やはりタングステン種の漏出が認められる。しかしながら、本発明の方法に従って得られた酸化タングステン含有酸化チタンゾルは濾液中にタングステン種の漏出が認められないことから、酸化タングステンは、何らかの形で酸化チタンと結合しているかあるいは酸化タングステン自身がコロイド粒子となっているものと推定される。従って、本発明の酸化タングステン含有酸化チタンゾルは酸化チタンゾルに単純にタングステン塩等を混合したものと全く性質を異にするものであり、本発明の製造方法によってのみ得られるものである。 By the way, it is judged that tungsten in the sol of the present invention has a form of tungsten oxide because it exhibits the same photoreducibility as solid tungsten oxide as described above. For example, even if a tungsten compound is further added to the anatase-type titanium oxide sol obtained by the method of the present invention without adding a tungsten compound, and even if this mixture is heat-treated again under the conditions shown in the present invention, b2−b1 < Does not satisfy 0. Further, even if only an aqueous solution of tungstic acid or an ammonium tungstate salt is subjected to hydrothermal treatment under the conditions of the present invention, a tungsten oxide sol cannot be obtained. From the above, it is considered that the tungsten oxide-containing titanium oxide sol of the present invention is produced only when heat treatment is performed in the presence of titanate gel, ammonia and a tungsten compound. In general, colloidal particles are often handled by an ultrafiltration membrane, and particles of several nanometers or more cannot pass through the ultrafiltration membrane, but a solution in which tungstic acid is dissolved in aqueous ammonia or Even when the tungsten compound solution such as an aqueous solution of ammonium tungstate is treated as it is or under the heat treatment conditions of the present invention, it easily passes through an ultrafiltration membrane having a fractional molecular weight of 10,000. Moreover, even if the slurry in which ammonia and a tungsten compound are added to and mixed with the titanic acid gel slurry is filtered through the filter membrane, leakage of tungsten species is also observed. However, since the tungsten oxide-containing titanium oxide sol obtained according to the method of the present invention has no leakage of tungsten species in the filtrate, the tungsten oxide is bound to titanium oxide in some form or the tungsten oxide itself is colloidal. Presumed to be particles. Therefore, the tungsten oxide-containing titanium oxide sol of the present invention has completely different properties from those obtained by simply mixing a tungsten salt or the like with the titanium oxide sol, and can be obtained only by the production method of the present invention.
上記の如くして得られた本発明のゾルはそのままではアンモニアアルカリ性を示しpH9〜10であるが、アンモニアやアミンを添加して更に高いpHに調製してもよいし、また、発明者らが先に出願している特開2001-206720号公報に開示する技術等によって酸性にして用いることもできる。本発明のゾル濃度に関しては、製造後に希釈しても良いし、限外濾過膜等を利用し、濃縮して用いることができる。本発明のゾルは、上述の限外濾過膜等による濃縮操作を行なっても、驚くべきことに酸化タングステン、酸化チタンが系外へまったく漏出しないため、仕込み組成通りの酸化タングステン含有酸化チタンゾルを製造できるという極めて優れた特性を有する。 The sol of the present invention obtained as described above is ammonia alkaline and has a pH of 9 to 10, but may be adjusted to a higher pH by adding ammonia or an amine. It can also be made acidic by the technique disclosed in JP-A-2001-206720 filed earlier. Regarding the sol concentration of the present invention, it may be diluted after production, or may be concentrated using an ultrafiltration membrane or the like. The sol of the present invention produces a tungsten oxide-containing titanium oxide sol according to the charged composition because, surprisingly, tungsten oxide and titanium oxide do not leak out of the system at all even when the concentration operation using the ultrafiltration membrane described above is performed. It has extremely excellent characteristics that it can be made.
本発明の酸化タングステン含有酸化チタンゾルは薄膜コーティングされて各種用途に供される。薄膜にする際にはゾルを直接基材に塗布して焼き付けても良いが、一般的にはバインダー成分を混合してコーティング剤とすることでより低温で機能性膜を形成することができる。例えば本発明のゾルにシリカゾルや珪酸アルカリ溶液等の無機バインダー成分や樹脂エマルションの様な有機質又は有機無機複合のバインダーを添加して透明薄膜用コーティング剤とすることができる。また、エタノール、プロパノールなどのアルコール類を溶媒として、テトラエトキシシラン、エチルシリケート40といったシリコンアルコキシド等のバインダーを使用したコーティング剤として使用することもできる。 The tungsten oxide-containing titanium oxide sol of the present invention is thin-film coated and used for various applications. When forming a thin film, the sol may be directly applied to the substrate and baked, but generally a functional film can be formed at a lower temperature by mixing a binder component to form a coating agent. For example, an inorganic binder component such as silica sol or alkali silicate solution or an organic or organic-inorganic composite binder such as a resin emulsion can be added to the sol of the present invention to form a transparent thin film coating agent. Moreover, it can also be used as a coating agent using binders, such as silicon alkoxides, such as tetraethoxysilane and ethyl silicate 40, using alcohols, such as ethanol and propanol, as a solvent.
バインダーの使用量は、バインダーの種類、本発明ゾルの組成、用途、所望する膜機能等によって異なるが、一般的にはバインダー成分の量が全固形分重量の10〜50質量%程度となるように混合すればよい。塗膜の硬化はバインダーの性質によるが、常温〜300℃で所望の硬度を示すように乾燥もしくは熱処理を施せばよい。尚、本発明の酸化タングステン含有酸化チタンゾルは、タングステンが既に酸化物となっているため、熱処理温度が300℃以下であっても優れた効果を発揮する。 The amount of binder used varies depending on the type of binder, composition of the sol of the present invention, application, desired film function, etc., but generally the amount of the binder component is about 10 to 50% by mass of the total solid content weight. To be mixed. The curing of the coating film depends on the properties of the binder, but may be dried or heat-treated so as to exhibit a desired hardness at room temperature to 300 ° C. The tungsten oxide-containing titanium oxide sol of the present invention exhibits excellent effects even when the heat treatment temperature is 300 ° C. or lower because tungsten is already an oxide.
本発明の光機能体とは、本発明のゾルを用いたコーティング剤を塗布した光触媒機能を付与した基材や部材をいい、例えば、タイル、ガラス、壁材等の建築材料、蛍光灯やそのカバー等の照明器具をはじめ、自動車材料、衛生陶器等を例示することができる。 The optical functional body of the present invention refers to a base material or member imparted with a photocatalytic function to which a coating agent using the sol of the present invention is applied. For example, building materials such as tiles, glass, wall materials, fluorescent lamps and the like Examples include lighting equipment such as covers, automobile materials, sanitary ware, and the like.
以上、主に本発明のゾルを光触媒用ゾルとして述べたが本発明ゾルは酸化チタンと酸化タングステンが極めて安定均一に分散しているから、本発明ゾルは、フォトクロミズムや高屈折率等の光機能性膜をはじめ、光触媒以外の触媒原料等に使用しても優れた効果を発揮する。 As described above, the sol of the present invention is mainly described as a sol for photocatalysts. However, since the present sol has titanium oxide and tungsten oxide dispersed very stably and uniformly, the sol of the present invention has optical functions such as photochromism and high refractive index. Even if it is used as a catalyst raw material other than a photocatalyst such as a conductive film, an excellent effect is exhibited.
以下に、本発明の酸化タングステン含有酸化チタンゾルの実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。尚、%は特に断らない限り質量%を示す。 Examples of the tungsten oxide-containing titanium oxide sol of the present invention will be specifically described below, but the present invention is not limited thereto. In addition, unless otherwise indicated,% shows the mass%.
本発明の酸化タングステン含有酸化チタンゾルの物性測定は以下の方法による。
紫外線照射前後の色質指数b値の測定
試料の色質指数は色差計Z-1001DP(日本電色工業製)を用いて測定した。紫外線照射前の試料をガラスセルに5mL入れて反射色の色質指数b値(b1)を測定する。次いで試料に波長360nm、紫外線強度2mW/cm2のブラックライトを2時間照射した後、反射色の色質指数b値(b2)を測定し、得られたデータからb2−b1値を求める。
平均粒子径の測定
平均粒子径の測定は、動的光散乱色粒度分布測定装置LB-500(堀場製作所製)を用いて測定した。
ヘイズ率の測定
ヘイズ率の測定は、色差計COH-300A(日本電色工業製)を用いて測定した。測定条件としてはTiO2濃度1%に希釈した試料を光路長1cmのガラスセルに入れて測定した。
The physical properties of the tungsten oxide-containing titanium oxide sol of the present invention are measured by the following method.
Measurement of color quality index b value before and after UV irradiation The color quality index of the sample was measured using a color difference meter Z-1001DP (manufactured by Nippon Denshoku Industries Co., Ltd.). 5mL of the sample before UV irradiation is put into a glass cell, and the color quality index b value (b1) of the reflected color is measured. Next, after irradiating the sample with black light having a wavelength of 360 nm and an ultraviolet intensity of 2 mW / cm 2 for 2 hours, the color quality index b value (b2) of the reflected color is measured, and the b2−b1 value is obtained from the obtained data.
Measurement of average particle diameter The average particle diameter was measured using a dynamic light scattering color particle size distribution analyzer LB-500 (manufactured by Horiba, Ltd.).
Measurement of haze ratio The haze ratio was measured using a color difference meter COH-300A (manufactured by Nippon Denshoku Industries Co., Ltd.). As a measurement condition, a sample diluted to a TiO 2 concentration of 1% was put in a glass cell having an optical path length of 1 cm and measured.
[実施例1]
TiO2 27.7 %、Cl 32.4 %のオキシ塩化チタン(住友チタニウム製)を希釈して得た0.5 %TiO2水溶液20000gに撹拌下で3 %アンモニア水2500gを添加して白色のゲルを得た後、濾液中の塩素が検出されなくなるまで洗浄し、4.2%TiO2を含むチタン酸ゲルスラリーを得た。このスラリー中のアンモニア量はNH3/TiO2(モル比)で0.12であった。このスラリー200gにタングステン酸(H2WO4)(和光純薬工業製) 0.046gを加えてスラリーが白色になるまで撹拌した。これを密閉圧力容器に入れ、120℃で5時間熱処理して本発明のゾルを得た。得られたゾルは更に限外濾過膜を用いて濃縮し、固形分9.92%の濃縮ゾルを得た。ゾルのWO3濃度は0.05%、TiO2濃度は9.86%であり、WO3/TiO2(モル比)=0.0018であった。得られたゾルの色変化は紫外線照射後、青色に変色し、b2−b1値は−2.90であった。また、平均粒子径は、25nmであり、ヘイズ率は8.19%であった。
[Example 1]
After adding 2,500 g of 3% aqueous ammonia with stirring to 20000 g of 0.5% TiO 2 aqueous solution obtained by diluting TiO 2 27.7%, Cl 32.4% titanium oxychloride (manufactured by Sumitomo Titanium), a white gel was obtained. Washing was performed until chlorine in the filtrate was not detected, and a titanate gel slurry containing 4.2% TiO 2 was obtained. The amount of ammonia in this slurry was 0.12 as NH 3 / TiO 2 (molar ratio). 0.046 g of tungstic acid (H 2 WO 4 ) (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 200 g of this slurry and stirred until the slurry became white. This was put in a sealed pressure vessel and heat-treated at 120 ° C. for 5 hours to obtain the sol of the present invention. The obtained sol was further concentrated using an ultrafiltration membrane to obtain a concentrated sol having a solid content of 9.92%. The WO 3 concentration of the sol was 0.05%, the TiO 2 concentration was 9.86%, and WO 3 / TiO 2 (molar ratio) = 0.0018. The color change of the obtained sol was changed to blue after UV irradiation, and the b2-b1 value was -2.90. The average particle size was 25 nm and the haze ratio was 8.19%.
[実施例2]
タングステン酸の添加量を0.28gとした以外は実施例1と同じ方法でゾルを得た。
得られたゾルは更に限外濾過膜を用いて濃縮し、固形分8.34%の濃縮ゾルを得た。ゾルのWO3濃度はWO3 0.25%、TiO2 8.09%であり、WO3/TiO2(モル比)=0.0107であった。得られたゾルの色変化は紫外線照射後、青色に変色し、b2−b1値は−3.18であった。また、平均粒子径は、 23nmであり、ヘイズ率は6.82%であった。
[Example 2]
A sol was obtained in the same manner as in Example 1 except that the amount of tungstic acid added was 0.28 g.
The obtained sol was further concentrated using an ultrafiltration membrane to obtain a concentrated sol having a solid content of 8.34%. The WO 3 concentration of the sol was WO 3 0.25%, TiO 2 8.09%, and WO 3 / TiO 2 (molar ratio) = 0.0107. The color change of the obtained sol was changed to blue after ultraviolet irradiation, and the b2-b1 value was -3.18. The average particle size was 23 nm and the haze ratio was 6.82%.
[実施例3]
タングステン酸量を0.48gとした以外は実施例1と同じ方法でゾルを得た。
得られたゾルは更に限外濾過膜を用いて濃縮し、固形分7.07%の濃縮ゾルを得た。ゾルのWO3濃度はWO3 0.35%、TiO2 6.72%であり、WO3/TiO2(モル比)=0.018であった。得られたゾルの色変化は紫外線照射後、青色に変色し、b2−b1値は−4.39であった。また、平均粒子径は、28nmであり、ヘイズ率は14.31%であった。
[Example 3]
A sol was obtained in the same manner as in Example 1 except that the amount of tungstic acid was 0.48 g.
The obtained sol was further concentrated using an ultrafiltration membrane to obtain a concentrated sol having a solid content of 7.07%. The WO 3 concentration of the sol was WO 3 0.35%, TiO 2 6.72%, and WO 3 / TiO 2 (molar ratio) = 0.018. The color change of the obtained sol was changed to blue after irradiation with ultraviolet rays, and the b2-b1 value was −4.39. The average particle size was 28 nm, and the haze ratio was 14.31%.
[実施例4]
タングステン酸量を1.00 gとした以外は実施例1と同じ方法でゾルを得た。
得られたゾルは更に限外濾過膜を用いて濃縮し、固形分6.83重量%の濃縮ゾルを得た。ゾルのWO3濃度はWO3 0.70%、TiO2 6.12%であり、WO3/TiO2(モル比)=0.039であった。得られたゾルの色変化は紫外線照射後、青色に変色し、b2−b1値は−2.45であった。また、平均粒子径は、29nmであり、ヘイズ率は18.21%であった。
[Example 4]
A sol was obtained in the same manner as in Example 1 except that the amount of tungstic acid was changed to 1.00 g.
The obtained sol was further concentrated using an ultrafiltration membrane to obtain a concentrated sol having a solid content of 6.83% by weight. The WO 3 concentration of the sol was WO 3 0.70%, TiO 2 6.12%, and WO 3 / TiO 2 (molar ratio) = 0.039. The color change of the obtained sol was changed to blue after UV irradiation, and the b2-b1 value was -2.45. The average particle size was 29 nm, and the haze ratio was 18.21%.
[実施例5]
タングステン酸量を0.48gとし、3%アンモニア水溶液を18g添加した以外は実施例1と同じ方法でゾルを得た。得られたゾルのWO3濃度はWO3 0.19%、TiO2 3.66%であり、WO3/TiO2(モル比)=0.018であった。得られたゾルの色変化は紫外線照射後、青色に変色し、b2−b1値は−3.65であった。また、平均粒子径は、28nmであり、ヘイズ率は18.12%であった。
[Example 5]
A sol was obtained in the same manner as in Example 1 except that the amount of tungstic acid was 0.48 g and 18 g of 3% aqueous ammonia solution was added. The WO 3 concentration of the obtained sol was WO 3 0.19%, TiO 2 3.66%, and WO 3 / TiO 2 (molar ratio) = 0.018. The color change of the obtained sol was changed to blue after UV irradiation, and the b2-b1 value was -3.65. The average particle size was 28 nm, and the haze ratio was 18.12%.
[実施例6]
タングステン酸に代えメタタングステン酸アンモニウム50%水溶液1.68g添加した以外は実施例1と同じ方法でゾルを得た。得られたゾルのWO3濃度はWO3 0.40%、TiO2 3.77%であり、WO3/TiO2(モル比)=0.036であった。得られたゾルの色変化は紫外線照射後、青色に変色し、b2−b1値は−2.91であった。また、平均粒子径は、32nmであり、ヘイズ率は38.49%であった。
[Example 6]
A sol was obtained in the same manner as in Example 1 except that 1.68 g of a 50% aqueous solution of ammonium metatungstate was added instead of tungstic acid. The WO 3 concentration of the obtained sol was WO 3 0.40%, TiO 2 3.77%, and WO 3 / TiO 2 (molar ratio) = 0.036. The color change of the obtained sol was changed to blue after UV irradiation, and the b2-b1 value was -2.91. The average particle size was 32 nm, and the haze ratio was 38.49%.
[実施例7]
実施例1のタングステン酸に代え、酸化タングステン0.43gと3%アンモニア水18gを添加した以外は、実施例1と同じ方法でゾルを得た。得られたゾルのWO3濃度はWO3 0.19%、TiO2 3.66%であり、WO3/TiO2(モル比)=0.018であった。得られたゾルの色変化は紫外線照射後、青色に変色し、b2−b1値は−2.78であった。また、平均粒子径は、25nmであり、ヘイズ率は25.07%であった。
[Example 7]
A sol was obtained in the same manner as in Example 1 except that 0.43 g of tungsten oxide and 18 g of 3% aqueous ammonia were added in place of the tungstic acid of Example 1. The WO 3 concentration of the obtained sol was WO 3 0.19%, TiO 2 3.66%, and WO 3 / TiO 2 (molar ratio) = 0.018. The color change of the obtained sol was changed to blue after UV irradiation, and the b2-b1 value was -2.78. The average particle size was 25 nm, and the haze ratio was 25.07%.
[実施例8]
実施例1〜3のゾルを用いてコーティング剤を作成し、以下の試験を行なった。即ち、実施例1〜3のゾルをそれぞれTiO2=5重量%になるように濃度調製し、珪酸リチウム35(SiO2=20%)(日本化学工業製)を重量比でTiO2/SiO2=8/2となるように加え、得られたコーティング剤をスライドガラスに1000rpmでスピンコートした後、波長360nm、紫外線強度2mW/cm2のブラックライトを24時間照射して水に対する接触角≒0°とし、その後暗所に放置して接触角の経時変化を見た。比較例として本発明のゾルに代え、実施例1の方法でタングステン酸を用いずに作成した酸化チタンゾルを用いて同様にコーティング剤を作成し、試験に供した。その結果を図1に示す。この結果から明らかなように本発明ゾルを用いた膜は、優れた親水性効果を示すことが判る。
[Example 8]
Coating agents were prepared using the sols of Examples 1 to 3, and the following tests were performed. That is, the concentration of each of the sols of Examples 1 to 3 was adjusted so that TiO 2 = 5% by weight, and lithium silicate 35 (SiO 2 = 20%) (manufactured by Nippon Chemical Industry Co., Ltd.) in a weight ratio of TiO 2 / SiO 2 = 8/2, and the resulting coating agent was spin-coated on a slide glass at 1000 rpm, and then irradiated with black light having a wavelength of 360 nm and an ultraviolet intensity of 2 mW / cm 2 for 24 hours to contact angle with water ≈ 0 And then left in a dark place to observe the change in contact angle over time. As a comparative example, a coating agent was prepared in the same manner using a titanium oxide sol prepared without using tungstic acid by the method of Example 1 instead of the sol of the present invention, and subjected to the test. The result is shown in FIG. As is clear from this result, it can be seen that the film using the sol of the present invention exhibits an excellent hydrophilic effect.
[実施例9]
実施例3で得た酸化タングステン含有酸化チタンゾルに酸化チタンに対するモル比0.4のクエン酸を加えて密閉圧力容器に入れ、120℃で3時間熱処理した後、限外濾過膜を使用して濾液の電気伝導度が0.1mS/cm以下になるまで洗浄して総固形分量10%、pH3.2のゾルを得た。得られたゾルの組成は、TiO2 12.8%、WO3 0.66%であった。このゾル37.1gにエタノール58.5g、テトラエトキシシラン4.4gを加えて24時間撹拌してコーティング剤とした。コーティング剤をガラス基板に1000rpmでスピンコートした後100℃で乾燥硬化させて酸化タングステン含有酸化チタン膜を得た。このコートしたガラスは無色透明であり、このガラスをガラスセルの位置に挿入し、色差計COH-300A(日本電色工業製)を用いてヘイズ率を測定したところ1%以下であった。
[Example 9]
After adding citric acid having a molar ratio of 0.4 to titanium oxide to the tungsten oxide-containing titanium oxide sol obtained in Example 3, the mixture was placed in a sealed pressure vessel and heat-treated at 120 ° C. for 3 hours, and then the filtrate was electrolyzed using an ultrafiltration membrane. The sol was washed until the conductivity became 0.1 mS / cm or less to obtain a sol having a total solid content of 10% and a pH of 3.2. The composition of the obtained sol was TiO 2 12.8% and WO 3 0.66%. To 37.1 g of this sol, 58.5 g of ethanol and 4.4 g of tetraethoxysilane were added and stirred for 24 hours to obtain a coating agent. The coating agent was spin-coated on a glass substrate at 1000 rpm and then dried and cured at 100 ° C. to obtain a tungsten oxide-containing titanium oxide film. This coated glass was colorless and transparent. When this glass was inserted into the glass cell and the haze ratio was measured using a color difference meter COH-300A (manufactured by Nippon Denshoku Industries Co., Ltd.), it was 1% or less.
[比較例1]
実施例1で得たチタン酸ゲルスラリーを密閉圧力容器に入れ、120℃で5時間熱処理して酸化チタンのみからなるゾルを得た後、タングステン酸0.54gを添加して溶解させタングステン酸を含有するゾルを得た。実施例1と同じ方法で変色を調べたところ紫外線照射前後で変色は認められずb2−b1=0であった。即ち、このゾルを用いて実施例8と同様にコーティング剤を作成し、試験に供した結果、実施例1の方法でタングステン酸を用いずに作成した酸化チタンゾルと同程度の親水性を示した。
[Comparative Example 1]
The titanic acid gel slurry obtained in Example 1 is put in a sealed pressure vessel and heat-treated at 120 ° C. for 5 hours to obtain a sol made of only titanium oxide, and then 0.54 g of tungstic acid is added and dissolved to contain tungstic acid. A sol was obtained. When the color change was examined by the same method as in Example 1, no color change was observed before and after the ultraviolet irradiation, and b2−b1 = 0. That is, using this sol, a coating agent was prepared in the same manner as in Example 8 and subjected to the test. As a result, it showed hydrophilicity similar to that of the titanium oxide sol prepared without using tungstic acid by the method of Example 1. .
[比較例2]
比較例1で得たゾルを更に120℃で5時間処理してタングステン化合物を含むゾルを得た。実施例1と同じ方法で変色を調べたところ紫外線照射前後で変色は認められずb2−b1=0であった。即ち、このゾルを用いて実施例8と同様にコーティング剤を作成し、試験に供した結果、実施例1の方法でタングステン酸を用いずに作成した酸化チタンゾルと同程度の親水性を示した。
[Comparative Example 2]
The sol obtained in Comparative Example 1 was further treated at 120 ° C. for 5 hours to obtain a sol containing a tungsten compound. When the color change was examined by the same method as in Example 1, no color change was observed before and after the ultraviolet irradiation, and b2−b1 = 0. That is, using this sol, a coating agent was prepared in the same manner as in Example 8 and subjected to the test. As a result, it showed hydrophilicity similar to that of the titanium oxide sol prepared without using tungstic acid by the method of Example 1. .
光触媒として多用されている酸化チタンは、酸化タングステンとの併用効果によって親水性、汚染物質の分解性能等を向上することが知られているが、その施工に関しては、これまで工程が複雑で且つ高温の熱処理工程が必要であり、低耐熱性基材には、この効果を利用することができなかったが、本発明の酸化タングステン含有酸化チタンゾルを用いることにより、施工が一工程と簡単で木質剤、プラスチック、紙等の低耐熱性基材に対しても有効に利用することができ、加えて低温で透明性の高い薄膜を容易に成形することができ、その産業的意義は極めて大なるものである。 Titanium oxide, which is often used as a photocatalyst, is known to improve hydrophilicity and degradation performance of pollutants due to the combined effect with tungsten oxide. This heat treatment process is necessary, and this effect could not be used for the low heat resistant base material. However, the use of the tungsten oxide-containing titanium oxide sol of the present invention makes the construction easy and one-step woody agent. In addition, it can be effectively used for low heat resistant substrates such as plastic and paper, and in addition, it can easily form a highly transparent thin film at low temperature, and its industrial significance is extremely large. It is.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004041977A JP4507066B2 (en) | 2004-02-18 | 2004-02-18 | Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004041977A JP4507066B2 (en) | 2004-02-18 | 2004-02-18 | Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005231935A JP2005231935A (en) | 2005-09-02 |
JP4507066B2 true JP4507066B2 (en) | 2010-07-21 |
Family
ID=35015281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004041977A Expired - Lifetime JP4507066B2 (en) | 2004-02-18 | 2004-02-18 | Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4507066B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104857947A (en) * | 2014-02-25 | 2015-08-26 | 京程科技股份有限公司 | Preparation method and application method of tungsten trioxide-titanium dioxide sol |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1857179A1 (en) * | 2005-01-18 | 2007-11-21 | Nippon Shokubai Kagaku Kogyo Co. Ltd. | Visible light-responsive photocatalyst composition and process for producing the same |
JP2007220235A (en) * | 2006-02-17 | 2007-08-30 | Hitachi Maxell Ltd | Optical element, optical head and optical disk recording/reproducing apparatus |
EP2216297B1 (en) * | 2007-10-03 | 2013-12-04 | Nissan Chemical Industries, Ltd. | Modified metal-oxide composite sol, coating composition, and optical member |
US20100239872A1 (en) * | 2007-10-03 | 2010-09-23 | Nissan Chemical Industries, Ltd. | Metal oxide composite sol, coating composition, and optical member |
JP4730400B2 (en) | 2007-10-09 | 2011-07-20 | 住友化学株式会社 | Photocatalyst dispersion |
JP5957175B2 (en) * | 2008-03-04 | 2016-07-27 | 株式会社東芝 | Antibacterial membrane and antibacterial member |
JP5641926B2 (en) * | 2008-03-04 | 2014-12-17 | 株式会社東芝 | Aqueous dispersion and paint using the same |
JP5082950B2 (en) | 2008-03-13 | 2012-11-28 | 住友化学株式会社 | Method for decomposing volatile aromatic compounds |
JP4987781B2 (en) * | 2008-03-31 | 2012-07-25 | 株式会社東芝 | Photocatalyst |
JP2010115635A (en) | 2008-06-05 | 2010-05-27 | Sumitomo Chemical Co Ltd | Photocatalyst dispersion, its method of manufacturing the same and application thereof |
JP5313051B2 (en) * | 2008-06-09 | 2013-10-09 | 住友化学株式会社 | Zirconium oxalate sol |
JP5113723B2 (en) * | 2008-11-04 | 2013-01-09 | 住友化学株式会社 | Photocatalyst dispersion |
JP2010120805A (en) * | 2008-11-19 | 2010-06-03 | Sumitomo Chemical Co Ltd | Photocatalytic body dispersion |
JP2010180303A (en) * | 2009-02-04 | 2010-08-19 | Sumitomo Chemical Co Ltd | Hydrophilizing agent, method of producing the same, and use of the same |
JP2011005475A (en) | 2009-05-29 | 2011-01-13 | Sumitomo Chemical Co Ltd | Photocatalyst dispersion liquid and photocatalyst functional product using the same |
CN115353701B (en) * | 2022-07-05 | 2023-09-29 | 北京仿生界面科学未来技术研究院 | Preparation method and application of intelligent window foil capable of self-adapting to illumination intensity |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997023572A1 (en) * | 1995-12-22 | 1997-07-03 | Toto Ltd. | Photocatalytic process for making surface hydrophilic and composite material having photocatalytically hydrophilic surface |
JPH1095635A (en) * | 1996-09-20 | 1998-04-14 | Toto Ltd | Formation of photocatalytic hydrophobic member and photocatalytic hydrophobic member |
WO2001068786A1 (en) * | 2000-03-13 | 2001-09-20 | Toto Ltd. | Hydrophilic member and method for manufacture thereof |
JP2002126517A (en) * | 2000-10-20 | 2002-05-08 | Sumitomo Chem Co Ltd | Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same |
JP2002211928A (en) * | 2000-12-30 | 2002-07-31 | Altra:Kk | Visible light-reactive titanium dioxide, method for producing the same and method for removing contaminant |
JP2003171578A (en) * | 2001-12-06 | 2003-06-20 | Sumitomo Chem Co Ltd | Coating liquid and photocatalyst functional product |
JP2003190811A (en) * | 2001-12-27 | 2003-07-08 | Sumitomo Chem Co Ltd | Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same |
JP2003225657A (en) * | 2002-02-04 | 2003-08-12 | Nihon Hels Industry Corp | Cleaning apparatus for lakes and marshes |
-
2004
- 2004-02-18 JP JP2004041977A patent/JP4507066B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997023572A1 (en) * | 1995-12-22 | 1997-07-03 | Toto Ltd. | Photocatalytic process for making surface hydrophilic and composite material having photocatalytically hydrophilic surface |
JPH1095635A (en) * | 1996-09-20 | 1998-04-14 | Toto Ltd | Formation of photocatalytic hydrophobic member and photocatalytic hydrophobic member |
WO2001068786A1 (en) * | 2000-03-13 | 2001-09-20 | Toto Ltd. | Hydrophilic member and method for manufacture thereof |
JP2002126517A (en) * | 2000-10-20 | 2002-05-08 | Sumitomo Chem Co Ltd | Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same |
JP2002211928A (en) * | 2000-12-30 | 2002-07-31 | Altra:Kk | Visible light-reactive titanium dioxide, method for producing the same and method for removing contaminant |
JP2003171578A (en) * | 2001-12-06 | 2003-06-20 | Sumitomo Chem Co Ltd | Coating liquid and photocatalyst functional product |
JP2003190811A (en) * | 2001-12-27 | 2003-07-08 | Sumitomo Chem Co Ltd | Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same |
JP2003225657A (en) * | 2002-02-04 | 2003-08-12 | Nihon Hels Industry Corp | Cleaning apparatus for lakes and marshes |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104857947A (en) * | 2014-02-25 | 2015-08-26 | 京程科技股份有限公司 | Preparation method and application method of tungsten trioxide-titanium dioxide sol |
Also Published As
Publication number | Publication date |
---|---|
JP2005231935A (en) | 2005-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4507066B2 (en) | Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body | |
JP4803180B2 (en) | Titanium oxide photocatalyst, its production method and use | |
Kuznetsov et al. | Visible light absorption by various titanium dioxide specimens | |
Huang et al. | Synthesis of Neutral SiO2/TiO2 Hydrosol and Its Application as Antireflective Self‐Cleaning Thin Film | |
JP4957244B2 (en) | Titanium oxide photocatalyst, method for producing the same, and use thereof | |
JP4686536B2 (en) | Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition | |
Soltan et al. | Enhancement of photocatalytic degradation of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials | |
Leonard et al. | Interactions between Zn2+ or ZnO with TiO2 to produce an efficient photocatalytic, superhydrophilic and aesthetic glass | |
Vodišek et al. | Transparent titania-zirconia-silica thin films for self-cleaning and photocatalytic applications | |
JP5627006B2 (en) | Photocatalyst and method for producing the same | |
CA2643730A1 (en) | Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion | |
JP4540971B2 (en) | Neutral titanium oxide sol and method for producing the same | |
US7713912B2 (en) | Nano photocatalytic sol and application thereof | |
US20060034752A1 (en) | Visible-light-activated photocatalyst and method for producing the same | |
JP3978636B2 (en) | Coating composition for photocatalyst film formation | |
JPH10167727A (en) | Modified titanium oxide sol, photocatalyst composition and its forming agent | |
JP3791067B2 (en) | Photocatalyst composition and glass article | |
KR101048340B1 (en) | Transparent film forming composition | |
JP3885248B2 (en) | Photocatalyst composition | |
JP2007117999A (en) | Titanium oxide-based photocatalyst and its use | |
JP4522082B2 (en) | Photocatalyst liquid composition and photocatalyst formed using the same | |
JP4571793B2 (en) | Aqueous photocatalyst coating solution | |
JP3978635B2 (en) | Titanyl oxalate coating liquid and method for producing photocatalytic element using the same | |
JP4447241B2 (en) | Visible light responsive photocatalyst particles and method for producing the same | |
Lim | Enhanced Photocatalysis of Co-Doped Titania by Mn/WO3 Under Visible Light Irradiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061016 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100421 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100421 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4507066 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160514 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |