WO2001068786A1 - Hydrophilic member and method for manufacture thereof - Google Patents

Hydrophilic member and method for manufacture thereof Download PDF

Info

Publication number
WO2001068786A1
WO2001068786A1 PCT/JP2001/001984 JP0101984W WO0168786A1 WO 2001068786 A1 WO2001068786 A1 WO 2001068786A1 JP 0101984 W JP0101984 W JP 0101984W WO 0168786 A1 WO0168786 A1 WO 0168786A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide
tungsten oxide
member according
surface layer
Prior art date
Application number
PCT/JP2001/001984
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Miyauchi
Mitsuhide Shimohigoshi
Kazuhito Hashimoto
Toshiya Watanabe
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to JP2001567272A priority Critical patent/JP5130603B2/en
Priority to AU41124/01A priority patent/AU4112401A/en
Publication of WO2001068786A1 publication Critical patent/WO2001068786A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Definitions

  • the present invention relates to a member having a hydrophilic surface, and more specifically, a member such as a mirror, a lens, a sheet glass, a building interior material, a building exterior material, and the like, for which antifogging property and antifouling property are required. And a method for producing the same.
  • WO96 / 293375 discloses that the surface of a photocatalyst-containing layer formed on the surface of a substrate has a high degree of hydrophilicity (for example, in terms of a contact angle with water, depending on the photoexcitation of the photocatalyst). 10 ° or less). Utilizing this property, it is said that it is possible to improve the anti-fog and visibility enhancement of transparent members such as glass, lenses and mirrors, and to improve the water washing property and rainfall washing property of the article surface.
  • Japanese Patent Application Laid-Open No. 11-388867 discloses that the mixed metal oxide has a wavelength of 300 in the presence of a mixed metal oxide of titanium oxide and tungsten oxide, an oxidizable compound and a gas containing oxygen. It discloses a deodorization method using a photocatalyst that irradiates light having a maximum wavelength of not less than 370 nm and a wavelength of not more than 370 nm.
  • Japanese Patent Application Laid-Open No. 10-1141545 discloses a hydrophilic member having a surface layer containing photocatalytic titanium oxide and tungsten oxide formed on the surface of a substrate.
  • WO97 / 235772 discloses a substrate, a layer containing a photocatalyst formed on the surface of the substrate, and water molecules physically adsorbed on the surface of the layer in response to photoexcitation of the photocatalyst.
  • a hydrophilic member comprising a layer, disclose that capable of carrying a T i 0 2 / W0 3 to the photocatalyst-containing layer surface.
  • Japanese Patent Application Laid-Open No. H10-57871 discloses a photocatalyst structure having a photocatalyst layer on a substrate surface, wherein at least a part of the photocatalyst layer surface has a metal compound having a thickness of 0.2 to 10 O nm.
  • a photocatalyst structure having a thin film is disclosed.
  • the present inventors have recently suggested that the combination of photocatalytic titanium oxide and amorphous tungsten oxide can efficiently induce hydrophilicity with a photocatalyst even with a small amount of photocatalyst or a weak amount of ultraviolet light. Obtained knowledge.
  • the present invention quickly develops excellent hydrophilicity in response to sunlight or weak light of the indoor lighting level even with a small amount of photocatalytic titanium oxide, thereby achieving antifogging and antifouling properties. It is an object of the present invention to provide a member capable of obtaining the above and a method for producing the same.
  • the member of the present invention comprises: a base material; and a surface layer bonded to the surface of the base material and containing a photocatalytic titanium oxide and an amorphous tungsten oxide.
  • the titanium oxide and the amorphous tungsten oxide are joined to each other without forming a solid solution;
  • the outermost surface of the surface layer exhibits a hydrophilicity of 10 degrees or less in terms of water contact angle in response to light excitation by light irradiation of 10 ⁇ W / cm 2 or less in terms of ultraviolet illuminance. .
  • FIG. 1 is a diagram illustrating a charge transfer process when both titanium oxide and tungsten oxide are photoexcited.
  • Figure 2 is a diagram explaining the charge transfer process when tungsten oxide is photoexcited.
  • FIG. 3 is a diagram illustrating a charge transfer process when photocatalytic titanium oxide is photoexcited.
  • FIG. 4 is a conceptual diagram showing a cross section of a member according to the first embodiment of the present invention.
  • FIG. 5 is a conceptual diagram showing a cross section of a member according to the second embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing a cross section of a member according to the third embodiment of the present invention.
  • FIG. 7 is a conceptual diagram showing a cross section of a member according to the fourth embodiment of the present invention.
  • FIG. 8 is a conceptual diagram showing a cross section of a member according to the fifth embodiment of the present invention.
  • FIG. 9 is a conceptual diagram showing a cross section of a member according to the sixth embodiment of the present invention.
  • FIG. 10 is a conceptual diagram showing a cross section of a member according to the seventh embodiment of the present invention.
  • FIG. 11 is a conceptual diagram showing a cross section of a member according to the eighth embodiment of the present invention.
  • FIG. 12 is a diagram showing the relationship between the contact angle with water on the sample surface and the light irradiation time when the UV illuminance is 10 W / cm 2 in Example A1.
  • FIG. 13 is a diagram showing the relationship between the contact angle with water on the sample surface and the light irradiation time when the ultraviolet illuminance is 3 zW / cm 2 in Example A1.
  • FIG. 14 is a diagram showing the relationship between the contact angle of the sample surface with water and the light irradiation time in Example A2.
  • FIG. 15 is a diagram showing the relationship between the contact angle of the sample surface with water and the light irradiation time in Example A3.
  • FIG. 16 is a diagram showing the relationship between the contact angle of the sample surface with water and the light irradiation time in Example A4.
  • FIG. 17 is a diagram showing the relationship between the contact angle of the sample surface with water and the light irradiation time in Example A5.
  • FIG. 18 is a diagram showing the relationship between the contact angle of the sample surface with water and the storage time at a location in Example A6.
  • FIG. 19 is a diagram showing the relationship between the rate of hydrophilicity conversion and the ratio of the tungsten raw material to the solid content in the raw material solution in Example B1.
  • FIG. 20 is a diagram showing the relationship between the rate of hydrophilicity constant and the proportion of the tungsten raw material occupying the solid content in the raw material solution in Example B2.
  • FIG. 21 is a diagram showing the relationship between the rate of hydrophilicity constant and the ratio of the tungsten raw material to the solid content in the raw material solution in Example B3.
  • the member of the present invention has a base material and a surface layer bonded to the surface of the base material.
  • the substrate used in the present invention can be a metal, an inorganic material, an organic material, and a composite thereof. Specific examples include tiles, sanitary ware, tableware, calcium silicate plates, cement extruded plates, ceramic substrates, new ceramics such as semiconductors, insulators, glass, mirrors, wood, and resins.
  • examples of the base material when expressed as the use of the member include building exterior materials, building interior materials, window frames, window glass, structural members, vehicle exteriors, dustproof covers for articles, traffic signs, various display devices , Advertising towers, road noise barriers, railway noise barriers, bridges, guardrails, tunnel interiors and coatings, insulators, solar battery covers, solar water heater collector covers, plastic greenhouses, vehicle lighting covers, housing Equipment, toilets, bathtubs, wash basins, lighting fixtures, lighting covers, kitchen utensils, dishwashers, dish dryers, sinks, cooking ranges, kitchen hoods, ventilation fans, protective films, etc.
  • the surface layer contains photocatalytic titanium oxide and amorphous tungsten oxide.
  • the titanium oxide and the amorphous tungsten oxide are bonded to each other without forming a solid solution.
  • a combination of photocatalytic titanium oxide and tungsten oxide has been known.
  • the tungsten oxide is crystallized or forms a solid solution with the titanium oxide and is bonded thereto.
  • the surface layer of the member according to the present invention is excellent in hydrophilization efficiency.
  • the hydrophilicity can be efficiently induced by the photocatalyst even with a small amount of the photocatalyst or a small amount of the ultraviolet light.
  • the amount of titanium oxide as a photocatalyst can be reduced, high transparency can be realized without causing iris or cloudiness on the surface layer.
  • the band gap of amorphous tungsten oxide is 3.2 leV, which is narrower than the band gap of titanium oxide 3.2 eV.
  • the amorphous oxide evening tungsten is, c upper end of the lower end and the valence band of the conduction band is on the positive side of the titanium oxide
  • the electrons generated and the holes generated in the valence band can move between different types of photocatalysts, which may promote charge separation.
  • an impurity level is generated between the titanium oxide and the tungsten oxide. It is thought that the impurity level acts as a recombination center between the photoexcited electron and the hole and hinders the hydrophilization reaction.
  • Figure 1 shows the energy structures of titanium oxide and tungsten oxide.
  • electrons generated in the conduction band of titanium oxide move to the conduction band of the tungsten oxide material, and are generated in the valence band of tungsten oxide.
  • the holes can move to the valence band of titanium oxide.
  • the holes transferred to the titanium oxide react with the lattice oxygen of the titanium oxide itself to generate oxygen vacancies with high affinity for water and become hydrophilic, while the electrons transferred to the tungsten oxide are oxygen in the air. Reacts with to generate superoxodonion and is released to the outside world. It is thought that the holes generated in tungsten oxide act effectively on the surface of the titanium oxide to make it hydrophilic, and assist this.
  • Fig. 2 shows the irradiation of visible light with a wavelength of 400 nm or more, which makes it difficult to excite titanium oxide.
  • FIG. Titanium oxide cannot be excited by visible light with a wavelength of 400 nm or more, but can excite tungsten oxide. The holes generated by the tungsten oxide move to the titanium oxide side. It is considered that the probability of recombination is extremely low due to the separation of the electron-hole pairs, and that the surface of the titanium oxide particles is promoted to be hydrophilic.
  • FIG. 3 shows a case where light for exciting only titanium oxide is irradiated. Even in this case, it is considered that the generated holes are efficiently collected on the titanium oxide without recombination with the electrons, and the hydrophilicity of the titanium oxide is promoted.
  • preferable crystal structures of titanium oxide include an analog type, a rutile type, and a wurtzite type.
  • the amorphous tungsten oxide means not only so-called amorphous tungsten oxide but also tungstic acid or a salt thereof. Further, it may be a mixture of amorphous tungsten oxide and tungstic acid or a salt thereof.
  • Preferred examples of the tungstate include ammonium salt, hydrochloric acid salt, nitrate, nitrate, organic acid salt, alcoholate, chelate, acetate and the like.
  • both or either of the titanium oxide and the amorphous tungsten have a particle shape.
  • the particle size of the titanium oxide particles is preferably about 1 to 5 O nm, more preferably about 5 to 30 nm.
  • the particle size of the tungsten oxide is preferably 50 nm or less, more preferably about 5 to 3 O nm.
  • the titanium oxide is present on the outermost surface of the surface layer in a state where the titanium oxide can come into contact with moisture in the outside air.
  • the tungsten oxide preferably has oxygen vacancies.
  • the ratio of tungsten oxide atoms: titanium atoms on the surface of the surface layer is 0.005 to 0.50 in terms of a value measured by X-ray photoelectron spectroscopy. : 0.995-0.50.
  • the oxidized ring in the surface layer is preferably from 0.1% to 70% by weight, more preferably from 5% to 50%. By being in such a range, hydrophilicity can be induced more efficiently.
  • the surface layer comprises a layer made of the titanium oxide and an amorphous tungsten oxide dispersed and scattered on the surface of the titanium oxide layer. That is, it is preferable that the tungsten oxide is scattered like islands on the layer made of titanium oxide. It should be noted that specific examples of this aspect include the first to fourth aspects of the present invention described below.
  • the surface layer includes the titanium oxide particles and the tungsten oxide particles in a mixed form. Also in this case, it is preferable that the titanium oxide exists on the outermost surface of the surface layer in a state where the titanium oxide can come into contact with moisture in the outside air. Specific examples of this aspect include the fifth to eighth aspects of the present invention described below.
  • the surface layer further includes a metal oxide having at least one bond selected from the group consisting of a siloxane bond, a porosiloxane bond, and an aluminosilicate bond (hereinafter, referred to as a “metal oxide”).
  • a metal oxide having at least one bond selected from the group consisting of a siloxane bond, a porosiloxane bond, and an aluminosilicate bond (hereinafter, referred to as a “metal oxide”).
  • metal oxide simply referring to a metal oxide means the metal oxide).
  • These compounds have the property of being able to adsorb a large amount of chemically adsorbed water, so that the efficiency of inducing hydrophilicity is improved. Is advantageous.
  • Specific examples of such a metal oxide include silica, silicone, alkyl silicate, alkali silicate, and acrylic silicon.
  • the metal oxide may be dispersed and scattered on the surface layer.
  • the metal oxide may be present as a layer on the surface of the surface layer.
  • the hydrophilicity appears at the resurface of this metal oxide layer.
  • the metal oxide layer preferably has a thickness of about 1 nm to about 100 nm from the viewpoint of maintaining hydrophilicity. In some cases, it is preferable that the metal oxide layer has open pores from the viewpoint of developing the hydrophilicity of titanium oxide.
  • Surface layer in the present invention in terms of ultraviolet intensity 1 0 zW / cm 2 or less, rather preferably below 3 ⁇ W / cm z, more preferably corresponding to excitation by light irradiation less than 1 ⁇ W / cm z
  • the outermost surface exhibits a hydrophilicity of 10 degrees or less, preferably 5 degrees or less, more preferably 3 degrees or less in terms of a water contact angle.
  • very advantageous that the surface is capable of highly hydrophilic to less than 5 degrees in terms of water contact angle It is. That is, indoors generally have a small amount of ultraviolet rays. Even in such an environment, as a result of achieving a high degree of hydrophilicity, the effects of anti-fog, drip-proof, and self-purification can be expected indoors.
  • the irradiated light be a light having a wavelength that can excite both titanium oxide and tungsten oxide.
  • light having a wavelength in the range of 30 O nm to 450 nm can be suitably used to excite titanium oxide and tungsten oxide.
  • the light emitted from fluorescent lamps and incandescent lamps to the articles installed on the indoor wall has a wavelength of 300 nm to 450 nm.
  • the integrated illuminance of the area is estimated to be 0.1 to 10 1W / cm 2 .
  • the component according to the invention is advantageous for indoor use. Use of parts
  • the surface of the component according to the invention is highly hydrophilic. As a result, the attached water does not become water droplets but spreads as a thin water film. As a result, the component according to the invention has application as a non-fogging or anti-fog component.
  • the member according to the present invention is a member that is hardly soiled. Furthermore, for example, when the member according to the present invention is installed outdoors, if it adheres, it has an advantageous property that it is easily washed away by rainfall or the like, that is, it is self-cleaning (self-cleaning).
  • the surface layer of the member according to the present invention is substantially transparent and has no interference color, the design property of any article of architectural exterior materials, interior materials and other indoor members may not be impaired. It is also advantageous in that it does not have any.
  • the hydrophilic member of the present invention emits light from a mercury lamp, a xenon lamp, a mercury-xenon lamp, a halogen lamp, a metal halide lamp, etc., which has a high light intensity, and sunlight and sunlight scattered from a window. It is needless to say that even when the photo-excitation is performed, the anti-fogging, anti-fouling, and self-cleaning effects as described above are exhibited. Production method
  • the first manufacturing method according to the present invention is to form a two-layer surface layer composed of a titanium oxide layer and an amorphous tungsten oxide layer on the surface of a base material. That is, the first production method of the present invention comprises:
  • the temperature at which a solid solution is not formed is preferably lower than 500 ° C, more preferably in the range of 20 ° C to 350 ° C.
  • the second production method of the present invention comprises:
  • the temperature at which a solid solution is not formed may be the same as the temperature according to the first production method described above. In both the first and second production methods, photocatalytic titanium oxide or a precursor thereof is used.
  • Preferred examples of the precursor of the photocatalytic titanium oxide include amorphous titania sol, crystalline titania sol, tetramethyltitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetran-propoxytitanium, tetrabutoxytitanium, titanium chelate, a
  • the raw material includes at least one selected from the group consisting of cetylacetone titanium, titanium tetrachloride, titanium sulfate, and titanium hydroxide.
  • the precursors of the amorphous tungsten oxide include ammonium tungstate, tungstic acid, a sol in which amorphous tungsten oxide particles are suspended, penethoxyethoxytungsten, pentamethoxytungsten, pengupropoxytungsten, pen Examples include those containing at least one tungsten compound selected from the group consisting of butoxytungsten, tungsten chelate, acetate tungsten, tungsten sulfate, tungsten chloride, and tungsten hydroxide.
  • subbing coating, flow coating, dip coating, spray coating, roll coating and the like can be suitably used.
  • the thickness of the coating can be controlled by the rotation speed of the base material and the concentration of the raw material solution.
  • any of a titanium oxide layer and an amorphous tungsten oxide layer, or a surface layer containing titanium oxide and tungsten oxide in a mixed form is formed by sputtering, CVD, or the like. , A plasma CVD method, an ion plating method, an MBE method, or the like.
  • a layer 12 containing titanium oxide is formed on a substrate 10, and an island 14 made of tungsten oxide is formed on the layer 12. It is bonded to a layer 12 containing titanium oxide. At least a part of the titanium oxide is exposed to the outside air, and is capable of coming into contact with moisture in the outside air.
  • the member according to the first embodiment can be manufactured as follows. First, a starting material of titanium oxide is applied to a substrate, and then a thin film of titanium oxide is formed by drying or baking. Further, after the starting material of tungsten oxide is applied on the titanium oxide thin film, drying or heating is performed.
  • the member according to the second embodiment of the present invention maintains the surface hydrophilicity in a dark place or strengthens it. 6 may be formed.
  • the member according to the second embodiment can be manufactured, for example, as follows. First, a starting material of titanium oxide is applied to a substrate, and then a thin film of titanium oxide is formed by drying or baking. Further, a coating agent containing a starting material of tungsten oxide and a starting material of metal oxide is applied on the titanium oxide thin film and then dried or baked. Further, after forming the titanium oxide thin film, the starting material of tungsten oxide may be applied, followed by drying or baking, and then the starting material of the metal oxide may be applied, followed by drying or baking. After forming the titanium oxide thin film, the starting material of the metal oxide may be applied, followed by drying or baking, and then the starting material of tungsten oxide may be applied, followed by drying or baking.
  • a layer 32 containing titanium oxide is formed on a base material 30, and an island 34 made of tungsten oxide is bonded thereon. Further, a layer 36 made of a metal oxide is formed thereon.
  • the member according to the fourth aspect can be manufactured, for example, as follows. First, a starting material of titanium oxide is applied to a substrate, and then a thin film of titanium oxide is formed by drying or baking. Further, after the starting material of tungsten oxide is applied on the titanium oxide thin film, drying or baking is performed. After that, the starting material containing a metal oxide is applied thereon, and then drying or baking is performed.
  • a mixed layer 42 containing a metal oxide capable of adsorbing more chemically adsorbed water than tan and titanium oxide is formed, and an island 44 made of tungsten oxide is further joined to the mixed layer 42. .
  • the member according to the fourth embodiment can be manufactured, for example, as follows. First, a coating agent containing a starting material of titanium oxide and a starting material of metal oxide is applied to a substrate, and then a mixed layer containing titanium oxide and a metal oxide is formed by drying or baking. Further, a tungsten oxide starting material is applied on the mixed layer, and then dried or heated and baked.
  • a coating 52 made of titanium oxide particles and tungsten oxide particles is formed on a base material 50. At least a portion of the titanium oxide particles and at least a portion of the tungsten oxide particles are joined without forming a solid solution, and at least a portion of the titanium oxide particles are exposed to the open air.
  • the member according to the fifth embodiment, which is exposed and can come into contact with moisture in the outside air, can be manufactured, for example, as follows. First, a coating agent containing a starting material of titanium oxide and a starting material of tungsten oxide is applied to a substrate. Then, dry or heat bake.
  • a mixed film 62 formed by adding a metal oxide to titanium oxide and tungsten oxide is formed on a base material 60. ing.
  • the member according to the sixth aspect can be manufactured, for example, as follows. First, a coating material containing a starting material of titanium oxide, a starting material of tungsten oxide, and a starting material of metal oxide is applied to a substrate. Then, dry or heat bake.
  • the member according to the seventh embodiment of the present invention includes a bird film made of metal oxide on a film 72 made of titanium oxide and tungsten oxide formed on a base material 70. 7 4 are formed.
  • the member according to the seventh aspect can be manufactured, for example, as follows. First, a coating agent containing a starting material of titanium oxide and a starting material of tungsten oxide is applied to a substrate, and then a mixed film of titanium oxide and tungsten oxide is formed by drying or baking. Further, a starting material containing a metal oxide is applied on the mixed film, and then dried or baked.
  • the member according to the first embodiment of the present invention has a film 82 made of titanium oxide and tungsten oxide formed on a base material 80, and a layer made of a metal oxide formed thereon. 8 4 are formed.
  • the member according to the eighth aspect can be manufactured in the same manner as the member according to the seventh aspect. At this time, the thickness of the layer made of the metal oxide can be controlled by adjusting the concentration of the starting material containing the metal oxide. Antifogging method and antifouling method
  • a method for imparting anti-fog properties to a member surface comprises providing a substrate with a surface layer comprising photocatalytic titanium oxide and amorphous tungsten oxide, wherein the titanium oxide and the amorphous tungsten oxide do not form a solid solution. They are joined together. By irradiating this base material with light of 10 ⁇ W / cm 2 or less in terms of ultraviolet illuminance and photo-excitation, the member exhibits antifogging properties.
  • a method for imparting antifouling property to a member surface comprises providing a surface layer comprising a photocatalytic titanium oxide and an amorphous tungsten oxide on a base material, wherein the titanium oxide and the amorphous tungsten oxide form a solid solution without forming a solid solution. Be joined. By irradiating the substrate with light of 10 W / cm 2 or less in terms of ultraviolet illuminance and photo-excitation, the member exhibits antifouling properties. The surface of this member is easily cleaned only by occasional contact with running water. JP01 / 01984
  • a titanium oxide coating agent (Nippon Soda, NDH510C) having a solid concentration of 10% was applied to silica-coated glass by dip coating. The dip coating was performed at a pulling speed of 15 cm / min. Then, the coated film was baked at 500 ° (:, 30 minutes) in an electric furnace. The above steps were repeated twice to produce a photocatalytic titanium oxide thin film having a thickness of about 20 Onm.
  • a liquid in which tungstic acid was dissolved in 25% aqueous ammonia was further coated on the thin film by spin coating.
  • Spin coating was performed at a rotation speed of 1500 revolutions per minute for 10 seconds. Thereafter, the thin film was fired in an electric furnace at 300 ° C for 30 minutes.
  • concentration of tungstic acid samples with different loading amounts of photocatalytic tungsten oxide on titanium oxide were obtained.
  • Sample # 1 no tungstic acid coating
  • Sample # 2 tungstic acid concentration 0.5% by weight (solid content, same hereafter)
  • Sample # 3 tungstic acid concentration 1.0% by weight
  • Sample # 4 evening stainless acid concentration was 2.0% by weight.
  • the ratio of tungsten atoms: titanium atoms on the surface of the thin film was measured by X-ray photoelectron spectroscopy. as a result,
  • Sample # 1 is 0: 1.00
  • Sample # 3 is 0.20: 0.80
  • Sample # 4 was 0.40: 0.60.
  • X-ray diffraction confirmed the presence of amorphous photocatalytic tungsten oxide on the surface of the thin film.
  • Ultraviolet illuminance on the surface of the thin film was measured with an ultraviolet illuminometer (Shisho Electric, UVR-2), and the distance between the thin film and the fluorescent lamp was changed to 10 W / cm 2 or 3 / W / cii.
  • UVR-2 ultraviolet illuminometer
  • a drop of water was dropped from the microsyringe, and the contact angle with water was measured with a contact angle measuring instrument (Kyowa Interface Science, CA-X150).
  • Example A1 In the same manner as in Example A1, a photocatalytic titanium oxide thin film having a thickness of about 200 nm was produced.
  • a liquid in which tungstic acid was dissolved in 25% aqueous ammonia was further coated on the thin film by spin coating (1,500 rpm for 10 minutes). Thereafter, the thin film was fired in an electric furnace at 100 ° C for 30 minutes.
  • concentration of tungstic acid samples having different amounts of photocatalytic tungsten oxide on titanium oxide were obtained.
  • Sample # 5 no coating of tungstic acid
  • Sample # 6 dungstenic acid concentration 1.0% by weight (solid content, the same applies hereinafter);
  • Sample # 7 tungstic acid concentration 2.0% by weight;
  • Sample # 8 tungstic acid concentration was 5.0% by weight.
  • the ratio of tungsten atoms: titanium atoms on the surface of the thin film was measured by X-ray photoelectron spectroscopy. as a result,
  • Example A 3 The contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was set to 10 ⁇ W / cm 2 . The results were as shown in FIG. Sample # 5 was hydrophilized to about 10 degrees, and samples # 6 and # 7 were further hydrophilized to 0 degrees. Example A 3
  • Example A1 In the same manner as in Example A1, a photocatalytic titanium oxide thin film having a thickness of about 200 nm was produced.
  • a 25% aqueous ammonia solution having a tungstic acid concentration of 1.0% by weight (solid content) was further coated on the thin film by spin coating (1,500 rotations per minute, 10 seconds). Thereafter, the thin film was baked for 30 minutes in an electric furnace while changing the temperature as follows.
  • the state of tungstic acid present on the surface of the thin film was observed by X-ray diffraction.
  • ammonium tungstate in sample # 10 the presence of amorphous tungsten oxide in sample # 11
  • the presence of a composite phase of amorphous tungsten oxide and crystallized tungsten oxide in sample # 12 the presence of crystallized tungsten oxide in sample # 13 .
  • the ratio of tungsten atoms: titanium atoms on the thin film surface was measured by X-ray photoelectron spectroscopy. As a result, the ratio of sample # 9 was 0: 1.00, and the ratio of samples # 10 to # 13 was 0.20: 0.80.
  • Aqueous titanium oxide sol (Ishihara STS21) was diluted with pure water until the solid content became 8%, and applied to silica-coated glass by spin coating (1500 rpm, 10 seconds). Thereafter, the coating film was fired in a Matsufuru furnace at 500 ° C for 30 minutes.
  • a 25% aqueous ammonia solution having a tungstic acid concentration of 1.0% by weight was further coated on the thin film by spin coating (at a rotation speed of 1500 rpm for 10 seconds). Thereafter, the thin film was baked for 30 minutes in an electric furnace while changing the temperature as follows.
  • the ratio of tungsten atoms: titanium atoms on the thin film surface was measured by X-ray photoelectron spectroscopy. As a result, Sample # 14 had a ratio of 0: 1.00, and Samples # 15 and # 16 had a ratio of 0.20: 0.80. When the structure of the thin film surface was observed with an atomic force microscope, the surfaces of the samples # 15 and # 16 had almost no difference from the sample # 14. The results suggested a structure composed of a layer made of titanium oxide and amorphous tungsten oxide dispersed on the surface of the titanium oxide layer and scattered in stripes.
  • Example A 5 The contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was 1 / W / cm 2 . The results were as shown in Figure 16. Sample # 14 was hydrophilized to 10 degrees, while samples # 15 and # 16 were further hydrophilized to 1 degree. Example A 5
  • a photocatalytic antifogging film containing photocatalytic titanium oxide and silica was attached to the glass, and on top of this, an evening stainless acid concentration of 1.0% by weight. was coated by spin coating (150 rpm / min, 10 seconds) and dried at 100 ° C. for 30 minutes.
  • X-ray diffraction confirmed the presence of ammonium tungstate on the surface of the thin film.
  • the ratio of tungsten atoms: titanium atoms on the surface of the thin film was 0.20: 0.80.
  • the contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was set to 10 W / cm 2 . The results were as shown in FIG. Example A 6
  • Example A1 In the same manner as in Example A1, a photocatalytic titanium oxide thin film having a thickness of about 200 nm was produced.
  • a 25% aqueous ammonia solution having a tungstic acid concentration of 1.0% by weight was further coated on the thin film by spin coating (1500 rotations per minute, 10 seconds). Then, the thin film was baked for 30 minutes in an electric furnace while changing the temperature as follows. .
  • X-ray photoelectron spectroscopy was used to measure the ratio of tungsten: silicon: titanium on the surface of the thin film. As a result, it was 0.20: 0.40: 0.40.
  • Example B 1 that remained 5 degrees or less hydrophilic
  • aqueous titanium oxide sol (NTB-21, manufactured by Showa Denko KK) and an aqueous solution of ammonium tungstate were mixed at the following concentrations to obtain a coating solution having a solid concentration of 2% by weight for these components. That is, coating solutions were prepared in which the weight ratio of ammonium tungstate to titanium oxide was 5%, 10%, 20%, 30%, 40%, 50%, 70%, and 90%. This coating solution was applied to silica-coated glass by spin coating (1,500 revolutions per minute, 10 seconds), followed by baking at 300 ° C for 30 minutes in a Matsufur furnace.
  • the obtained glass member having a thin film on the surface was substantially transparent without cloudiness or iris color.
  • X-ray diffraction confirmed the presence of a mixed phase of amorphous tungsten oxide and ananases-type titanium oxide on the surface of the thin film.
  • the contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was 5 / W / cm 2 . From the obtained value of the contact angle, a hydrophilization rate constant was determined according to the following equation. Empirically, the change in contact angle during light irradiation is expressed by a secondary reaction equation as shown in equation (1). Obey. That is, when the reciprocal of the contact angle 0 is plotted against time, a linear relationship is obtained, and this slope can be defined as a hydrophilization rate constant.
  • a glass member was obtained in the same manner as in Example 2. However, the firing temperature in the Matsufuru furnace was 100 ° C.
  • the obtained glass member having a thin film on the surface was substantially transparent without cloudiness or iris color.
  • X-ray diffraction confirmed the presence of a mixed phase of ammonium tungstate and an anatase-type titanium oxide on the surface of the thin film.
  • the lattice constant of titanium oxide obtained from the results of X-ray diffraction is
  • the contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was 5 W / cm 2 . From the value of the obtained contact angle, a hydrophilization rate constant was obtained from the equation (1) in the same manner as in Example B1.
  • FIG. 20 shows the relationship between the rate constant of hydrophilization and the ratio of the tungsten raw material to the solid content in the coating solution. From these results, it is most advantageous to promote the hydrophilization when the proportion of the tungsten raw material is in the range of 5 to 50%. It turns out that it is. It should be noted that when the proportion of the tungsten raw material was in the range of 5 to 50%, the material became hydrophilic to 5 degrees or less.
  • a glass member having a thin film on the surface was obtained in the same manner as in Example B1, except that the aqueous titanium oxide sol was changed to A-6, manufactured by Taki Kagaku.
  • X-ray diffraction confirmed the presence of a mixed phase of amorphous tungsten oxide and ana-type titanium oxide on the thin film surface.
  • the lattice constant of titanium oxide obtained from the results of X-ray diffraction showed a value similar to the literature value of anatomical titanium oxide in stoichiometry. This suggested that no solid solution was generated between titanium oxide and tungsten oxide.
  • the contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was 5 zW / cm 2 . From the value of the obtained contact angle, a hydrophilization rate constant was obtained from the equation (1) in the same manner as in Example B1.
  • Figure 21 shows the relationship between the rate constant of hydrophilization and the ratio of the tungsten raw material to the solid content in the coating solution. From this result, it can be seen that when the proportion of the tungsten raw material is in the range of 5 to 40%, it is most advantageous for promoting the hydrophilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Catalysts (AREA)

Abstract

A member which comprises a substrate and, formed on and jointed to the surface thereof, a surface layer comprising a titanium oxide and an amorphous tungsten oxide which have photocatalytic activity, wherein the titanium oxide and an amorphous tungsten oxide are jointed with each other without forming a solid solution, and wherein the uppermost surface of the surface layer exhibits a hydrophilicity of 10 degree or less in terms of a water contact angle in response to the optical pumping by the radiation of light of 10 νW/cm2 or less in terms of the illuminance of ultraviolet rays; and a method for manufacturing the member. The member is capable of exhibiting excellent hydrophilicity in response both to a weak light of an internal lighting level and sunlight, even with a small amount of photocatalyst, and thereby having the resistance to fogging and staining.

Description

明 細 書 親水性部材及びその製造方法 [発明の背景]  Description Hydrophilic member and method for producing the same [Background of the invention]
発明の分野  Field of the invention
本発明は、 表面が親水性め部材に関し、 より具体的には、 防曇性や防汚性が必 要とされる、 鏡、 レンズ、 板ガラス、 建築内装材、 建築外装材等の部材およびそ の製造方法に関する。  The present invention relates to a member having a hydrophilic surface, and more specifically, a member such as a mirror, a lens, a sheet glass, a building interior material, a building exterior material, and the like, for which antifogging property and antifouling property are required. And a method for producing the same.
背景技  Background technique
W O 9 6 / 2 9 3 7 5号公報には、 基材表面に形成された光触媒含有層表面が、 光触媒の光励起に応じて、 高度の親水性 (例えば、 水との接触角に換算して 1 0 ° 以下) を呈することを開示している。 この性質を利用して、 ガラス、 レンズ、 鏡 等の透明部材の防曇 ·視界確保性向上、 物品表面の水洗浄性 ·降雨洗浄性向上等 を図ることが出来るとされている。  WO96 / 293375 discloses that the surface of a photocatalyst-containing layer formed on the surface of a substrate has a high degree of hydrophilicity (for example, in terms of a contact angle with water, depending on the photoexcitation of the photocatalyst). 10 ° or less). Utilizing this property, it is said that it is possible to improve the anti-fog and visibility enhancement of transparent members such as glass, lenses and mirrors, and to improve the water washing property and rainfall washing property of the article surface.
そして、 光触媒により誘起される親水性をより効率よく発現させることが望ま れている。  Then, it is desired that the hydrophilicity induced by the photocatalyst be expressed more efficiently.
一方で、 酸化チタンと酸化タングステンとの組合せを開示する先行技術として は、 次のようなものが知られている。  On the other hand, the following is known as a prior art which discloses a combination of titanium oxide and tungsten oxide.
特開平 1一 2 3 8 8 6 7号公報は、 酸化チタンと酸化タングステンの混合金属 酸化物と被酸化性化合物および酸素を含む気体の共存下で、 前記混合金属酸化物 に波長が 3 0 0 n m以上で最大波長が 3 7 0 n m以下の光を照射する光触媒によ る脱臭方法を開示している。  Japanese Patent Application Laid-Open No. 11-388867 discloses that the mixed metal oxide has a wavelength of 300 in the presence of a mixed metal oxide of titanium oxide and tungsten oxide, an oxidizable compound and a gas containing oxygen. It discloses a deodorization method using a photocatalyst that irradiates light having a maximum wavelength of not less than 370 nm and a wavelength of not more than 370 nm.
特閧平 1 0— 1 1 4 5 4 5号公報は、 基材表面に光触媒性酸化チタンと、 酸化 タングステンを含有する表面層が形成されてなる親水性部材を開示している。  Japanese Patent Application Laid-Open No. 10-1141545 discloses a hydrophilic member having a surface layer containing photocatalytic titanium oxide and tungsten oxide formed on the surface of a substrate.
WO 9 7 / 2 3 5 7 2号公報は、 基材と、 前記基材の表面に形成された光触媒 を含む層と、 前記光触媒の光励起に応じて前記層の表面に物理吸着された水分子 の層からなる親水性部材であって、 T i 02/W03を光触媒含有層表面に担持さ せ得ることを開示している。 特開平 1 0— 5 7 8 1 7号公報は、 基材表面に光触媒層を有する光触媒構造体 において、 光触媒層表面の少なくとも一部に、 0 . 2〜1 0 O nmの莫厚の金属 化合物の薄膜を有する、 光触媒構造体を開示している。 WO97 / 235772 discloses a substrate, a layer containing a photocatalyst formed on the surface of the substrate, and water molecules physically adsorbed on the surface of the layer in response to photoexcitation of the photocatalyst. a hydrophilic member comprising a layer, disclose that capable of carrying a T i 0 2 / W0 3 to the photocatalyst-containing layer surface. Japanese Patent Application Laid-Open No. H10-57871 discloses a photocatalyst structure having a photocatalyst layer on a substrate surface, wherein at least a part of the photocatalyst layer surface has a metal compound having a thickness of 0.2 to 10 O nm. A photocatalyst structure having a thin film is disclosed.
[発明の概要] [Summary of the Invention]
本発明者らは、 今般、 光触媒性酸化チタンと非晶質酸化タングステンとの組合 せにより、 少量の光触媒量または微弱な紫外線量であっても、 効率よく光触媒に より親水性が誘起できるとの知見を得た。  The present inventors have recently suggested that the combination of photocatalytic titanium oxide and amorphous tungsten oxide can efficiently induce hydrophilicity with a photocatalyst even with a small amount of photocatalyst or a weak amount of ultraviolet light. Obtained knowledge.
したがって、 本発明は、 少量の光触媒酸化チタンであっても、 太陽光または室 内照明レベルの微弱な光に応じて、 優れた親水性を速やかに発現し、 それにより 防曇性および防汚性を得ることができる部材およびその製造方法の提供をその目 的としている。  Therefore, the present invention quickly develops excellent hydrophilicity in response to sunlight or weak light of the indoor lighting level even with a small amount of photocatalytic titanium oxide, thereby achieving antifogging and antifouling properties. It is an object of the present invention to provide a member capable of obtaining the above and a method for producing the same.
そして、 本発明の部材は、 基材と、 該基材の表面に接合され、 光触媒性酸化チ タンおよび非晶質酸化タングステンを含んでなる表面層とを備えてなり、  The member of the present invention comprises: a base material; and a surface layer bonded to the surface of the base material and containing a photocatalytic titanium oxide and an amorphous tungsten oxide.
前記酸化チタンと前記非晶質酸化タングステンとが固溶体を形成することなく 互いに接合されてなり、 かつ、  The titanium oxide and the amorphous tungsten oxide are joined to each other without forming a solid solution; and
紫外線照度に換算して 1 0〃W/ c m2以下の光照射による光励起に応じて、 前 記表面層の最表面が水接触角に換算して 1 0度以下の親水性を呈するものである。 The outermost surface of the surface layer exhibits a hydrophilicity of 10 degrees or less in terms of water contact angle in response to light excitation by light irradiation of 10 〃W / cm 2 or less in terms of ultraviolet illuminance. .
[図面の簡単な説明] [Brief description of drawings]
図 1は、 酸化チタンと酸化タングステンの双方を光励起した場合の電荷移動プ 口セスを説明する図である。  FIG. 1 is a diagram illustrating a charge transfer process when both titanium oxide and tungsten oxide are photoexcited.
図 2は、 酸化タングステンを光励起した場合の電荷移動プロセスを説明する図 Cあ <©。  Figure 2 is a diagram explaining the charge transfer process when tungsten oxide is photoexcited.
図 3は、 光触媒性酸化チタンを光励起した場合の電荷移動プロセスを説明する 図である。  FIG. 3 is a diagram illustrating a charge transfer process when photocatalytic titanium oxide is photoexcited.
図 4は、 本発明の第一の態様による部材の断面を示す概念図である。  FIG. 4 is a conceptual diagram showing a cross section of a member according to the first embodiment of the present invention.
図 5は、 本発明の第二の態様による部材の断面を示す概念図である。  FIG. 5 is a conceptual diagram showing a cross section of a member according to the second embodiment of the present invention.
図 6は、 本発明の第三の態様による部材の断面を示す概念図である。 図 7は、 本発明の第四の態様による部材の断面を示す概念図である。 FIG. 6 is a conceptual diagram showing a cross section of a member according to the third embodiment of the present invention. FIG. 7 is a conceptual diagram showing a cross section of a member according to the fourth embodiment of the present invention.
図 8は、 本発明の第五の態様による部材の断面を示す概念図である。  FIG. 8 is a conceptual diagram showing a cross section of a member according to the fifth embodiment of the present invention.
図 9は、 本発明の第六の態様による部材の断面を示す概念図である。  FIG. 9 is a conceptual diagram showing a cross section of a member according to the sixth embodiment of the present invention.
図 1 0は、 本発明の第七の態様による部材の断面を示す概念図である。  FIG. 10 is a conceptual diagram showing a cross section of a member according to the seventh embodiment of the present invention.
図 1 1は、 本発明の第八の態様による部材の断面を示す概念図である。  FIG. 11 is a conceptual diagram showing a cross section of a member according to the eighth embodiment of the present invention.
図 1 2は、 実施例 A 1における、 紫外線照度が 1 0 W/ c m2の場合の試料表 面の水との接触角と光照射時間の関係を示す図である。 FIG. 12 is a diagram showing the relationship between the contact angle with water on the sample surface and the light irradiation time when the UV illuminance is 10 W / cm 2 in Example A1.
図 1 3は、 実施例 A 1における、 紫外線照度が 3 zW/ c m2の場合の試料表面 の水との接触角と光照射時間の関係を示す図である。 FIG. 13 is a diagram showing the relationship between the contact angle with water on the sample surface and the light irradiation time when the ultraviolet illuminance is 3 zW / cm 2 in Example A1.
図 1 4は、 実施例 A 2における、 試料表面の水との接触角と光照射時間の関係 を示す図である。  FIG. 14 is a diagram showing the relationship between the contact angle of the sample surface with water and the light irradiation time in Example A2.
図 1 5は、 実施例 A 3における、 試料表面の水との接触角と光照射時間の関係 を示す図である。  FIG. 15 is a diagram showing the relationship between the contact angle of the sample surface with water and the light irradiation time in Example A3.
図 1 6は、 実施例 A 4における、 試料表面の水との接触角と光照射時間の関係 を示す図である。  FIG. 16 is a diagram showing the relationship between the contact angle of the sample surface with water and the light irradiation time in Example A4.
図 1 7は、 実施例 A 5における、 試料表面の水との接触角と光照射時間の関係 を示す図である。  FIG. 17 is a diagram showing the relationship between the contact angle of the sample surface with water and the light irradiation time in Example A5.
図 1 8は、 実施例 A 6における、 試料表面の水との接触角と喑所での保管時間 の関係を示す図。  FIG. 18 is a diagram showing the relationship between the contact angle of the sample surface with water and the storage time at a location in Example A6.
図 1 9は、 実施例 B 1における、 親水化速度定数ひと原料溶液中の固体分に占 めるタングステン原料の割合の関係を示す図である。  FIG. 19 is a diagram showing the relationship between the rate of hydrophilicity conversion and the ratio of the tungsten raw material to the solid content in the raw material solution in Example B1.
図 2 0は、 実施例 B 2における、 親水化速度定数ひと原料溶液中の固体分に占 めるタングステン原料の割合の関係を示す図である。  FIG. 20 is a diagram showing the relationship between the rate of hydrophilicity constant and the proportion of the tungsten raw material occupying the solid content in the raw material solution in Example B2.
図 2 1は、 実施例 B 3における、 親水化速度定数ひと原料溶液中の固体分に占 めるタングステン原料の割合の関係を示す図である。  FIG. 21 is a diagram showing the relationship between the rate of hydrophilicity constant and the ratio of the tungsten raw material to the solid content in the raw material solution in Example B3.
[発明の具体的説明] [Specific description of the invention]
親水性部材  Hydrophilic member
本発明の部材は、 基材と、 該基材の表面に接合される表面層とを有してなる。 ( a ) 基材 The member of the present invention has a base material and a surface layer bonded to the surface of the base material. (a) Substrate
本発明において用いられる基材は、 金属、 無機材料、 有機材料およびそれらの 複合材であることができる。 その具体例としては、 タイル、 衛生陶器、 食器、 ケィ 酸カルシウム板、 セメント押し出し成形板、 セラミック基板、 半導体等のニューセ ラミックス、 碍子、 ガラス、 鏡、 木材、 樹脂などが挙げられる。 また、 部材の用途 として表したときの基材の例としては、 建物外装材、 建物内装材、 窓枠、 窓ガラ ス、 構造部材、 乗物の外装、 物品の防塵カバー、 交通標識、 各種表示装置、 広告 塔、 道路用防音壁、 鉄道用防音壁、 橋梁、 ガードレール、 トンネル内装および塗 装、 碍子、 太陽電池カバ一、 太陽熱温水器集熱カバ一、 ビニールハウス、 車両用 照明灯のカバー、 住宅設備、 便器、 浴槽、 洗面台、 照明器具、 照明カバー、 台所 用品、 食器洗浄器、 食器乾燥器、 流し、 調理レンジ、 キッチンフード、 換気扇、 保護フィルムなどが挙げられる。  The substrate used in the present invention can be a metal, an inorganic material, an organic material, and a composite thereof. Specific examples include tiles, sanitary ware, tableware, calcium silicate plates, cement extruded plates, ceramic substrates, new ceramics such as semiconductors, insulators, glass, mirrors, wood, and resins. In addition, examples of the base material when expressed as the use of the member include building exterior materials, building interior materials, window frames, window glass, structural members, vehicle exteriors, dustproof covers for articles, traffic signs, various display devices , Advertising towers, road noise barriers, railway noise barriers, bridges, guardrails, tunnel interiors and coatings, insulators, solar battery covers, solar water heater collector covers, plastic greenhouses, vehicle lighting covers, housing Equipment, toilets, bathtubs, wash basins, lighting fixtures, lighting covers, kitchen utensils, dishwashers, dish dryers, sinks, cooking ranges, kitchen hoods, ventilation fans, protective films, etc.
( b ) 表面層  (b) Surface layer
本発明において表面層は、 光触媒性酸化チタンおよび非晶質酸化タングステン を含んでなる。 そして、 この酸化チタンと非晶質酸化タングステンとは固溶体を 生成することなく互いに接合されてなる。 従来、 光触媒性酸化チタンと、 酸化夕 ングステンとの組合せは知られている。 しかしながら、 本発明者らの知る限りで は、 非晶質酸化タングステンを用い、 かつ酸化チタンと固溶体を形成することな く接合されたものは開示されていない。 本発明者らの知る先行技術にあっては、 酸化タングステンは結晶化されているか、 または酸化チタンと固溶体を形成して 結合しているものを閧示するのみである。  In the present invention, the surface layer contains photocatalytic titanium oxide and amorphous tungsten oxide. The titanium oxide and the amorphous tungsten oxide are bonded to each other without forming a solid solution. Conventionally, a combination of photocatalytic titanium oxide and tungsten oxide has been known. However, to the knowledge of the present inventors, there is no disclosure of an amorphous tungsten oxide that is bonded without forming a solid solution with titanium oxide. In the prior art known to the present inventors, it is only suggested that the tungsten oxide is crystallized or forms a solid solution with the titanium oxide and is bonded thereto.
本発明による部材の表面層は、 親水化の効率に優れる。 その結果、 少量の光触 媒量または微弱な紫外線量であっても、 効率よく光触媒により親水性が誘起でき るとの優れた利点を有する。 具体的には、 光触媒としての酸化チタンを 5 0 g Z c m2程度以下の存在量で、 かつ 1 0 W/ c m2以下の紫外線照度であっても 効率よく親水化する。 さらに、 光触媒である酸化チタン量を減らすことができる ことから、 表面層に虹彩色や白濁を生じること無く、 高い透明度を実現すること ができる。 The surface layer of the member according to the present invention is excellent in hydrophilization efficiency. As a result, there is an excellent advantage that the hydrophilicity can be efficiently induced by the photocatalyst even with a small amount of the photocatalyst or a small amount of the ultraviolet light. Specifically, in the presence of 5 0 g Z cm 2 of about or less of titanium oxide as a photocatalyst, and 1 0 W / cm 2 even following UV illumination efficiently hydrophilized. Further, since the amount of titanium oxide as a photocatalyst can be reduced, high transparency can be realized without causing iris or cloudiness on the surface layer.
このような高効率の親水化が得られる理由は定かではないが、 次のように予想 される。 但し、 以下の理論はあくまで予想であって、 本発明はこの理論に限定さ れるものではない。 酸化チタンと非晶質酸化タングステンが互いに固溶体を形成 せずに接合されていると、 光が照射された際に、 この接合部分で電荷移動が起こ り、 電荷分離効率が向上して、 親水性の発現に寄与すると考えられる。 より具体 的には次の通りである。 The reason why such highly efficient hydrophilization can be obtained is not clear, but is expected as follows: Is done. However, the following theory is only expected, and the present invention is not limited to this theory. If the titanium oxide and the amorphous tungsten oxide are bonded to each other without forming a solid solution, when light is irradiated, charge transfer occurs at this bonded portion, improving charge separation efficiency and improving hydrophilicity. Is thought to contribute to the expression of More specifically, it is as follows.
非晶質酸化タングステンのパンドギャップは 3 . l e Vであり、 酸化チタンの バンドギャップ 3 . 2 eVよりも狭い。 また、 非晶質酸化タングステンの伝導帯の 下端のポテンシャルは、 p H = 7のときの対標準水素電極電位に換算して 0 Vよ りも正であり、 また、 価電子帯の上端のポテンシャルは p H = 7のときの対標準 水素電極電位に換算して + 2 . 7 Vよりも正である。 したがって、 非晶質酸化夕 ングステンは、 伝導帯の下端及び価電子帯の上端が酸化チタンよりも正側にある c そして、 このような場合において両材料を接合させると、 光励起によって伝導帯 に生じた電子、 および価電子帯に生じた正孔はギプスの自由エネルギーが減少す る方向であれば、 異種の光触媒間を移動することが可能となり電荷分離が促進さ れるのではないかと考えられる。 ここで、 酸化チタンと酸化タングステンの間に おいて固溶体が形成されてしまうと、 酸化チタンと酸化タングステンとの間に不 純物準位を生じる。 不純物準位は光励起した電子と正孔の再結合中心として働き、 親水化反応を妨げてしまうものと考えられる。 The band gap of amorphous tungsten oxide is 3.2 leV, which is narrower than the band gap of titanium oxide 3.2 eV. In addition, the potential at the lower end of the conduction band of amorphous tungsten oxide is more positive than 0 V in terms of the standard hydrogen electrode potential when pH = 7, and the potential at the upper end of the valence band is Is more positive than +2.7 V in terms of standard hydrogen electrode potential when pH = 7. Accordingly, the amorphous oxide evening tungsten is, c upper end of the lower end and the valence band of the conduction band is on the positive side of the titanium oxide When bonding the two materials in such a case occurs in the conduction band by photoexcitation If the free energy of the cast decreases, the electrons generated and the holes generated in the valence band can move between different types of photocatalysts, which may promote charge separation. Here, if a solid solution is formed between the titanium oxide and the tungsten oxide, an impurity level is generated between the titanium oxide and the tungsten oxide. It is thought that the impurity level acts as a recombination center between the photoexcited electron and the hole and hinders the hydrophilization reaction.
この点、 さらに図面を用いて詳細に説明する。 図 1は、 酸化チタンと酸化タン グステンのエネルギー構造を示すものである。 ここで、 酸化チタンと酸化夕ング ステンの双方を励起する光を照射した場合、 酸化チタンの伝導帯に生じた電子は 酸化タングステン性材料の伝導帯に移行し、 酸化タングステンの価電子帯に生じ た正孔は酸化チタンの価電子帯に移動することができる。 酸化チタン側に移動し た正孔は酸化チタン自身の格子酸素と反応して水との親和性の高い酸素欠陥を生 成し、 親水化する一方、 酸化タングステンに移動した電子は空気中の酸素と反応 してスーパーォキサイ ドア二オンを生成して外界に放出される。 酸化タングステ ンにおいて生成した正孔が酸化チタンの表面における親水化に有効に作用し、 そ れを助けるものと考えられる。  This point will be described in detail with reference to the drawings. Figure 1 shows the energy structures of titanium oxide and tungsten oxide. Here, when light is applied to excite both titanium oxide and tungsten oxide, electrons generated in the conduction band of titanium oxide move to the conduction band of the tungsten oxide material, and are generated in the valence band of tungsten oxide. The holes can move to the valence band of titanium oxide. The holes transferred to the titanium oxide react with the lattice oxygen of the titanium oxide itself to generate oxygen vacancies with high affinity for water and become hydrophilic, while the electrons transferred to the tungsten oxide are oxygen in the air. Reacts with to generate superoxodonion and is released to the outside world. It is thought that the holes generated in tungsten oxide act effectively on the surface of the titanium oxide to make it hydrophilic, and assist this.
一方で、 図 2は、 酸化チタンを光励起し難い波長が 400nm以上の可視光が照射 されたときを示したものである。 酸化チタンは波長 400nm以上の可視光では励起 できないが、 酸化タングステンを励起することができる。 酸化タングステンによ り生じた正孔が酸化チタン側に移行する。 電子一正孔対が分離されたことで再結 合する確立が非常に低くなり、 酸化チタン粒子の表面における親水化が促進され ると考えられる。 On the other hand, Fig. 2 shows the irradiation of visible light with a wavelength of 400 nm or more, which makes it difficult to excite titanium oxide. FIG. Titanium oxide cannot be excited by visible light with a wavelength of 400 nm or more, but can excite tungsten oxide. The holes generated by the tungsten oxide move to the titanium oxide side. It is considered that the probability of recombination is extremely low due to the separation of the electron-hole pairs, and that the surface of the titanium oxide particles is promoted to be hydrophilic.
また、 図 3は、 酸化チタンのみを励起する光が照射された場合である。 この場 合にあっても、 生成した正孔が電子と再結合すること無く効率的に酸化チタンに 集まり、 酸化チタンにおける親水化が促進されるものと考えられる。  FIG. 3 shows a case where light for exciting only titanium oxide is irradiated. Even in this case, it is considered that the generated holes are efficiently collected on the titanium oxide without recombination with the electrons, and the hydrophilicity of the titanium oxide is promoted.
本発明において酸化チタンの好ましい結晶構造としては、 アナ夕一ゼ型、 ルチ ル型、 ブルツカイ 卜型が挙げられる。  In the present invention, preferable crystal structures of titanium oxide include an analog type, a rutile type, and a wurtzite type.
また、 本発明において非晶質酸化タングステンは、 いわゆるアモルファスの酸 化タングステンのみならず、 タングステン酸またはその塩をも意味する。 さらに、 ァモルファスの酸化タングステンと、 タングステン酸またはその塩との混合物で あってもよい。 タングステン酸塩の好ましい例としては、 アンモニゥム塩、 塩酸 塩、 硝酸塩、 硝酸塩、 有機酸塩、 アルコレート、 キレート、 アセテート等が挙げ られる。  In the present invention, the amorphous tungsten oxide means not only so-called amorphous tungsten oxide but also tungstic acid or a salt thereof. Further, it may be a mixture of amorphous tungsten oxide and tungstic acid or a salt thereof. Preferred examples of the tungstate include ammonium salt, hydrochloric acid salt, nitrate, nitrate, organic acid salt, alcoholate, chelate, acetate and the like.
また、 本発明の好ましい態様によれば、 酸化チタン、 非晶質タングステンの双 方またはいずれかが粒子形状であることが好ましい。 本発明の好ましい態様によ れば、 酸化チタン粒子の粒径は 1〜5 O nm程度が好ましく、 より好ましくは 5 〜3 0 n m程度である。 また、 酸化タングステンの粒径は 5 0 nm以下であるの が好ましく、 より好ましくは 5〜3 O nm程度である。  Further, according to a preferred aspect of the present invention, it is preferable that both or either of the titanium oxide and the amorphous tungsten have a particle shape. According to a preferred embodiment of the present invention, the particle size of the titanium oxide particles is preferably about 1 to 5 O nm, more preferably about 5 to 30 nm. The particle size of the tungsten oxide is preferably 50 nm or less, more preferably about 5 to 3 O nm.
また、 本発明の好ましい態様によれば、 酸化チタンが外気中の水分と接触可能 な状態で、 表面層の最表面に存在していることが好ましい。  Further, according to a preferred aspect of the present invention, it is preferable that the titanium oxide is present on the outermost surface of the surface layer in a state where the titanium oxide can come into contact with moisture in the outside air.
本発明の好ましい態様によれば、 酸化タングステンは酸素欠陥を有しているの が好ましい。  According to a preferred embodiment of the present invention, the tungsten oxide preferably has oxygen vacancies.
本発明の好ましい態様によれば、 表面層の表面において、 酸化タングステン原 子:チタン原子の割合が、 X線光電子分光法で計測した値に換算して、 0 . 0 0 5〜0 . 5 0 : 0 . 9 9 5 - 0 . 5 0の範囲にあることが好ましい。  According to a preferred embodiment of the present invention, the ratio of tungsten oxide atoms: titanium atoms on the surface of the surface layer is 0.005 to 0.50 in terms of a value measured by X-ray photoelectron spectroscopy. : 0.995-0.50.
また、 本発明の別の好ましい態様によれば、 表面層における、 前記酸化夕ング ステンの占める割合が重量比で 0 . 1 %〜7 0 %であるのが好ましく、 より好ま しくは 5 %〜5 0 %である。 このような範囲にあることで、 親水性をより効率よ く誘起させることができる。 Further, according to another preferred aspect of the present invention, the oxidized ring in the surface layer. The proportion of stainless steel is preferably from 0.1% to 70% by weight, more preferably from 5% to 50%. By being in such a range, hydrophilicity can be induced more efficiently.
本発明の好ましい態様によれば、 前記表面層が、 前記酸化チタンからなる層と、 この酸化チタン層表面に分散し点在する非晶質酸化タングステンとからなること が好ましい。 すなわち、 酸化タングステンが、 酸化チタンからなる層の上に島の ように点在する態様が好ましい。 なお、 この態様の具体例としては、 後述する本 発明の第一の態様から第四の態様を挙げることができる。  According to a preferred aspect of the present invention, it is preferable that the surface layer comprises a layer made of the titanium oxide and an amorphous tungsten oxide dispersed and scattered on the surface of the titanium oxide layer. That is, it is preferable that the tungsten oxide is scattered like islands on the layer made of titanium oxide. It should be noted that specific examples of this aspect include the first to fourth aspects of the present invention described below.
本発明の別の好ましい態様によれば、 前記表面層が、 前記酸化チタン粒子およ び前記酸化タングステン粒子を混合された形態で含んでなる。 この場合も、 酸化 チタンは、 外気中の水分と接触可能な状態で、 表面層の最表面に存在しているこ とが好ましい。 この態様の具体例としては、 後述する本発明の第五の態様から第 八の態様を挙げることができる。  According to another preferred embodiment of the present invention, the surface layer includes the titanium oxide particles and the tungsten oxide particles in a mixed form. Also in this case, it is preferable that the titanium oxide exists on the outermost surface of the surface layer in a state where the titanium oxide can come into contact with moisture in the outside air. Specific examples of this aspect include the fifth to eighth aspects of the present invention described below.
本発明の好ましい態様によれば、 表面層はシロキサン結合、 ポロシロキサン結 合、 およびアルミノシリケート結合からなる群から選択される少なくとも一種の 結合を有する金属酸化物をさらに含んでなることが好ましい (以下、 本明細書に おいて単に金属酸化物と言及した場合には、 この金属酸化物を意味する) 。 これ ら化合物は、 化学吸着水を多く吸着し得る性質を有するため、 親水性の誘起効率 を向上させ、 さらには一旦親水化した後、 光照射がなくなっても長期間にわたり 親水性を維持できる点で有利である。 このような金属酸化物の具体例としては、 シリカ、 シリコーン、 ルキルシリケート、 アルカリシリケ一ト、 アクリルシリコ —ン等が挙げられる。  According to a preferred embodiment of the present invention, it is preferable that the surface layer further includes a metal oxide having at least one bond selected from the group consisting of a siloxane bond, a porosiloxane bond, and an aluminosilicate bond (hereinafter, referred to as a “metal oxide”). However, in the present specification, simply referring to a metal oxide means the metal oxide). These compounds have the property of being able to adsorb a large amount of chemically adsorbed water, so that the efficiency of inducing hydrophilicity is improved. Is advantageous. Specific examples of such a metal oxide include silica, silicone, alkyl silicate, alkali silicate, and acrylic silicon.
この金属酸化物は、 表面層上に、 分散して点在していてもよい。 また、 本発明 の好ましい態様によれば、 この金属酸化物は、 前記表面層の表面に層として存在 していてもよい。 この場合、 親水性は、 この金属酸化物の層の再表面において発 現する。 この金属酸化物の層は、 1 n m~ l 0 O n m程度の膜厚であることが、 親水性の維持の観点から好ましい。 なお、 金属酸化物の層は、 開気孔有すること が、 酸化チタンの親水性の発現の観点から好ましいことがある。 ( c ) 光照射 The metal oxide may be dispersed and scattered on the surface layer. According to a preferred embodiment of the present invention, the metal oxide may be present as a layer on the surface of the surface layer. In this case, the hydrophilicity appears at the resurface of this metal oxide layer. The metal oxide layer preferably has a thickness of about 1 nm to about 100 nm from the viewpoint of maintaining hydrophilicity. In some cases, it is preferable that the metal oxide layer has open pores from the viewpoint of developing the hydrophilicity of titanium oxide. (c) Light irradiation
本発明における表面層は、 紫外線照度に換算して 1 0 zW/ c m2以下、 好まし くは 3〃 W/ c mz以下、 より好ましくは 1〃 W/ c mz未満の光照射による励起に 応じ、 その最表面が水接触角に換算して 1 0度以下、 好ましくは 5度以下、 より 好ましくは 3度以下の親水性を呈する。 紫外線照度に換算して 1 iW/ c mzの微 弱な蛍光灯を照射した場合でも、 表面が水接触角に換算して 5度以下まで高度に 親水化することが可能であることは極めて有利である。 すなわち、 室内は一般的 に紫外線量が少ない。 このような環境にあっても、 高度の親水性を実現できる結 果、 室内において防曇、 防滴、 自己浄化の効果が期待できる。 Surface layer in the present invention, in terms of ultraviolet intensity 1 0 zW / cm 2 or less, rather preferably below 3〃 W / cm z, more preferably corresponding to excitation by light irradiation less than 1〃 W / cm z The outermost surface exhibits a hydrophilicity of 10 degrees or less, preferably 5 degrees or less, more preferably 3 degrees or less in terms of a water contact angle. Even when irradiated with fine weakly fluorescent lamps 1 iW / cm z in terms of UV illumination, very advantageous that the surface is capable of highly hydrophilic to less than 5 degrees in terms of water contact angle It is. That is, indoors generally have a small amount of ultraviolet rays. Even in such an environment, as a result of achieving a high degree of hydrophilicity, the effects of anti-fog, drip-proof, and self-purification can be expected indoors.
また、 本発明の好ましい態様によれば、 照射される光は、 酸化チタンおよび酸 化タングステンの双方を光励起できる波長の光であることが好ましい。 具体的に は、 酸化チタンおよび酸化タングステンを励起させるためには、 波長が 3 0 O n m〜4 5 0 nmの範囲の光が好適に使用できる。 一般に、 屋外からの太陽光が遮 断されている場合、 蛍光灯や白熱電球等から室内壁に設置されている物品に対し て照射される光は、 波長 3 0 0 n m〜4 5 0 n mの領域の積算照度が 0 . 1〜 1 0〃W/ c m2と見積もられる。 この点においても本発明による部材は室内での 利用に有利である。 部材の用途 Further, according to a preferred aspect of the present invention, it is preferable that the irradiated light be a light having a wavelength that can excite both titanium oxide and tungsten oxide. Specifically, light having a wavelength in the range of 30 O nm to 450 nm can be suitably used to excite titanium oxide and tungsten oxide. In general, when sunlight from the outdoors is blocked, the light emitted from fluorescent lamps and incandescent lamps to the articles installed on the indoor wall has a wavelength of 300 nm to 450 nm. The integrated illuminance of the area is estimated to be 0.1 to 10 1W / cm 2 . In this respect too, the component according to the invention is advantageous for indoor use. Use of parts
本発明による部材の表面は高度に親水化する。 その結果、 付着した水は水滴と ならず、 薄い水膜として広がる。 その結果、 本発明による部材は、 曇らない即ち 防曇部材としての用途を有する。  The surface of the component according to the invention is highly hydrophilic. As a result, the attached water does not become water droplets but spreads as a thin water film. As a result, the component according to the invention has application as a non-fogging or anti-fog component.
さらに、 高度な親水性によって、 基材表面に付着した汚れ成分は水を流すこと によって容易に除くことができる。 よって、 本発明による部材は汚れにくい部材 となる。 さらに、 例えば、 本発明による部材を野外に設置した場合、 付着した汚 れば降雨等により容易に洗い流される、 すなわち自己浄化 (セルフクリーニン グ) するという有利な性質を有するに至る。  Furthermore, due to the high hydrophilicity, dirt components adhering to the substrate surface can be easily removed by flowing water. Therefore, the member according to the present invention is a member that is hardly soiled. Furthermore, for example, when the member according to the present invention is installed outdoors, if it adheres, it has an advantageous property that it is easily washed away by rainfall or the like, that is, it is self-cleaning (self-cleaning).
また、 本発明による部材の表面層は実質的に透明で干渉色が無いため、 建築外 装材ゃ内装材その他の屋内用部材のいかなる物品としてもその意匠性を損ねるこ とがない点でも有利である。 In addition, since the surface layer of the member according to the present invention is substantially transparent and has no interference color, the design property of any article of architectural exterior materials, interior materials and other indoor members may not be impaired. It is also advantageous in that it does not have any.
なお、 本発明の親水性部材に対して光強度の強い水銀ランプ、 キセノンランプ、 水銀一キセノンランプ、 ハロゲンランプ、 メタルハライ ドランプ等からの光照射 や、 窓から入射する太陽光および太陽光の散乱光によって光励起させた場合であ つても、 前記の様な防曇、 防汚、 セルフクリーニング効果を発揮することは言う までもない。 製造方法  It should be noted that the hydrophilic member of the present invention emits light from a mercury lamp, a xenon lamp, a mercury-xenon lamp, a halogen lamp, a metal halide lamp, etc., which has a high light intensity, and sunlight and sunlight scattered from a window. It is needless to say that even when the photo-excitation is performed, the anti-fogging, anti-fouling, and self-cleaning effects as described above are exhibited. Production method
本発明による部材の製造方法を以下に説明する。  The method for manufacturing a member according to the present invention will be described below.
本発明による第一の製造方法は、 基材表面に、 酸化チタン層および非晶質酸化 タングステン層からなる二層構成の表面層を形成するものである。 すなわち、 本 発明の第一の製造方法は、  The first manufacturing method according to the present invention is to form a two-layer surface layer composed of a titanium oxide layer and an amorphous tungsten oxide layer on the surface of a base material. That is, the first production method of the present invention comprises:
( a ) 基材表面に、 光触媒性酸化チタン粒子を含んでなる酸化チタン層を形成 する工程と、  (a) forming a titanium oxide layer containing photocatalytic titanium oxide particles on a substrate surface;
( b ) 該酸化チタン層表面に、 非晶質酸化タングステンおよび/またはその前 駆体を含んでなる層を形成する工程と、  (b) forming a layer comprising amorphous tungsten oxide and / or a precursor thereof on the surface of the titanium oxide layer;
( c ) 前記基材表面を、 酸化チタンと非晶質酸化タングステンが固溶体を形成 しない温度で熱処理する工程とを少なくとも含んでなる。 固溶体を形成しない温 度とは、 好ましくは 5 0 0 °C未満、 より好ましくは 2 0 °C~ 3 5 0 °Cの範囲であ る。  (c) heat-treating the substrate surface at a temperature at which the titanium oxide and the amorphous tungsten oxide do not form a solid solution. The temperature at which a solid solution is not formed is preferably lower than 500 ° C, more preferably in the range of 20 ° C to 350 ° C.
また、 本発明による第二の製造方法は、 基材表面に、 酸化チタンおよび酸化夕 ングステンを混合された形態で含んでなる表面層を形成するものである。 すなわ ち、 本発明の第二の製造方法は、  In the second production method according to the present invention, a surface layer containing titanium oxide and tungsten oxide in a mixed form is formed on the surface of a base material. That is, the second production method of the present invention comprises:
( a ) 基材表面に、 光触媒性酸化チタンおよび/またはその前駆物質を含んで なる液と、 非晶質酸化タングステンおよび/またはその前駆体を含んでなる液と を混合して得られたコ一ティング組成物を塗布する工程と、  (a) A liquid obtained by mixing a liquid containing a photocatalytic titanium oxide and / or a precursor thereof and a liquid containing an amorphous tungsten oxide and / or a precursor thereof on a substrate surface. Applying a single composition,
( b ) 前記組成物が塗布された基材表面を、 酸化チタンと酸化タングステンが 固溶体を形成しない温度で熱処理する工程とを少なくとも含んでなる。 固溶体を 形成しない温度とは、 前記した第一の製造法による温度と同一であってよい。 上記第一および第二の製造方法のいずれにおいても、 光触媒性酸化チタンまた はその前駆物質を用いる。 光触媒性酸化チタンの前駆物質の好ましい例としては、 無定型チタニアゾル、 結晶質のチタニアゾル、 テ卜ラメ トキシチタン、 テトラエ トキシチタン、 テトライソプロポキシチタン、 テトラ n—プロポキシチタン、 テ トラブトキシチタン、 チタンキレート、 ァセチルアセトンチタン、 四塩化チタン、 硫酸チタン、 水酸化チタンからなる群から選択される少なくとも一種類を含む原 料が挙げられる。 (b) a step of heat-treating the surface of the substrate coated with the composition at a temperature at which titanium oxide and tungsten oxide do not form a solid solution. The temperature at which a solid solution is not formed may be the same as the temperature according to the first production method described above. In both the first and second production methods, photocatalytic titanium oxide or a precursor thereof is used. Preferred examples of the precursor of the photocatalytic titanium oxide include amorphous titania sol, crystalline titania sol, tetramethyltitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetran-propoxytitanium, tetrabutoxytitanium, titanium chelate, a The raw material includes at least one selected from the group consisting of cetylacetone titanium, titanium tetrachloride, titanium sulfate, and titanium hydroxide.
また、 非晶質酸化タングステンの前駆体としては、 タングステン酸アンモニゥ ム、 タングステン酸、 非晶質酸化タングステン粒子を懸濁したゾル、 ペン夕エト キシタングステン、 ペンタメ トキシタングステン、 ペン夕プロポキシタングステ ン、 ペン夕ブトキシタングステン、 タングステンキレート、 アセテート夕ングス テン、 硫酸タングステン、 塩化タングステン、 水酸化タングステンからなる群よ り選択される少なくとも一種類のタングステン化合物を含むものが挙げられる。 本発明による製造方法におけるコ一ティング組成物の塗布方法としては、 スビ ンコーティング、 フローコーティング、 ディップコ一ティング、 スプレーコ一テ イング、 ロールコーティング等が好適に使用できる。 例えば、 前記コーティング 組成物の塗布方法としてスピンコーティング法を選択した場合、 基材の回転速度 や原料溶液の濃度によって、 被膜の膜厚を制御することができる。  The precursors of the amorphous tungsten oxide include ammonium tungstate, tungstic acid, a sol in which amorphous tungsten oxide particles are suspended, penethoxyethoxytungsten, pentamethoxytungsten, pengupropoxytungsten, pen Examples include those containing at least one tungsten compound selected from the group consisting of butoxytungsten, tungsten chelate, acetate tungsten, tungsten sulfate, tungsten chloride, and tungsten hydroxide. As a method for applying the coating composition in the production method according to the present invention, subbing coating, flow coating, dip coating, spray coating, roll coating and the like can be suitably used. For example, when the spin coating method is selected as the method for applying the coating composition, the thickness of the coating can be controlled by the rotation speed of the base material and the concentration of the raw material solution.
また、 本発明の別の好ましい態様によれば、 酸化チタン層および非晶質酸化夕 ングステン層、 または酸化チタンおよび酸化タングステンを混合された形態で含 んでなる表面層のいずれも、 スパッタリング法、 C V D法、 プラズマ C V D法、 イオンプレーティング法、 M B E法等により形成されてもよい。  Further, according to another preferred embodiment of the present invention, any of a titanium oxide layer and an amorphous tungsten oxide layer, or a surface layer containing titanium oxide and tungsten oxide in a mixed form, is formed by sputtering, CVD, or the like. , A plasma CVD method, an ion plating method, an MBE method, or the like.
本発明の部材の好ましい実施態様およびその製造方法を、 さらに具体的に説明 する。  Preferred embodiments of the member of the present invention and a method for producing the same will be described more specifically.
第一の態様による部材  Member according to the first aspect
本発明の第一の態様による部材は、 図 4に示すように、 基材 1 0の上に酸化チ タンを含む層 1 2が形成され、 その上に酸化タングステンからなる島 1 4が、 酸 化チタンを含む層 1 2に接合されている。 酸化チタンの少なくとも一部は外気に 露出していて、 外気中の水分と接触することが可能である。 この第一の態様による部材は次のようにして製造することができる。 まず、 酸 化チタンの出発原料を基材に塗布後、 乾燥または加熱焼き付けにより、 酸化チタ ンの薄膜を成膜する。 さらに、 酸化チタン薄膜の上に、 酸化タングステンの出発 原料を塗布後、 乾燥または加熱焼き付けを行う。 In the member according to the first embodiment of the present invention, as shown in FIG. 4, a layer 12 containing titanium oxide is formed on a substrate 10, and an island 14 made of tungsten oxide is formed on the layer 12. It is bonded to a layer 12 containing titanium oxide. At least a part of the titanium oxide is exposed to the outside air, and is capable of coming into contact with moisture in the outside air. The member according to the first embodiment can be manufactured as follows. First, a starting material of titanium oxide is applied to a substrate, and then a thin film of titanium oxide is formed by drying or baking. Further, after the starting material of tungsten oxide is applied on the titanium oxide thin film, drying or heating is performed.
第二の態様による部材  Member according to the second aspect
本発明の第二の態様による部材は、 図 5に示すように、 暗所における親水性を 維持したり強めたりするため、 図 4と同様の部材の表面に、 更に金属酸化物から なる島 1 6を形成させても良い。  As shown in FIG. 5, the member according to the second embodiment of the present invention maintains the surface hydrophilicity in a dark place or strengthens it. 6 may be formed.
この第二の態様による部材は、 例えば次のようにして製造することができる。 まず、 酸化チタンの出発原料を基材に塗布後、 乾燥または加熱焼き付けにより、 酸化チタンの薄膜を成膜する。 さらに、 酸化チタン薄膜の上に酸化タングステン の出発原料と金属酸化物の出発原料を含むコーティング剤を塗布後、 乾燥または 加熱焼き付けを行う。 また、 酸化チタン薄膜を成膜した後に、 酸化タングステン の出発原料を塗布後、 乾燥または加熱焼き付けし、 更にその後に金属酸化物の出 発原料を塗布後、 乾燥または加熱焼き付けを行ってもよい。 また、 酸化チタン薄 膜を成膜した後に、 金属酸化物の出発原料を塗布後、 乾燥または加熱焼き付けし、 更にその後に酸化タングステンの出発原料を塗布後、 乾燥または加熱焼き付けを 行ってもよい。  The member according to the second embodiment can be manufactured, for example, as follows. First, a starting material of titanium oxide is applied to a substrate, and then a thin film of titanium oxide is formed by drying or baking. Further, a coating agent containing a starting material of tungsten oxide and a starting material of metal oxide is applied on the titanium oxide thin film and then dried or baked. Further, after forming the titanium oxide thin film, the starting material of tungsten oxide may be applied, followed by drying or baking, and then the starting material of the metal oxide may be applied, followed by drying or baking. After forming the titanium oxide thin film, the starting material of the metal oxide may be applied, followed by drying or baking, and then the starting material of tungsten oxide may be applied, followed by drying or baking.
第三の態様による部材  Member according to the third aspect
本発明の第三の態様による部材は、 図 6に示すように、 基材 3 0の上に酸化チ タンを含む層 3 2が形成され、 その上に酸化タングステンからなる島 3 4が接合 され、 更にその上に金属酸化物からなる層 3 6が形成されてなる。  In the member according to the third embodiment of the present invention, as shown in FIG. 6, a layer 32 containing titanium oxide is formed on a base material 30, and an island 34 made of tungsten oxide is bonded thereon. Further, a layer 36 made of a metal oxide is formed thereon.
この第 Ξの態様による部材は、 例えば次のようにして製造することができる。 まず、 酸化チタンの出発原料を基材に塗布後、 乾燥または加熱焼き付けにより、 酸化チタンの薄膜を成膜する。 さらに、 酸化チタン薄膜の上に酸化タングステン の出発原料を塗布後、 乾燥または加熱焼き付けをおこない、 更にその上に、 金属 酸化物を含む出発原料を塗布後、 乾燥または加熱焼き付けを行う。  The member according to the fourth aspect can be manufactured, for example, as follows. First, a starting material of titanium oxide is applied to a substrate, and then a thin film of titanium oxide is formed by drying or baking. Further, after the starting material of tungsten oxide is applied on the titanium oxide thin film, drying or baking is performed. After that, the starting material containing a metal oxide is applied thereon, and then drying or baking is performed.
第四の態様による部材  Member according to fourth aspect
本発明の第四の態様による部材は、 図 7に示すように、 基材 4 0の上に酸化チ タンと酸化チタンよりも化学吸着水を多く吸着し得る金属酸化物を含む混合層 4 2が形成され、 更にその上に酸化タングステンからなる島 4 4が、 前記混合層 4 2に接合されている。 The member according to the fourth embodiment of the present invention, as shown in FIG. A mixed layer 42 containing a metal oxide capable of adsorbing more chemically adsorbed water than tan and titanium oxide is formed, and an island 44 made of tungsten oxide is further joined to the mixed layer 42. .
この第四の態様による部材は、 例えば次のようにして製造することができる。 まず、 酸化チタンの出発原料と金属酸化物の出発原料を含むコーティング剤を基 材に塗布後、 乾燥または加熱焼き付けにより、 酸化チタンと金属酸化物を含む混 合層を成膜する。 さらに、 この混合層の上に、 酸化タングステンの出発原料を塗 布後、 乾燥または加熱焼き付けを行う。  The member according to the fourth embodiment can be manufactured, for example, as follows. First, a coating agent containing a starting material of titanium oxide and a starting material of metal oxide is applied to a substrate, and then a mixed layer containing titanium oxide and a metal oxide is formed by drying or baking. Further, a tungsten oxide starting material is applied on the mixed layer, and then dried or heated and baked.
第五の態様による部材  Member according to fifth aspect
本発明の第五の態様による部材は、 図 8に示すように、 基材 5 0の上に酸化チ タン粒子と酸化タングステンの粒子からなる被膜 5 2が形成されている。 前記酸 化チタン粒子のうち少なくとも一部と、 前記酸化夕ングステンの粒子のうち少な くとも一部は固溶体を生成すること無く接合されてあつて、 酸化チタン粒子の少 なくとも一部は外気に露出していて、 外気中の水分と接触することが可能である この第五の態様による部材は、 例えば次のようにして製造することができる。 まず、 酸化チタンの出発原料と酸化タングステンの出発原料を含有するコーティ ング剤を基材に塗布する。 その後、 乾燥または加熱焼き付けを行う。  In the member according to the fifth embodiment of the present invention, as shown in FIG. 8, a coating 52 made of titanium oxide particles and tungsten oxide particles is formed on a base material 50. At least a portion of the titanium oxide particles and at least a portion of the tungsten oxide particles are joined without forming a solid solution, and at least a portion of the titanium oxide particles are exposed to the open air. The member according to the fifth embodiment, which is exposed and can come into contact with moisture in the outside air, can be manufactured, for example, as follows. First, a coating agent containing a starting material of titanium oxide and a starting material of tungsten oxide is applied to a substrate. Then, dry or heat bake.
第六の態様による部材  Member according to the sixth aspect
本発明の第六の態様による部材は、 図 9に示すように、 基材 6 0の上に、 酸化 チタンと酸化タングステンに加え、 金属酸化物がされに添加された混合被膜 6 2 が形成されている。  In the member according to the sixth embodiment of the present invention, as shown in FIG. 9, a mixed film 62 formed by adding a metal oxide to titanium oxide and tungsten oxide is formed on a base material 60. ing.
この第六の態様による部材は、 例えば次のようにして製造することができる。 まず、 酸化チタンの出発原料、 酸化タングステンの出発原料、 金属酸化物の出発 原料を含有するコーティング剤を基材に塗布する。 その後、 乾燥または加熱焼き 付けを行う。  The member according to the sixth aspect can be manufactured, for example, as follows. First, a coating material containing a starting material of titanium oxide, a starting material of tungsten oxide, and a starting material of metal oxide is applied to a substrate. Then, dry or heat bake.
第七の態様による部材  Member according to the seventh aspect
本発明の第七の態様による部材は、 図 1 0に示すように、 基材 7 0の上に形成 された酸化チタンと酸化タングステンからなる被膜 7 2の上に、 更に金属酸化物 からなる鳥 7 4が形成されている。 この第七の態様による部材は、 例えば次のようにして製造することができる。 まず、 酸化チタンの出発原料と酸化タングステンの出発原料を含有するコーティ ング剤を基材に塗布後、 乾燥または加熱焼き付けにより、 酸化チタンと酸化タン グステンからなる混合被膜を成膜する。 さらに、 この混合被膜の上に、 金属酸化 物を含む出発原料を塗布後、 乾燥または加熱焼き付けを行う。 As shown in FIG. 10, the member according to the seventh embodiment of the present invention includes a bird film made of metal oxide on a film 72 made of titanium oxide and tungsten oxide formed on a base material 70. 7 4 are formed. The member according to the seventh aspect can be manufactured, for example, as follows. First, a coating agent containing a starting material of titanium oxide and a starting material of tungsten oxide is applied to a substrate, and then a mixed film of titanium oxide and tungsten oxide is formed by drying or baking. Further, a starting material containing a metal oxide is applied on the mixed film, and then dried or baked.
第八の態様による部材  Member according to the eighth aspect
本発明の第一の態様による部材は、 図 1 1に示すように、 基材 8 0の上に酸化 チタンと酸化タングステンからなる被膜 8 2を形成し、 更にその上に金属酸化物 からなる層 8 4が形成されている。  As shown in FIG. 11, the member according to the first embodiment of the present invention has a film 82 made of titanium oxide and tungsten oxide formed on a base material 80, and a layer made of a metal oxide formed thereon. 8 4 are formed.
この第八の態様による部材は、 上記第七の態様による部材と同様に製造するこ とができる。 この際、 金属酸化物を含む出発原料の濃度を調節することによって、 前記金属酸化物からなる層の膜厚を制御することが出来る。 防曇方法および防汚方法  The member according to the eighth aspect can be manufactured in the same manner as the member according to the seventh aspect. At this time, the thickness of the layer made of the metal oxide can be controlled by adjusting the concentration of the starting material containing the metal oxide. Antifogging method and antifouling method
本発明の別の態様によれば、 部材表面に防曇性を付与する方法が提供される。 この方法は、 基材に、 光触媒性酸化チタンおよび非晶質酸化タングステンを含ん でなる表面層を設けることからなり、 ここで酸化チタンと前記非晶質酸化タング ステンとが固溶体を生成することなく互いに接合されてなる。 この基材に、 紫外 線照度に換算して 1 0〃W/ c m2以下の光照射を行い、 光励起することにより、 部材は防曇性を呈することとなる。 According to another aspect of the present invention, there is provided a method for imparting anti-fog properties to a member surface. This method comprises providing a substrate with a surface layer comprising photocatalytic titanium oxide and amorphous tungsten oxide, wherein the titanium oxide and the amorphous tungsten oxide do not form a solid solution. They are joined together. By irradiating this base material with light of 10〃W / cm 2 or less in terms of ultraviolet illuminance and photo-excitation, the member exhibits antifogging properties.
さらに本発明の別の態様によれば、 部材表面に防汚性を付与する方法が提供さ れる。 この方法は、 基材に、 光触媒性酸化チタンおよび非晶質酸化タングステン を含んでなる表面層を設けることからなり、 ここで酸化チタンと前記非晶質酸化 タングステンとが固溶体を生成することなく互いに接合されてなる。 この基材に、 紫外線照度に換算して 1 0 W/ c m2以下の光照射を行い、 光励起することによ り、 部材は防汚性を呈することとなる。 この部材は、 時折流水と接触させるだけ で、 表面が容易に浄化される。 JP01/01984 According to still another aspect of the present invention, there is provided a method for imparting antifouling property to a member surface. This method comprises providing a surface layer comprising a photocatalytic titanium oxide and an amorphous tungsten oxide on a base material, wherein the titanium oxide and the amorphous tungsten oxide form a solid solution without forming a solid solution. Be joined. By irradiating the substrate with light of 10 W / cm 2 or less in terms of ultraviolet illuminance and photo-excitation, the member exhibits antifouling properties. The surface of this member is easily cleaned only by occasional contact with running water. JP01 / 01984
14  14
[実 施 例] [Example]
本発明を以下の実施例によってさらに詳細に説明するが、 本発明はこれら実施 例に限定されるものではない。  The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
実施例 A 1  Example A 1
固形分濃度が 10%の酸化チタンコート剤(日本曹達、 NDH510 C)をシリカ コ一トしたガラスにディップコートによりで塗布した。 ディヅプコートは、 15 cm,分の引き上げ速度で行った。 その後、 塗布膜を電気炉中で 500° (:、 30 分間焼成した。 以上の工程を 2回繰返して、 約 20 Onmの膜厚の光触媒性酸化 チタン薄膜を作製した。  A titanium oxide coating agent (Nippon Soda, NDH510C) having a solid concentration of 10% was applied to silica-coated glass by dip coating. The dip coating was performed at a pulling speed of 15 cm / min. Then, the coated film was baked at 500 ° (:, 30 minutes) in an electric furnace. The above steps were repeated twice to produce a photocatalytic titanium oxide thin film having a thickness of about 20 Onm.
この薄膜の上に更に、 タングステン酸を 25 %のアンモニア水に溶解した液を スピンコートによってコーティングした。 スピンコートは毎分 1500回転の回 転速度で 10秒間行った。 その後、 薄膜を電気炉中で 300°C、 30分間焼成し た。 タングステン酸の濃度を変えて、 酸化チタン上の光触媒性酸化タングステン の担持量が異なる試料を得た。 すなわち、 試料 # 1 :タングステン酸をコ一ティ ングしない、 試料 #2 :タングステン酸濃度 0. 5重量% (固形分濃度、 以下同 様) 、 試料 #3 :タングステン酸濃度 1. 0重量%、 そして試料 #4 :夕ングス テン酸濃度 2. 0重量%とした。  A liquid in which tungstic acid was dissolved in 25% aqueous ammonia was further coated on the thin film by spin coating. Spin coating was performed at a rotation speed of 1500 revolutions per minute for 10 seconds. Thereafter, the thin film was fired in an electric furnace at 300 ° C for 30 minutes. By changing the concentration of tungstic acid, samples with different loading amounts of photocatalytic tungsten oxide on titanium oxide were obtained. Sample # 1: no tungstic acid coating, Sample # 2: tungstic acid concentration 0.5% by weight (solid content, same hereafter), Sample # 3: tungstic acid concentration 1.0% by weight, And Sample # 4: evening stainless acid concentration was 2.0% by weight.
X線光電子分光法によって、 薄膜表面のタングステン原子:チタン原子の割合 を測定した。 その結果、  The ratio of tungsten atoms: titanium atoms on the surface of the thin film was measured by X-ray photoelectron spectroscopy. as a result,
試料 # 1が 0 : 1. 00、  Sample # 1 is 0: 1.00,
試料 #2が 0. 10 : 0. 90、  Sample # 2 was 0.10: 0.90,
試料 #3が 0. 20 : 0. 80、 そして  Sample # 3 is 0.20: 0.80, and
試料 #4が 0. 40 : 0. 60であった。  Sample # 4 was 0.40: 0.60.
X線回折により、 薄膜表面にアモルファスの光触媒性酸化タングステンの存在. を確認した。  X-ray diffraction confirmed the presence of amorphous photocatalytic tungsten oxide on the surface of the thin film.
また、 原子間力顕微鏡によって薄膜表面の組織を観察したところ、 試料 #2、 試料 #3、 および試料 #4の表面は、 試料 # 1の表面とほとんど相違がなかった。 この結果より、 酸化チタンからなる層と、 この酸化チタン層表面に分散し縞状に 点在する非晶質酸化タングステンとからなる構造が示唆された。 得られた薄膜を、 その表面の水との接触角が安定するまで暗所に保管した。 そ の後、 薄膜に白色蛍光灯の照射をおこない、 表面の水との接触角の変化を測定し た。 白色蛍光灯は、 10W (東芝ライテック、 FL 10N) を用いた。 薄膜表面 における紫外線照度を、 紫外線照度計 (ゥシォ電機、 UVR— 2) により測定し、 薄膜と蛍光灯の距離を変えることで、 10 W/cm2または 3 /W/cii となるように した。 マイクロシリンジから水滴を滴下して、 水との接触角を接触角測定器 (協 和界面科学、 CA— X 150) により測定した。 When the structure of the thin film surface was observed with an atomic force microscope, the surfaces of sample # 2, sample # 3, and sample # 4 were almost the same as the surface of sample # 1. These results suggested a structure composed of a layer made of titanium oxide and amorphous tungsten oxide dispersed on the surface of the titanium oxide layer and scattered in stripes. The obtained thin film was stored in a dark place until the surface contact angle with water became stable. Thereafter, the thin film was irradiated with a white fluorescent lamp, and the change in the contact angle with water on the surface was measured. As the white fluorescent lamp, 10 W (Toshiba Lighting & Technology, FL 10N) was used. Ultraviolet illuminance on the surface of the thin film was measured with an ultraviolet illuminometer (Shisho Electric, UVR-2), and the distance between the thin film and the fluorescent lamp was changed to 10 W / cm 2 or 3 / W / cii. A drop of water was dropped from the microsyringe, and the contact angle with water was measured with a contact angle measuring instrument (Kyowa Interface Science, CA-X150).
紫外線照度が 10 zW/cm2の場合の結果は、 図 1 2に示される通りであった。 試 料 # 1は水との接触角に換算して 12度で親水化し、 試料 #2〜#4はさらに 0° まで親水化した。 Results when ultraviolet illuminance of 10 zW / cm 2 was as shown in Figure 1 2. Sample # 1 was hydrophilized at 12 degrees in terms of the contact angle with water, and samples # 2 to # 4 were further hydrophilized to 0 °.
また、 紫外線照度が 3 W/cmの場合の結果は、 図 13に示される通りであつ た。 試料 # 1はほとんど親水化しなかったのに対し、 試料 #2および試料 #3試 料は 5度以下まで親水化した。 試料 #4はやや親水化速度が遅かったが、 8度ま で親水ィ匕した。 実施例 A 2 The ultraviolet illumination results for 3 W / cm sigma is been filed in as shown in Figure 13. Sample # 1 hardly hydrophilized, whereas Sample # 2 and Sample # 3 hydrophilized to less than 5 degrees. Sample # 4 had a slightly lower hydrophilization rate, but hydrophilized up to 8 degrees. Example A 2
実施例 A 1と同様にして、 約 200 nmの膜厚の光触媒性酸化チタン薄膜を作 製した。  In the same manner as in Example A1, a photocatalytic titanium oxide thin film having a thickness of about 200 nm was produced.
この薄膜の上に更に、 タングステン酸を 25 %のアンモニア水に溶解した液を スピンコート (每分 1500回転、 10秒間) によってコーティングした。 その 後、 薄膜を電気炉中で 100°C、 30分間焼成した。 タングステン酸の濃度を変 えて、 酸化チタン上の光触媒性酸化タングステンの担持量が異なる試料を得た。 すなわち、 試料 # 5 :タングステン酸をコ一ティングしない、 試料 # 6 :夕ング ステン酸濃度 1. 0重量% (固形分濃度、 以下同様) 、 試料 #7 :タングステン 酸濃度 2. 0重量%、 そして試料 #8 :タングステン酸濃度 5. 0重量%とした。  A liquid in which tungstic acid was dissolved in 25% aqueous ammonia was further coated on the thin film by spin coating (1,500 rpm for 10 minutes). Thereafter, the thin film was fired in an electric furnace at 100 ° C for 30 minutes. By changing the concentration of tungstic acid, samples having different amounts of photocatalytic tungsten oxide on titanium oxide were obtained. Sample # 5: no coating of tungstic acid; Sample # 6: dungstenic acid concentration 1.0% by weight (solid content, the same applies hereinafter); Sample # 7: tungstic acid concentration 2.0% by weight; Sample # 8: tungstic acid concentration was 5.0% by weight.
X線光電子分光法によって、 薄膜表面のタングステン原子:チタン原子の割合 を測定した。 その結果、  The ratio of tungsten atoms: titanium atoms on the surface of the thin film was measured by X-ray photoelectron spectroscopy. as a result,
試料 # 5が 0 : 1. 00、  Sample # 5 is 0: 1.00,
試料 # 6が 0. 20 : 0. 80、 試料 #7が 0. 40 : 0. 60、 そして For sample # 6, 0.20: 0.80, For sample # 7, 0.40: 0.60, and
試料 #8が 1. 00 : 0であった。  Sample # 8 was 1.00: 0.
X線回折により、 薄膜表面にタングステン酸アンモニゥムの存在を確認した。 また、 原子間力顕微鏡によって表面の組織を観察したところ、 試料 #6および #7の表面は、 試料 # 5の表面とほとんど相違がなかった。 この結果より、 酸化 チタンからなる層と、 この酸化チタン層表面に分散し縞状に点在する非晶質酸化 タングステンとからなる構造が示唆された。  X-ray diffraction confirmed the presence of ammonium tungstate on the surface of the thin film. When the surface texture was observed with an atomic force microscope, the surfaces of Samples # 6 and # 7 were almost the same as the surface of Sample # 5. These results suggested a structure composed of a layer made of titanium oxide and amorphous tungsten oxide dispersed on the surface of the titanium oxide layer and scattered in stripes.
一方、 試料 #8の表面には、 タングステン酸アンモニゥムが酸化チタンを完全 に覆っている構造が観測された。  On the other hand, on the surface of sample # 8, a structure in which ammonium tungstate completely covered titanium oxide was observed.
得られた薄膜の接触角を実施例 A 1と同様に測定した。 但し、 紫外線照度は 10〃W/cm2とした。 その結果は、 図 14に示される通りであった。 試料 # 5は 約 10度まで親水化し、 試料 # 6および # 7はさらに 0度まで親水化した。 実施例 A 3 The contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was set to 10〃W / cm 2 . The results were as shown in FIG. Sample # 5 was hydrophilized to about 10 degrees, and samples # 6 and # 7 were further hydrophilized to 0 degrees. Example A 3
実施例 A 1と同様にして、 約 200 nmの膜厚の光触媒性酸化チタン薄膜を作 製した。  In the same manner as in Example A1, a photocatalytic titanium oxide thin film having a thickness of about 200 nm was produced.
この薄膜の上に更に、 タングステン酸濃度 1. 0重量% (固形分濃度) の 25 %アンモニア水溶液をスピンコート (毎分 1500回転、 10秒間) によってコ 一ティングした。 その後、 薄膜を電気炉中で温度を以下の通り変えて、 30分間 焼成した。  A 25% aqueous ammonia solution having a tungstic acid concentration of 1.0% by weight (solid content) was further coated on the thin film by spin coating (1,500 rotations per minute, 10 seconds). Thereafter, the thin film was baked for 30 minutes in an electric furnace while changing the temperature as follows.
試料 #9 :タングステン酸をコーティングしない (焼成なし)  Sample # 9: Not coated with tungstic acid (no firing)
試料 # 10 : 100°C  Sample # 10: 100 ° C
試料 # 1 1 : 300°C  Sample # 11: 300 ° C
試料 # 12 : 350°C  Sample # 12: 350 ° C
試料 # 13 : 500°C  Sample # 13: 500 ° C
X線回折により、 薄膜表面のタングステン酸の存在状態を観察した。 その結果、 試料 # 10ではタングステン酸アンモニゥム、 試料 # 1 1ではアモルファス酸化 タングステン、 試料 # 12ではアモルファス酸化タングステンと結晶化酸化タン グステンの複合相、 試料 # 13では結晶化酸化タングステンの存在を確認した。 X線光電子分光法によって、 薄膜表面のタングステン原子:チタン原子の割合 を測定した結果、 試料 # 9が 0 : 1. 00、 試料 # 10〜# 13が 0. 20 : 0. 80であった。 The state of tungstic acid present on the surface of the thin film was observed by X-ray diffraction. As a result, the presence of ammonium tungstate in sample # 10, the presence of amorphous tungsten oxide in sample # 11, the presence of a composite phase of amorphous tungsten oxide and crystallized tungsten oxide in sample # 12, and the presence of crystallized tungsten oxide in sample # 13 . The ratio of tungsten atoms: titanium atoms on the thin film surface was measured by X-ray photoelectron spectroscopy. As a result, the ratio of sample # 9 was 0: 1.00, and the ratio of samples # 10 to # 13 was 0.20: 0.80.
また、 原子間力顕微鏡によって表面の組織を観察したところ、 試料 #10〜# 13の表面は、 試料 # 9の表面とほとんど相違がなかった。 この結果より、 得られた薄膜の接触角を実施例 A 1と同様に測定した。 但し、 紫外線照度は 3 W/cm2とした。 その結果は、 図 15に示される通りであった。 この結果, 試料 #10〜#13の親水化速度は試料 #9よりも大きかった。 さらに、 親水化速度 最も大きかったのは試料 # 10であり、 さらに試料 # 11、 # 12、 #13の順 であった。 実施例 A 4 When the surface texture was observed with an atomic force microscope, the surfaces of samples # 10 to # 13 were almost the same as the surface of sample # 9. From these results, the contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was 3 W / cm 2 . The result was as shown in FIG. As a result, the hydrophilization rate of samples # 10 to # 13 was higher than that of sample # 9. In addition, sample # 10 had the largest hydrophilization rate, followed by samples # 11, # 12, and # 13. Example A 4
水系の酸化チタンゾル (石原産業、 STS21) を固形分濃度が 8%になるまで純 水で希釈し、 シリカコートしたガラスにスピンコート (毎分 1500回転、 10 秒間) により塗布した。 その後、 塗布膜をマツフル炉によって 500°Cで 30分 間焼成した。  Aqueous titanium oxide sol (Ishihara STS21) was diluted with pure water until the solid content became 8%, and applied to silica-coated glass by spin coating (1500 rpm, 10 seconds). Thereafter, the coating film was fired in a Matsufuru furnace at 500 ° C for 30 minutes.
この薄膜の上に更に、 タングステン酸濃度 1. 0重量%の 25%アンモニア水 溶液をスピンコート (毎分 1500回転の回転速度で 10秒間) によってコーチ イングした。 その後、 薄膜を電気炉中で温度を以下の通り変えて、 30分間焼成 した。  A 25% aqueous ammonia solution having a tungstic acid concentration of 1.0% by weight was further coated on the thin film by spin coating (at a rotation speed of 1500 rpm for 10 seconds). Thereafter, the thin film was baked for 30 minutes in an electric furnace while changing the temperature as follows.
試料 # 14 :タングステン酸をコーティングしない (焼成なし)  Sample # 14: Not coated with tungstic acid (no firing)
試料 # 15 : 100°C  Sample # 15: 100 ° C
試料 # 16 : 300°C  Sample # 16: 300 ° C
X線回折により、 薄膜表面のタングステン酸の存在状態を観察した。 その結果、 試料 # 15試料ではタングステン酸アンモニゥム、 試料 # 16ではアモルファス の酸化タングステンの存在を確認した。  The state of tungstic acid present on the surface of the thin film was observed by X-ray diffraction. As a result, the presence of ammonium tungstate in sample # 15 and the presence of amorphous tungsten oxide in sample # 16 were confirmed.
X線光電子分光法によって薄膜表面のタングステン原子:チタン原子の割合を 測定した。 その結果、 試料 # 14が 0 : 1. 00、 試料 # 15および # 16が 0. 20 : 0. 80であった。 また、 原子間力顕微鏡によって薄膜表面の組織を観察したところ、 試料 # 1 5 および # 1 6試料の表面は、 試料 # 1 4とほとんど相違がなかった。 この結果よ り、 酸化チタンからなる層と、 この酸化チタン層表面に分散し縞状に点在する非 晶質酸化夕ングステンとからなる構造が示唆された。 The ratio of tungsten atoms: titanium atoms on the thin film surface was measured by X-ray photoelectron spectroscopy. As a result, Sample # 14 had a ratio of 0: 1.00, and Samples # 15 and # 16 had a ratio of 0.20: 0.80. When the structure of the thin film surface was observed with an atomic force microscope, the surfaces of the samples # 15 and # 16 had almost no difference from the sample # 14. The results suggested a structure composed of a layer made of titanium oxide and amorphous tungsten oxide dispersed on the surface of the titanium oxide layer and scattered in stripes.
得られた薄膜の接触角を実施例 A 1と同様に測定した。 但し、 紫外線照度は 1 /W/cm2とした。 その結果は、 図 1 6に示される通りであった。 試料 # 1 4は 1 0度まで親水化したが、 試料 # 1 5および # 1 6試料は 1度までさらに親水化し た。 実施例 A 5 The contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was 1 / W / cm 2 . The results were as shown in Figure 16. Sample # 14 was hydrophilized to 10 degrees, while samples # 15 and # 16 were further hydrophilized to 1 degree. Example A 5
光触媒性酸化チタンとシリカが含有されている光触媒防曇性フィルム (東陶機 器、 ハイ ドロテク卜ミラ一フィルム) をガラス上に貼付し、 この上に、 夕ングス テン酸濃度 1 . 0重量%の 2 5 %アンモニア水溶液をスピンコート (毎分 1 5 0 0回転、 1 0秒間) によってコーティングし、 1 0 0 °Cで 3 0分間乾燥した。  A photocatalytic antifogging film containing photocatalytic titanium oxide and silica (Tohoku Kiki, Hydrotech Mira Film) was attached to the glass, and on top of this, an evening stainless acid concentration of 1.0% by weight. Was coated by spin coating (150 rpm / min, 10 seconds) and dried at 100 ° C. for 30 minutes.
X線回折により、 薄膜表面にタングステン酸アンモニゥムの存在を確認した。 また、 X線光電子分光法によって、 薄膜表面のタングステン原子:チタン原子 の割合は 0 . 2 0 : 0 . 8 0であった。  X-ray diffraction confirmed the presence of ammonium tungstate on the surface of the thin film. According to X-ray photoelectron spectroscopy, the ratio of tungsten atoms: titanium atoms on the surface of the thin film was 0.20: 0.80.
また、 原子間力顕微鏡によって薄膜表面の組織を観察したところ、 タングステ ン酸アンモニゥムをコ一ティングしない膜と同様の組織が観察された。 その結果、 酸化チタンからなる層と、 この酸化チタン層表面に分散し縞状に点在する非晶質 酸化タングステンとからなる構造が示唆された。  When the structure of the thin film surface was observed with an atomic force microscope, the same structure as that of the film not coated with ammonium tungstate was observed. The results suggested a structure composed of a layer composed of titanium oxide and amorphous tungsten oxide dispersed on the surface of the titanium oxide layer and scattered in stripes.
得られた薄膜の接触角を実施例 A 1と同様に測定した。 但し、 紫外線照度は 1 0 W/cm2とした。 その結果は、 図 1 7に示される通りであった。 実施例 A 6 The contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was set to 10 W / cm 2 . The results were as shown in FIG. Example A 6
実施例 A 1と同様にして、 約 2 0 0 n mの膜厚の光触媒性酸化チタン薄膜を作製 した。 In the same manner as in Example A1, a photocatalytic titanium oxide thin film having a thickness of about 200 nm was produced.
この薄膜の上に更に、 タングステン酸濃度 1 . 0重量%の 2 5 %アンモニア水 溶液をスピンコート (毎分 1 5 0 0回転、 1 0秒間) によってコーティングした。 その後、 薄膜を電気炉中で温度を以下の通り変えて、 30分間焼成した。. A 25% aqueous ammonia solution having a tungstic acid concentration of 1.0% by weight was further coated on the thin film by spin coating (1500 rotations per minute, 10 seconds). Then, the thin film was baked for 30 minutes in an electric furnace while changing the temperature as follows. .
更にこの薄膜上に、 コロイダルシリカ (日産化学、 ST- OS) を固形分濃度 0. 05%になるように純水で希釈した液をスピンコート (毎分 1 500回転、 10 秒間) によって成膜した。 得られた膜を電気炉中で 150°C、 30分の乾燥した < Furthermore, a film of colloidal silica (Nissan Chemical, ST-OS) diluted with pure water to a solid concentration of 0.05% is spin-coated (1,500 revolutions per minute, 10 seconds) on this thin film. did. The obtained film was dried in an electric furnace at 150 ° C for 30 minutes.
X線光電子分光法によって、 薄膜表面のタングステン原子:ケィ素原子:チタ ン原子の割合を測定した。 その結果、 0. 20 : 0. 40 : 0..40であった。 X-ray photoelectron spectroscopy was used to measure the ratio of tungsten: silicon: titanium on the surface of the thin film. As a result, it was 0.20: 0.40: 0.40.
X線回折により、 アモルファスの酸化タングステンの存在を確認した。  X-ray diffraction confirmed the presence of amorphous tungsten oxide.
作製した薄膜に蛍光灯の光をあて、 その後清浄な暗所に保管した。 そのときの 水との接触角を実施例 A 1に準じて測定した。 その結果は、 図 18に示されると おりであった。 1000時間もの長期間の間、 5度以下の親水性を維持していた c 実施例 B 1 The prepared thin film was irradiated with fluorescent light, and then stored in a clean dark place. The contact angle with water at that time was measured according to Example A1. The results were as shown in Figure 18. During the long-term even 1000 hours, c Example B 1 that remained 5 degrees or less hydrophilic
水系の酸化チタンゾル (昭和電工社製、 NTB-21) とタングステン酸アンモニゥ ム水溶液とを以下の濃度で混合し、 これら成分の固形分濃度が 2重量%のコーテ イング液を得た。 すなわち、 酸化チタンに対するタングステン酸アンモニゥムの 重量比が 5%、 10%、 20%、 30%、 40%、 50%、 70%、 および 90 %であるコーティング液を作製した。 このコーティング液を、 シリカコートした ガラスにスピンコート (毎分 1500回転、 10秒間) で塗布し、 その後、 マツ フル炉によって 300°C、 30分の焼成を行った。  An aqueous titanium oxide sol (NTB-21, manufactured by Showa Denko KK) and an aqueous solution of ammonium tungstate were mixed at the following concentrations to obtain a coating solution having a solid concentration of 2% by weight for these components. That is, coating solutions were prepared in which the weight ratio of ammonium tungstate to titanium oxide was 5%, 10%, 20%, 30%, 40%, 50%, 70%, and 90%. This coating solution was applied to silica-coated glass by spin coating (1,500 revolutions per minute, 10 seconds), followed by baking at 300 ° C for 30 minutes in a Matsufur furnace.
得られた表面に薄膜を有するガラス部材は、 白濁や虹彩色がなく、 実質的に透 明であった。  The obtained glass member having a thin film on the surface was substantially transparent without cloudiness or iris color.
X線回折により、 薄膜表面にアモルファスの酸化タングステンとアナ夕ーゼ型 酸化チタンの混合相の存在を確認した。  X-ray diffraction confirmed the presence of a mixed phase of amorphous tungsten oxide and ananases-type titanium oxide on the surface of the thin film.
また、 X線回折の結果から求めた酸化チタンの格子定数は、 化学量論のアナ夕 —ゼ型酸化チタンの文献値と同様の値を示した。 これにより、 酸化チタンと酸化 タングステンの間には固溶体が生成されていないことが示唆された。  In addition, the lattice constant of titanium oxide obtained from the results of X-ray diffraction was similar to the literature value of stoichiometric titanium oxide. This suggested that no solid solution was generated between titanium oxide and tungsten oxide.
得られた薄膜の接触角を実施例 A 1と同様に測定した。 但し、 紫外線照度は 5 /W/cm2とした。 得られた接触角の値から、 以下の式に従い、 親水化速度定数を 求めた。 光照射時の接触角変化は経験的には式 ( 1) に示す様な二次の反応式に 従う。 つまり、 接触角 0の逆数を時間に対してプロットすると直線関係が得られ、 この傾きひを親水化速度定数と定義できる。 The contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was 5 / W / cm 2 . From the obtained value of the contact angle, a hydrophilization rate constant was determined according to the following equation. Empirically, the change in contact angle during light irradiation is expressed by a secondary reaction equation as shown in equation (1). Obey. That is, when the reciprocal of the contact angle 0 is plotted against time, a linear relationship is obtained, and this slope can be defined as a hydrophilization rate constant.
Figure imgf000022_0001
Figure imgf000022_0001
< Θ :水との接触角、 t :照射時問、 α :親水ィ匕速度定数) <Θ: contact angle with water, t: irradiation time, α : hydrophilic constant)
さらに、 式 ( 1 ) に従って求めた親水化速度定数と、 コーティング液中の固体 分に占めるタングステン原料の割合の関係を示せば、 図 1 9の通りとなる。 この 結果より、 タングステン原料の割合が 5〜 5 0 %の範囲において、 親水化の促進 に最も有利であることが分かる。 なお、 タングステン原料の割合が 5〜5 0 %の 範囲において、 5度以下まで親水化していた。 実施例 Β 2 Further, the relationship between the hydrophilization rate constant obtained according to the equation (1) and the ratio of the tungsten raw material to the solid content in the coating liquid is shown in FIG. From these results, it can be seen that when the proportion of the tungsten raw material is in the range of 5 to 50%, it is most advantageous for promoting the hydrophilization. It should be noted that when the proportion of the tungsten raw material was in the range of 5 to 50%, the material was hydrophilized to 5 degrees or less. Example Β 2
実施例 Β 2と同様にして、 ガラス部材を得た。 但し、 マツフル炉による焼成温 度を 1 0 0 °Cとした。  A glass member was obtained in the same manner as in Example 2. However, the firing temperature in the Matsufuru furnace was 100 ° C.
得られた表面に薄膜を有するガラス部材は、 白濁や虹彩色がなく、 実質的に透 明であった。  The obtained glass member having a thin film on the surface was substantially transparent without cloudiness or iris color.
X線回折により、 薄膜表面にタングステン酸アンモニゥムとアナ夕ーゼ型酸化 チタンとの混合相の存在を確認した。  X-ray diffraction confirmed the presence of a mixed phase of ammonium tungstate and an anatase-type titanium oxide on the surface of the thin film.
また、 X線回折の結果から求めた酸化チタンの格子定数は、 化学量論のアナ夕 The lattice constant of titanium oxide obtained from the results of X-ray diffraction is
—ゼ型酸化チタンの文献値と同様の値を示した。 これにより、 酸化チタンと酸化 タングステンの間には固溶体が生成されていないことが示唆された。 -The value was similar to the literature value of zeolite titanium oxide. This suggested that no solid solution was generated between titanium oxide and tungsten oxide.
得られた薄膜の接触角を実施例 A 1と同様に測定した。 但し、 紫外線照度は 5 W/cm2とした。 得られた接触角の値から、 実施例 B 1と同様に式 ( 1 ) から、 親水化速度定数を求めた。 親水化速度定数と、 コーティング液中の固体分に占め るタングステン原料の割合の関係を示せば、 図 2 0の通りとなる。 この結果より、 タングステン原料の割合が 5〜 5 0 %の範囲において、 親水化の促進に最も有利 であることが分かる。 なお、 タングステン原料の割合が 5〜5 0 %の範囲におい て、 5度以下まで親水化していた。 実施例 B 3 The contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was 5 W / cm 2 . From the value of the obtained contact angle, a hydrophilization rate constant was obtained from the equation (1) in the same manner as in Example B1. FIG. 20 shows the relationship between the rate constant of hydrophilization and the ratio of the tungsten raw material to the solid content in the coating solution. From these results, it is most advantageous to promote the hydrophilization when the proportion of the tungsten raw material is in the range of 5 to 50%. It turns out that it is. It should be noted that when the proportion of the tungsten raw material was in the range of 5 to 50%, the material became hydrophilic to 5 degrees or less. Example B 3
水系の酸化チタンゾルを多木化学社製、 A— 6に代えた以外は、 実施例 B 1と 同様にして、 表面に薄膜を有するガラス部材を得た。  A glass member having a thin film on the surface was obtained in the same manner as in Example B1, except that the aqueous titanium oxide sol was changed to A-6, manufactured by Taki Kagaku.
X線回折により、 薄膜表面にアモルファスの酸化タングステンとアナ夕一ゼ型 の酸化チタンとの混合相の存在を確認した。  X-ray diffraction confirmed the presence of a mixed phase of amorphous tungsten oxide and ana-type titanium oxide on the thin film surface.
また、 X線回折の結果から求めた酸化チタンの格子定数は、 化学量論のアナ夕 ーゼ型酸化チタンの文献値と同様の値を示した。 これにより、 酸化チタンと酸化 タングステンの間には固溶体が生成されていないことが示唆された。  In addition, the lattice constant of titanium oxide obtained from the results of X-ray diffraction showed a value similar to the literature value of anatomical titanium oxide in stoichiometry. This suggested that no solid solution was generated between titanium oxide and tungsten oxide.
得られた薄膜の接触角を実施例 A 1と同様に測定した。 但し、 紫外線照度は 5 zW/cm2とした。 得られた接触角の値から、 実施例 B 1と同様に式 ( 1 ) から、 親水化速度定数を求めた。 親水化速度定数と、 コーティング液中の固体分に占め るタングステン原料の割合の関係を示せば、 図 2 1の通りとなる。 この結果より、 タングステン原料の割合が 5〜4 0 %の範囲において、 親水化の促進に最も有利 であることが分かる。 The contact angle of the obtained thin film was measured in the same manner as in Example A1. However, the UV illuminance was 5 zW / cm 2 . From the value of the obtained contact angle, a hydrophilization rate constant was obtained from the equation (1) in the same manner as in Example B1. Figure 21 shows the relationship between the rate constant of hydrophilization and the ratio of the tungsten raw material to the solid content in the coating solution. From this result, it can be seen that when the proportion of the tungsten raw material is in the range of 5 to 40%, it is most advantageous for promoting the hydrophilization.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基材と、 1. The substrate and
該基材の表面に接合され、 光触媒性酸化チタンおよび非晶質酸化タングステン を含んでなる表面層とを備えてなり、  A surface layer comprising a photocatalytic titanium oxide and an amorphous tungsten oxide bonded to the surface of the base material,
前記酸化チタンと前記非晶質酸化夕ングステンとが固溶体を形成することなく 互いに接合されてなり、 かつ、  The titanium oxide and the amorphous tungsten oxide are joined to each other without forming a solid solution; and
紫外線照度に換算して 1 0〃W/ c mz以下の光照射による光励起に応じて、 前 記表面層の最表面が水接触角に換算して 1 0度以下の親水性を呈する、 部材。 In terms of UV irradiance in response to photoexcitation by following light irradiation 1 0〃W / cm z, exhibits 1 0 degrees or less hydrophilic outermost surface prior Symbol surface layer in terms of water contact angle, member.
2 . 前記非晶質酸化タングステンが、 タングステン酸またはその塩である、 請求項 1に記載の部材。  2. The member according to claim 1, wherein the amorphous tungsten oxide is tungstic acid or a salt thereof.
3 . 前記タングステン酸塩がタングステン酸アンモニゥムである、 請求項 2 に記載の部材。  3. The member according to claim 2, wherein the tungstate is ammonium tungstate.
4 . 前記酸化チタンが粒子形状である、 請求項 1〜3のいずれか一項に記載 の部材。  4. The member according to any one of claims 1 to 3, wherein the titanium oxide has a particle shape.
5 . 前記非晶質酸化タングステンが粒子形状である、 請求項 1〜4のいずれ か一項に記載の部材。  5. The member according to any one of claims 1 to 4, wherein the amorphous tungsten oxide has a particle shape.
6 . 前記酸化チタンと前記非晶質酸化タングステンとが、 不純物準位を生じ ることなく、 ヘテロ結合している、 請求項 1〜5のいずれか一項に記載の部材。  6. The member according to any one of claims 1 to 5, wherein the titanium oxide and the amorphous tungsten oxide are hetero-bonded without generating an impurity level.
7 . 前記表面層が、 前記酸化チタンからなる層と、 該酸化チタン層表面に分 散し点在する非晶質酸化タングステンとからなる、 請求項 1〜 6のいずれか一項 に記載の部材。  7. The member according to any one of claims 1 to 6, wherein the surface layer comprises a layer made of the titanium oxide, and an amorphous tungsten oxide dispersed and scattered on the surface of the titanium oxide layer. .
8 . 前記表面層が、 前記酸化チタンと、 前記非晶質酸化タングステンとを混 合した形態で含んでなる、 請求項 1 ~ 6のいずれか一項に記載の部材。  8. The member according to any one of claims 1 to 6, wherein the surface layer comprises the titanium oxide and the amorphous tungsten oxide in a mixed form.
9 . 前記酸化チタンが外気中の水分と接触可能な状態で前記表面層の最表面 に存在する、 請求項 1〜 8のいずれか一項に記載の部材。  9. The member according to any one of claims 1 to 8, wherein the titanium oxide is present on the outermost surface of the surface layer in a state where the titanium oxide can come into contact with moisture in the outside air.
1 0 . 前記表面層の表面における、 前記酸化タングステン原子:チタン原子 の割合が、 X線光電子分光法で計測した値に換算して、 0 . 0 0 5〜0 . 5 0 : 0 . 9 9 5〜0 . 5 0である、 請求項 1〜9のいずれか一項に記載の部材。 10. The ratio of the tungsten oxide atoms: titanium atoms on the surface of the surface layer is 0.05 to 0.50: 0.99 in terms of a value measured by X-ray photoelectron spectroscopy. The member according to any one of claims 1 to 9, wherein the number is 5 to 0.50.
11. 前記表面層における、 前記酸化タングステンの占める割合が重量比で 0. 1%〜70%である、 請求項 1〜10のいずれか一項に記載の部材。 11. The member according to any one of claims 1 to 10, wherein the proportion of the tungsten oxide in the surface layer is 0.1% to 70% by weight.
12. 前記表面層における、 前記酸化タングステンの占める割合が重量比で 5%〜50%である、 請求項 1〜10のいずれか一項に記載の部材。  12. The member according to any one of claims 1 to 10, wherein the proportion of the tungsten oxide in the surface layer is 5% to 50% by weight.
13. 前記酸化タングステンが酸素欠陥を有しているものである、 請求項 1 〜11のいずれか一項に記載の部材。  13. The member according to any one of claims 1 to 11, wherein the tungsten oxide has oxygen vacancies.
14. 前記表面層が、 シロキサン結合、 ポロシロキサン結合、 およびアルミ ノシリケ一ト結合からなる群から選択される少なくとも一種の結合を有する金属 酸化物をさらに含んでなる、 請求項 1〜13のいずれか一項に記載の部材。  14. The surface layer according to any one of claims 1 to 13, wherein the surface layer further comprises a metal oxide having at least one bond selected from the group consisting of a siloxane bond, a porosiloxane bond, and an aluminosilicate bond. A member according to claim 1.
15. 前記表面層の表面に、 シロキサン結合、 ポロシロキサン結合、 および アルミノシリケ一ト結合からなる群から選択される少なくとも一種の結合を有す る金属酸化物の層をさらに有してなる、 請求項 1〜13のいずれか一項に記載の 部材。  15. The surface of the surface layer further comprises a metal oxide layer having at least one kind of bond selected from the group consisting of a siloxane bond, a porosiloxane bond, and an aluminosilicate bond. 14. The member according to any one of 1 to 13.
16. 前記金属酸化物の膜厚が 1 nm〜 100 nmの範囲である、 請求項 1 5に記載の部材。  16. The member according to claim 15, wherein the thickness of the metal oxide is in a range of 1 nm to 100 nm.
17. 前記光励起が、 太陽光または室内照明からの光照射により行われる、 請求項 1 ~ 16のいずれか一項に記載の部材。  17. The member according to any one of claims 1 to 16, wherein the light excitation is performed by irradiation of sunlight or light from indoor lighting.
18. 前記表面層が実質的に透明である、 請求項 1〜17のいずれか一項に 記載の部材。  18. The member according to any one of claims 1 to 17, wherein the surface layer is substantially transparent.
19. 10 /W/ cm2以下の紫外線照度下において用いられる、 請求項 1〜 18のいずれか一項に記載の部材からなる、 防曇部材。 19. 10 / W / cm 2 is used under the following ultraviolet illumination, consisting of members according to any one of claims 1 to 18 antifogging member.
20. 10 W/ cm2以下の紫外線照度下において用いられる、 請求項 1〜 18のいずれか一項に記載の部材からなる、 防汚部材。 20. 10 W / cm 2 is used under the following ultraviolet illumination, consisting of members according to any one of claims 1 to 18 Antifouling member.
21. 請求項 7に記載の部材を製造する方法であって、  21. A method for producing a member according to claim 7, wherein
基材表面に、 光触媒性酸化チタンおよび/またはその前駆物質を含んでなる液 と、 非晶質酸化タングステンおよび Zまたはその前駆体を含んでなる液とを混合 して得られたコーティング組成物を塗布する工程と、  A coating composition obtained by mixing a liquid containing photocatalytic titanium oxide and / or a precursor thereof and a liquid containing amorphous tungsten oxide and Z or a precursor thereof on the surface of a base material. Applying step;
前記組成物が塗布された基材表面を、 前記酸化チタンと前記非晶質酸化タング ステンとが固溶体を形成しない温度で熱処理する工程と を少なくとも含んでなる、 製造方法。 A step of heat-treating the substrate surface coated with the composition at a temperature at which the titanium oxide and the amorphous tungsten oxide do not form a solid solution. At least comprising:
2 2 . 請求項 8に記載の部材を製造する方法であって、  22. A method for producing a member according to claim 8, wherein
基材表面に、 光触媒性酸化チタン粒子を含んでなる酸化チタン層を形成するェ 程と、  Forming a titanium oxide layer containing photocatalytic titanium oxide particles on the substrate surface,
該酸化チタン層表面に、 非晶質酸化タングステンおよび/またはその前駆体を 含んでなる層を形成する工程と、  Forming a layer comprising amorphous tungsten oxide and / or a precursor thereof on the surface of the titanium oxide layer;
前記基材表面を、 前記酸化チタンと前記非晶質酸化タングステンとが固溶体を 形成しな 、温度で熱処理する工程と  Heat-treating the surface of the base material at a temperature while the titanium oxide and the amorphous tungsten oxide do not form a solid solution;
を少なくとも含んでなる、 製造方法。 At least comprising:
2 3 . 前記熱処理が 5 0 0 °C未満の温度で行われる、 請求項 2 1または 2 2 に記載の方法。  23. The method according to claim 21 or 22, wherein said heat treatment is performed at a temperature of less than 500 ° C.
2 4 . 前記熱処理が 2 0 °C〜3 5 0 °Cの温度で行われる、 請求項 2 1または 2 2に記載の方法。  24. The method according to claim 21 or 22, wherein said heat treatment is performed at a temperature between 20 ° C and 350 ° C.
2 5 . 部材表面に防曇性を付与する方法であって、  25. A method for imparting anti-fogging property to a member surface,
基材に、 光触媒性酸化チタンおよび非晶質酸化タングステンを含んでなる表面 層を設ける工程を含んでなり、 ここで酸化チタンと前記非晶質酸化タングステン とが固溶体を生成することなく互いに接合されてなり、  Providing a surface layer comprising a photocatalytic titanium oxide and an amorphous tungsten oxide on the substrate, wherein the titanium oxide and the amorphous tungsten oxide are bonded to each other without forming a solid solution. Become
得られた基材に、 紫外線照度に換算して 1 0〃W/ c mz以下の光照射を行い、 光励起する工程 Process the obtained substrate, in terms of UV irradiance perform light irradiation of less than 1 0〃W / cm z, photoexcitation
を少なくとも含んでなる、 方法。 At least comprising the method.
2 6 . 部材表面に防汚性を付与する方法であって、  26. A method for imparting antifouling properties to a member surface,
基材に、 光触媒性酸化チタンおよび非晶質酸化タングステンを含んでなる表面 層を設ける工程を含んでなり、 ここで酸化チタンと前記非晶質酸化タングステン とが固溶体を生成することなく互いに接合されてなり、  Providing a surface layer comprising a photocatalytic titanium oxide and an amorphous tungsten oxide on the substrate, wherein the titanium oxide and the amorphous tungsten oxide are bonded to each other without forming a solid solution. Become
得られた基材に、 紫外線照度に換算して 1 0〃W/ c m2以下の光照射を行い、 光励起する工程と、 Irradiating the obtained base material with light of not more than 10 cmW / cm 2 in terms of ultraviolet illuminance, thereby performing light excitation;
基材と流水とを接触させ、 基材表面に付着した汚れを洗い流す工程と を少なくとも含んでなる、 方法。  Contacting the substrate with running water to wash away dirt attached to the surface of the substrate.
PCT/JP2001/001984 2000-03-13 2001-03-13 Hydrophilic member and method for manufacture thereof WO2001068786A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001567272A JP5130603B2 (en) 2000-03-13 2001-03-13 Hydrophilic member and method for producing the same
AU41124/01A AU4112401A (en) 2000-03-13 2001-03-13 Hydrophilic member and method for manufacture thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000/68840 2000-03-13
JP2000068840 2000-03-13
JP2000372824 2000-12-07
JP2000/372824 2000-12-07
JP2000/381706 2000-12-15
JP2000381706 2000-12-15

Publications (1)

Publication Number Publication Date
WO2001068786A1 true WO2001068786A1 (en) 2001-09-20

Family

ID=27342644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001984 WO2001068786A1 (en) 2000-03-13 2001-03-13 Hydrophilic member and method for manufacture thereof

Country Status (3)

Country Link
JP (1) JP5130603B2 (en)
AU (1) AU4112401A (en)
WO (1) WO2001068786A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211928A (en) * 2000-12-30 2002-07-31 Altra:Kk Visible light-reactive titanium dioxide, method for producing the same and method for removing contaminant
JP2003135972A (en) * 2001-10-31 2003-05-13 Ube Nitto Kasei Co Ltd Porous thin film containing photocatalyst and coating agent
JP2003260134A (en) * 2002-03-11 2003-09-16 Yukiyasu Okumura Hospital infection preventive transfusion system
JP2005231935A (en) * 2004-02-18 2005-09-02 Taki Chem Co Ltd Tungsten oxide-containing titanium oxide sol, method of manufacturing the same, coating material and optical functional body
WO2005102952A2 (en) * 2004-04-13 2005-11-03 Saint-Gobain Glass France Photocatalytic substrate active under a visible light
JP2006198464A (en) * 2005-01-18 2006-08-03 Nippon Shokubai Co Ltd Visible light response type photocatalyst and its production method
WO2009036263A2 (en) * 2007-09-14 2009-03-19 Cardinal Cg Company Low-maintenance coating technology
JP2012120967A (en) * 2010-12-07 2012-06-28 Nissan Motor Co Ltd Visible light-responsive photocatalyst, hydrophilic member including the same, and method for producing the same
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
JP2014098542A (en) * 2008-09-16 2014-05-29 Toshiba Corp Refrigerator
JP2014194028A (en) * 2008-03-04 2014-10-09 Toshiba Corp Method for manufacturing hydrophilic member
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
JP2018122246A (en) * 2017-02-01 2018-08-09 株式会社オプト Protective layer formation method of structure surface
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
KR20210113818A (en) 2020-03-09 2021-09-17 엘지전자 주식회사 Liquid container, water purifier, and household appliance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013102691A1 (en) * 2013-03-15 2014-09-18 AMiSTec GmbH & Co. KG Reduction of the tendency for icing of a surface of an object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029375A1 (en) * 1995-03-20 1996-09-26 Toto Ltd. Method of photocatalytically making the surface of base material ultrahydrophilic, base material having ultrahydrophilic and photocatalytic surface, and process for producing said material
WO1997023572A1 (en) * 1995-12-22 1997-07-03 Toto Ltd. Photocatalytic process for making surface hydrophilic and composite material having photocatalytically hydrophilic surface
JPH1095635A (en) * 1996-09-20 1998-04-14 Toto Ltd Formation of photocatalytic hydrophobic member and photocatalytic hydrophobic member
JPH10147771A (en) * 1996-11-20 1998-06-02 Toto Ltd Photocatalytic hydrophilic member and its production
JPH11147277A (en) * 1997-11-18 1999-06-02 Ichikoh Ind Ltd Hydrophilic film forming base material and its production
JP2000001340A (en) * 1998-06-12 2000-01-07 Ichikoh Ind Ltd Production of hydrophilic coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029375A1 (en) * 1995-03-20 1996-09-26 Toto Ltd. Method of photocatalytically making the surface of base material ultrahydrophilic, base material having ultrahydrophilic and photocatalytic surface, and process for producing said material
WO1997023572A1 (en) * 1995-12-22 1997-07-03 Toto Ltd. Photocatalytic process for making surface hydrophilic and composite material having photocatalytically hydrophilic surface
JPH1095635A (en) * 1996-09-20 1998-04-14 Toto Ltd Formation of photocatalytic hydrophobic member and photocatalytic hydrophobic member
JPH10147771A (en) * 1996-11-20 1998-06-02 Toto Ltd Photocatalytic hydrophilic member and its production
JPH11147277A (en) * 1997-11-18 1999-06-02 Ichikoh Ind Ltd Hydrophilic film forming base material and its production
JP2000001340A (en) * 1998-06-12 2000-01-07 Ichikoh Ind Ltd Production of hydrophilic coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIYAUCHI M. ET AL.: "A highly hydrophilic thin film under 1muW/cm2 UV illumination", ADV. MATER., vol. 12, no. 24, 15 December 2000 (2000-12-15), pages 1923 - 1927, XP002941741 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211928A (en) * 2000-12-30 2002-07-31 Altra:Kk Visible light-reactive titanium dioxide, method for producing the same and method for removing contaminant
JP2003135972A (en) * 2001-10-31 2003-05-13 Ube Nitto Kasei Co Ltd Porous thin film containing photocatalyst and coating agent
JP2003260134A (en) * 2002-03-11 2003-09-16 Yukiyasu Okumura Hospital infection preventive transfusion system
JP2005231935A (en) * 2004-02-18 2005-09-02 Taki Chem Co Ltd Tungsten oxide-containing titanium oxide sol, method of manufacturing the same, coating material and optical functional body
JP4507066B2 (en) * 2004-02-18 2010-07-21 多木化学株式会社 Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body
WO2005102952A2 (en) * 2004-04-13 2005-11-03 Saint-Gobain Glass France Photocatalytic substrate active under a visible light
WO2005102952A3 (en) * 2004-04-13 2006-08-24 Saint Gobain Photocatalytic substrate active under a visible light
JP2007532462A (en) * 2004-04-13 2007-11-15 サン−ゴバン グラス フランス Photocatalytic substrate active under visible light
USRE44155E1 (en) 2004-07-12 2013-04-16 Cardinal Cg Company Low-maintenance coatings
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
JP2006198464A (en) * 2005-01-18 2006-08-03 Nippon Shokubai Co Ltd Visible light response type photocatalyst and its production method
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
JP2010538960A (en) * 2007-09-14 2010-12-16 日本板硝子株式会社 Low maintenance coating and method of manufacturing low maintenance coating
EP2261186A3 (en) * 2007-09-14 2012-07-11 Cardinal CG Company Low maintenance coating technology
WO2009036263A3 (en) * 2007-09-14 2009-06-04 Cardinal Cg Co Low-maintenance coating technology
WO2009036284A1 (en) * 2007-09-14 2009-03-19 Cardinal Cg Company Low-maintenance coatings, and methods for producing low-maintenance coatings
WO2009036263A2 (en) * 2007-09-14 2009-03-19 Cardinal Cg Company Low-maintenance coating technology
JP2014194028A (en) * 2008-03-04 2014-10-09 Toshiba Corp Method for manufacturing hydrophilic member
JP2014098542A (en) * 2008-09-16 2014-05-29 Toshiba Corp Refrigerator
JP2012120967A (en) * 2010-12-07 2012-06-28 Nissan Motor Co Ltd Visible light-responsive photocatalyst, hydrophilic member including the same, and method for producing the same
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
US11325859B2 (en) 2016-11-17 2022-05-10 Cardinal Cg Company Static-dissipative coating technology
JP2018122246A (en) * 2017-02-01 2018-08-09 株式会社オプト Protective layer formation method of structure surface
KR20210113818A (en) 2020-03-09 2021-09-17 엘지전자 주식회사 Liquid container, water purifier, and household appliance
KR20220035061A (en) 2020-03-09 2022-03-21 엘지전자 주식회사 Liquid container, anc water purifier

Also Published As

Publication number Publication date
JP5130603B2 (en) 2013-01-30
AU4112401A (en) 2001-09-24

Similar Documents

Publication Publication Date Title
JP3613085B2 (en) Photocatalytic hydrophilic member
ES2538807T3 (en) Cleaning procedure of a substrate that has an ultrahydrophilic and photocatalytic surface
JP3940983B2 (en) Antifouling member and antifouling coating composition
WO2001068786A1 (en) Hydrophilic member and method for manufacture thereof
JP5707480B2 (en) Automotive interior parts
JP4919141B2 (en) Photocatalytic member and method for producing the same
JP2002234105A (en) Hydrophilic member and method for manufacturing the same
JP2001152130A (en) Photocatalytically hydrophilizable member and its manufacturing method
JPH11309379A (en) Photocatalytic hydrophilic member and photocatalytic hydrophilic coating composition
JPH11228865A (en) Coating agent for forming photocatalytic hydrophilic coating film and photocatalytic hydrophilic member
JP2001079978A (en) Hydrophilic member
JP2004154779A (en) Substrate coated with photocatalytic film and method for forming photocatalytic film thereon
JPH11100526A (en) Photocatalytic hydrophilic member and photocatalytic hydrophilic coating composition
JP2000086933A (en) Photocatalytic hydrophilic material and photocatalytic hydrophilic coating composition
JP2001079979A (en) Photocatalytic hydrophilic member
WO1999041322A1 (en) Coating material for forming photocatalytic hydrophilic film, method of forming photocatalytic hydrophilic film, and photocatalytic hydrophilic member
JP3400259B2 (en) Hydrophilic coating and method for producing the same
KR100393733B1 (en) Ceramic Compositions for superhydrophilic coating and its manufacturing method
JPH10192110A (en) Mirror for washstand
JP2000109343A (en) Photocatalysis composition and its production
JP2001276613A (en) Photocatalyst body and functional body
JPH10296902A (en) Photo-catalytic hydrophilic member and method for hydrophilization of member surface
JPH1176834A (en) Photocatalytic hydrophilic component and photocatalytic hydrophilic coated composition
JP2000225669A (en) Interior material or indoor fixtures using titanium oxide particles and use thereof
JPH10310653A (en) Photocatalytic hydrophilic member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 567272

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase