WO1999041322A1 - Coating material for forming photocatalytic hydrophilic film, method of forming photocatalytic hydrophilic film, and photocatalytic hydrophilic member - Google Patents

Coating material for forming photocatalytic hydrophilic film, method of forming photocatalytic hydrophilic film, and photocatalytic hydrophilic member Download PDF

Info

Publication number
WO1999041322A1
WO1999041322A1 PCT/JP1999/000582 JP9900582W WO9941322A1 WO 1999041322 A1 WO1999041322 A1 WO 1999041322A1 JP 9900582 W JP9900582 W JP 9900582W WO 9941322 A1 WO9941322 A1 WO 9941322A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating agent
precursor
group
titania
acid
Prior art date
Application number
PCT/JP1999/000582
Other languages
French (fr)
Japanese (ja)
Inventor
Eiichi Kojima
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to AU25465/99A priority Critical patent/AU2546599A/en
Publication of WO1999041322A1 publication Critical patent/WO1999041322A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes

Definitions

  • the present invention relates to a technology for forming a photocatalyst water film, and more particularly, to a coating agent capable of forming a photocatalytic film, a method for forming a photocatalytic hydrophilic film using the same, and a ⁇ * medium obtained by the method.
  • the present invention relates to a hydrophilic hydrophilic member.
  • PCT / WO966 / 93375 discloses that the surface of a photocatalyst-containing layer formed on the surface of a substrate has a high degree of «property (for example, a contact angle with water) according to the « I of the photocatalyst. (Less than 10 °).
  • a high degree of «property for example, a contact angle with water
  • I of the photocatalyst. Less than 10 °.
  • the production of organic materials using such a light-based function is performed by preparing a coating liquid containing light or its precursor, applying the coating liquid, and drying or sintering the coating liquid.
  • a titanium alkoxide is used as a starting material
  • T i 0 2 sol using a T i 0 2 sol and S i 0 2 sol using a T i 0 2 sol and difunctional silicone using a T i 0 2 sol and trifunctional silicone, such as There is a way. Further, in Japanese Laid-9 one 2 4 8 4 6 7 No., a method using a titanium alkoxide and T i 0 2 sol is described.
  • a photocatalytic hydrophilic film is required to have not only high hydrophilicity but also good durability, film hardness and transparency, and high visible transmittance.
  • the present inventors have now found that a coating agent comprising at least three types of amorphous titania precursor, crystalline titania, and a precursor that can be converted into a compound having a siloxane bond, It was found that a ⁇ K coating with good properties, film hardness, transparency, and visible light transmittance, and that can maintain properties for a long time even under light-shielding conditions can be realized.
  • the present invention is based on this finding.
  • the present invention is intended for forming a photocatalytic hydrophilic film having good durability, film hardness, transparency, and visible light transmittance, and realizing hydrophilicity that maintains hydrophilicity for a long time even under light shielding conditions. Its purpose is to provide a coating agent.
  • the coating agent for forming an amphiphilic hydrophilic film according to the present invention comprises at least an amorphous titania precursor, crystalline titania, and a precursor that can be converted into a compound having a siloxane bond. is there. Ming specific explanation]
  • the hydrophilicity ⁇ produced using the coating agent according to the present invention is excellent in durability, film hardness, transparency, and visible light transmittance.
  • Sanshi Maintain the hydrophilicity for a long period of time in the key weather meter test (SWM test).
  • the coating agent for forming a photocatalytic hydrophilic film according to the present invention basically comprises an amorphous titania precursor, crystalline titania, and a precursor that can be converted into a compound having a siloxane bond.
  • Amorphous titania precursors such as titanium alkoxide are crystallized through heat treatment to form titanium oxide.
  • This titanium oxide is considered to form a dense and strong film by incorporating crystalline titania in addition to the action of exhibiting photocatalytic hydrophilicity.
  • Crystalline titania provides stable and durable hydrophilic hydrophilicity.
  • the precursor that can be converted into a compound having a siloxane bond becomes non-hydrogen by heat treatment or the like, and this silica maintains the hydrophilicity of titanium oxide for a long time even under light-shielding conditions. Works.
  • precursors that can be converted to compounds having siloxane bonds may, in some cases, result in highly homogenous T i 0—S i bond bonds, and T i 0 It has been reported that the crystallization of No. 2 is suppressed and the hydrophilization performance by the photoexcitation of the solvent cannot be sufficiently exhibited (for example, “Catalyst preparation using metal alkoxide, IPC, (1993) , P3 3 7 ”). However, in the present invention, there is no such adverse effect, and a good quality can be realized.
  • the coating film obtained by the coating agent according to the present invention is light-shielded as compared with the case where a titania-free precursor and crystalline titania are used. It is excellent in that hydrophilicity can be maintained for a long time even under the conditions, and in friction resistance. Further, the coating film obtained by the coating agent according to the present invention is superior in the rub resistance as compared with the case where the non-titanium precursor, crystalline titania and crystalline silica are used. (a) crystalline titania
  • the crystalline titania used in the present invention may be any of the crystalline systems of anatase, rutile and brookite.
  • crystalline titanium two ⁇ is laid force reluctant to be added to the co-one coating agent as stable system not precipitate in the solution, for example, T i 0 2 sol suspension dispersed titania microparticles in the solvent Is preferred. Such sols are readily available on the market.
  • an average particle size of T i 0 2 sol is 5 0 nm or less, more preferably about 5 to 1 O nm.
  • Use of a sol having such an average particle system is advantageous in that crystalline titania can be stably dispersed in the coating agent, and that the visible light transmittance of the coating film is improved.
  • T i 0 2 sol wide casting of the particle size distribution or average be used those having a particle size peak, wear resistance good good coating, May be advantageous because they can form
  • the average particle size of the sol can be determined by X-ray diffraction.
  • the precursor of amorphous titania in the present invention means a substance capable of forming crystalline titania by heating, and specifically, an organic titanium compound such as alkoxide, chelate or acetate of titanium, or TiCl 4 or Ti (S0 4) means a non-machine titanium compounds such as 2.
  • an organic titanium compound such as alkoxide, chelate or acetate of titanium, or TiCl 4 or Ti (S0 4) means a non-machine titanium compounds such as 2.
  • the titanium alkoxide includes, for example, tetraethoxytitanium, tetraisopropoxytitanium, tetran-propoxytitanium, tetrabutoxytitanium, tetramethoxytitanium and the like.
  • hydrolysis inhibitor such as hydrochloric acid or ethylamine is added to them, and after dilution with an alcohol such as ethanol or propanol, the hydrolysis is allowed to proceed partially or completely.
  • (Partial) hydrolyzate can be obtained Also, in the present invention, it can be used as an amorphous titanium precursor.
  • the amount of crystalline titania is preferably such that the total amount of titanium oxide is 6% by weight or more, more preferably 8% by weight or more, and preferably 45% or less.
  • the crystalline titania content is preferably 6% by weight or more and 40% by weight or less of the total solid content in the coating agent.
  • the “precursor that can be converted into a compound having a siloxane bond” preferably means a substance capable of forming amorphous silica or silicone by film formation.
  • the formation of the precursor into a film means that a hydrolysis reaction, a condensation polymerization reaction, or the like is caused by the action of heating or bandaging, and an amorphous silica or silicone film is formed.
  • film formation of the precursor also means that when applied to a substrate containing a coating agent containing the precursor and then the solvent component is removed, an amorphous silica film is formed. .
  • preferred examples of the precursor that can be converted into a compound having a siloxane bond include a silicic acid precursor that can be converted into amorphous silica by heating, a hydrolyzate thereof, a partial hydrolyzate thereof, The hydrolyzed polycondensate, the partially hydrolyzed polycondensate, or a mixture thereof is exemplified.
  • R is one or more selected from the group consisting of a hydrogen atom and an organic group
  • X is one or more selected from the group consisting of an alkoxy group and a nitrogen atom Where p is 1 or 2)
  • the organic group represented by R is alkyl (more preferably unsubstituted alkyl having 1 to 18 carbon atoms, most preferably alkyl having 3 to 18 carbon atoms) or aryl (preferably phenyl). Means).
  • hydrolyzable silane derivative examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, and ethyl tilt.
  • Ributoxy silane phenyl trimethoxy silane, phenyl triethoxy silane, phenyl tripropoxy silane, phenyl tributoxy silane, dimethyl dimethoxy silane, dimethyl ethoxy silane, dimethyl dipropoxy silane, dimethyl diptoxy silane, getyl dimethoxy silane, ge Tiljetoxysilane, getyldipropoxysilane, getyldibutoxysilane, phenylmethyldimethoxysilane, phenylmethyljet Silane, phenylmethyldipropoxysilane, phenylmethyldibutoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltripropoxysilane, n-propyltributoxysilane, 7- Glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrime
  • another preferred silicic acid precursor which can be converted into amorphous silica by heating in the present invention includes partial hydrolysis and Sfck condensation polymerization of the above hydrolyzable silane derivative, or partial hydrolysis of the above hydrolyzable silane derivative.
  • Object and tetramethoxy It is possible to use those prepared by dehydration-condensation polymerization with a partial hydrolyzate such as silane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, or ethoxydimethoxysilane.
  • siloxane obtained by the partial hydrolysis / dehydration condensation polymerization is represented by the following average formula.
  • R is as defined above
  • X is one or two or more selected from the group consisting of an alkoxy group and a halogen atom
  • P is a number that satisfies 0 ⁇ p ⁇ 2
  • q is a number that satisfies 0, q, and 4.
  • X is one or more selected from the group consisting of an alkoxy group and a halogen atom
  • tetrafunctional hydrolyzable silane derivative examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, ethoxydimethoxysilane, tetrachlorosilane, tetrabromosilane, silanol, dimethoxydiethoxysilane and the like. Is raised.
  • the silicate obtained by the above partial hydrolysis / dehydration polycondensation is represented by the following average composition formula.
  • X is one or two or more selected from the group consisting of an alkoxy group and a halogen atom
  • q is a number that satisfies 0 x q x 4)
  • the conversion calculated weight of T i 0 2 of amorphous titania precursor 5 It is strongly preferable that it is 0% or less.
  • the compound having a siloxane bond formed from the silicic acid precursor preferably has a small refractive index.
  • a transparent substrate it is advantageous in that a small amount and a high L value of visible light transmittance can be obtained, and in the case of a reflector, a double image can be reduced.
  • the crystalline titania, the amorphous titania precursor, and the precursor that can be converted into a compound having a siloxane bond are preferably dispersed in a solvent to form a coating agent.
  • solvents include alcohols such as methanol, ethanol, i-propanol, n-propanol, i-ptanol, n-ptanol, and ester compounds such as methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate. Is mentioned.
  • the solvent may also function as a solvent for other components.
  • the coating agent according to the present invention further comprises, in addition to the above components, a surfactant, an acid, a hydrolysis initiator, a polymerization curing catalyst, a leveling agent, Bacterial metals, platinum group metals, pH adjusters and the like can be included.
  • a surfactant offers the advantage that the composition according to the invention can be applied homogeneously to the surface of the component.
  • the surfactant is added in an amount of less than 10 parts by weight, more preferably about 0.1 to 2 fi * parts, per 1 part by weight of the photocatalyst particles.
  • surfactant examples include polyoxyethylene alkyl phenyl sulfonate ammonium sulfonate, sodium polyoxyalkylene phenyl phenyl ether sulfonate, sodium salt of fatty acid, sodium saussi, Sodium octyl sulfosuccinate, alkyl sulfate, alkyl ether sulfate, alkyl sulfate soda salt, alkyl ether sulfate sodium salt, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl ether sulfate sodium salt, Alkyl sulfate TE
  • Anionic surfactants such as disodium lauryl, disodium lauryl polyoxyethylene sulfosuccinate, polycarboxylic acid, oleoyl sarcosine, amide ether sulfate, lauroyl sarcosinate, sulfo FA ester sodium salt and the like; Polyoxyethylene lauryl ether, Polyoxyethylene tridecyl ether, Polyoxyethylene cetyl ether, Polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, Polyoxye Tylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene alkyl phenol
  • Sorbitan sesquioleate polyoxyethylene sorbitan laurate, polyoxyeletin sorbitan stearate, polyoxyethylene sorbitan palmitate, polyoxyethylene sorbitan oleate, glycerol monostearate, polyglycerin fatty acid ester , Alkyl alkyl amide, ethanol laurate, diethanolamide oleate, oxyethylene dodecylamine, polyoxyethylene dodecylamine, polyoxyethylene alkylamine, polyoxyethylene octadecylamine, polyoxy Nonionic surfactants such as ethylene alkyl propylenediamine, polyoxyethylene oxypropylene block polymer, and polyoxyethylene stearate; dimethyl alkyl betaine Amphoteric surfactants such as alkyl glycine, amide betaine and imidazoline, octadecyldimethylbenzylammonium chloride, alkyldimethylbenzylammonium chlor
  • the coating agent according to the present invention comprises an acid Can be.
  • the addition of the acid increases the polarity of the surface to which the coating agent is applied, and can maintain good hydrophilicity even in a dark place.
  • the acid include nitric acid, sulfuric acid, hydrochloric acid, acetic acid, propionic acid, maleic acid, adipic acid, fumaric acid, phthalic acid, valeric acid, lactic acid, acid, citric acid, and liquor, which have a large ability to impart polarity to the surface.
  • Examples thereof include carboxylic acid, picric acid, formic acid, carbonic acid, and phenol. Particularly, nitric acid, hydrochloric acid and sulfuric acid are preferred.
  • the coating agent according to the present invention may include a catalyst for hydrolysis of a silylating component. Due to the presence of this, the hydrolysis of amorphous silica as a precursor is carried out.
  • catalysts include nitric acid, sulfuric acid, hydrochloric acid, acetic acid, propionic acid, maleic acid, adipic acid, fumaric acid, phthalic acid, valeric acid, lactic acid, butyric acid, citric acid, malic acid having a pH of 2 to 5, Picric acid, formic acid, carbonic acid, phenol and the like.
  • the amorphous silicic acid when it is a silanol, it can comprise a polymerized hardening medium of silanol.
  • This catalyst promotes the polymerization reaction of silanol.
  • examples include aluminum compounds such as aluminum chelates, aluminum acetylacetonate, aluminum perchlorate, aluminum chloride, aluminum isopoxide, and aluminum isopropoxide; tetraisopropyl titanate And titanium compounds such as tetrabutyl titanate; lithium hydroxide, sodium hydroxide, sodium hydroxide, sodium methylate, sodium acetate, sodium formate, sodium acetate, potassium formate, potassium propionate Basic compounds such as tetramethylammonium chloride and tetramethylammonium hydroxide; n-hexylamine, triptylamine, diazabicyclopentane, ethylenediamine, hexanediamine, diethylenetriamine Min, tetraethylenepentamine, triethylenetetramine, ethanolamines, 7-aminopropyltrimethoxysilane, Amine compounds such as aminopropylmethyldimethoxysilane, 7- (2-aminoethy
  • the coating agent according to the present invention can include a repelling agent so that a smooth surface can be formed when applied to the surface of the member.
  • a leveling agent is particularly advantageous when applying the coating agent according to the invention to large articles.
  • Preferred examples of the leveling agent include diacetone alcohol, ethylene glycol monomethyl ether, 4-hydroxy-1-methyl-2-pentanone, dipropylene glycol, tripropylene glycol, 1-ethoxy-2-propanol, and 1-butanol.
  • the coating agent according to the present invention may further comprise an antimicrobial metal (eg, Ag, Cu, Zn) or a compound thereof.
  • an antimicrobial metal eg, Ag, Cu, Zn
  • bacteria existing on the surface of the substrate can be killed, and even after the application of the coating agent, the growth of microorganisms such as mold, algae, and moss on the surface can be suppressed. it can.
  • the coating agent according to the present invention comprises at least a platinum group metal selected from the group consisting of Pt, Pd, Rh, Ru, Os, and Ir. It can comprise one or more.
  • Photocatalyst consisting of metal oxide It has been known that a surface having an antifouling, antibacterial, and deodorizing function based on the action of decomposing light. It is believed that this effect may be maintained even on the surface of the member to which the coating agent according to the present invention has been applied. It is considered that the above-mentioned metal enhances the oxidative decomposition action of the ⁇ ] solvent, and improves the antibacterial property, deodorizing property, gas decomposability, organic substance decomposability, etc. of the surface.
  • the coating agent according to the present invention is preferably weakly acidic, neutral or basic when stored in a tin container or a container made of lining metal, and when applied on a metal member. Particularly when an acid is added as described above, the addition of a pH adjuster is preferred.
  • the coating agent according to the present invention can appropriately contain an acid or a base in order to improve the dispersibility of the solid component contained therein and to improve the storage stability. Further, in some cases, pigments, dyes, storage stability and the like can be included. Production of photocatalytic hydrophilic coating
  • Substrates to which the coating agent according to the present invention is applied include glass, ceramics, metals and the like. There are many kinds of glass, such as soda lime glass, quartz glass, non-alkali glass, low expansion glass, and crystal glass. When the base material is ceramics, it is preferable to apply it to those with a glaze layer such as glazed tiles.
  • the base material may be: vehicle window glass, general building window glass, skylight, bay window, fixed window, power window, top light, vehicle mirror First, mirrors such as bathroom mirrors, cameras, sensors, cover glasses such as solar cells, and lighting equipment such as fluorescent lamps and light bulbs.
  • the application of the coating agent according to the present invention to these substrates may be appropriately selected. Examples thereof include spray coating, dip coating, and flow coating. A method such as a spin coating method, a spin coating method, a roll coating method, brush coating, and sponge coating can be suitably used. The application amount may be appropriately determined according to the concentration of the coating agent.
  • the substrate After applying the coating agent according to the present invention to a substrate, the substrate is converted to a precursor having a siloxane bond, which can be converted into amorphous titania precursor crystalline titania and further converted into a compound having a siloxane bond.
  • the substrate is heated, optionally after drying. That is, at the same time as the amorphous titanium precursor is crystallized, the film having the siloxane bond (preferably, no silica or silicone) adheres to the substrate while taking in the crystalline silicic force.
  • the heating temperature may be appropriately determined within a range in which the coating agent can be fixed, but is generally from 20 to 100 ° C, and preferably has a lower limit of 400 ° C. The upper limit is 800. C, more preferably 600 ° C.
  • the heating is performed at a temperature that does not cause the substrate to be heated. Heat may be applied to fix the coating agent while deforming the substrate.
  • the temperature is preferably changed to 400 ° C. to 600 ° C.
  • Quartz glass can be heat-treated at a high temperature because it does not thermally deform even at temperatures exceeding 600 ° C.
  • the use of quartz glass makes it possible to obtain a dense and highly wear-resistant film. Is advantageous.
  • sodium diffusion prevention ihii is provided on the base material, Further, it is preferable to apply a coating agent thereon.
  • sodium ions migrate from the substrate to the coating layer during heating, they inhibit the formation of crystalline titania. This reduction can be effectively prevented by the sodium diffusion preventing layer.
  • This diffusion prevention layer is preferably formed of silica.
  • the substrate surface to which the coating agent according to the present invention is applied and which is fixed by heating becomes highly hydrophilic.
  • This ⁇ property is thought to be due to the photocatalytic action of titania. In other words, it is a property that develops hydrophilicity in response to light and force light excitation.
  • titania is photo-excited by ultraviolet light, water is hydroxylated by photocatalysis.
  • the hydrophilic hydrophilicity is excited by a light source having energy equal to or more than the band gap of the photocatalyst, it is preferable that the anatase titania is photoexcited with ultraviolet rays having a wavelength of 387 nm or less and the rutile titania is 413 nm or less.
  • a suitable ultraviolet light source therefor an indoor lighting such as a fluorescent lamp, an incandescent lamp, a metal halide lamp, and a mercury lamp can be used.
  • the substrate outside is excitated by ultraviolet rays contained in sunlight.
  • the hydrophilized germs have a surface contact angle with water of less than about 10 °, preferably less than about 5 °, especially about 0 °.
  • water can be converted into water within a few days until the contact angle with water becomes approximately 0 °. Since the illuminance of the free Murrell ultraviolet sunlight is about 0. l ⁇ l mWZcffl 2, can be super-hydrophilic surface a more short time if Sarase to sunlight.
  • the dirt component adhering to the substrate surface can be easily removed by flowing water. Due to this property, it is installed outdoors The resulting substrate has the advantageous property of self-cleaning (self-cleaning) due to rainfall.
  • the surface of the substrate obtained by the coating agent of the present invention is once highly hydrophilized, and then its hydrophilicity is maintained for a long time even under light shielding or at night. Furthermore, even if the hydrophilic property is lost, the hydrophilic property is restored each time the sheet is exposed to sunlight again.
  • T i 0 titanium alkoxide solution for 2 film manufactured by Nippon Soda Co., Ltd.: NTD 9 0, a solid part concentration of 5%
  • acetic acid Echiru and ethanol 1 diluted to a solid concentration of 0.6% in 1 solvent .
  • T i 0 2 sol and silicon alkoxide hydrolyzate A coating agent for forming a T i 0 2 film mixed at a ratio of 0:20 (manufactured by Ishihara Sangyo Co., Ltd .: ST-K 01, solid component) (Concentration 10%) was diluted to a solid concentration of 0.6% with a 1: 1 solvent of ethyl acetate and ethanol.
  • the form concentration (10%) was diluted to a solid concentration of 0.6% with a 1: 1 solvent of ethyl acetate and ethanol.
  • an intermediate layer serving as an alkali ion diffusion preventing layer was formed as follows. Coating solution 1 was applied to the surface of a 2 mm thick soda lime glass, and then dried for 10 minutes in a dryer at 120 ° C.
  • the coating liquid 2 and the coating liquid 3 were mixed at 90:10 and stirred to obtain a hydrophilic film forming coating agent.
  • Example 1 After taking out from the dryer and returning to room temperature, apply a hydrophilic film-forming coating agent to the substrate by the same flow coating method, apply the same procedure as above, and then heat at 550 ° C for 30 minutes. By the treatment, the superconductive film of Example 1 was obtained.
  • aqueous fiber coatings of Examples 2 and 3 were obtained in the same manner as in Example 1 except that the mixing ratio of the coating liquid 2 and the coating liquid 3 was changed as described in the table below.
  • a superhydrophilic film was obtained in the same manner as in Example 1 except that the coating liquid 3 was used instead of the coating liquid 3, and the ratio was further changed to 70:30.
  • the sample After attaching oleic acid to the sample surface, it was washed with a neutral detergent and dried. Thereafter, the sample was irradiated with a black light blue lamp (20 W, manufactured by Sankyo Electric) from a distance of 10 cm, and after 4 hours, the contact angle of the water droplet was determined. The contact angle was evaluated according to the following criteria.
  • Evaluation A Contact angle is less than 8 °
  • Evaluation B Contact angle is 8 ° or more and less than 15 °
  • Evaluation C Contact angle is 15 ° or more and less than 25 °
  • Evaluation D Contact angle 25.
  • Evaluation 2 Maintenance of hydrophilicity in a dark place
  • oleic acid was adhered to the sample surface, washed with a neutral detergent, and dried. Thereafter, the sample was irradiated with a black light pull lamp (20 W, Sankyo Denki) from a distance of 10 cm for 4 hours.
  • the surface of the sample was soaked in a neutral detergent in a sponge scourer and rubbed back and forth 20 times. Then, after washing with water and drying, the degree of damage on the surface was visually observed. The results were evaluated according to the following criteria.
  • Evaluation D Numerous damages were observed.
  • Evaluation 4 Durability test
  • a sunshine weather meter test as specified in JISA-14 was performed, and the recovery of hydrophilicity of the sample was examined every 100 hours. Specifically, the sample was irradiated with a black light single lamp (20 W, manufactured by Sankyo Denki) from a distance of 10 cm for one day, and the contact angle after that was measured. Then, evaluate the contact angle according to the same criteria as in Evaluation 1. / 00S82
  • Coating agent composition parts by weight
  • Mixing ratio weight ratio
  • Non-crystalline crystalline silica Crystalline titania Crystalline titania Equivalent weight of silica in silica precursor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Abstract

A coating material capable of forming a photocatalytic hydrophilic film which is satisfactory in durability, hardness, transparency, and visible light transmittance and retains hydrophilicity for long even when shaded from light. The coating material comprises an amorphous titania precursor, crystalline titania, and a precursor capable of being converted to a compound having a siloxane bond.

Description

明 細 書 媒性親水被膜形成用のコ一ティング剤、 光 性親水被膜の 形成方法、 および光羅性親水部材  Description Coating agent for forming hydrophilic hydrophilic film, method for forming optical hydrophilic film, and luminescent hydrophilic member
[発明の背景] [Background of the Invention]
発明の分野  Field of the invention
本発明は、 光触媒體水被膜を形成する技術に関し、 詳細には光腿性 被 膜を形成可能なコーティング剤、 それを用いた光触媒性親水皮膜の形成方法、 そ れによって得られた^ *媒性親水部材に関する。  The present invention relates to a technology for forming a photocatalyst water film, and more particularly, to a coating agent capable of forming a photocatalytic film, a method for forming a photocatalytic hydrophilic film using the same, and a ^ * medium obtained by the method. The present invention relates to a hydrophilic hydrophilic member.
背景技術  Background art
P C T/WO 9 6 /2 9 3 7 5号公報には、 基材表面に形成された光触媒含有 層表面が、光触媒の «I起に応じて、 高度の «性 (例えば、 水との接触角に換 算して 1 0 ° 以下) を呈することを開示している。 この性質を利用して、 ガラス、 レンズ、 鏡等の透明部材の防曇'視界確保性向上、 物品表面の水洗浄性 ·降雨洗 浄性向上等を図ることが出来るとされている。  PCT / WO966 / 93375 discloses that the surface of a photocatalyst-containing layer formed on the surface of a substrate has a high degree of «property (for example, a contact angle with water) according to the« I of the photocatalyst. (Less than 10 °). By utilizing this property, it is said that it is possible to improve the anti-fogging property of transparent members such as glass, lenses, mirrors, etc., and to improve the water-washing property and rain-washing property of the article surface.
このような光 «某の機能を利用した機肯 材料の製造は、光,またはその前 駆体を含んだ塗工液を用意し、 それを塗布し、 乾燥または焼結させることで行わ れていた。 例えば、 チタンアルコキシドとアルコールアミン類とから調製された チタニアゾル、 または T i 02、 Z n 0、 S r T i 03等の粒子を水系の溶媒に分 散させて調製したゾルを基材表面に塗布し、 !^または焼結させることで製造さ れている。 具体的には、 出発原料として、 チタンアルコキシドを用いる、 The production of organic materials using such a light-based function is performed by preparing a coating liquid containing light or its precursor, applying the coating liquid, and drying or sintering the coating liquid. Was. For example, a titania sol prepared from titanium alkoxide and alcohol amines or T i 0 2, Z n 0 , S r T i 0 3 , etc. sol substrate surface the particles prepared by distributed in an aqueous solvent of, Apply to! It is manufactured by sintering. Specifically, a titanium alkoxide is used as a starting material,
T i 02ゾルを用いる、 T i 02ゾルと S i 02ゾルとを用いる、 T i 02ゾルと二 官能シリコーンとを用いる、 T i 02ゾルと三官能シリコーンを用いる、 などの 方法がある。 また、 特開平 9一 2 4 8 4 6 7号には、 チタンアルコキシドと T i 02ゾルと を用いる方法が記載されている。 Using T i 0 2 sol using a T i 0 2 sol and S i 0 2 sol using a T i 0 2 sol and difunctional silicone, using a T i 0 2 sol and trifunctional silicone, such as There is a way. Further, in Japanese Laid-9 one 2 4 8 4 6 7 No., a method using a titanium alkoxide and T i 0 2 sol is described.
光触媒性親水被膜には一般に高い親水性とともに、 良好な耐久性、 膜硬度およ び透明度、 さらに高い可¾¾透過率などが求められる。  In general, a photocatalytic hydrophilic film is required to have not only high hydrophilicity but also good durability, film hardness and transparency, and high visible transmittance.
本発明者らの知る限りでは、 無^のチタニア前駆体と、 結晶性チタニアと、 シ口キサン結合を有する化合物に変換され得る前駆体との三種の混合物をコーテ ィング剤として利用する提案はなされていない。  To the knowledge of the present inventors, proposals have been made to use as a coating agent a three-component mixture of a non-titania precursor, crystalline titania, and a precursor that can be converted to a compound having a siloxane bond. Not.
[発明の概要] [Summary of the Invention]
本発明者らは、 今般、 無定型のチタニア前駆体と、 結晶性チタニアと、 シロキ サン結合を有する化合物に変換され得る前駆体との三種を少なくとも含んでなる コ一ティング剤によれば、 耐久性、膜硬度、透明度、 および可視光透過率が良好 で、 さらに遮光条件下にあっても 性を長時間維持する^ K被膜が実現できる との知見を得た。 本発明はかかる知見に基づくものである。  The present inventors have now found that a coating agent comprising at least three types of amorphous titania precursor, crystalline titania, and a precursor that can be converted into a compound having a siloxane bond, It was found that a ^ K coating with good properties, film hardness, transparency, and visible light transmittance, and that can maintain properties for a long time even under light-shielding conditions can be realized. The present invention is based on this finding.
従って、 本発明は、 耐久性、 膜硬度、 透明度、 および可視光透過率が良好で、 さらに遮光条件下にあつても親水性を長時間維持する親水 が実現できる光触 媒性親水被膜形成用のコ一ティング剤の提供をその目的としている。  Accordingly, the present invention is intended for forming a photocatalytic hydrophilic film having good durability, film hardness, transparency, and visible light transmittance, and realizing hydrophilicity that maintains hydrophilicity for a long time even under light shielding conditions. Its purpose is to provide a coating agent.
そして、 本発明による舰媒性親水被膜形成用のコーティング剤は、 無定型の チタニア前駆体と、 結晶性チタニアと、 シロキサン結合を有する化合物に変換さ れ得る前駆体とを少なくとも含んでなるものである。 明の具体的説明]  The coating agent for forming an amphiphilic hydrophilic film according to the present invention comprises at least an amorphous titania precursor, crystalline titania, and a precursor that can be converted into a compound having a siloxane bond. is there. Ming specific explanation]
コーティング剤  Coating agent
本発明によるコーティング剤を用いて製造された親水性 ¾ は、 耐久性、 膜硬 度、透明度、 および可視光透過率に優れる。 とりわけ、 耐久性に関して、 サンシ ャインウエザーメータ一試験 (S WM試験) と呼ばれる屋外耐久性の促進試験方 法) おいて、 長期間にわたりその親水性を維持する。 The hydrophilicity 製造 produced using the coating agent according to the present invention is excellent in durability, film hardness, transparency, and visible light transmittance. In particular, with regard to durability, Sanshi Maintain the hydrophilicity for a long period of time in the key weather meter test (SWM test).
本発明による光触媒性親水被膜形成用のコ一ティング剤は、 基本的に無定型の チタニア前駆体と、結晶性チタニアと、 シロキサン結合を有する化合物に変換さ れ得る前駆体とを含んでなる。  The coating agent for forming a photocatalytic hydrophilic film according to the present invention basically comprises an amorphous titania precursor, crystalline titania, and a precursor that can be converted into a compound having a siloxane bond.
チタンアルコキシドなどの無定型チタニア前駆体は、 熱処理を経て結晶化して 酸化チタンとなる。 この酸化チタンは、 光触媒性親水化を発現する作用の他に、 結晶性チタニアを取り込んで緻密で強固な被膜を形成するものと考えられる。 結 晶性チタニアは、 安定しかつ耐久性に優れた 媒性親水化能をもたらす。 シロ キサン結合を有する化合物に変換され得る前駆体は、 熱処理等によって無 ¾ hン リカとなり、 このシリカは、 遮光条件下にあっても酸ィ匕チタンが示す親水性を長 時間にわたり維持するよう作用する。 さらに、 シロキサン結合を有する化合物に 変換され得る前駆体は、 無 ¾¾チタニア前駆体と同時に加熱されると、 場合によ つて、 均質性の高い T i一 0— S i結合カ生じ、 T i 02の結晶化が抑制され、 ¾¾媒の光励起よる親水化性能を充分に発現することができないことが報告され ている (例えば、 「金属アルコキシドを用いる触媒調製、 アイピーシ一、 (1 9 9 3 ) 、 p 3 3 7」) 。 しかしながら、 本発明にあっては、 そのような弊害が無 く、 良好な■が実現できる。 さらに、 シロキサン結合を有する化合物に変換さ れ得る前駆体の存在により、 本発明によるコーティング剤によって得られた被膜 は、 無 ¾¾チタニア前駆体と結晶性チタニアとを用いた場合に比較して、 遮光条 件下にあっても親水性を長時間に渡り維持できる点、 および耐摩擦性の点で優れ る。 また、 本発明によるコーティング剤によって得られた被膜は、 無 ^チタ二 ァ前駆体と結晶性チタニアと結晶性シリカとを用いた場合に比較して、 耐摩擦性 において優れる。 ( a ) 結晶性チタニア Amorphous titania precursors such as titanium alkoxide are crystallized through heat treatment to form titanium oxide. This titanium oxide is considered to form a dense and strong film by incorporating crystalline titania in addition to the action of exhibiting photocatalytic hydrophilicity. Crystalline titania provides stable and durable hydrophilic hydrophilicity. The precursor that can be converted into a compound having a siloxane bond becomes non-hydrogen by heat treatment or the like, and this silica maintains the hydrophilicity of titanium oxide for a long time even under light-shielding conditions. Works. In addition, precursors that can be converted to compounds having siloxane bonds, if heated simultaneously with the titania-free precursor, may, in some cases, result in highly homogenous T i 0—S i bond bonds, and T i 0 It has been reported that the crystallization of No. 2 is suppressed and the hydrophilization performance by the photoexcitation of the solvent cannot be sufficiently exhibited (for example, “Catalyst preparation using metal alkoxide, IPC, (1993) , P3 3 7 ”). However, in the present invention, there is no such adverse effect, and a good quality can be realized. Furthermore, due to the presence of the precursor that can be converted into a compound having a siloxane bond, the coating film obtained by the coating agent according to the present invention is light-shielded as compared with the case where a titania-free precursor and crystalline titania are used. It is excellent in that hydrophilicity can be maintained for a long time even under the conditions, and in friction resistance. Further, the coating film obtained by the coating agent according to the present invention is superior in the rub resistance as compared with the case where the non-titanium precursor, crystalline titania and crystalline silica are used. (a) crystalline titania
本発明において用いられる結晶性チタニアは、 アナターゼ、 ルチル、 ブルッカ ィトのいずれの結晶系のものでもあってもよい。 本発明において、 結晶性チタ二 ァは、 溶液中で沈殿せず安定な系としてコ一ティング剤に添加されること力好ま しく、 例えばチタニア微粒子を溶媒中に縣濁分散した T i 02ゾルが好ましい。 このようなゾルは市場において容易に入手可能である。 The crystalline titania used in the present invention may be any of the crystalline systems of anatase, rutile and brookite. In the present invention, crystalline titanium two § is laid force reluctant to be added to the co-one coating agent as stable system not precipitate in the solution, for example, T i 0 2 sol suspension dispersed titania microparticles in the solvent Is preferred. Such sols are readily available on the market.
本発明の好ましい態様によれば、 T i 02ゾルの平均粒子径は 5 0 n m以下で あることが好ましく、 より好ましくは 5〜1 O n m程度である。 このような平均 粒子系を有するゾルを用いることで、 コーティング剤中で結晶性チタニアを安定 に分散させることができ、 さらに被膜の可視光透過率が向上する点でも有利であ 。 According to a preferred embodiment of the present invention, preferably has an average particle size of T i 0 2 sol is 5 0 nm or less, more preferably about 5 to 1 O nm. Use of a sol having such an average particle system is advantageous in that crystalline titania can be stably dispersed in the coating agent, and that the visible light transmittance of the coating film is improved.
また本発明の別の好ましい態様によれば、 T i 02ゾルとして、 粒径分布の広 いもの、 または複数の平均粒径ピークをもつものを用いることが、 耐摩耗性が良 好な被膜を形成できることから有利であることがある。 According to another preferred embodiment of the present invention, as T i 0 2 sol, wide casting of the particle size distribution or average be used those having a particle size peak, wear resistance good good coating, May be advantageous because they can form
ゾルの平均粒子径は、 X線回折により求めることができる。  The average particle size of the sol can be determined by X-ray diffraction.
(b ) 無定型チタニア前駆体  (b) Amorphous titania precursor
本発明における無定形チタニアの前駆体とは、 加熱によって結晶性チタニアを 形成しうるものを意味し、 具体的にはチタンのアルコキシド、 キレート、 または アセテートのような有機チタン化合物、 または TiCl 4または Ti (S04 ) 2のような無 機チタン化合物を意味する。 さらにチタンアルコキシドには、 例えば、 テトラエ トキシチタン、 テトライソプロポキシチタン、 テトラ n—プロポキシチタン、 テ トラブトキシチタン、 テトラメ トキシチタンなどが含まれる。 さらに、 それらに 塩酸またはェチルァミンのような加水分解抑制剤を添加し、 エタノールやプロパ ノールのようなアルコールで希釈した後、 部分的に加水分解を進行させながらま たは完全に加水分解を進行させた (部分) 加水分解物を得ることが出来、 これら も本発明にあっては無定型チ夕二ァ前駆体として利用可能である。 The precursor of amorphous titania in the present invention means a substance capable of forming crystalline titania by heating, and specifically, an organic titanium compound such as alkoxide, chelate or acetate of titanium, or TiCl 4 or Ti (S0 4) means a non-machine titanium compounds such as 2. Further, the titanium alkoxide includes, for example, tetraethoxytitanium, tetraisopropoxytitanium, tetran-propoxytitanium, tetrabutoxytitanium, tetramethoxytitanium and the like. Furthermore, a hydrolysis inhibitor such as hydrochloric acid or ethylamine is added to them, and after dilution with an alcohol such as ethanol or propanol, the hydrolysis is allowed to proceed partially or completely. (Partial) hydrolyzate can be obtained Also, in the present invention, it can be used as an amorphous titanium precursor.
本発明の好ましい態様によれば、 結晶性チタニア量が、 全酸化チタン量は 6重 量%以上であること力好ましく、 より好ましくは 8重量%以上であり、 また 4 5 以下であること力好ましい。 さらに、 別の本発明の好ましい態様によれば、 結晶性チタニア含量が、 コーティング剤中の全固形分量の 6重量%以上であり、 4 0重量%以下であることが好まし L、。  According to a preferred embodiment of the present invention, the amount of crystalline titania is preferably such that the total amount of titanium oxide is 6% by weight or more, more preferably 8% by weight or more, and preferably 45% or less. . Further, according to another preferred embodiment of the present invention, the crystalline titania content is preferably 6% by weight or more and 40% by weight or less of the total solid content in the coating agent.
( c ) シロキサン結合を有する化合物に変換され得る前駆体  (c) a precursor that can be converted into a compound having a siloxane bond
本発明において、 「シロキサン結合を有する化合物に変換され得る前駆体」 と は、 好ましくは、 その膜ィ匕により無定型シリカまたはシリコーンを形成し得るも のを意味する。 ここで、 前記前駆体の膜化とは、 まず、 加熱または匪の作用に より、 加水分解反応、 縮重合反応などが生じ、 無定型シリカまたはシリコーンの 膜が形成されることを意味する。 これに加えて、 前駆体の膜化とは、 この前駆体 を含むコーティング剤力基材に適用され、 その後溶媒成分が除かれたとき、 無定 型シリカの膜を形成することをも意味する。  In the present invention, the “precursor that can be converted into a compound having a siloxane bond” preferably means a substance capable of forming amorphous silica or silicone by film formation. Here, the formation of the precursor into a film means that a hydrolysis reaction, a condensation polymerization reaction, or the like is caused by the action of heating or bandaging, and an amorphous silica or silicone film is formed. In addition, film formation of the precursor also means that when applied to a substrate containing a coating agent containing the precursor and then the solvent component is removed, an amorphous silica film is formed. .
本発明の好ましい態様によれば、 シロキサン結合を有する化合物に変換され得 る前駆体の好ましい例としては、 加熱により無定型シリカとなりうるシリ力前駆 体、 その加水分解物、 その部分加水分解物、 その加水分解縮重合物、 その部分加 水分解縮重合物、 またはそれらの混合物が挙げられる。  According to a preferred embodiment of the present invention, preferred examples of the precursor that can be converted into a compound having a siloxane bond include a silicic acid precursor that can be converted into amorphous silica by heating, a hydrolyzate thereof, a partial hydrolyzate thereof, The hydrolyzed polycondensate, the partially hydrolyzed polycondensate, or a mixture thereof is exemplified.
加熱により無定型シリカとなりうるシリカ前駆体の具体例としては下記の一般 式で表される加水分解性シラン誘導体が挙げられる。  Specific examples of the silica precursor that can be converted to amorphous silica by heating include a hydrolyzable silane derivative represented by the following general formula.
R p S 1 4 - p  R p S 1 4-p
(式中、  (Where
Rは、 水素原子および有機基からなる群より一種または二種以上選択されるも のであり、  R is one or more selected from the group consisting of a hydrogen atom and an organic group,
Xはアルコキシ基およびノヽロゲン原子からなる群より一種または二種以上選択 されるものであり、 pは 1または 2である) X is one or more selected from the group consisting of an alkoxy group and a nitrogen atom Where p is 1 or 2)
ここで、 Rが表す有機基とは、 アルキル (より好ましくは炭素数 1〜1 8の非 置換アルキル、 最も好ましくは炭素数 3〜1 8のアルキルである) またはァリー ル (好ましくは、 フヱニルである) を意味する。  Here, the organic group represented by R is alkyl (more preferably unsubstituted alkyl having 1 to 18 carbon atoms, most preferably alkyl having 3 to 18 carbon atoms) or aryl (preferably phenyl). Means).
上記加水分解性シラン誘導体の好ましい具体例としては、 メチルトリメ トキシ シラン、 メチルトリエトキシシラン、 メチルトリプロボキシシラン、 メチルトリ ブトキシシラン、 ェチルトリメ トキシシラン、 ェチルトリエトキシシラン、 ェチ ルトリプロボキシシラン、 ェチルトリブトキシシラン、 フエニルトリメ トキシシ ラン、 フエニルトリエトキシシラン、 フエニルトリプロボキシシラン、 フエニル トリブトキシシラン、 ジメチルジメ トキシシラン、 ジメチルジェトキシシラン、 ジメチルジプロボキシシラン、 ジメチルジプトキシシラン、 ジェチルジメ トキシ シラン、 ジェチルジェトキシシラン、 ジェチルジプロポキシシラン、 ジェチルジ ブトキシシラン、 フエ二ルメチルジメ トキシシラン、 フエ二ルメチルジェトキシ シラン、 フヱニルメチルジプロボキシシラン、 フヱニルメチルジブトキシシラン、 n—プロビルトリメ トキシシラン、 n—プロピルトリエトキシシラン、 n—プロ ピルトリプロボキシシラン、 n—プロピルトリブトキシシラン、 7—グリシドキ シプロビルトリメ トキシシラン、 ァーメタクリロキシプロビルトリメ トキシシラ ン、 3—クロ口プロビルトリメ トキシシラン、 ォクタデシルトリエトキシシラン、 ビニルトリエトキンシラン、 ァ一ァミノプロビルト リメ トキシシラン、 N— )3 Preferred specific examples of the hydrolyzable silane derivative include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, and ethyl tilt. Ributoxy silane, phenyl trimethoxy silane, phenyl triethoxy silane, phenyl tripropoxy silane, phenyl tributoxy silane, dimethyl dimethoxy silane, dimethyl ethoxy silane, dimethyl dipropoxy silane, dimethyl diptoxy silane, getyl dimethoxy silane, ge Tiljetoxysilane, getyldipropoxysilane, getyldibutoxysilane, phenylmethyldimethoxysilane, phenylmethyljet Silane, phenylmethyldipropoxysilane, phenylmethyldibutoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltripropoxysilane, n-propyltributoxysilane, 7- Glycidoxypropyltrimethoxysilane, α-methacryloxypropyltrimethoxysilane, 3-chloro mouth propyltrimethoxysilane, octadecyltriethoxysilane, vinyltriethoxyquinsilane, vinylaminopropyl trimethoxysilane, N—) 3
(アミノエチル) ァ一ァミノプロビルトリメ トキシシラン、 ァ一メルカプトプロ ビルトリメ トキシシラン、 β— ( 3, 4エポキシシクロへキシル) ェチルトリメ トキシシラン等が挙げられる。 (Aminoethyl) aminaminopropyl trimethoxysilane, amercaptopropyl trimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane and the like.
また、 本発明における別の好ましい、 加熱により無定型シリカとなりうるシリ 力前駆体としては、 上記の加水分解性シラン誘導体の部分加水分解および Sfck縮 重合、 または上記加水分解性シラン誘導体の部分加水分解物と、 テトラメ トキシ シラン、 テトラエトキシシラン、 テトラプロボキシシラン、 テトラブトキシシラ ン、 ジェトキシジメ トシシラン等の部分加水分解物との脱水縮重合により調製し たものを利用することができる。 Further, another preferred silicic acid precursor which can be converted into amorphous silica by heating in the present invention includes partial hydrolysis and Sfck condensation polymerization of the above hydrolyzable silane derivative, or partial hydrolysis of the above hydrolyzable silane derivative. Object and tetramethoxy It is possible to use those prepared by dehydration-condensation polymerization with a partial hydrolyzate such as silane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, or ethoxydimethoxysilane.
上記の部分的に加水分解 ·脱水縮重合によりえられるシロキサンは下記の平均 式で表されるものである。  The siloxane obtained by the partial hydrolysis / dehydration condensation polymerization is represented by the following average formula.
平均組成式: R p S 1 Xq O ( 4-p-q) /2  Average composition formula: R p S 1 Xq O (4-p-q) / 2
(式中、  (Where
Rは、 上で定義したとおりであり、  R is as defined above,
Xはアルコキシ基およびヽ口ゲン原子からなる群より一種または二種以±¾択 されるものであり、  X is one or two or more selected from the group consisting of an alkoxy group and a halogen atom;
Pは 0 < p < 2を、 qは 0く qく 4をそれぞれ満足する数である)  P is a number that satisfies 0 <p <2, and q is a number that satisfies 0, q, and 4.
また、 本発明における別の好ましい、 加熱により無 ¾ シリカとなりうるシリ 力前駆体としては下記の"^式で表される四官能加水分解性シラン誘導体力 <挙げ れる  Further, another preferred silicic acid precursor which can be converted into silica by heating in the present invention is a tetrafunctional hydrolyzable silane derivative represented by the following formula (^).
S i X4 S i X 4
(式中、  (Where
Xはアルコキシ基および ロゲン原子からなる群から一種または二種以上選択 されるものである)  X is one or more selected from the group consisting of an alkoxy group and a halogen atom)
上記四官能加水分解性シラン誘導体の好ましい具体例としては、 テトラメトキ シシラン、 テトラエトキシシラン、 テトラプロボキシシラン、 テトラブトキシシ ラン、 ジェトキシジメ トキシシラン、 テトラクロロシラン、 テトラブロモシラン、 シラノール、 ジメ トキシジエトキシシラン等があげられる。  Preferred specific examples of the tetrafunctional hydrolyzable silane derivative include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, ethoxydimethoxysilane, tetrachlorosilane, tetrabromosilane, silanol, dimethoxydiethoxysilane and the like. Is raised.
また、 本発明における別の好ましい、 加熱により無^シリカとなりうるシリ 力前駆体としては、 上記の四官能加水分解制シラン誘導体の加水分解および脱水 縮重合物および部分加水分解および脱水縮重合物をあげることができる。 上記の部分的に加水分解 '脱水縮重合によつてえられるシリゲートは下記の平 均組成式で表されるものである。 Further, other preferred silicic acid precursors which can be converted to silica-free by heating in the present invention include the above-mentioned hydrolysis and dehydration-condensation polymers and partial hydrolysis and dehydration-condensation polymers of the above-mentioned tetrafunctional hydrolyzable silane derivatives. I can give it. The silicate obtained by the above partial hydrolysis / dehydration polycondensation is represented by the following average composition formula.
S i Xq O < 4 - q ) /2 S i X q O <4-q) / 2
(式中、  (Where
Xはアルコキシ基およびハロゲン原子からなる群より一種または二種以 ±ϋ択 されるものであり、  X is one or two or more selected from the group consisting of an alkoxy group and a halogen atom;
qは 0く qく 4を満足する数である)  q is a number that satisfies 0 x q x 4)
本発明の好ましい態様によれば、 シロキサン結合を有する化合物に変換され得 る前駆体中の S i 02の換算重量は、 前記無定型チタニア前駆体中の T i 02の換 算重量の 5 0 %以下であること力く好ましい。 According to a preferred embodiment of the present invention, in terms of the weight of the S i 0 2 of the compound precursor that could be converted to compounds having a siloxane bond, wherein the conversion calculated weight of T i 0 2 of amorphous titania precursor 5 It is strongly preferable that it is 0% or less.
本発明の好ましい態様によれば、 シリ力前駆体から形成されるシロキサン結合 を有する化合物は、 屈折率の小さなものであることが好ましい。 透明基材の場 合には の少ないかつ可視光透過率の高 Lヽ 得られ、 反射体の場合には二重 像を小さくすることができる点で有利である。  According to a preferred embodiment of the present invention, the compound having a siloxane bond formed from the silicic acid precursor preferably has a small refractive index. In the case of a transparent substrate, it is advantageous in that a small amount and a high L value of visible light transmittance can be obtained, and in the case of a reflector, a double image can be reduced.
( d) その他の成分  (d) Other ingredients
本発明の好ましい態様によれば、 上記結晶性チタニア、 無定型チタニア前駆体、 およびシロキサン結合を有する化合物に変換され得る前駆体は、 溶媒に分散され てコーティング剤とされること力好ましい。 溶媒の具体例としては、 メタノール、 エタノール、 i-プロパノール、 n -プロパノール、 i-プタノ一ノレ、 n-プタノールな どのアルコール、 酢酸メチル、 酢酸ェチル、 プロピオン酸メチル、 プロピオン酸 ェチルなどのエステル系化合物が挙げられる。 結晶性チタニア、 無 ¾ϋチタニア 前駆体、 および無定型チタニアがゾルなどの形態として分散されている場合、 そ の溶媒が他の成分の溶媒としても機能してもよいことは無論である。  According to a preferred embodiment of the present invention, the crystalline titania, the amorphous titania precursor, and the precursor that can be converted into a compound having a siloxane bond are preferably dispersed in a solvent to form a coating agent. Specific examples of solvents include alcohols such as methanol, ethanol, i-propanol, n-propanol, i-ptanol, n-ptanol, and ester compounds such as methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate. Is mentioned. When crystalline titania, non-titania precursor, and amorphous titania are dispersed in a form such as a sol, it is a matter of course that the solvent may also function as a solvent for other components.
本発明の別の好ましい態様によれば、 本発明によるコーティング剤は、 上記成 分に加えて、 界面活性剤、 酸、 加水分解醒、 重合硬化触媒、 レべリング剤、 抗 菌性金属、 白金族金属、 pH調整剤などを含むことができる。 According to another preferred embodiment of the present invention, the coating agent according to the present invention further comprises, in addition to the above components, a surfactant, an acid, a hydrolysis initiator, a polymerization curing catalyst, a leveling agent, Bacterial metals, platinum group metals, pH adjusters and the like can be included.
界面活性剤の添加によって、 本発明による組成物を部材の表面に均質に適用で きるとの利点が得られる。 本発明の好ましい態様において、 界面活性剤は、 光触 媒粒子 1重量部に対して、 1 0重量部未満、 より好ましくは、 0. l〜2 fi*部 程度添加される。 界面活性剤の例としては、 スルホン酸ポリォキシェチレンアル キルフェニルエーテルァンモニゥム塩、 スルホン酸ポリォキシェチレンアルキル フエニルエーテルナトリウム塩、 脂肪酸ナトリウムセッゲン、 脂肪酸カリセッケ ン、 ジォクチルスルホコハク酸ナトリウム、 アルキルサルフェート、 アルキルェ 一テルサルフヱート、 アルキルサルフヱートソーダ塩、 アルキルエーテルサルフ エートソ一ダ塩、 ポリオキシエチレンアルキルエーテルサルフヱ一ト、 ポリオキ シエチレンアルキルエーテルサルフエ一トソーダ塩、 アルキルサルフエ一ト T E The addition of a surfactant offers the advantage that the composition according to the invention can be applied homogeneously to the surface of the component. In a preferred embodiment of the present invention, the surfactant is added in an amount of less than 10 parts by weight, more preferably about 0.1 to 2 fi * parts, per 1 part by weight of the photocatalyst particles. Examples of the surfactant include polyoxyethylene alkyl phenyl sulfonate ammonium sulfonate, sodium polyoxyalkylene phenyl phenyl ether sulfonate, sodium salt of fatty acid, sodium sagegen, Sodium octyl sulfosuccinate, alkyl sulfate, alkyl ether sulfate, alkyl sulfate soda salt, alkyl ether sulfate sodium salt, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl ether sulfate sodium salt, Alkyl sulfate TE
A塩、 ポリオキシエチレンアルキルエーテルサルフェート T E A塩、 2—ェチル へキシルアルキル硫酸エステルナトリゥム塩、 ァシルメチルタウリン酸ナトリゥ ム、 ラウロイルメチルタウリン酸ナトリウム、 ドデルシルベンゼンスルホン酸ナ トリウム、 スルホコハク酸ラウリル 2ナトリウム、 ポリオキシエチレンスルホコ ハク酸ラウリル 2ナトリウム、 ポリカルボン酸、 ォレオイルザルコシン、 アミ ド エーテルサルフェート、 ラウロイルザルコシネート、 スルホ F Aエステルナトリ ゥム塩等のァニォン性界面活性剤;ポリォキシェチレンラウリルエーテル、 ポリ ォキシエチレントリデシルエーテル、 ポリオキシエチレンセチルェ一テル、 ポリ ォキシエチレンステアリルエーテル、 ポリオキシエチレンォレイルエーテル、 ポ リオキシエチレンアルキルエーテル、 ポリオキシエチレンアルキルエステル、 ポ リオキシエチレンアルキルフエノールエーテル、 ポリオキシエチレンノニルフエ ニルエーテル、 ポリオキシエチレンォクチルフヱニルエーテル、 ポリオキシェチ レンラウラート、 ポリオキシエチレンステアレート、 ポリオキシエチレンアルキ ルフヱニルエーテル、 ポリオキシエチレンォレエート、 ソルビタンアルキルエス テル、 ポリオキシエチレンソルビタンアルキルエステル、 ポリエーテル変性シリ コーン、 ポリエステル変性シリコーン、 ソルビタンラウラート、 ソルビタンステ ァレート、 ソルビタンパルミテート、 ソルビタンォレエ一ト、 A salt, TEA salt of polyoxyethylene alkyl ether sulfate, sodium salt of 2-ethylhexyl alkyl sulfate, sodium sodium acylmethyltaurate, sodium lauroylmethyltaurate, sodium dodelsylbenzenesulfonate, sulfosuccinic acid Anionic surfactants such as disodium lauryl, disodium lauryl polyoxyethylene sulfosuccinate, polycarboxylic acid, oleoyl sarcosine, amide ether sulfate, lauroyl sarcosinate, sulfo FA ester sodium salt and the like; Polyoxyethylene lauryl ether, Polyoxyethylene tridecyl ether, Polyoxyethylene cetyl ether, Polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, Polyoxye Tylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene alkyl phenol ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene laurate, polyoxyethylene stearate, polyoxyethylene alkyl Nyl ether, polyoxyethylene oleate, sorbitan alkyles Ter, polyoxyethylene sorbitan alkyl ester, polyether modified silicone, polyester modified silicone, sorbitan laurate, sorbitan stearate, sorbitan palmitate, sorbitan oleate,
ソルビタンセスキォレエート、 ポリオキシエチレンソルビタンラウラート、 ポリ ォキシエレチンソルビタンステアレート、 ポリオキシェチレンソルビタンパルミ テート、 ポリオキシエチレンソルビタンォレエ一ト、 グリセ口一ルステアレート、 ポリグリセリン脂肪酸エステル、 アルキルアルキ口一ルァミ ド、 ラウリン酸ジェ タノールアミ ド、 ォレイン酸ジエタノールアミ ド、 ォキシエチレンドデシルアミ ン、 ポリオキシエチレンドデシルァミン、 ポリオキシエチレンアルキルァミン、 ポリオキシエチレンォクタデシルアミン、 ポリオキシエチレンアルキルプロピレ ンジァミン、 ポリオキシエチレンォキシプロピレンブロックポリマー、 ポリオキ シエチレンステアレート等のノニオン性界面活性剤; ジメチルアルキルべタイン、 アルキルグリシン、 アミ ドべタイン、 イミダゾリン等の両性界面活性剤、 ォクタ デシルジメチルベンジルアンモニゥムクロライド、 アルキルジメチルベンジルァ ンモニゥムクロライ ド、 テトラデシルジメチルベンジルアンモニゥムクロライド、 ジォレイルジメチルアンモニゥムクロライ ド、 1—ヒドロキシェチル一 2—アル キルイミダゾリン 4級塩、 アルキルイソキノリニゥムブ口マイド、 高分子アミン、 ォクタデシルトリメチルアンモニゥムクロライド、 アルキルトリメチルアンモニ ゥムクロライド、 ドデシルトリメチルアンモニゥムクロライド、 へキサデシルト リメチルアンモニゥ厶クロライド、 ベへニルトリメチルアンモニゥムクロライド、 アルキルィミダゾリン 4級塩、 ジアルキルジメチルアンモニゥムクロライド、 ォ クタデシルァミン酢酸塩、 テトラデシルァミン酢酸塩、 アルキルプロピレンジァ ミン酢酸塩、 ジデシルジメチルアンモニゥムクロライド等のカチオン性界面活性 剤等が挙げられる。 Sorbitan sesquioleate, polyoxyethylene sorbitan laurate, polyoxyeletin sorbitan stearate, polyoxyethylene sorbitan palmitate, polyoxyethylene sorbitan oleate, glycerol monostearate, polyglycerin fatty acid ester , Alkyl alkyl amide, ethanol laurate, diethanolamide oleate, oxyethylene dodecylamine, polyoxyethylene dodecylamine, polyoxyethylene alkylamine, polyoxyethylene octadecylamine, polyoxy Nonionic surfactants such as ethylene alkyl propylenediamine, polyoxyethylene oxypropylene block polymer, and polyoxyethylene stearate; dimethyl alkyl betaine Amphoteric surfactants such as alkyl glycine, amide betaine and imidazoline, octadecyldimethylbenzylammonium chloride, alkyldimethylbenzylammonium chloride, tetradecyldimethylbenzylammonium chloride, dioleyldimethyl Ammonium chloride, 1-hydroxyethyl 1-2-alkylimidazoline quaternary salt, alkyl isoquinolinium bromide, polymeric amine, octadecyltrimethylammonium chloride, alkyltrimethylammonium chloride, dodecyltrimethyl Ammonium chloride, hexadecyl trimethylammonium chloride, behenyltrimethylammonium chloride, alkylimidazoline quaternary salt, dialkyldimethylammonium chloride O Kutadeshiruamin acetate, tetradecyl § amine acetates, alkyl propylene diene § Min acetate, cationic surfactants such as didecyl dimethyl ammonium Niu skeleton ride, and the like.
本発明の好ましい態様によれば、 本発明によるコーティング剤は酸を含むこと ができる。 この酸の添加によって、 コーティ ング剤が適用された表面の極性が増 加し、 暗所においても良好な親水性を維持することができる。 酸の例としては、 表面への極性付与能力の大きな、 硝酸、 硫酸、 塩酸、 酢酸、 プロピオン酸、 マレ イン酸、 アジピン酸、 フマル酸、 フタル酸、 吉草酸、 乳酸、 酸、 クェン酸、 リ ンゴ酸、 ピクリン酸、 ギ酸、 炭酸、 フエノール等が挙げられる。 特に硝酸、 塩酸、 および硫酸が好ましい。 According to a preferred embodiment of the present invention, the coating agent according to the present invention comprises an acid Can be. The addition of the acid increases the polarity of the surface to which the coating agent is applied, and can maintain good hydrophilicity even in a dark place. Examples of the acid include nitric acid, sulfuric acid, hydrochloric acid, acetic acid, propionic acid, maleic acid, adipic acid, fumaric acid, phthalic acid, valeric acid, lactic acid, acid, citric acid, and liquor, which have a large ability to impart polarity to the surface. Examples thereof include carboxylic acid, picric acid, formic acid, carbonic acid, and phenol. Particularly, nitric acid, hydrochloric acid and sulfuric acid are preferred.
本発明の別の好ましい態様によれば、 本発明によるコーティ ング剤は、 シリ 力成分の加水分解触媒を含むことができる。 この,の存在によって、 前駆体と しての無定型シリカの加水分解が^!される。 好ましい触媒の例としては、 p H 2〜5の硝酸、 硫酸、 塩酸、 酢酸、 プロピオン酸、 マレイン酸、 アジピン酸、 フ マル酸、 フタル酸、 吉草酸、 乳酸、 酪酸、 クェン酸、 リンゴ酸、 ピクリン酸、 ギ 酸、 炭酸、 フエノール等が挙げられる。  According to another preferred embodiment of the present invention, the coating agent according to the present invention may include a catalyst for hydrolysis of a silylating component. Due to the presence of this, the hydrolysis of amorphous silica as a precursor is carried out. Examples of preferred catalysts include nitric acid, sulfuric acid, hydrochloric acid, acetic acid, propionic acid, maleic acid, adipic acid, fumaric acid, phthalic acid, valeric acid, lactic acid, butyric acid, citric acid, malic acid having a pH of 2 to 5, Picric acid, formic acid, carbonic acid, phenol and the like.
本発明の別の好ましい態様によれば、 無定型シリ力がシラノールである場合、 シラノールの重合硬ィ U¾媒を含んでなることができる。 この触媒の存在によつて、 シラノールの重合反応が促進される。 好ましい) ^の例としては、 アルミニウム キレート、 アルミニウムァセチルァセトナート、 過塩素酸アルミニウム、 塩ィ匕ァ ルミ二ゥム、 アルミニウムイソプトキシド、 アルミニウムイソプロボキシドのよ うなアルミニウム化合物;テトライソプロピルチタネート、 テトラプチルチタネ ートのようなチタン化合物;水酸化リチウム、 水酸化ナトリウム、 水酸化力リゥ ム、 ナ卜リゥムメチラ一卜、 酢酸ナトリゥム、 ギ酸ナトリゥ厶、 酢酸力リゥム、 ギ酸カリウム、 プロピオン酸カリウム、 テトラメチルアンモニゥムクロライド、 テトラメチルアンモニゥムヒドロキシドのような塩基性ィヒ合物類; n—へキシル ァミン、 トリプチルァミン、 ジァザビシクロゥンデセン、 ェチレンジァミン、 へ キサンジァミン、 ジエチレントリアミ ン、 テトラエチレンペンタミン、 トリェチ レンテトラミン、 エタノールアミン類、 7—アミノプロピル卜リメ トキシシラン、 ァーァミノプロピルメチルジメ トキシシラン、 7— (2—アミノエチル) 一アミ ノプロビルトリメ トキシシラン、 ァ一 (2—アミノエチル) 一ァミノプロピルメ チルジメ トキシシランののようなアミン化合物;錫ァセチルァセトナート、 ジブ チル錫ォクチレートのような錫化合物; コバルトォクチレート、 コバルトァセチ ルァセトナート、 鉄ァセチルァセトナー卜のような含金属化合物類; リン酸、 硝 酸、 フタル酸、 p—トルエンスルホン酸、 トリクロル酢酸ののような酸性ィ匕合物 類などが挙げられる。 According to another preferred embodiment of the present invention, when the amorphous silicic acid is a silanol, it can comprise a polymerized hardening medium of silanol. The presence of this catalyst promotes the polymerization reaction of silanol. Preferred examples of ^ include aluminum compounds such as aluminum chelates, aluminum acetylacetonate, aluminum perchlorate, aluminum chloride, aluminum isopoxide, and aluminum isopropoxide; tetraisopropyl titanate And titanium compounds such as tetrabutyl titanate; lithium hydroxide, sodium hydroxide, sodium hydroxide, sodium methylate, sodium acetate, sodium formate, sodium acetate, potassium formate, potassium propionate Basic compounds such as tetramethylammonium chloride and tetramethylammonium hydroxide; n-hexylamine, triptylamine, diazabicyclopentane, ethylenediamine, hexanediamine, diethylenetriamine Min, tetraethylenepentamine, triethylenetetramine, ethanolamines, 7-aminopropyltrimethoxysilane, Amine compounds such as aminopropylmethyldimethoxysilane, 7- (2-aminoethyl) -aminoaminotrimethoxysilane, alpha- (2-aminoethyl) aminopropylmethyldimethoxysilane; tin acetylacetonate, dibutyl Tin compounds such as tin octylate; metal-containing compounds such as cobalt octylate, cobalt acetylacetonate, iron acetyl acetate; phosphoric acid, nitric acid, phthalic acid, p-toluenesulfonic acid, trichloroacetic acid Examples of such acidic conjugates are given below.
また、 本発明の好ましい態様によれば、 本発明によるコ一ティ ング剤は、 部材 の表面に適用されたとき平滑な表面を形成できるよう、 レペリング剤を含んでな ることができる。 レべリング剤の添加は、 とりわけ大型の物品に本発明によるコ 一ティ ング剤を適用する場合に有利である。 レべリング剤の好ましい例としては、 ジアセトンアルコール、 エチレングリコールモノメチルエーテル、 4ーヒドロキ シ一 4ーメチルー 2—ペンタノン、 ジプロピレングリコール、 トリプロピレング リコール、 1—エトキシ一 2—プロパノール、 1一ブトキシ一 2—プロパノール、 プロピレングリコールモノメチルエーテル、 1—プロポキシ一 2—プロパノール、 ジプロピレングリコールモノメチルェ一テル、 ジプロピレングコリ一ルモノェチ ルエーテル、 トリプロピレングリコールモノェチルエーテゾレ等が挙げられる。 本発明の好ましい態様によれば、 本発明によるコ一ティング剤は、 抗菌性金属 (例えば、 A g、 C u、 Z n) またはその化合物をさらに含んでなることができ る。 これら金属の添加によって、 基材表面に存在する細菌を死滅させることがで き、 さらにコ一ティング剤適用後にあっても表面における黴、 藻、 苔のような微 生物の成長を抑制することができる。  Further, according to a preferred embodiment of the present invention, the coating agent according to the present invention can include a repelling agent so that a smooth surface can be formed when applied to the surface of the member. The addition of a leveling agent is particularly advantageous when applying the coating agent according to the invention to large articles. Preferred examples of the leveling agent include diacetone alcohol, ethylene glycol monomethyl ether, 4-hydroxy-1-methyl-2-pentanone, dipropylene glycol, tripropylene glycol, 1-ethoxy-2-propanol, and 1-butanol. 2-propanol, propylene glycol monomethyl ether, 1-propoxy-1-propanol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monoethyl ether, and the like. According to a preferred embodiment of the present invention, the coating agent according to the present invention may further comprise an antimicrobial metal (eg, Ag, Cu, Zn) or a compound thereof. By adding these metals, bacteria existing on the surface of the substrate can be killed, and even after the application of the coating agent, the growth of microorganisms such as mold, algae, and moss on the surface can be suppressed. it can.
さらに本発明の別の好ましい態様によれば、 本発明によるコーティング剤は、 P t、 P d、 R h、 R u、 O s、 および I rからなる群から選択される白金族金 属の少なくとも一種以上を含んでなることができる。 金属酸化物からなる光触媒 を有する表面は、 光,の酸ィ匕分解作用に基づく防汚、 抗菌、 防臭機能を有する ことが知られている。 本発明によるコ一ティング剤が適用された部材表面にあつ てもこの作用は維持されている場合があると思われる。 上記金属は、 この^] ¾媒 の酸化分解作用を増強し、 その表面の抗菌性、 脱臭性、 気体分解性、 有機物分解 性などを向上させるものと考えられる。 According to yet another preferred embodiment of the present invention, the coating agent according to the present invention comprises at least a platinum group metal selected from the group consisting of Pt, Pd, Rh, Ru, Os, and Ir. It can comprise one or more. Photocatalyst consisting of metal oxide It has been known that a surface having an antifouling, antibacterial, and deodorizing function based on the action of decomposing light. It is believed that this effect may be maintained even on the surface of the member to which the coating agent according to the present invention has been applied. It is considered that the above-mentioned metal enhances the oxidative decomposition action of the ^] solvent, and improves the antibacterial property, deodorizing property, gas decomposability, organic substance decomposability, etc. of the surface.
本発明によるコーティング剤は、 ブリキ容器やライニング金属からなる容器に 保管する場合、 さらに金属部材上に適用される場合には、 弱酸性、 中性または塩 基性であるのが好ましい。 とりわけ上記のように酸が添加された場合には、 p H 調整剤の添加が好ましい。  The coating agent according to the present invention is preferably weakly acidic, neutral or basic when stored in a tin container or a container made of lining metal, and when applied on a metal member. Particularly when an acid is added as described above, the addition of a pH adjuster is preferred.
また、 本発明によるコ一ティング剤は、 含まれる固形成分の分散性を向上させ、 また保存性を向上させるために、 酸または塩基を適宜含むことができる。 さらに、 場合により、 顔料、 染料、 保存安 などを含むことができる。 光触媒性親水性被膜の製造  Further, the coating agent according to the present invention can appropriately contain an acid or a base in order to improve the dispersibility of the solid component contained therein and to improve the storage stability. Further, in some cases, pigments, dyes, storage stability and the like can be included. Production of photocatalytic hydrophilic coating
本発明によるコーティング剤が適用される基材としては、 ガラス、 セラミック ス、 金属など力 <挙げられる。 ガラスは、 用のソ一ダライムガラスや、 石英ガ ラス、 無アルカリガラス、 低膨張ガラス、 結晶ィ匕ガラスなど多種にわたる。 基材 がセラミックスである場合、 施釉タイルなどグレーズ層のあるものへの適用力く好 ましい。  Substrates to which the coating agent according to the present invention is applied include glass, ceramics, metals and the like. There are many kinds of glass, such as soda lime glass, quartz glass, non-alkali glass, low expansion glass, and crystal glass. When the base material is ceramics, it is preferable to apply it to those with a glaze layer such as glazed tiles.
適用可能な基材をその用途で表現すれば、 基材には、 車両用の窓ガラス、 一般 建築用の窓ガラス、 天窓、 出窓、 フィックス窓、 力一テンウォール、 トップライ ト、 車両用ミラ一、 浴室鏡などの鏡、 カメラ、 センサ一、 太陽電池などのカバー ガラス、 蛍光灯、 電球などの照明器具などが挙げられる。  If the applicable base material can be expressed in terms of its application, the base material may be: vehicle window glass, general building window glass, skylight, bay window, fixed window, power window, top light, vehicle mirror First, mirrors such as bathroom mirrors, cameras, sensors, cover glasses such as solar cells, and lighting equipment such as fluorescent lamps and light bulbs.
これら基材への本発明によるコ一ティング剤の適用は、 適宜選択されてよいが、 例えばスプレーコーティング法、 ディップコ一ティング法、 フローコーティング 法、 スピンコーティ ング法、 ロールコーティ ング法、 刷毛塗り、 スポンジ塗り等 の方法が好適に利用できる。 適用量についてもコ一ティング剤の濃度の応じて適 宜決定されてよい。 The application of the coating agent according to the present invention to these substrates may be appropriately selected. Examples thereof include spray coating, dip coating, and flow coating. A method such as a spin coating method, a spin coating method, a roll coating method, brush coating, and sponge coating can be suitably used. The application amount may be appropriately determined according to the concentration of the coating agent.
本発明によるコーティング剤を基材に適用した後、 基材を、 無定型チタニア前 駆体力結晶性チタニアに変換され、 さらにシロキサン結合を有する化合物に変換 され得る前駆体のシロキサン結合を有する化合物に変換され得る条件に付す。 好 ましくは基材を、 場合によって乾燥させた後、 加熱する。 すなわち、 無定型チタ ニァ前駆体が結晶化すると同時にシロキサン結合を有する化合物 (好ましくは無 ^シリカまたはシリコ一ン) が結晶性シリ力を取り込みながら基材上に被膜が 固着する。 加熱温度は、 このコ一ティング剤の固着が可能な範囲で適宜決定され てよいが、 2 0〜1 0 0 0 °Cが一般的であり、 好ましくはその下限は 4 0 0°Cで あり、 その上限は 8 0 0。C、 より好ましくは 6 0 0 °Cである。  After applying the coating agent according to the present invention to a substrate, the substrate is converted to a precursor having a siloxane bond, which can be converted into amorphous titania precursor crystalline titania and further converted into a compound having a siloxane bond. Conditions. Preferably, the substrate is heated, optionally after drying. That is, at the same time as the amorphous titanium precursor is crystallized, the film having the siloxane bond (preferably, no silica or silicone) adheres to the substrate while taking in the crystalline silicic force. The heating temperature may be appropriately determined within a range in which the coating agent can be fixed, but is generally from 20 to 100 ° C, and preferably has a lower limit of 400 ° C. The upper limit is 800. C, more preferably 600 ° C.
一般的には、 加熱 は基材を させない温度で行われることが好ましい。 し力、し、 基材を変形させながらコーティング剤を固着する加熱を実施してもよい。 例えば、 ソ一ダラィ厶ガラスの場合 6 0 0 °Cを超えると软化するため、 4 0 0〜 6 0 0 °Cの^で加熱されることが好ましい。 しかし、 例えば曲面ミラーを作成 したい場合、 6 0 0 °Cを越える温度で加熱し、 同時に熱変形させることも可能で ある。 さらに、 耐衝撃性を高めるために約 8 0 0 °Cで熱強ィ匕をすることも可能で 。  Generally, it is preferable that the heating is performed at a temperature that does not cause the substrate to be heated. Heat may be applied to fix the coating agent while deforming the substrate. For example, in the case of soda-lime glass, if the temperature exceeds 600 ° C., the temperature is preferably changed to 400 ° C. to 600 ° C. However, for example, if a curved mirror is desired to be created, it is possible to heat at a temperature exceeding 600 ° C. and simultaneously deform it thermally. Furthermore, it is also possible to perform heat-strengthening at about 800 ° C. in order to enhance impact resistance.
また、 加熱温度は高いほど緻密でかつ耐摩耗性の高い膜を得ることができる。 石英ガラスは、 6 0 0 °Cを超えても熱変形しないことから、 高温で熱処理するこ とが可能であり、 石英ガラスの利用は緻密な耐摩耗性の高い膜を得ることができ る点で有利である。  The higher the heating temperature, the denser the film and the higher the wear resistance. Quartz glass can be heat-treated at a high temperature because it does not thermally deform even at temperatures exceeding 600 ° C. The use of quartz glass makes it possible to obtain a dense and highly wear-resistant film. Is advantageous.
本発明の好ましい態様によれば、 基材としてガラス、 とりわけソ一ダライムガ ラスまたは施袖タイルを用いる場合、 基材の上にナトリゥム拡散防 ihiiを設け、 さらにその上にコーティング剤を適用することが好ましい。 加熱中にナトリウム イオンが基材よりコーティング剤の層に移行すると、 結晶性チタニアの形成を阻 害する。 ナトリゥム拡散防止層によってこの減少を有効に防止することが可能と なる。 この拡散防止層は、 シリカによって形成されることが好ましい。 光触媒性親水性部材 According to a preferred embodiment of the present invention, when glass is used as the base material, especially when soda lime glass or sleeved tile is used, sodium diffusion prevention ihii is provided on the base material, Further, it is preferable to apply a coating agent thereon. When sodium ions migrate from the substrate to the coating layer during heating, they inhibit the formation of crystalline titania. This reduction can be effectively prevented by the sodium diffusion preventing layer. This diffusion prevention layer is preferably formed of silica. Photocatalytic hydrophilic member
本発明によるコ一ティング剤が適用され、 加熱により固着された基材表面は、 高度に親水化する。 この ϋτΚ性は、 チタニアの光触媒作用によるものであると考 えられる。 すなわち、 光,力光励起に応じて親水性を発現する性質のことであ り、 チタニアを紫外線によって光励起すると、 光触媒作用によって水が水酸基 The substrate surface to which the coating agent according to the present invention is applied and which is fixed by heating becomes highly hydrophilic. This {τ} property is thought to be due to the photocatalytic action of titania. In other words, it is a property that develops hydrophilicity in response to light and force light excitation. When titania is photo-excited by ultraviolet light, water is hydroxylated by photocatalysis.
(0Η-) の形で表面に化学吸着され、 その結果、 表面が超縣性になると考えら れる。 It is considered that the surface is chemisorbed in the form of (0Η-), resulting in the surface becoming supersuspendable.
この^ 性親水性は、 光触媒のバンドギヤップ以上のエネルギーを持つ光源 で励起されるので、 アナターゼ型チタニアは波長 387nm以下、 ルチル型チタニア は 413nm以下の紫外線で光励起することが好ましい。 そのために好適な紫外線光 源としては、 蛍光灯、 白熱電灯、 メタルハラィドランプ、 水銀ランプのような室 内照明灯を使用することができる。 屋外にある基材は、 太陽光に含まれる紫外線 により ¾ 媒カ恍励起される。  Since the hydrophilic hydrophilicity is excited by a light source having energy equal to or more than the band gap of the photocatalyst, it is preferable that the anatase titania is photoexcited with ultraviolet rays having a wavelength of 387 nm or less and the rutile titania is 413 nm or less. As a suitable ultraviolet light source therefor, an indoor lighting such as a fluorescent lamp, an incandescent lamp, a metal halide lamp, and a mercury lamp can be used. The substrate outside is excitated by ultraviolet rays contained in sunlight.
親水化の禾 は、 表面の水との接触角が約 1 0 ° 以下、 好ましくは約 5 ° 以下、 特に約 0° に至る。 一般には、 0. 0 0 l mW/cm2の紫外線照度で光励起すれば、 数日で水との接触角力約 0° になるまで @ϋ水化することができる。 太陽光に含 まれる紫外線の照度は約 0. l〜l mWZcffl2であるから、太陽光にさらせばより短 時間で表面を超親水化することができる。 The hydrophilized germs have a surface contact angle with water of less than about 10 °, preferably less than about 5 °, especially about 0 °. In general, if photoexcitation is performed with an ultraviolet illuminance of 0.001 mW / cm 2 , water can be converted into water within a few days until the contact angle with water becomes approximately 0 °. Since the illuminance of the free Murrell ultraviolet sunlight is about 0. l~l mWZcffl 2, can be super-hydrophilic surface a more short time if Sarase to sunlight.
さらに、 上記のような高度な親水性によって、 基材表面に付着した汚れ成分は 水を流すことによって容易に除くことができる。 この性質によって、 屋外に設置 された基材は、 降雨により自己浄化 (セルフクリーニング) するという有利な性 質を有するに至る。 Further, due to the high hydrophilicity as described above, the dirt component adhering to the substrate surface can be easily removed by flowing water. Due to this property, it is installed outdoors The resulting substrate has the advantageous property of self-cleaning (self-cleaning) due to rainfall.
また、 本発明によるコーティング剤によって得られた基材表面は、一旦高度に 親水化された後、 その親水性は遮光下または夜間においても長期間維持される。 そしてさらに、 親水性が失われても再び太陽光にさらされる度に親水性は回復す 。  Further, the surface of the substrate obtained by the coating agent of the present invention is once highly hydrophilized, and then its hydrophilicity is maintained for a long time even under light shielding or at night. Furthermore, even if the hydrophilic property is lost, the hydrophilic property is restored each time the sheet is exposed to sunlight again.
[実 施 例] [Example]
塗工液の調製  Preparation of coating liquid
塗工液 1  Coating liquid 1
S i 02膜形成用のシリコンアルコキシド溶液 (日本曹達株式会社製: N S i 5 0 0、 固形分濃度 5 %) を、 酢酸ェチルとエタノールの 1 : 1溶媒で固形分濃 度 1 %に稀釈した。 S i 0 2 film silicon alkoxide solution for forming diluted to a solids concentration of 1% in the first solvent (manufactured by Nippon Soda Co., Ltd.: NS i 5 0 0, a solid part concentration of 5%) and acetic acid Echiru and ethanol 1 did.
塗工液 2  Coating liquid 2
T i 02膜形成用のチタンアルコキシド溶液 (日本曹達株式会社製: N T D 9 0、 固形分濃度 5 %) を、 酢酸ェチルとエタノールの 1 : 1溶媒で固形分濃度 0. 6 %に稀釈した。 T i 0 titanium alkoxide solution for 2 film (manufactured by Nippon Soda Co., Ltd.: NTD 9 0, a solid part concentration of 5%) and acetic acid Echiru and ethanol 1: diluted to a solid concentration of 0.6% in 1 solvent .
塗工液 3  Coating liquid 3
T i 02ゾルとシリコンアルコキシド加水分解物力 0:20の割合で配合された T i 02膜を形成するためのコ—ト剤 (石原産業株式会社製: S T - K 0 1、 固 形分濃度 1 0 %) を、 酢酸ェチルとエタノールの 1 : 1溶媒で固形分濃度 0. 6 %に稀釈した。 T i 0 2 sol and silicon alkoxide hydrolyzate A coating agent for forming a T i 0 2 film mixed at a ratio of 0:20 (manufactured by Ishihara Sangyo Co., Ltd .: ST-K 01, solid component) (Concentration 10%) was diluted to a solid concentration of 0.6% with a 1: 1 solvent of ethyl acetate and ethanol.
塗工液 4  Coating liquid 4
T i 02ゾルとシリコンアルコキシド加水分解物が 50 :50の割合で配合された T i 02膜を形成するためのコ一ト剤 (石原産業株式会社製: S T K— 0 3、 固 形分濃度 1 0 %) を、 酢酸ェチルとエタノールの 1 : 1溶媒で固形分濃度 0. 6 %に稀釈した。 実施例 1 T i 0 2 sol and a silicon alkoxide hydrolyzate 50: 50 copolymer one bets agent to form a T i 0 2 film formulated at a ratio of (Ishihara Sangyo Kaisha Ltd.: STK- 0 3, solid The form concentration (10%) was diluted to a solid concentration of 0.6% with a 1: 1 solvent of ethyl acetate and ethanol. Example 1
成膜の形成はフ口一コ一ト (流し塗り) で行った。 まず、 アルカリイオン拡散 防止層である中間層を次の様に成膜した。 2 mm厚のソ一ダラィムガラス表面に 塗工液 1を塗布し、 その後 1 2 0 °Cの乾燥器で 1 0分乾燥させた。  The formation of the film was performed in a single coat (flow coating). First, an intermediate layer serving as an alkali ion diffusion preventing layer was formed as follows. Coating solution 1 was applied to the surface of a 2 mm thick soda lime glass, and then dried for 10 minutes in a dryer at 120 ° C.
塗工液 2と塗工液 3を 9 0 : 1 0で混合し、 攪拌して親水被膜形成コ一ティン グ剤を得た。  The coating liquid 2 and the coating liquid 3 were mixed at 90:10 and stirred to obtain a hydrophilic film forming coating agent.
乾燥器より取り出し、 室温に戻した基材に、 同様のフロ—コート法で、 親水被 膜形成コーティング剤を適用し、 同様に ¾ ^し、 続けて 5 5 0°Cで 3 0分の熱処 理をして、 H¾例 1の超»性被膜を得た。  After taking out from the dryer and returning to room temperature, apply a hydrophilic film-forming coating agent to the substrate by the same flow coating method, apply the same procedure as above, and then heat at 550 ° C for 30 minutes. By the treatment, the superconductive film of Example 1 was obtained.
実施例 2および 3ならびに比較例  Examples 2 and 3 and Comparative Example
塗工液 2と塗工液 3の混合割合を後記する表に記載のように変えた以外は実施 例 1と同様にして、 鍾例 2および 3の纖水性被膜を得た。  The aqueous fiber coatings of Examples 2 and 3 were obtained in the same manner as in Example 1 except that the mixing ratio of the coating liquid 2 and the coating liquid 3 was changed as described in the table below.
実施例 4  Example 4
塗工液 3に変えて^ 液 4を用い、 さらにその比を 7 0 : 3 0として以外は実 施例 1と同様にして、 超親水性被膜を得た。  A superhydrophilic film was obtained in the same manner as in Example 1 except that the coating liquid 3 was used instead of the coating liquid 3, and the ratio was further changed to 70:30.
性能評価試験  Performance evaluation test
評価 1 :親水性評価試験  Evaluation 1: Hydrophilicity evaluation test
試料表面にォレイン酸を付着させた後、 中性洗剤で洗浄し、 乾燥した。 その後、 試料にブラックライトブルーランプ (2 0 W、 三共電気製) を 1 0 c mの距離 から照射し、 4時間後、 水滴の接触角を求めた。 その接触角を次の基準で評価し た。  After attaching oleic acid to the sample surface, it was washed with a neutral detergent and dried. Thereafter, the sample was irradiated with a black light blue lamp (20 W, manufactured by Sankyo Electric) from a distance of 10 cm, and after 4 hours, the contact angle of the water droplet was determined. The contact angle was evaluated according to the following criteria.
評価 A :接触角が 8 ° 未満 評価 B :接触角が 8 ° 以上 1 5 ° 未満 Evaluation A : Contact angle is less than 8 ° Evaluation B: Contact angle is 8 ° or more and less than 15 °
評価 C :接触角が 1 5 ° 以上 2 5° 未満  Evaluation C: Contact angle is 15 ° or more and less than 25 °
評価 D:接触角が 2 5。 以上 評価 2 :親水性の暗所下での維持  Evaluation D: Contact angle 25. Evaluation 2: Maintenance of hydrophilicity in a dark place
評価 1の場合と同様に、 試料表面にォレイン酸を付着させた後、 中性洗剤で洗 浄し、 乾燥した。 その後、 試料にブラックライトプル一ランプ (2 0W、 三共電 気製) を 1 0 c mの距離から 4時間照射した。  As in the case of Evaluation 1, oleic acid was adhered to the sample surface, washed with a neutral detergent, and dried. Thereafter, the sample was irradiated with a black light pull lamp (20 W, Sankyo Denki) from a distance of 10 cm for 4 hours.
その後、 紫外線を遮断し、 その遮光状態 (暗所) に 3日間置いた。 その後、 接 触角を測定した。 その接触角を評価 1と同様の基準で評価した。 評価 3 :耐摩耗性  After that, it was blocked from UV light and kept in that light-shielded state (dark place) for 3 days. Thereafter, the contact angles were measured. The contact angle was evaluated based on the same criteria as in Evaluation 1. Evaluation 3: Abrasion resistance
試料の表面をスポンジたわしに中性洗剤を含ませ、 力を入れて、 往復 2 0回こ すった。 その後、 水洗し、 乾燥しさせた後、 その表面の傷つき具合を目視で観察 した。 その結果を次の基準で評価した。  The surface of the sample was soaked in a neutral detergent in a sponge scourer and rubbed back and forth 20 times. Then, after washing with water and drying, the degree of damage on the surface was visually observed. The results were evaluated according to the following criteria.
評価 A:表面の変化なし  Evaluation A: No change in surface
評価 B :目立った変化なし  Evaluation B: No noticeable change
評価 C:わずかに傷が認められる  Evaluation C: Slight scratch is observed
評価 D:多数の傷力認められる。 評価 4 :耐久性試験  Evaluation D: Numerous damages were observed. Evaluation 4: Durability test
J I S A— 1 4 1 4に規定のサンシャインウエザーメ一ター試験を行い、 100 時間ごとに試料の親水性の回復の を調べた。 具体的には、 試料にブラックラ ィトプル一ランプ (2 0 W、 三共電気製) を 1 0 c mの距離から 1日照射し、 そ の後の接触角を測定した。 そして、 接触角の大きさを評価 1と同様の基準で評価 /00S82 A sunshine weather meter test as specified in JISA-14 was performed, and the recovery of hydrophilicity of the sample was examined every 100 hours. Specifically, the sample was irradiated with a black light single lamp (20 W, manufactured by Sankyo Denki) from a distance of 10 cm for one day, and the contact angle after that was measured. Then, evaluate the contact angle according to the same criteria as in Evaluation 1. / 00S82
1 9 した 評価 5 :可視光透過率およびヘイズ  1 9 Rating 5: Visible light transmittance and haze
試料の可視光透過率およびヘイズを、 ガードナ一社製ヘイズメータを用いて測 定した。 以上の評価結果は次の表に示される通りであつた c The visible light transmittance and haze of the sample were measured using a haze meter manufactured by Gardner Co., Ltd. The above evaluation results are as shown in the following table c
コ一ティ ング剤組成 (重量部) 配 合 比 率 (重量比) 無 ¾ 型 結 晶 性 シ リ 力 晶性チ夕ニァ 晶性チタニア シリカ前駆体中のシリカ換算重量 Coating agent composition (parts by weight) Mixing ratio (weight ratio) Non-crystalline crystalline silica Crystalline titania Crystalline titania Equivalent weight of silica in silica precursor
チ タ ニ ア チ タ ニ ア 前 駆 体  Titania Titania precursor
前 駆 体 全チタニア コ-ティング剤全固分量 無定型チタニァ中のチタユア換算重量 実施例 1 90 8 2 8.2 8 2.2 実施例 2 80 16 4 16.7 16 5 D 実施例 3 70 24 6 25.5 24 8.6 実施例 4 70 15 15 17.6 15 21.4 比較例 70 24 0 25.5 25.5 0 Precursor Total titania Coating agent total solids content Titanua equivalent weight in amorphous titania Example 1 90 8 2 8.2 8 2.2 Example 2 80 16 4 16.7 16 5 D Example 3 70 24 6 25.5 24 8.6 Example 4 70 15 15 17.6 15 21.4 Comparative example 70 24 0 25.5 25.5 0
評価 4 評価 5 評価 1 評価 2 評価 3 Evaluation 4 Evaluation 5 Evaluation 1 Evaluation 2 Evaluation 3
1丄 n unuv 可 1 丄 n unuv OK
niri 視光 ヘイズ iK¾ & ouunr^  niri sight haze iK¾ & ouunr ^
透過率% % 実施例 1 A B A A A 8 0 0. 2 実施例 2 A B A A A 8 3 0. 2 実施例 3 A A A A B 8 5 0. 2 実施例 4 A B A A A 8 4 0. 1 比較例 A D C  Transmittance%% Example 1 A B A A A 8 0 0.2 Example 2 A A B A A A 8 3 0.2 Example 3 A A A A B 8 5 0.2 Example 4 A B A A A 8 4 0.1 Comparative Example A D C

Claims

請求の範囲 The scope of the claims
1. 無^のチタニア前駆体と、 結晶性チタニアと、 シロキサン結合を有す る化合物に変換され得る前駆体とを少なくとも含んでなる、 光触媒性親水被膜形 成用のコ一ティング剤。 1. A coating agent for forming a photocatalytic hydrophilic film, comprising at least a non-titania precursor, crystalline titania, and a precursor that can be converted into a compound having a siloxane bond.
2. 前記シロキサン結合を有する化合物に変換され得る前駆体が、 加熱によ り無定型シリカとなりうるシリカ前駆体、 その加水分解物、 その部分加水分解物、 その加水分解縮重合物、 その部分加水分解縮重合物、 またはそれらの混合物であ る、 請求項 1に記載のコ一ティング剤。 2. A silica precursor, a hydrolyzate thereof, a partially hydrolyzed product thereof, a hydrolyzed polycondensate thereof, or a partially hydrolyzed precursor which can be converted into amorphous silica by heating when the precursor which can be converted into the compound having a siloxane bond is obtained. The coating agent according to claim 1, wherein the coating agent is a decomposition condensation polymer or a mixture thereof.
3. 前記無定型のチタニア前駆体がチタンアルコキシドおよび/またはその 加水分解物である、 請求項 1に記載のコーティング剤。 3. The coating agent according to claim 1, wherein the amorphous titania precursor is a titanium alkoxide and / or a hydrolyzate thereof.
4. 前記結晶性チタニアが酸化チタンゾルである、請求項 1に記載のコーテ ィング剤。 4. The coating agent according to claim 1, wherein the crystalline titania is a titanium oxide sol.
5. 前記加熱により無定型シリカとなりうるシリ力前駆体が、 5. The silicic acid precursor that can become amorphous silica by the heating,
fe : - p S 1 4 - p  fe:-p S 1 4-p
(式中、  (Where
Rは、 水素原子および有機基からなる群より一種または二種以上選択されるも のであり、  R is one or more selected from the group consisting of a hydrogen atom and an organic group,
Xはアルコキシ基およびハロゲン原子からなる群より一種または二種以上選択 されるものであり、 pは 1または 2である)  X is one or more selected from the group consisting of an alkoxy group and a halogen atom, and p is 1 or 2)
で表される加水分解性シラン誘導体、 平均組成式: RPS i XqO(4-p-q) /2 A hydrolyzable silane derivative represented by Average composition formula: R P S i X q O ( 4-p- q) / 2
(式中、  (Where
Rは、 水素原子および有機基からなる群より一種または二種以上選択されるも のであり、  R is one or more selected from the group consisting of a hydrogen atom and an organic group,
Xはアルコキシ基およびハロゲン原子からなる群より一種または二種以 ϋ択 されるものであり、  X is one or two or more selected from the group consisting of an alkoxy group and a halogen atom;
ρは 0く Ρく 2を、 qは 0く q<4をそれぞれ満足する数である)  ρ is a number that satisfies 0 and 2 and q is a number that satisfies 0 and q <4.)
で表されるシロキサン、 A siloxane represented by
—般式: S i X4 —General formula: S i X 4
(式中、  (Where
Xはアルコキシ基およびハロゲン原子からなる群から一種または二種以 ±il択 されるものである)  X is one or more selected from the group consisting of an alkoxy group and a halogen atom)
で表される四官能加水分解性シラン誘導体、 および A tetrafunctional hydrolyzable silane derivative represented by
平均組成式: S i XqO (4-q) /2 Average composition formula: S i X q O (4-q) / 2
(式中、  (Where
Xはアルコキシ基およびハロゲン原子からなる群より一種または二種以上選択 されるものであり、  X is one or more selected from the group consisting of an alkoxy group and a halogen atom,
qは 0< q<4を満足する数である)  q is a number that satisfies 0 <q <4)
で表されるシリケ一卜からなる群から選択されるものである、 請求項 1〜3のい ずれか一項に記載のコ一ティング剤。 The coating agent according to any one of claims 1 to 3, which is selected from the group consisting of silicates represented by the formula:
6. 前記結晶性チタニア含量カ^ 全酸ィ匕チタン量の 6〜45重量%である、 請求項 1〜 5のいずれか一項に記載のコ—ティング剤。 6. The coating agent according to any one of claims 1 to 5, wherein the content of the crystalline titania is 6 to 45% by weight of the total amount of titanium oxide.
7. 前記結晶性チタニア含量が、 コーティング剤中の全固形分量の 6〜40 である、 請求項 1〜6のいずれか一項に記載のコーティング剤。 7. The crystalline titania content is 6 to 40 of the total solid content in the coating agent. The coating agent according to any one of claims 1 to 6,
8. 前記シロキサン結合を有する化合物に変換され得る前駆体中の S i 0 2 の換算 ft*が、 前記無定型チタニア前駆体中の T i 02の換算重量の 5 0 %以下 である、 請求項 1〜 7のいずれか一項に記載のコーティング剤。 8. The siloxane bond the compound precursor which can be converted into compounds having the S i 0 2 conversion ft * is the equal to or less than 50% of the reduced weight of T i 0 2 of amorphous titania precursor, wherein Item 8. The coating agent according to any one of Items 1 to 7.
9. 請求項 1〜8のいずれか一項に記載のコーティング剤を基材表面に適用 し、 コーティング剤を基材表面に固着させることを含んでなる、 光 «性親水部 材の製造法。 9. A method for producing a hydrophilic hydrophilic member, comprising applying the coating agent according to any one of claims 1 to 8 to a surface of a substrate, and fixing the coating agent to the surface of the substrate.
1 0. 前記コーティング剤の固着が加熱により行われる、 請求項 9に記載の ¾¾¾性親水部材の製造法。 10. The method for producing a hydrophilic hydrophilic member according to claim 9, wherein the fixation of the coating agent is performed by heating.
1 1. 前言 Ξ¾Π熱が、 基材表面を 4 0 0 °Cから 8 0 0 °Cの温度に熱処理するこ とにより行われる、 請求項 1 0に記載の光触媒性親水部材の製造法。 11. The method for producing a photocatalytic hydrophilic member according to claim 10, wherein the heat is applied by heat-treating the surface of the substrate to a temperature of 400 to 800 ° C.
1 2. 基材がガラスである、 請求項 9〜 1 1のいずれか一項に記載の^ ¾媒 體水部材の製造法。 12. The method according to claim 9, wherein the base material is glass.
1 3. 基材上にナトリゥム拡散防止層を設け、 さらにその上にコーティング 剤を適用する、 請求項 1 2に記載の光触媒性 τ部材の製造法。 13. The method for producing a photocatalytic τ member according to claim 12, wherein a sodium diffusion preventing layer is provided on the substrate, and a coating agent is further applied thereon.
1 4. 請求項 9〜 1 3の L、ずれか一項に記載の光触媒 水部材の製造法に よって得られた、 光„ 水部材。 14. A photocatalyst water member obtained by the method for producing a photocatalyst water member according to any one of claims 9 to 13, L.
PCT/JP1999/000582 1998-02-10 1999-02-10 Coating material for forming photocatalytic hydrophilic film, method of forming photocatalytic hydrophilic film, and photocatalytic hydrophilic member WO1999041322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU25465/99A AU2546599A (en) 1998-02-10 1999-02-10 Coating material for forming photocatalytic hydrophilic film, method of forming photocatalytic hydrophilic film, and photocatalytic hydrophilic member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/44529 1998-02-10
JP4452998 1998-02-10

Publications (1)

Publication Number Publication Date
WO1999041322A1 true WO1999041322A1 (en) 1999-08-19

Family

ID=12694052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000582 WO1999041322A1 (en) 1998-02-10 1999-02-10 Coating material for forming photocatalytic hydrophilic film, method of forming photocatalytic hydrophilic film, and photocatalytic hydrophilic member

Country Status (2)

Country Link
AU (1) AU2546599A (en)
WO (1) WO1999041322A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018579A1 (en) * 2002-08-21 2004-03-04 Jsr Corporation Coating composition
WO2004096935A1 (en) * 2003-04-30 2004-11-11 Ube Nitto Kasei Co., Ltd. Photocatalyst coating liquid, photocatalyst film and photocatalyst member
JP2005336334A (en) * 2004-05-27 2005-12-08 Ube Nitto Kasei Co Ltd Coating composition for forming amorphous titanium oxide composite coating film, coating film produced by using the same and use thereof
WO2007131474A1 (en) 2006-05-17 2007-11-22 Nano-X Gmbh Coating material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227829A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic, hydrophilic coating composition, method for forming hydrophilic coating, and coated article
JPH09227831A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic, hydrophilic coating composition
JPH10183062A (en) * 1996-10-30 1998-07-07 Jsr Corp Coating composition
JPH10195379A (en) * 1997-01-08 1998-07-28 Toto Ltd Photocatalytic hydrophilic coating liquid
JPH10279886A (en) * 1997-02-06 1998-10-20 Shin Etsu Chem Co Ltd Coating composition, hydrophilic film and article coated with hydrophilic film
JPH1161652A (en) * 1997-08-07 1999-03-05 Jsr Corp Fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227829A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic, hydrophilic coating composition, method for forming hydrophilic coating, and coated article
JPH09227831A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic, hydrophilic coating composition
JPH10183062A (en) * 1996-10-30 1998-07-07 Jsr Corp Coating composition
JPH10195379A (en) * 1997-01-08 1998-07-28 Toto Ltd Photocatalytic hydrophilic coating liquid
JPH10279886A (en) * 1997-02-06 1998-10-20 Shin Etsu Chem Co Ltd Coating composition, hydrophilic film and article coated with hydrophilic film
JPH1161652A (en) * 1997-08-07 1999-03-05 Jsr Corp Fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018579A1 (en) * 2002-08-21 2004-03-04 Jsr Corporation Coating composition
CN100376646C (en) * 2002-08-21 2008-03-26 捷时雅株式会社 Coating composition
WO2004096935A1 (en) * 2003-04-30 2004-11-11 Ube Nitto Kasei Co., Ltd. Photocatalyst coating liquid, photocatalyst film and photocatalyst member
JPWO2004096935A1 (en) * 2003-04-30 2006-07-13 宇部日東化成株式会社 Photocatalyst coating liquid, photocatalyst film and photocatalyst member
CN100381527C (en) * 2003-04-30 2008-04-16 宇部日东化成株式会社 Photocatalyst coating liquid, photocatalyst film and photocatalyst member
JP2005336334A (en) * 2004-05-27 2005-12-08 Ube Nitto Kasei Co Ltd Coating composition for forming amorphous titanium oxide composite coating film, coating film produced by using the same and use thereof
WO2007131474A1 (en) 2006-05-17 2007-11-22 Nano-X Gmbh Coating material

Also Published As

Publication number Publication date
AU2546599A (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JP3077199B2 (en) Photocatalytic hydrophilic coating composition
JP3303696B2 (en) Photocatalytic hydrophilic coating composition
WO2000018504A1 (en) Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
WO1997045502A1 (en) Antifouling member and antifouling coating composition
JP5761346B2 (en) Inorganic hydrophilic coating liquid, hydrophilic coating obtained therefrom and member using the same
JPH10231146A (en) Antifogging and antifouling glass article
KR20150028979A (en) Coating composition and uses thereof
EP2749608B1 (en) Anti-reflection coatings with self-cleaning properties, substrates including such coatings, and related methods
WO1998055573A1 (en) Method for surface pretreatment before formation of photocatalytic hydrophilic film, and detergent and undercoat composition for use in the same
JP3797037B2 (en) Photocatalytic hydrophilic coating composition
JP4665221B2 (en) Titanium dioxide photocatalyst carrier and production method thereof
WO2001068786A1 (en) Hydrophilic member and method for manufacture thereof
JPH11309379A (en) Photocatalytic hydrophilic member and photocatalytic hydrophilic coating composition
JP2002346393A (en) Photocatalyst and method for manufacturing the same
JP2006131917A (en) Photocatalytic hydrophilic coating composition
JPH11228865A (en) Coating agent for forming photocatalytic hydrophilic coating film and photocatalytic hydrophilic member
WO1999041322A1 (en) Coating material for forming photocatalytic hydrophilic film, method of forming photocatalytic hydrophilic film, and photocatalytic hydrophilic member
JPH11181339A (en) Hydrophilic coating composition
JP2002320917A (en) Production method for photocatalytic coating film and photocatalytic material
JPH11100526A (en) Photocatalytic hydrophilic member and photocatalytic hydrophilic coating composition
JP2000086933A (en) Photocatalytic hydrophilic material and photocatalytic hydrophilic coating composition
JP2002356650A (en) Photocatalytic film-forming composition and photocatalytic member obtained by applying it
JP2000144057A (en) Coating composition
JP2006136758A (en) Photocatalyst composition and photocatalyst member
JP2004154779A (en) Substrate coated with photocatalytic film and method for forming photocatalytic film thereon

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09634826

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase