JP2001302241A - Method for producing titanium oxide - Google Patents

Method for producing titanium oxide

Info

Publication number
JP2001302241A
JP2001302241A JP2000122126A JP2000122126A JP2001302241A JP 2001302241 A JP2001302241 A JP 2001302241A JP 2000122126 A JP2000122126 A JP 2000122126A JP 2000122126 A JP2000122126 A JP 2000122126A JP 2001302241 A JP2001302241 A JP 2001302241A
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
weight
hydroxide
titanium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000122126A
Other languages
Japanese (ja)
Inventor
Yoshinari Sawabe
佳成 沢辺
Yoshiaki Sakatani
能彰 酒谷
Hironobu Koike
宏信 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2000122126A priority Critical patent/JP2001302241A/en
Priority to CA002342566A priority patent/CA2342566A1/en
Priority to KR1020010016457A priority patent/KR20010095089A/en
Priority to US09/819,790 priority patent/US6827922B2/en
Priority to CNB011121653A priority patent/CN1210100C/en
Priority to DE60107991T priority patent/DE60107991T2/en
Priority to AU31406/01A priority patent/AU781370B2/en
Priority to EP01302987A priority patent/EP1138634B1/en
Publication of JP2001302241A publication Critical patent/JP2001302241A/en
Priority to US10/606,295 priority patent/US20040037772A1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply producing titanium oxide capable of exhibiting an excellent catalyst activity by irradiation with visible rays without using a specific apparatus equipped with a vacuum vessel. SOLUTION: This method for producing the titanium oxide is characterized by adding a compound degrading and producing ammonia to titanium hydroxide and then baking the resultant mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸化チタンの製造方
法に関するものであり、詳細には、可視光線を照射する
ことによって優れた光触媒活性を示す酸化チタンの製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing titanium oxide, and more particularly, to a method for producing titanium oxide which exhibits excellent photocatalytic activity when irradiated with visible light.

【0002】[0002]

【従来の技術】半導体に光を照射すると強い還元作用を
持つ電子と強い酸化作用を持つ正孔が生成し、半導体に
接触した分子種を酸化還元作用により分解する。このよ
うな半導体を通常光触媒と呼び、この光触媒を利用する
ことによって、大気中のNOxの分解、居住空間や作業
空間での悪臭物質やカビなどの分解除去、あるいは水中
の有機溶剤や農薬、界面活性剤などの環境汚染物質の分
解除去を行うことが可能となる。
2. Description of the Related Art When a semiconductor is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and molecular species in contact with the semiconductor are decomposed by the redox action. Such a semiconductor is usually called a photocatalyst. By using this photocatalyst, it can decompose NOx in the atmosphere, decompose and remove odorous substances and mold in living and working spaces, or use organic solvents, pesticides, and It becomes possible to decompose and remove environmental pollutants such as activators.

【0003】可視光線を照射することによって触媒活性を示
す光触媒が発見され、この光触媒の製造方法として各種
提案がなされている。例えば、WO982374号公報
には、酸化チタンをマイクロ波低温プラズマ法により処
理しその表面に炭化チタンを形成することによって触媒
活性を示す酸化チタンからなる光触媒を得る方法が記載
されている。また、日本化学会第76春季年会講演予稿
集I(4F432)には、マグネトロンスパッタ法によ
り基板上に酸化チタンを製膜することによって触媒活性
を示す酸化チタンからなる光触媒を得る方法が記載され
ている。
[0003] Photocatalysts exhibiting catalytic activity upon irradiation with visible light have been discovered, and various proposals have been made as methods for producing such photocatalysts. For example, WO 982374 describes a method for obtaining a photocatalyst comprising titanium oxide having catalytic activity by treating titanium oxide by a microwave low-temperature plasma method and forming titanium carbide on the surface thereof. In addition, the proceedings of the 76th Annual Meeting of the Chemical Society of Japan, Spring Meeting I (4F432), describes a method for obtaining a photocatalyst composed of titanium oxide having catalytic activity by forming titanium oxide on a substrate by magnetron sputtering. ing.

【0004】しかし、WO982374号公報等に記載され
た方法では、酸化チタンを処理又は製膜するためにマイ
クロ波低温プラズマ発生装置等の真空容器を備えた特定
の装置が必要であり、操作が煩雑となる問題があった。
[0004] However, in the method described in WO982374 or the like, a specific apparatus equipped with a vacuum vessel such as a microwave low-temperature plasma generator is required for treating or forming titanium oxide, and the operation is complicated. There was a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は可視光
線を照射することによって優れた触媒活性を示す酸化チ
タンを真空容器を備えた特定の装置を用いることなく簡
易に製造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for easily producing titanium oxide exhibiting excellent catalytic activity by irradiating visible light without using a specific apparatus equipped with a vacuum vessel. It is in.

【0006】[0006]

【課題を解決するための手段】本発明者等は優れた光触
媒活性を示す酸化チタンを水酸化チタンから製造するた
めの方法について検討を行った結果、本発明を完成する
に至った。
Means for Solving the Problems The present inventors have studied methods for producing titanium oxide having excellent photocatalytic activity from titanium hydroxide, and as a result, the present invention has been completed.

【0007】すなわち、本発明は、水酸化チタンに、分解し
てアンモニアを発生する化合物を添加した後、焼成する
ことを特徴とする酸化チタンの製造方法を提供するもの
である。
[0007] That is, the present invention provides a method for producing titanium oxide, comprising adding a compound capable of decomposing to generate ammonia to titanium hydroxide, followed by firing.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いられる水酸化チタンは、Ti(OH)2
る組成式で表される水酸化チタン(II)、Ti(OH)
3なる組成式で表される水酸化チタン(III)、Ti(O
H)4なる組成式で表される水酸化チタン(IV)、Ti
O(OH)2なる組成式で表されるオキシ水酸化チタ
ン、H 4TiO4なる組成式で表されるα−チタン酸(オ
ルトチタン酸と呼ばれることもある。)、H2TiO3
る組成式で表されるβ−チタン酸(メタチタン酸と呼ば
れることもある。)等が挙げられる。また、水酸化チタ
ンは非晶質相を含むものであることが好ましい。非晶質
相の割合が高いほど、得られる酸化チタンは可視光線の
照射によって高い光触媒作用を示す傾向がある。非晶質
相の割合はX線回折法により求めることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The titanium hydroxide used in the present invention is Ti (OH)TwoWhat
(II) hydroxide and Ti (OH) represented by the following composition formula:
ThreeTitanium (III) hydroxide and Ti (O) represented by the following composition formula:
H)FourTitanium (IV) hydroxide represented by the following composition formula:
O (OH)TwoOxyhydroxide titer represented by the following formula:
N, H FourTiOFourΑ-titanic acid represented by the composition formula
Sometimes referred to as orthotitanic acid. ), HTwoTiOThreeWhat
Β-titanic acid (also called metatitanic acid)
It may be. ) And the like. Also, hydroxylated titanium
Preferably, the resin contains an amorphous phase. Amorphous
The higher the proportion of phases, the more the resulting titanium oxide
Irradiation tends to exhibit high photocatalysis. Amorphous
The proportion of the phase can be determined by the X-ray diffraction method.

【0009】また、水酸化チタンは窒素又は窒素化合物を含
むものであることが好ましい。窒素又は窒素化合物(以
下、窒素化合物等という。)の含有量が高い水酸化チタ
ンを用いることによって、より高い光触媒作用を示す酸
化チタンを得ることが可能となる。窒素化合物等の含有
量は窒素原子換算で0.2重量%以上、好ましくは1.
0重量%以上、より好ましくは2.5重量%以上であ
る。窒素化合物等の含有量は、例えば、窒素分析装置を
用い、溶融法により求めることができる。
[0009] The titanium hydroxide preferably contains nitrogen or a nitrogen compound. By using titanium hydroxide having a high content of nitrogen or a nitrogen compound (hereinafter, referred to as a nitrogen compound or the like), titanium oxide having a higher photocatalytic action can be obtained. The content of nitrogen compounds and the like is 0.2% by weight or more, preferably 1.
0% by weight or more, more preferably 2.5% by weight or more. The content of the nitrogen compound and the like can be determined, for example, by a melting method using a nitrogen analyzer.

【0010】この水酸化チタンは、例えば、オキシ硫酸チタ
ン溶液にアンモニア水又は水酸化アルカリ等のアルカリ
を添加して析出させる方法、塩化チタンに水又はアンモ
ニア水を添加して加水分解する方法で得ることができ
る。
[0010] The titanium hydroxide is obtained by, for example, a method of adding ammonia water or an alkali such as an alkali hydroxide to a titanium oxysulfate solution to cause precipitation, or a method of adding water or ammonia water to titanium chloride and hydrolyzing it. be able to.

【0011】本発明で用いられる分解してアンモニアを発生
する化合物(以下、アンモニア発生化合物という。)と
しては、例えば、硫酸アンモニウム、塩化アンモニウ
ム、炭酸アンモニウム、硝酸アンモニウム、りん酸アン
モニウム、酢酸アンモニウム等のアンモニウム塩、尿
素、塩基性硫酸チタニウムアンモニウム((NH4)2SO
4・TiOSO4)のようなチタン含有アンモニウム塩が
挙げられる。これらの中でも硫酸アンモニウムを用いる
ことが好ましい。
The compound used in the present invention that decomposes to generate ammonia (hereinafter, referred to as an ammonia-generating compound) includes, for example, ammonium salts such as ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium nitrate, ammonium phosphate, and ammonium acetate. , Urea, basic titanium ammonium sulfate ((NH 4 ) 2 SO
Titanium-containing ammonium salts such as 4 • TiOSO 4 ). Among them, it is preferable to use ammonium sulfate.

【0012】水酸化チタンに対するアンモニア発生化合物の
添加量は、当該水酸化チタンを400℃の空気中で焼成
した後の重量に対する当該分解してアンモニアを発生す
る化合物中窒素原子の重量の比として、0.1重量%以
上、好ましくは0.3重量%以上、より好ましくは1.
0重量%以上であり、また、10重量%以下、さらには
5重量%以下が適当である。
The amount of the ammonia-generating compound added to the titanium hydroxide is defined as the ratio of the weight of nitrogen atoms in the compound that decomposes to generate ammonia to the weight after the titanium hydroxide is calcined in air at 400 ° C. 0.1% by weight or more, preferably 0.3% by weight or more, more preferably 1.
It is at least 0% by weight, preferably at most 10% by weight, more preferably at most 5% by weight.

【0013】焼成は、水酸化チタンを酸化チタンに転移さ
せ、かつアンモニア発生化合物を分解させることができ
る温度で行うことが好ましく、通常、300℃以上、好
ましくは350℃以上である。また、焼成温度は600
℃以下、さらには500℃以下が適当である。焼成温度
が高くなり過ぎると、得られる酸化チタンの触媒活性が
低下することがある。
[0013] The calcination is preferably performed at a temperature at which titanium hydroxide can be transferred to titanium oxide and the ammonia-generating compound can be decomposed, and is usually 300 ° C or higher, preferably 350 ° C or higher. The firing temperature is 600
C. or lower, more preferably 500.degree. C. or lower. If the firing temperature is too high, the catalytic activity of the resulting titanium oxide may decrease.

【0014】本発明で得られる酸化チタンは、通常、結晶構
造がアナターゼ型である。この酸化チタンは波長が43
0nm以上である可視光線の照射によって優れた光触媒
活性を示すので、これをそのまま又は成形加工して用い
ることにより、大気中のNOxの分解、居住空間や作業
空間での悪臭物質やカビなどの分解除去、あるいは水中
の有機溶剤や農薬、界面活性剤などの分解除去に適用で
きる光触媒とすることができる。
The titanium oxide obtained in the present invention usually has an anatase type crystal structure. This titanium oxide has a wavelength of 43
It shows excellent photocatalytic activity by irradiation with visible light of 0 nm or more. By using this as it is or by molding it, it can decompose NOx in the air and decompose odorous substances and mold in living and working spaces. The photocatalyst can be used for removal or decomposition and removal of organic solvents, pesticides, surfactants and the like in water.

【0015】[0015]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明は本実施例に限定されるものではな
い。水酸化チタン及び酸化チタンの結晶構造は以下の方
法で求めた。 水酸化チタン及び酸化チタンの結晶構造:X線回折装置
(商品名:RAD−IIA、理学電機工業製)を用い
て、X線管球Cu、管電圧40kV、管電流35mA、
発散スリット1度、散乱スリット1度、受光スリット
0.30mm、サンプリング幅0.020度、走査速度
2.00度/分、測定積算回数1回の条件でX線回折ス
ペクトルを測定し結晶構造を同定した。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The crystal structures of titanium hydroxide and titanium oxide were determined by the following method. Crystal structure of titanium hydroxide and titanium oxide: Using an X-ray diffractometer (trade name: RAD-IIA, manufactured by Rigaku Corporation), X-ray tube Cu, tube voltage 40 kV, tube current 35 mA,
The X-ray diffraction spectrum was measured under the conditions of a divergence slit of 1 degree, a scattering slit of 1 degree, a light receiving slit of 0.30 mm, a sampling width of 0.020 degrees, a scanning speed of 2.00 degrees / minute, and a measurement integration number of 1 to determine the crystal structure. Identified.

【0016】実施例1 [水酸化チタンの調製]0.5Lフラスコに水80gを
入れた後、攪拌下でオキシ硫酸チタン(添川理化学製、
商品名:オキシ硫酸チタン)20gを混合し溶解した。
次いで、室温で25%アンモニア水(和光純薬製、特
級)22.6gを20秒で滴下して固形物を沈澱させ、
固形物をろ過、洗浄、乾燥して水酸化チタンを調製し
た。得られた水酸化チタンは結晶構造が非晶質であっ
た。また、この水酸化チタンにつき、窒素分析装置(商
品名:EMGA−2800、堀場製作所製)を用いて、
試料量1mg、検出器 熱伝導度型、抽出温度(電力)
5750W、溶融金属Ni0.8g+Sn0.5g、ルツボ メ
カニカル製、標準試料 窒化けい素(粉末、日本セラミ
ックス協会)の条件で窒素含有量を測定した結果、窒素
原子換算で3.3重量%であった。この水酸化チタン
2.00gを400℃の空気中で焼成した後の重量は
1.56gであった。
Example 1 [Preparation of Titanium Hydroxide] After placing 80 g of water in a 0.5 L flask, titanium oxysulfate (manufactured by Soegawa Rikagaku Co., Ltd.
(Trade name: titanium oxysulfate) 20 g was mixed and dissolved.
Next, 22.6 g of 25% aqueous ammonia (manufactured by Wako Pure Chemical Industries, special grade) was dropped at room temperature in 20 seconds to precipitate a solid,
The solid was filtered, washed, and dried to prepare titanium hydroxide. The crystal structure of the obtained titanium hydroxide was amorphous. The titanium hydroxide was analyzed using a nitrogen analyzer (trade name: EMGA-2800, manufactured by Horiba, Ltd.).
Sample amount 1mg, detector thermal conductivity type, extraction temperature (power)
As a result of measuring the nitrogen content under the conditions of 5750 W, 0.8 g of molten metal Ni + 0.5 g of Sn, made of crucible mechanical, standard sample silicon nitride (powder, Japan Ceramic Society), it was 3.3% by weight in terms of nitrogen atoms. The weight after firing 2.00 g of this titanium hydroxide in air at 400 ° C. was 1.56 g.

【0017】上で調製した水酸化チタン2.00gに30重
量%硫酸アンモニウム水溶液0.34gを添加し、乳鉢
を用いて混合した後、乾燥して混合物を得た。ここで用
いた30%硫酸アンモニウム水溶液0.34g中の窒素
原子の重量は0.022gであった。上で得られた混合
物1gをアルミナ製ルツボに入れ、箱型電気炉を用いて
400℃の空気中で1時間焼成し、その後冷却して酸化
チタンを得た。室温から400℃までの昇温は200℃
/hで行った。得られた酸化チタンは粒子状であり、結
晶構造がアナターゼ型であった。
[0017] To 2.00 g of the titanium hydroxide prepared above, 0.34 g of a 30 wt% ammonium sulfate aqueous solution was added, mixed using a mortar, and dried to obtain a mixture. The weight of nitrogen atoms in 0.34 g of the 30% ammonium sulfate aqueous solution used here was 0.022 g. 1 g of the mixture obtained above was placed in an alumina crucible, fired in a box-type electric furnace at 400 ° C. for 1 hour, and then cooled to obtain titanium oxide. 200 ° C from room temperature to 400 ° C
/ H. The obtained titanium oxide was in the form of particles and had a crystal structure of an anatase type.

【0018】直径8cm、高さ10cm、容量約0.5リッ
トルである密閉式のパイレックス(登録商標)製反応容
器内に、直径5cmのガラス製シャーレを設置し、その
シャーレ上に、上で得られた粒子状酸化チタンを置い
た。反応容器内を混合ガス(酸素と窒素との体積比が
1:4である。)で満たし、アセトアルデヒドを13.
4μmol封入し、反応容器の外から可視光線を照射し
た。可視光線の照射には、500Wキセノンランプ(ウ
シオ電機製、商品名:オプティカルモジュレックスSX
−UI500XQ、ランプUXL−500SX)に、波
長約430nm以下の紫外線をカットするフィルター
(東芝硝子製、商品名:Y−45)と波長約830nm
以上の赤外線をカットするフィルター(ウシオ電機製、
商品名:スーパーコールドフィルター)とを装着したも
のを光源として用いた。可視光線の照射によりアセトア
ルデヒドが分解すると、二酸化炭素が発生するので二酸
化炭素の濃度を光音響マルチガスモニタ(INNOVA
製、1312型)で経時的に測定し、濃度変化より算出
した二酸化炭素の生成速度により、酸化チタンのアセト
アルデヒドに対する光分解作用を評価した。二酸化炭素
の生成速度は酸化チタン1gあたり79.9μmol/
hであった。
A glass Petri dish having a diameter of 5 cm is placed in a sealed Pyrex (registered trademark) reaction vessel having a diameter of 8 cm, a height of 10 cm, and a capacity of about 0.5 liter. The resulting particulate titanium oxide was placed. 12. Fill the reaction vessel with a mixed gas (volume ratio of oxygen to nitrogen is 1: 4) and acetaldehyde.
4 μmol was sealed, and visible light was irradiated from outside the reaction vessel. For irradiation of visible light, use a 500 W xenon lamp (made by Ushio Inc., trade name: Optical Modlex SX)
-UI500XQ, lamp UXL-500SX) and a filter (Y-45, manufactured by Toshiba Glass Co., Ltd., product name: Y-45) that cuts ultraviolet light having a wavelength of about 430 nm or less, and a wavelength of about 830 nm
A filter that cuts the above infrared rays (made by Ushio,
(Trade name: super cold filter) was used as a light source. When acetaldehyde is decomposed by irradiation of visible light, carbon dioxide is generated. Therefore, the concentration of carbon dioxide is measured by a photoacoustic multi-gas monitor (INNOVA).
, 1312), and the photodecomposition effect of titanium oxide on acetaldehyde was evaluated based on the carbon dioxide generation rate calculated from the concentration change. The production rate of carbon dioxide was 79.9 μmol / g of titanium oxide.
h.

【0019】実施例2 実施例1において、水酸化チタンとして窒素含有量が
0.2重量%であり、結晶構造が非晶質とアナターゼ型
とである市販の水酸化チタン(商品名:β−水酸化チタ
ン、キシダ化学製)2.00gを用いた以外は同様にし
て酸化チタンを製造した。酸化チタンは結晶構造がアナ
ターゼ型であった。
Example 2 In Example 1, commercially available titanium hydroxide having a nitrogen content of 0.2% by weight and having an amorphous and anatase crystal structure as titanium hydroxide (trade name: β- Titanium oxide was produced in the same manner except that 2.00 g of titanium hydroxide (manufactured by Kishida Chemical) was used. The titanium oxide had an anatase crystal structure.

【0020】次いで、実施例1と同様にしてアセトアルデヒ
ドに対する光分解作用を評価した。二酸化炭素の生成速
度は酸化チタン1gあたり11.9μmol/hであっ
た。
Next, the photodegradation effect on acetaldehyde was evaluated in the same manner as in Example 1. The generation rate of carbon dioxide was 11.9 μmol / h per g of titanium oxide.

【0021】実施例3 窒素含有量が0.2重量%であり、結晶構造が非晶質と
アナターゼ型とである市販の水酸化チタン(商品名:β
−水酸化チタン、キシダ化学製)6.00gに13重量
%塩化アンモニウム水溶液46gを添加し混合した後、
乾燥して混合物を得た。ここで用いたと同じ水酸化チタ
ン6.00gを400℃の空気中で焼成した後の重量は
4.76gであり、ここで用いた13重量%塩化アンモ
ニウム水溶液46g中の窒素原子の重量は1.57gで
あった。上で得られた混合物を実施例1と同様に焼成し
て酸化チタンを製造した。得られた酸化チタンは粒子状
であり、結晶構造がアナターゼ型であった。
Example 3 Commercially available titanium hydroxide having a nitrogen content of 0.2% by weight and having an amorphous and anatase crystal structure (trade name: β
-Titanium hydroxide, manufactured by Kishida Chemical Co., Ltd.) and 6.0 g of 13 wt% aqueous ammonium chloride solution were added and mixed,
Dry to obtain a mixture. The weight after calcination of 6.00 g of the same titanium hydroxide used in the air at 400 ° C. was 4.76 g, and the weight of nitrogen atoms in 46 g of the 13% by weight aqueous ammonium chloride solution used was 1.76 g. 57 g. The mixture obtained above was fired in the same manner as in Example 1 to produce titanium oxide. The obtained titanium oxide was in the form of particles and had a crystal structure of an anatase type.

【0022】次いで、実施例1と同様にしてアセトアルデヒ
ドに対する光分解作用を評価した。二酸化炭素の生成速
度は酸化チタン1gあたり4.6μmol/hであっ
た。
Next, the photolytic action on acetaldehyde was evaluated in the same manner as in Example 1. The generation rate of carbon dioxide was 4.6 μmol / h per 1 g of titanium oxide.

【0023】比較例1 市販の酸化チタン(商品名:P−25、デグッサ製)の
アセトアルデヒドに対する光分解作用を実施例1と同様
にして評価した。二酸化炭素の生成速度は酸化チタン1
gあたり0.0μmol/hであった。
Comparative Example 1 The photodegradation effect of a commercially available titanium oxide (trade name: P-25, manufactured by Degussa) on acetaldehyde was evaluated in the same manner as in Example 1. The generation rate of carbon dioxide is 1
It was 0.0 μmol / h per g.

【0024】比較例2 窒素含有量が0.2重量%であり、結晶構造が非晶質と
アナターゼ型とである市販の水酸化チタン(商品名:β
−水酸化チタン、キシダ化学製)を400℃の空気中で
1時間焼成して、酸化チタンを製造した。得られた酸化
チタンは結晶構造がアナターゼ型であった。
Comparative Example 2 Commercially available titanium hydroxide having a nitrogen content of 0.2% by weight and having a crystalline structure of amorphous and anatase type (trade name: β
-Titanium hydroxide, manufactured by Kishida Chemical Co., Ltd.) was fired in air at 400 ° C. for 1 hour to produce titanium oxide. The obtained titanium oxide had an anatase crystal structure.

【0025】次いで実施例1と同様にしてアセトアルデヒド
に対する光分解作用を評価した。二酸化炭素の生成速度
は酸化チタン1gあたり0.93μmol/hであっ
た。
Next, the photolytic action on acetaldehyde was evaluated in the same manner as in Example 1. The generation rate of carbon dioxide was 0.93 μmol / h per 1 g of titanium oxide.

【0026】[0026]

【発明の効果】以上説明した様に、本発明によれば、波
長が430nm以上である可視光線を照射することによ
って優れた光触媒活性を示す酸化チタンを水酸化チタン
から簡易に製造することができる。
As described above, according to the present invention, by irradiating visible light having a wavelength of 430 nm or more, titanium oxide having excellent photocatalytic activity can be easily produced from titanium hydroxide. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小池 宏信 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 Fターム(参考) 4G047 CA02 CB05 CC03 CD03 CD07 4G069 AA02 AA08 AA09 BA04A BA04B BA48A BB01C BB05C BC50C BD01C BD02C BD06C BD08C CA10 CA17 EA01Y EC22Y FA01 FB30 FC02 FC04 FC07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hironobu Koike 5-1 Sokai-cho, Niihama-shi, Ehime F-term (reference) in Sumitomo Chemical Co., Ltd. 4G047 CA02 CB05 CC03 CD03 CD07 4G069 AA02 AA08 AA09 BA04A BA04B BA48A BB01C BB05C BC50C BD01C BD02C BD06C BD08C CA10 CA17 EA01Y EC22Y FA01 FB30 FC02 FC04 FC07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水酸化チタンに、分解してアンモニアを
発生する化合物を添加した後、焼成することを特徴とす
る酸化チタンの製造方法。
1. A method for producing titanium oxide, comprising adding a compound that decomposes to generate ammonia to titanium hydroxide, followed by firing.
【請求項2】 水酸化チタンが非晶質である請求項1記
載の方法。
2. The method according to claim 1, wherein the titanium hydroxide is amorphous.
【請求項3】 水酸化チタンが窒素又は窒素化合物を含
有し、その含有量が窒素原子換算で0.2重量%以上で
ある請求項1又は2記載の方法。
3. The method according to claim 1, wherein the titanium hydroxide contains nitrogen or a nitrogen compound, and the content thereof is 0.2% by weight or more in terms of nitrogen atoms.
【請求項4】 水酸化チタンに対する分解してアンモニ
アを発生する化合物の添加量が、当該水酸化チタンを4
00℃の空気中で焼成した後の重量に対する当該分解し
てアンモニアを発生する化合物中窒素原子の重量の比と
して、0.1重量%以上である請求項1〜3のいずれか
1項に記載の方法。
4. The amount of a compound that decomposes titanium hydroxide to generate ammonia is added to the titanium hydroxide.
The ratio of the weight of nitrogen atoms in the compound that decomposes to generate ammonia to the weight after calcination in air at 00 ° C. is 0.1% by weight or more, according to any one of claims 1 to 3. the method of.
【請求項5】 分解してアンモニアを発生する化合物が
アンモニウム塩である請求項1〜4のいずれか1項に記
載の方法。
5. The method according to claim 1, wherein the compound that decomposes to generate ammonia is an ammonium salt.
【請求項6】 分解してアンモニアを発生する化合物が
硫酸アンモニウムである請求項5記載の方法。
6. The method according to claim 5, wherein the compound that decomposes to generate ammonia is ammonium sulfate.
【請求項7】 焼成を300℃〜600℃で行う請求項
1〜6のいずれか1項に記載の方法。
7. The method according to any one of claims 1 to 6, wherein the calcination is performed at 300 ° C to 600 ° C.
JP2000122126A 2000-03-31 2000-04-24 Method for producing titanium oxide Pending JP2001302241A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000122126A JP2001302241A (en) 2000-04-24 2000-04-24 Method for producing titanium oxide
CA002342566A CA2342566A1 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
KR1020010016457A KR20010095089A (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
US09/819,790 US6827922B2 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
CNB011121653A CN1210100C (en) 2000-03-31 2001-03-29 Method for preparing titanium dioxide
DE60107991T DE60107991T2 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
AU31406/01A AU781370B2 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
EP01302987A EP1138634B1 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
US10/606,295 US20040037772A1 (en) 2000-03-31 2003-06-26 Process for producing titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122126A JP2001302241A (en) 2000-04-24 2000-04-24 Method for producing titanium oxide

Publications (1)

Publication Number Publication Date
JP2001302241A true JP2001302241A (en) 2001-10-31

Family

ID=18632645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122126A Pending JP2001302241A (en) 2000-03-31 2000-04-24 Method for producing titanium oxide

Country Status (1)

Country Link
JP (1) JP2001302241A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338564A2 (en) 2002-02-25 2003-08-27 Sumitomo Chemical Co.,Ltd. Titanium oxide precursor and production method thereof, and production method of titanium oxide using the precursor
JP2005187294A (en) * 2003-12-26 2005-07-14 Dowa Mining Co Ltd Titanium dioxide for visible light response type catalyst and its manufacturing method
WO2005087372A1 (en) * 2004-03-12 2005-09-22 Toho Titanium Co., Ltd. Titanium oxide photocatalyst and method for preparation thereof
JP2006055746A (en) * 2004-08-20 2006-03-02 Tayca Corp Titanium oxide photocatalyst having photocatalytic activity in wide range of wavelength and manufacturing method therefor
US7521391B2 (en) 2004-03-17 2009-04-21 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
EP2130587A2 (en) 2008-06-05 2009-12-09 Sumitomo Chemical Company, Limited Photocatalyst dispersion liquid and process for producing the same
EP2281628A2 (en) 2009-08-07 2011-02-09 Sumitomo Chemical Company, Limited Method for producing noble metal-supported photocatalyst particles
DE102010045549A1 (en) 2009-09-16 2011-08-25 Sumitomo Chemical Company, Limited Photocatalyst composite and using this photocatalytically active product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338564A2 (en) 2002-02-25 2003-08-27 Sumitomo Chemical Co.,Ltd. Titanium oxide precursor and production method thereof, and production method of titanium oxide using the precursor
JP2005187294A (en) * 2003-12-26 2005-07-14 Dowa Mining Co Ltd Titanium dioxide for visible light response type catalyst and its manufacturing method
WO2005087372A1 (en) * 2004-03-12 2005-09-22 Toho Titanium Co., Ltd. Titanium oxide photocatalyst and method for preparation thereof
US7521391B2 (en) 2004-03-17 2009-04-21 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
JP2006055746A (en) * 2004-08-20 2006-03-02 Tayca Corp Titanium oxide photocatalyst having photocatalytic activity in wide range of wavelength and manufacturing method therefor
JP4580197B2 (en) * 2004-08-20 2010-11-10 テイカ株式会社 Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same
EP2130587A2 (en) 2008-06-05 2009-12-09 Sumitomo Chemical Company, Limited Photocatalyst dispersion liquid and process for producing the same
EP2281628A2 (en) 2009-08-07 2011-02-09 Sumitomo Chemical Company, Limited Method for producing noble metal-supported photocatalyst particles
DE102010045549A1 (en) 2009-09-16 2011-08-25 Sumitomo Chemical Company, Limited Photocatalyst composite and using this photocatalytically active product

Similar Documents

Publication Publication Date Title
US6827922B2 (en) Process for producing titanium oxide
US8652991B2 (en) Tungsten oxide photocatalyst and method for producing the same
JP2005138008A (en) Visible light responding type titanium oxide composite photocatalyst and its manufacturing method
Cihlar et al. Biphasic anatase-brookite nanoparticles prepared by sol–gel complex synthesis and their photocatalytic activity in hydrogen production
JP4871325B2 (en) PHOTOCATALYST AGENT HAVING TITANIUM OXIDE / IRON TITANATE JOINT STRUCTURE AND METHOD FOR PRODUCING THE SAME
CA2342665A1 (en) Titanium oxide production process
JP2001302241A (en) Method for producing titanium oxide
JP2002126517A (en) Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same
JP5627006B2 (en) Photocatalyst and method for producing the same
WO2011043496A2 (en) Copper ion-modified titanium oxide and process for producing the same, and photocatalyst
JP2001278627A (en) Method of producing titanium oxide
JP4408349B2 (en) Method for producing photocatalyst-supported porous gel
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP4424905B2 (en) Anatase type titania-silica composite, production method thereof and photocatalytic material
JP2001278626A (en) Method of producing titanium oxide
JP2001278625A (en) Method of producing titanium oxide
JP2002249319A (en) Method for producing titanium oxide
JP4103324B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP2008179528A (en) Manufacture method of titanium oxide
JP2000070727A (en) Photocatalytic fine titanium particles and their production
JP2003135974A (en) Photocatalyst material and photocatalyst coating agent prepared by using the same
JP4484195B2 (en) Method for producing titanium oxide
JPH10137593A (en) Anatase type fine particle titanium oxide having high photocatalytical activity and its production
RU2565193C1 (en) Method of producing nanosized titanium dioxide
JP5603304B2 (en) Photocatalyst production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105