JP2001278626A - Method of producing titanium oxide - Google Patents

Method of producing titanium oxide

Info

Publication number
JP2001278626A
JP2001278626A JP2000098706A JP2000098706A JP2001278626A JP 2001278626 A JP2001278626 A JP 2001278626A JP 2000098706 A JP2000098706 A JP 2000098706A JP 2000098706 A JP2000098706 A JP 2000098706A JP 2001278626 A JP2001278626 A JP 2001278626A
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
hydroxide
titanium hydroxide
producing titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000098706A
Other languages
Japanese (ja)
Inventor
Yoshinari Sawabe
佳成 沢辺
Yoshiaki Sakatani
能彰 酒谷
Hironobu Koike
宏信 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2000098706A priority Critical patent/JP2001278626A/en
Priority to CA002342566A priority patent/CA2342566A1/en
Priority to CNB011121653A priority patent/CN1210100C/en
Priority to KR1020010016457A priority patent/KR20010095089A/en
Priority to EP01302987A priority patent/EP1138634B1/en
Priority to DE60107991T priority patent/DE60107991T2/en
Priority to AU31406/01A priority patent/AU781370B2/en
Priority to US09/819,790 priority patent/US6827922B2/en
Publication of JP2001278626A publication Critical patent/JP2001278626A/en
Priority to US10/606,295 priority patent/US20040037772A1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ready method of producing titanium oxide which exhibits catalytic activity by the radiation of visible light. SOLUTION: This method comprises contacting amorphous titanium hydroxide with aqueous ammonia followed by firing at 300 to 600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸化チタンの製造方
法に関するものであり、さらに詳しくは光触媒活性を示
す酸化チタンの製造方法に関するものである。
The present invention relates to a method for producing titanium oxide, and more particularly, to a method for producing titanium oxide having photocatalytic activity.

【0002】[0002]

【従来の技術】光触媒に光を照射すると還元作用を持つ
電子と酸化作用を持つ正孔が生成し、光触媒に接触した
有機物等を酸化還元作用により分解することができ、例
えば、大気中のNOxの分解、居住空間や作業空間での
悪臭物質やカビなどの分解除去、あるいは水中の有機溶
剤や農薬、界面活性剤などの分解除去への適用が検討さ
れている。
2. Description of the Related Art When a photocatalyst is irradiated with light, electrons having a reducing action and holes having an oxidizing action are generated, and organic substances or the like which have come into contact with the photocatalyst can be decomposed by a redox action. It is being studied for its application to decomposing, decomposing and removing malodorous substances and mold in living and working spaces, or decomposing and removing organic solvents, pesticides, surfactants and the like in water.

【0003】以前は光触媒に活性を発現させるには、紫外線
を照射することが必要であると考えられていたが、最
近、可視光線を照射することによって触媒活性を示す酸
化チタンが発見され、この酸化チタンの製造方法として
各種提案がなされている。例えば、WO982374号
公報には、酸化チタンをマイクロ波低温プラズマ法によ
り処理しその表面に炭化チタンを形成することによって
触媒活性を示す酸化チタンを得る方法が記載されてい
る。
[0003] Previously, it was thought that it was necessary to irradiate ultraviolet light in order for the photocatalyst to exhibit activity. Recently, however, titanium oxide, which exhibits catalytic activity by irradiating visible light, was discovered. Various proposals have been made as a method for producing titanium oxide. For example, WO 982374 describes a method for obtaining titanium oxide having catalytic activity by treating titanium oxide by a microwave low-temperature plasma method and forming titanium carbide on the surface thereof.

【0004】しかし、WO982374号公報に記載された
方法では、酸化チタンを処理するためにマイクロ波低温
プラズマ発生装置等の真空容器を備えた特定の装置が必
要であり、操作が煩雑となる問題があった。
[0004] However, the method described in WO982374 requires a specific apparatus equipped with a vacuum vessel such as a microwave low-temperature plasma generator for treating titanium oxide, and the operation becomes complicated. there were.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、可視
光線を照射することによって触媒活性を示す酸化チタン
を真空容器を備えた特定の装置を用いることなく容易に
製造する方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for easily producing titanium oxide having catalytic activity by irradiating visible light without using a specific apparatus having a vacuum vessel. It is in.

【0006】[0006]

【課題を解決するための手段】本発明者等は光触媒活性
を示す酸化チタンを水酸化チタンから製造する方法につ
いて検討を行った結果、本発明を完成するに至った。
Means for Solving the Problems The present inventors have studied a method for producing titanium oxide having photocatalytic activity from titanium hydroxide, and have completed the present invention.

【0007】すなわち、本発明は水酸化チタンをアンモニア
水に接触させた後、焼成することを特徴とする酸化チタ
ンの製造方法を提供するものである。
[0007] That is, the present invention provides a method for producing titanium oxide, which comprises bringing titanium hydroxide into contact with ammonia water and then firing.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いられる水酸化チタンは、Ti(OH)2
る組成式で表される水酸化チタン(II)、Ti(OH)
3なる組成式で表される水酸化チタン(III)、Ti(O
H)4なる組成式で表される水酸化チタン(IV)、Ti
O(OH)2なる組成式で表される水酸化チタン、H4
iO4なる組成式で表されるα−チタン酸(オルトチタ
ン酸と呼ばれることもある。)等が挙げられる。また、
水酸化チタンは非晶質であることが好ましい。この水酸
化チタンは三塩化チタン、四塩化チタン、四臭化チタ
ン、硫酸チタン、硫酸チタニル又は有機チタン化合物等
を加水分解する方法等で得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The titanium hydroxide used in the present invention includes titanium (II) hydroxide and Ti (OH) represented by a composition formula of Ti (OH) 2.
Titanium (III) hydroxide and Ti (O) represented by the composition formula 3
H) titanium hydroxide (IV) represented by the composition formula 4
Titanium hydroxide represented by a composition formula of O (OH) 2 , H 4 T
α-titanic acid (also sometimes referred to as orthotitanic acid) represented by a composition formula of iO 4 . Also,
The titanium hydroxide is preferably amorphous. This titanium hydroxide can be obtained by a method of hydrolyzing titanium trichloride, titanium tetrachloride, titanium tetrabromide, titanium sulfate, titanyl sulfate, an organic titanium compound, or the like.

【0009】水酸化チタンには成形加工を施してもよく、形
状としては例えば、粒子状、繊維状、薄膜状等が挙げら
れる。水酸化チタンを成形加工して形状をもたせること
によって、所定の形状の酸化チタンを簡易に製造するこ
とが可能となる。例えば、繊維状の水酸化チタンを用い
れば、繊維状の酸化チタンを得ることができ、また、薄
膜状の水酸化チタンを用いれば、薄膜状の酸化チタンを
得ることができる。
[0009] The titanium hydroxide may be subjected to a molding process, and examples of the shape include a particle shape, a fiber shape, and a thin film shape. By forming titanium hydroxide to have a shape, it is possible to easily produce titanium oxide having a predetermined shape. For example, when fibrous titanium hydroxide is used, fibrous titanium oxide can be obtained, and when thin-film titanium hydroxide is used, thin-film titanium oxide can be obtained.

【0010】前記の成形加工は、例えば、水酸化チタンを水
又はアルコール等の溶媒に分散させてスラリーとし、表
面に凹凸を施した金属板の表面にこのスラリーを塗布し
た後、乾燥する方法で行ってもよい。この方法によっ
て、特定の形状を有する水酸化チタンや、特定の表面を
有する薄膜状の水酸化チタン等を得ることができる。
[0010] The above-mentioned forming process is, for example, a method in which titanium hydroxide is dispersed in a solvent such as water or alcohol to form a slurry, and the slurry is applied to the surface of a metal plate having an uneven surface, followed by drying. May go. By this method, it is possible to obtain titanium hydroxide having a specific shape, titanium oxide in the form of a thin film having a specific surface, or the like.

【0011】本発明では、水酸化チタンを焼成する前にアン
モニア水に接触させる。アンモニア水への接触は、例え
ば、水酸化チタンをアンモニア水(NH4OH)に浸漬
する方法、水酸化チタンにアンモニア水を噴霧する方法
で行えばよい。このとき用いるアンモニア水の濃度は通
常1.0重量%以上、好ましくは5.0重量%以上であ
る。また、温度は通常0℃以上、好ましくは50℃以
上、また200℃以下、好ましくは100℃以下であ
り、時間は通常10分以上、好ましくは1時間以上であ
る。アンモニア水に接触させる操作は、アンモニア水中
のアンモニアが揮発してアンモニア濃度が低下するのを
防ぐため、密閉可能な耐圧反応容器を用いて行うことが
好ましい。
In the present invention, the titanium hydroxide is brought into contact with aqueous ammonia before firing. The contact with the ammonia water may be performed by, for example, a method of immersing titanium hydroxide in ammonia water (NH 4 OH) or a method of spraying ammonia water on titanium hydroxide. The concentration of the aqueous ammonia used at this time is usually 1.0% by weight or more, preferably 5.0% by weight or more. The temperature is usually 0 ° C. or higher, preferably 50 ° C. or higher, and 200 ° C. or lower, preferably 100 ° C. or lower, and the time is usually 10 minutes or longer, preferably 1 hour or longer. The operation of bringing into contact with the ammonia water is preferably performed using a sealable pressure-resistant reaction vessel in order to prevent the ammonia in the ammonia water from volatilizing and reducing the ammonia concentration.

【0012】次に、アンモニア水に接触させた水酸化チタン
を焼成する。焼成は通常300℃以上、好ましくは35
0℃以上で行われ、また600℃以下、さらには500
℃以下の温度で行うことが適当である。焼成は、例え
ば、アンモニア水に接触させた水酸化チタンスラリーを
ろ過や遠心分離してアンモニア水を除去し、次いで乾燥
して得た水酸化チタンを電気炉等で加熱する方法で行え
ばよい。焼成は、通常、空気中または窒素中で行えばよ
い。
Next, the titanium hydroxide that has been brought into contact with the aqueous ammonia is calcined. The calcination is usually at least 300 ° C, preferably 35
Performed at 0 ° C. or higher, and at 600 ° C. or lower, and even 500 ° C.
Suitably, it is carried out at a temperature of not more than ° C. The firing may be performed, for example, by filtering or centrifuging the titanium hydroxide slurry that has been brought into contact with the ammonia water to remove the ammonia water, and then heating the titanium hydroxide obtained by drying in an electric furnace or the like. The sintering may be usually performed in air or nitrogen.

【0013】本発明で得られる酸化チタンは、通常、結晶構
造がアナターゼ型である。この酸化チタンは波長が43
0nm以上である可視光線の照射によって光触媒活性を
示すので、これをそのまま又は成形加工して用いること
により、大気中のNOxの分解、居住空間や作業空間で
の悪臭物質やカビなどの分解除去、あるいは水中の有機
溶剤や農薬、界面活性剤などの分解除去に適用できる光
触媒とすることができる。
[0013] The titanium oxide obtained in the present invention usually has an anatase type crystal structure. This titanium oxide has a wavelength of 43
Since it exhibits photocatalytic activity by irradiation with visible light having a wavelength of 0 nm or more, it can be used as it is or after being molded to decompose NOx in the air, decompose and remove odorous substances and mold in living and working spaces, Alternatively, the photocatalyst can be used for decomposing and removing organic solvents, pesticides, surfactants and the like in water.

【0014】[0014]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明は本実施例に限定されるものではな
い。水酸化チタン及び酸化チタンの結晶構造は以下の方
法で求めた。 水酸化チタン及び酸化チタンの結晶構造:X線回折装置
(商品名:RAD−IIA、理学電機工業製)を用い
て、X線管球Cu、管電圧40kV、管電流35mA、
発散スリット1度、散乱スリット1度、受光スリット
0.30mm、サンプリング幅0.020度、走査速度
2.00度/分、測定積算回数1回の条件でX線回折ス
ペクトルを測定し結晶構造を同定した。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The crystal structures of titanium hydroxide and titanium oxide were determined by the following method. Crystal structure of titanium hydroxide and titanium oxide: Using an X-ray diffractometer (trade name: RAD-IIA, manufactured by Rigaku Corporation), X-ray tube Cu, tube voltage 40 kV, tube current 35 mA,
The X-ray diffraction spectrum was measured under the conditions of a divergence slit of 1 degree, a scattering slit of 1 degree, a light receiving slit of 0.30 mm, a sampling width of 0.020 degrees, a scanning speed of 2.00 degrees / minute, and a measurement integration number of 1 to determine the crystal structure. Identified.

【0015】実施例1 [水酸化チタンの調製]テトライソプロポキシチタン
(和光純薬製)57.7gを2−プロパノール(和光純
薬製)133.2gに溶解した液に、水7.4gと2−
プロパノール64.2gとの混合液を添加し、室温で加
水分解して沈殿物を得、次いでエバポレータで乾燥して
水酸化チタンを調製した。この水酸化チタンは粒子状で
あった。また、前記の方法で結晶構造を測定した結果、
水酸化チタンは非晶質であった。
Example 1 [Preparation of titanium hydroxide] A solution of 57.7 g of tetraisopropoxytitanium (manufactured by Wako Pure Chemical) in 133.2 g of 2-propanol (manufactured by Wako Pure Chemical) was mixed with 7.4 g of water. 2-
A mixed solution with 64.2 g of propanol was added, and the mixture was hydrolyzed at room temperature to obtain a precipitate, and then dried with an evaporator to prepare titanium hydroxide. This titanium hydroxide was in the form of particles. Also, as a result of measuring the crystal structure by the above method,
Titanium hydroxide was amorphous.

【0016】上で調製し得られた水酸化チタン1gと10重
量%アンモニア水18gとをステンレス製反応容器に入
れ、混合して水酸化チタンスラリーとした後、このステ
ンレス製反応容器をステンレス製耐圧タンクに内挿し
て、この耐圧タンクを密閉した後、耐圧タンク内のアン
モニア水を70℃に昇温しそのまま10時間保持した。
次に、アンモニア水に接触させる処理を行った水酸化チ
タンスラリーをろ過、乾燥した。得られた乾燥品0.5
gをアルミナ製ルツボに入れた後、箱型電気炉にこのル
ツボを入れて、300℃の空気中で2時間保持し、次い
で350℃に昇温し1時間保持して乾燥品を焼成した
後、冷却して酸化チタンを得た。室温から300℃まで
の昇温、及び300℃から350℃までの昇温は200
℃/hで行った。得られた酸化チタンは粒子状であっ
た。また結晶構造を前記の方法で測定した結果、この酸
化チタンはアナターゼ型であった。
[0016] 1 g of the titanium hydroxide obtained above and 18 g of 10% by weight ammonia water are placed in a stainless steel reaction vessel and mixed to form a titanium hydroxide slurry. After being inserted into the tank and sealing the pressure-resistant tank, the temperature of the ammonia water in the pressure-resistant tank was raised to 70 ° C. and maintained for 10 hours.
Next, the titanium hydroxide slurry subjected to the treatment of contacting with ammonia water was filtered and dried. Obtained dried product 0.5
g was placed in an alumina crucible, and then placed in a box-type electric furnace, kept in air at 300 ° C. for 2 hours, and then heated to 350 ° C. and kept for 1 hour to bake the dried product. After cooling, titanium oxide was obtained. The temperature rise from room temperature to 300 ° C. and from 300 ° C. to 350 ° C. is 200
C./h. The obtained titanium oxide was in the form of particles. Further, as a result of measuring the crystal structure by the above method, this titanium oxide was of an anatase type.

【0017】密閉式のパイレックス(登録商標)製反応容器
(直径8cm×高さ10cm、容量約0.5リットル)
内に、直径5cmのガラス製シャーレを設置し、そのシ
ャーレ上に、上で得られた粒子状酸化チタンを置いた。
反応容器内を混合ガス(酸素と窒素との体積比が1:4
である。)で満たし、アセトアルデヒドを13.4μm
ol封入し、反応容器の外から可視光線を照射した。可
視光線の照射には、500Wキセノンランプ(ウシオ電
機製、商品名:オプティカルモジュレックスSX−UI
500XQ、ランプUXL−500SX)に、波長約4
30nm以下の紫外線をカットするフィルター(東芝硝
子製、商品名:Y−45)と波長約830nm以上の赤
外線をカットするフィルター(ウシオ電機製、商品名:
スーパーコールドフィルター)とを装着したものを光源
として用いた。可視光線の照射によりアセトアルデヒド
が分解すると、二酸化炭素が発生するので二酸化炭素の
濃度を光音響マルチガスモニタ(INNOVA製、13
12型)で経時的に測定し、濃度変化より算出した二酸
化炭素の生成速度により、酸化チタンのアセトアルデヒ
ドに対する光分解作用を評価した。この例における二酸
化炭素の生成速度は、酸化チタン1gあたり27.9μ
mol/hであった。
A sealed Pyrex (registered trademark) reaction vessel (diameter 8 cm × height 10 cm, capacity about 0.5 liter)
A glass petri dish having a diameter of 5 cm was placed therein, and the particulate titanium oxide obtained above was placed on the petri dish.
A mixed gas (volume ratio of oxygen and nitrogen is 1: 4
It is. ) And fill with acetaldehyde at 13.4 μm
Then, visible light was irradiated from outside the reaction vessel. For irradiation with visible light, use a 500 W xenon lamp (made by Ushio Inc., trade name: Optical Modlex SX-UI)
500XQ, lamp UXL-500SX)
A filter that cuts ultraviolet light of 30 nm or less (product name: Y-45, manufactured by Toshiba Glass) and a filter that cuts infrared light having a wavelength of about 830 nm or more (product name: manufactured by Ushio Inc.)
A super cold filter) was used as a light source. When acetaldehyde is decomposed by irradiation with visible light, carbon dioxide is generated. Therefore, the concentration of carbon dioxide is measured using a photoacoustic multigas monitor (manufactured by INNOVA, 13
12), and the photodecomposition effect of titanium oxide on acetaldehyde was evaluated based on the carbon dioxide generation rate calculated from the concentration change. The generation rate of carbon dioxide in this example was 27.9 μg / g of titanium oxide.
mol / h.

【0018】実施例2 実施例1において、アンモニア水に接触させる処理を行
うときのアンモニア水の温度を110℃に変えた以外は
同様にして行った。得られた酸化チタンは粒子状であ
り、結晶構造がアナターゼ型であった。次いで、実施例
1と同様にしてアセトアルデヒドに対する光分解作用を
評価した。二酸化炭素の生成速度は酸化チタン1gあた
り26.6μmol/hであった。
Example 2 Example 1 was carried out in the same manner as in Example 1, except that the temperature of the aqueous ammonia was changed to 110 ° C. when the treatment for contacting the aqueous ammonia was performed. The obtained titanium oxide was in the form of particles and had a crystal structure of an anatase type. Next, the photodegradation effect on acetaldehyde was evaluated in the same manner as in Example 1. The generation rate of carbon dioxide was 26.6 μmol / h per 1 g of titanium oxide.

【0019】実施例3 実施例1において、アンモニア水に接触させる処理を行
うときのアンモニア水の温度を20℃に変えた以外は同
様にして行った。得られた酸化チタンは粒子状であり、
結晶構造がアナターゼ型であった。次いで、実施例1と
同様にしてアセトアルデヒドに対する光分解作用を評価
した。二酸化炭素の生成速度は酸化チタン1gあたり1
9.7μmol/hであった。
Example 3 The procedure of Example 1 was repeated, except that the temperature of the aqueous ammonia was changed to 20 ° C. when performing the treatment of contacting the aqueous ammonia. The obtained titanium oxide is in the form of particles,
The crystal structure was of the anatase type. Next, the photodegradation effect on acetaldehyde was evaluated in the same manner as in Example 1. The rate of carbon dioxide generation is 1 per gram of titanium oxide.
It was 9.7 μmol / h.

【0020】比較例1 β−水酸化チタン(キシダ化学製)を400℃の空気中
で1時間焼成して、酸化チタンを製造した。得られた酸
化チタンは結晶構造がアナターゼ型であった。次いで実
施例1と同様にしてアセトアルデヒドに対する光分解作
用を評価した。二酸化炭素の生成速度は酸化チタン1g
あたり0.93μmol/hであった。
Comparative Example 1 β-titanium hydroxide (manufactured by Kishida Chemical) was calcined in air at 400 ° C. for 1 hour to produce titanium oxide. The obtained titanium oxide had an anatase crystal structure. Next, the photolysis effect on acetaldehyde was evaluated in the same manner as in Example 1. The generation rate of carbon dioxide is 1 g of titanium oxide
0.93 μmol / h.

【0021】[0021]

【発明の効果】以上説明した様に、本発明によれば、波
長が430nm以上である可視光線を照射することによ
って触媒活性を示す酸化チタンを水酸化チタンから容易
に製造することができる。
As described above, according to the present invention, titanium oxide having catalytic activity can be easily produced from titanium hydroxide by irradiating visible light having a wavelength of 430 nm or more.

フロントページの続き (72)発明者 小池 宏信 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 Fターム(参考) 4G047 CA02 CB04 CC03 CD03 CD07 4G069 AA08 AA09 AA14 BA04A BA04B BA48A BB04A BB04B BB05C BB11C BC50A BC50B CA07 CA08 CA13 CA15 EC22X EC22Y FB06 FB30 FB34 FB36 FC02 FC07 Continuation of front page (72) Inventor Hironobu Koike 5-1 Sokai-cho, Niihama-shi, Ehime F-term (reference) in Sumitomo Chemical Co., Ltd. BC50B CA07 CA08 CA13 CA15 EC22X EC22Y FB06 FB30 FB34 FB36 FC02 FC07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水酸化チタンをアンモニア水に接触させ
た後、焼成することを特徴とする酸化チタンの製造方
法。
1. A method for producing titanium oxide, comprising: bringing titanium hydroxide into contact with ammonia water, followed by firing.
【請求項2】 水酸化チタンが非晶質である請求項1記
載の方法。
2. The method according to claim 1, wherein the titanium hydroxide is amorphous.
【請求項3】 焼成を300〜600℃で行う請求項1
又は2記載の方法。
3. The sintering is performed at 300 to 600 ° C.
Or the method of 2.
JP2000098706A 2000-03-31 2000-03-31 Method of producing titanium oxide Pending JP2001278626A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000098706A JP2001278626A (en) 2000-03-31 2000-03-31 Method of producing titanium oxide
CA002342566A CA2342566A1 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
CNB011121653A CN1210100C (en) 2000-03-31 2001-03-29 Method for preparing titanium dioxide
KR1020010016457A KR20010095089A (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
EP01302987A EP1138634B1 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
DE60107991T DE60107991T2 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
AU31406/01A AU781370B2 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
US09/819,790 US6827922B2 (en) 2000-03-31 2001-03-29 Process for producing titanium oxide
US10/606,295 US20040037772A1 (en) 2000-03-31 2003-06-26 Process for producing titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098706A JP2001278626A (en) 2000-03-31 2000-03-31 Method of producing titanium oxide

Publications (1)

Publication Number Publication Date
JP2001278626A true JP2001278626A (en) 2001-10-10

Family

ID=18613163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098706A Pending JP2001278626A (en) 2000-03-31 2000-03-31 Method of producing titanium oxide

Country Status (1)

Country Link
JP (1) JP2001278626A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338564A2 (en) 2002-02-25 2003-08-27 Sumitomo Chemical Co.,Ltd. Titanium oxide precursor and production method thereof, and production method of titanium oxide using the precursor
JP2004130195A (en) * 2002-10-09 2004-04-30 Takeshi Ohara Agent for reducing volatile organic compoumd, nox, or sox
JP2005517521A (en) * 2002-02-14 2005-06-16 トラスティーズ オブ スティーブンス インスティテュート オブ テクノロジー Method for producing a titanium oxide product having an active surface and method for using the titanium oxide product in a water treatment process
JP2006182588A (en) * 2004-12-27 2006-07-13 Kao Corp Method for producing layered titanate nanosheet
US7521391B2 (en) 2004-03-17 2009-04-21 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
EP2130587A2 (en) 2008-06-05 2009-12-09 Sumitomo Chemical Company, Limited Photocatalyst dispersion liquid and process for producing the same
EP2281628A2 (en) 2009-08-07 2011-02-09 Sumitomo Chemical Company, Limited Method for producing noble metal-supported photocatalyst particles
DE102010045549A1 (en) 2009-09-16 2011-08-25 Sumitomo Chemical Company, Limited Photocatalyst composite and using this photocatalytically active product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517521A (en) * 2002-02-14 2005-06-16 トラスティーズ オブ スティーブンス インスティテュート オブ テクノロジー Method for producing a titanium oxide product having an active surface and method for using the titanium oxide product in a water treatment process
EP1338564A2 (en) 2002-02-25 2003-08-27 Sumitomo Chemical Co.,Ltd. Titanium oxide precursor and production method thereof, and production method of titanium oxide using the precursor
JP2004130195A (en) * 2002-10-09 2004-04-30 Takeshi Ohara Agent for reducing volatile organic compoumd, nox, or sox
US7521391B2 (en) 2004-03-17 2009-04-21 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
JP2006182588A (en) * 2004-12-27 2006-07-13 Kao Corp Method for producing layered titanate nanosheet
JP4504177B2 (en) * 2004-12-27 2010-07-14 花王株式会社 Method for producing layered titanate nanosheet
EP2130587A2 (en) 2008-06-05 2009-12-09 Sumitomo Chemical Company, Limited Photocatalyst dispersion liquid and process for producing the same
EP2281628A2 (en) 2009-08-07 2011-02-09 Sumitomo Chemical Company, Limited Method for producing noble metal-supported photocatalyst particles
DE102010045549A1 (en) 2009-09-16 2011-08-25 Sumitomo Chemical Company, Limited Photocatalyst composite and using this photocatalytically active product

Similar Documents

Publication Publication Date Title
EP1138634B1 (en) Process for producing titanium oxide
JP4018161B2 (en) Method for producing titanium oxide for photocatalyst and method for removing harmful substances using the same
JP3076844B1 (en) Mesoporous titanium oxide porous body and method for producing the same
US6645460B2 (en) Titanium hydroxide and photocatalytic coating agent
JP3845720B2 (en) Potassium niobate photocatalyst and method for producing the same
JP2011063473A (en) Method for producing metal oxide-containing titanium oxide compound
JP2001278626A (en) Method of producing titanium oxide
JP2001278627A (en) Method of producing titanium oxide
JP2001354422A (en) Method for manufacturing titanium oxide
JPH11335121A (en) Production of anatase titanium oxide
JP5652849B2 (en) Titanium oxide and method for producing the same
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JP2001278625A (en) Method of producing titanium oxide
JP2001302241A (en) Method for producing titanium oxide
JP4103324B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP2002047012A (en) Method of manufacturing titanium oxide
JP2001276615A (en) Titanium oxide powder for photocatalyst
JPH10265223A (en) Production of anatase type fine particulate titanium oxide
JP3136339B2 (en) Titanium oxide photocatalyst and method for producing the same
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
KR20050042763A (en) Preparation of titania nanotubes with high crystallinity and activity
JP4625942B2 (en) Visible light responsive titanium oxide powder photocatalyst and process for producing the same
JP2002060221A (en) Method for producing titanium oxide
JPH0924281A (en) Photocatalyst and its manufacture
JP2007222725A (en) Method for improving activity of photocatalytic titanium oxide and method for manufacturing high-activity photocatalytic titanium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105