JP4424905B2 - Anatase type titania-silica composite, production method thereof and photocatalytic material - Google Patents

Anatase type titania-silica composite, production method thereof and photocatalytic material Download PDF

Info

Publication number
JP4424905B2
JP4424905B2 JP2002367377A JP2002367377A JP4424905B2 JP 4424905 B2 JP4424905 B2 JP 4424905B2 JP 2002367377 A JP2002367377 A JP 2002367377A JP 2002367377 A JP2002367377 A JP 2002367377A JP 4424905 B2 JP4424905 B2 JP 4424905B2
Authority
JP
Japan
Prior art keywords
anatase
titania
silica
type
silica composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002367377A
Other languages
Japanese (ja)
Other versions
JP2004161592A (en
Inventor
正典 平野
啓介 太田
Original Assignee
正典 平野
名古屋カレット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正典 平野, 名古屋カレット株式会社 filed Critical 正典 平野
Priority to JP2002367377A priority Critical patent/JP4424905B2/en
Publication of JP2004161592A publication Critical patent/JP2004161592A/en
Application granted granted Critical
Publication of JP4424905B2 publication Critical patent/JP4424905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高い光触媒作用を有するアナターゼ型チタニア−シリカ複合体、その製造法及び光触媒材料に関する。
【0002】
【従来の技術】
チタニア(TiO)はn型半導体に属し、三種類の結晶相(アナターゼ、ルチル、ブルッカイト)のなかでもアナターゼ型のチタニアは優れた光触媒作用を示す。チタニアの熱力学的安定相はルチルであり、アナターゼは準安定相であるので、一般に、大気中における熱処理により容易にアナターゼ型からルチル型への相転移を生じる。高温では、アナターゼ型のチタニアは極めて不安定である。アナターゼ型からルチル型への相転移は動力学的検討から約635℃付近で生じるとされるが、アナターゼ相の安定性は、粒子径、不純物、組成、製造法等に大きく依存し、調製法、使用する前駆体によっては500℃付近からアナターゼ型からルチル型への相転移が生じ始める。
【0003】
チタニアの製造法には、チタンのアルコキシドを原料に使用したゾル−ゲル法、四塩化チタン、硫酸チタン、オキシ硫酸チタン等のチタン塩水溶液の加熱分解や加水分解による方法等が一般的手法として知られている。またシリカは、石英、トリジマイト、クリストバライトの3種の多形があり、多方面で工業的に利用されているが、ガラスの主成分であって、比較的容易にガラス状態(非晶質)として存在しうる。工業的なシリカ原料にも非晶質のものが多々使用されている。非晶質シリカとして、例えば、シリカゲルは高い比表面積とその無数に発達した細孔を利用して、吸着剤、脱臭剤、触媒坦体等に応用されている。
【0004】
更にシリカを含有するチタニアについては、アナターゼ型からルチル型への相転移に及ぼすシリカ添加の影響について、TiCl−SiCl−O系気相反応により合成されたCVD−TiO・SiO粉体において調べられ、アナターゼ型からルチル型への相転移が抑制されることが見いだされており(980℃までアナターゼ相で存在、非特許文献1参照)、またアナターゼ型チタニア粒子にシリカを添加して、1000℃の焼成でもルチル型に相転移する割合が少なく、光触媒活性の高い光触媒機能を有する陶磁器及びその製造方法が開示されていて(特許文献1参照)、更にチタニウムテトライソプロポキシドとオルトケイ酸テトラエチルを用いてゾル−ゲル法により合成された粉末について報告があり、チタニアに対するシリカの固溶について議論され、アナターゼ型からルチル型への相転移温度を約300℃上昇させる効果が示されている(100%がアナターゼ相で約825℃まで存在、非特許文献2参照)。
【0005】
そしてシリカゲル等とチタニア光触媒の複合化については、多孔性ゲル光触媒が知られており(特許文献2参照)、また半導体光触媒含有球状シリカゲル体及び製造方法並びに塗料組成物が知られている(特許文献3参照)。これらの特許文献の出願以前にも、すでにシリカゲル等へのチタニア光触媒の複合化についての報告があり(チタニア光触媒とシリカのゾル−ゲル混合物についての開示、非特許文献3参照)、またシリカゲル−チタニア触媒についての報告もある(チタニア−シリカエーロゲルの構造と触媒特性に及ぼす前加水分解の影響、非特許文献4参照)。
【0006】
しかし、これら従来公知の製造法によるチタニア−シリカ複合体は、チタニアのアナターゼ相の安定性が高くなく、しかもチタニア光触媒とシリカ成分との複合化による光触媒機能の向上効果について具体的に且つ客観的な実験データが示されていない。
【特許文献1】
特開平11−157966号公報
【特許文献2】
特開平10−323568号公報
【特許文献3】
特開2001−104799号公報
【非特許文献1】
窯業協会誌86[3]119(1978)
【非特許文献2】
J.Am.Ceram.Soc.,84[7]1591(2001)
【非特許文献3】
Environ.Sci.Technol.,30[2]647〜653(1996)
【非特許文献4】
J.Catal.,150[2]311〜320(1994)
【0007】
【発明が解決しようとする課題】
純粋なアナターゼ型の酸化チタンは、大気中における熱処理により容易にアナターゼ型からルチル型への相転移を生じ、光触媒活性の低下をもたらすと共に、相安定性が低い。シリカ添加によるチタニアのアナターゼ型からルチル型への相転移に及ぼす抑制効果は知られているが、前記した従来技術のアナターゼ型の酸化チタンの相安定性は低く、1100℃で1時間の高温大気中における熱処理後においては、一般にすでにアナターゼ型からルチル型への相転移が完全に終了している。アナターゼ型の酸化チタンは、半導性物質中では優れた光触媒を示すが、光触媒活性をさらに一段と高めることが求められているところ、シリカは吸着能に優れるものの光触媒活性はほとんど無い。非晶質シリカは光透過性があるので、高い比表面積とその無数に発達した細孔を有し、かつ吸着能に優れるシリカとアナターゼ型チタニアを組み合わせることにより、吸着能と光触媒能の相乗効果が期待され、酸化チタンの光触媒用途を、さらに多方面へ応用拡大することが求められている。本発明は、複合化方法・製造法の検討により、シリカとの複合化によるチタニアのアナターゼ相の相安定性の際だった向上とアナターゼ型チタニアの光触媒性能の格段の向上を相乗的に図ることができる新規のアナターゼ型チタニア−シリカ複合体その製造方法及び光触媒材料を提供するものである。
【0008】
【課題を解決するための手段】
かくの如き課題を解決するための請求項1に記載の本発明に係るアナターゼ型チタニア−シリカ複合体は、チタン化合物とケイ素化合物とを水熱反応させることにより得られるアナターゼ型チタニア−シリカ複合体であって、チタニア(TiO)に対して内部mol%で15〜95mol%のシリカ(SiO)を含有し、該チタニアは1100℃で1時間の大気中における熱処理後においてアナターゼ型チタニアとして存在すると共に該アナターゼ型チタニアの結晶子径が70nm以下であり、下記の光触媒作用がシリカを含有しないアナターゼ型チタニアの2倍以上であることを特徴とする。
光触媒作用:アナターゼ型チタニア−シリカ複合体の試料粉末0.01gを蒸留水20mlに加えた後、20ppm濃度のメチレンブルー水溶液20mlを加え、全体の溶液のメチレンブルー濃度を10ppmにした溶液に対し、ブラックライトによる紫外線を1時間照射し、該アナターゼ型チタニア−シリカ複合体によるメチレンブルーの分解の程度を、分光光度計を用いた660nmのメチレンブルーによる吸光度の変化(減少)により測定される光触媒作用。
【0009】
前記のような組成のアナターゼ型チタニア−シリカ複合体は、半導性物質として様々な用途に好適であり、例えば光触媒としては、有機物分解性に優れ、水質浄化、脱臭、抗菌、防汚、大気浄化用として好適であり、応答性の高い光触媒作用を有し、非晶質シリカは光透過性があるので、高い比表面積とその無数に発達した細孔を有する非晶質シリカとの複合により、高い物質吸着性を付与することが可能で、吸着物質の分解作用と光触媒作用との相乗効果が得られる。
【0010】
本発明に係るアナターゼ型チタニア−シリカ複合体としては、シリカ(SiO)が主として非晶質シリカとしてチタニア結晶微粒子表面に存在するチタニア−シリカ複合体、シリカ(SiO)が非晶質シリカマトリックスとして存在する非晶質シリカマトリックス中にチタニアが結晶微粒子として存在するチタニア−シリカ複合体、シリカ(SiO)が非晶質のシリカゲルであって主として該非晶質シリカゲル表面にチタニアがアナターゼ型結晶微粒子として存在するチタニア−シリカ複合体が好ましい。吸着物質の分解作用と光触媒作用との好ましい相乗効果が得られるからである。
【0011】
本発明に係るアナターゼ型チタニア−シリカ複合体は、詳しくは後述するように、チタン化合物とケイ素化合物とを水熱反応させることにより得られるもので、チタニア(TiO)に対して内部mol%で15〜95mol%のシリカ(SiO)を含有し、該チタニアは1100℃で1時間の大気中における熱処理後においてアナターゼ型チタニアとして存在すると共に該アナターゼ型チタニアの結晶子径が70nm以下であり、その光触媒作用がシリカを含有しないアナターゼ型チタニアの2倍以上であるものである。
【0012】
ここで、シリカ(SiO)の含有量はチタニア(TiO)に対して内部mol%で30mol%以上、したがって30〜95mol%であり、アナターゼ型結晶相の安定性として、1200℃で1時間の大気中における熱処理後において、質量%でルチル相が10%未満であって90%以上がアナターゼ型チタニアとして存在すると共に該アナターゼ型チタニアの結晶子径が50nm以下であるものが好ましい。
【0013】
本発明に係るアナターゼ型チタニア−シリカ複合体において、光触媒作用は、アナターゼ型チタニア−シリカ複合体の試料粉末0.01gを蒸留水20mlに加えた後、20ppm濃度のメチレンブルー水溶液20mlを加え、全体の溶液(40ml)のメチレンブルー濃度を10ppmにした溶液に対し、ブラックライトによる紫外線を1時間照射し、該アナターゼ型チタニア−シリカ複合体によるメチレンブルーの分解の程度を、分光光度計を用いた660nmのメチレンブルーによる吸光度の変化(減少)により測定される光触媒作用である。
【0014】
また請求項3に記載の本発明に係るアナターゼ型チタニア−シリカ複合体の製造法は、前記した本発明に係るアナターゼ型チタニア−シリカ複合体の製造法であって、チタン化合物とケイ素化合物とを水性媒体中及び/又はアルコール媒体中に分散あるいは溶解して混合溶液を作製し、次に該混合溶液を密閉容器中で水熱反応させるか又は該混合溶液に沈殿形成剤を添加することにより生成した沈殿析出物を水熱反応させることを特徴とする。
【0015】
本発明に係るアナターゼ型チタニア−シリカ複合体の製造法では、チタン化合物とケイ素化合物を水性媒体中及び/又はアルコール媒体中に分散あるいは溶解して混合溶液を作製し、あるいは更に該混合溶液から沈殿析出物を生成させ、これらを水熱反応工程において、密閉容器中で所定の温度で水熱反応させる。そのため、チタン化合物に由来するTi成分(あるいは酸化チタン)とケイ素化合物に由来するSi成分(あるいは酸化ケイ素)とが反応し易くなって、水熱反応(すなわち高温高圧水の存在下での反応=水熱合成)により分子単位で反応し、アナターゼ結晶として析出する。結果として、前記したように、シリカ(SiO)が主として非晶質シリカとしてチタニア結晶微粒子表面に存在するチタニア−シリカ複合体、シリカ(SiO)が非晶質シリカマトリックスとして存在する非晶質シリカマトリックス中にチタニアが結晶微粒子として存在するチタニア−シリカ複合体、シリカ(SiO)が非晶質のシリカゲルであって、主として該非晶質シリカゲル表面にチタニアがアナターゼ型結晶微粒子として存在するチタニア−シリカ複合体が得られる。尚、沈殿形成剤としては、アンモニア水、炭酸アンモニウム、水酸化ナトリウム、水酸化カリウム、尿素、ヘキサメチレンテトラミン等のアルカリ成分を使用できる。
【0016】
本発明に係るアナターゼ型チタニア−シリカ複合体の製造法において、チタン化合物としては、チタンの硫酸塩を用いるのが好ましい。チタンの硫酸塩としては、オキシ硫酸チタン、硫酸チタン等が挙げられるが、硫酸あるいは硫酸イオン存在下の四塩化チタン水溶液やペルオキソチタン酸水溶液等でもよい。オキシ硫酸チタンや硫酸チタン等を用いるか、又は硫酸あるいは硫酸イオン存在下で四塩化チタン水溶液、ペルオキソチタン酸水溶液、水酸化チタン等を用いて、250℃以下の水熱反応工程を組み合わせると、得られるアナターゼ型チタニア−シリカ複合体は、極めて高い光触媒能と相安定性を併せ持つものとなる。
【0017】
またケイ素化合物としては、シリカゲル、ケイ酸ナトリウム、Siのアルコレート(アルコキシド)、シリカヒューム、シリカエアロゾル、フライアシュ等の人工シリカ原料を用いることができる。これらの人工シリカ原料は、純度等の特性を制御できる。
【0018】
本発明に係るアナターゼ型チタニア−シリカ複合体の製造法において、前記した水熱反応工程の温度は300℃以下とするが、250℃以下とするのが好ましい。このようにすれば、比較的低い温度で水熱反応が行われるため、フッ素樹脂等の樹脂製の容器を圧力容器内に利用することができる。
【0019】
更に請求項5に記載の本発明に係る光触媒材料は、前記した本発明に係るアナターゼ型チタニア−シリカ複合体から成ることを特徴とする。本発明に係る光触媒材料は、水質浄化剤、脱臭剤、悪臭・有機ガス分解剤、抗菌剤、抗カビ剤、抗藻剤、防汚剤、親水材料、大気浄化剤、水分解光触媒材料等として、様々な用途に用いることができる。
【0020】
【発明の実施の形態】
本発明においては、チタン化合物とケイ素化合物とを水性媒体中及び/又はアルコール媒体中に分散あるいは溶解して混合溶液とするか、又は更に該混合溶液から沈殿析出物を生成させるが、かかる混合溶液中における合計の金属イオン濃度は通常0.001mol/L〜5.0mol/Lとし、好ましくは0.1mol/L〜1.0mol/Lとする。
【0021】
そして、前記のような混合溶液や沈殿析出物は、公知の適当な反応容器、一般的には圧力容器に収納し、所望の温度に加熱して、水熱反応させる。本発明においては、製造装置の観点からして、より低温における水熱反応工程が好ましく、300℃以下において水熱反応が進行せしめられ、特に250℃以下の温度が有利に採用される一方、その下限は概略90℃程度とされる。低温の場合は長時間の保持が必要となる。
【0022】
【実施例】
以下に、本発明の実施例を示し、本発明を更に具体的に明らかにするが、本発明がそのような実施例に制約を受けるというものではない。また本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが理解されるべきである。
【0023】
実施例1
チタン化合物としてオキシ硫酸チタン(TiOSO)を用い、これを溶解した水溶液と、ケイ素化合物としてオルトケイ酸テトラエチル(Si(OC)を、チタンとケイ素の合計の金属イオンの濃度が0.2mol/Lとなり、かつTi:Si=100:0、90:10、85:15、80:20、70:30、50:50、30:70、10:90、0:100[mol%]の組成比になるように混合した以外、何も加えず、混合溶液(溶液は酸性の状態)を調製した。次いで、この混合溶液をステンレス製圧力容器に納めたフッ素樹脂製容器中に収容し、それを回転させることにより内容物を撹拌しながら加熱し、200℃の温度で24時間保持して、水熱反応させた。その後、得られた生成物を、何れも限外濾過及び/又は遠心分離操作により固液分離した後、更に蒸留水を加えて再度撹拌してから限外濾過及び/又は遠心分離操作する工程を繰り返して、得られた生成物を洗浄し、65℃で乾燥した。
【0024】
次いで、得られた生成物の乾燥粉体の結晶相について、X線回折により同定する一方、X線回折図形より、デバイ・シェラーの式を用いて、結晶子径の測定を行い、更に標準試料にシリコンを用いて、格子定数の測定を行った。また、大気中の熱処理により生じたアナターゼ型からルチル型への相転移の割合(ルチルの割合(質量%):F)をX線回折ピークの積分強度(アナターゼ101の積分強度:I(101)、ルチル110の積分強度:I(110))より、Spurrらの式:F=1/{1+0.79[I(101)/I(110)]}(R.A.Spurrら、Anal.Chem.,29,760−762(1957))により計算した。また、ICP(誘導結合高周波プラズマ)発光分光分析により、得られた生成物の乾燥粉体組成(Ti:Si)を定量分析した。生成物の粒子径、形態は透過型電子顕微鏡により観察した。得られた生成物の乾燥粉体はラマン分光による測定を行った。また、BET法による比表面積測定を行った。さらに紫外可視吸光光度計を使用し、拡散反射光を積分球検出器により測定し、得られた生成物の乾燥粉体の紫外可視光吸収スペクトルを測定した。この紫外可視光吸収スペクトルから、生成物の乾燥粉体のバンドギャップを計算した。さらに、得られた生成物の乾燥粉体0.01gを秤量して蒸留水20ml中に入れ、5分間超音波分散後、20ppm濃度のメチレンブルー水溶液20mlを加えてメチレンブルー濃度を10ppmにて、撹拌しながら紫外線(ブラックライト)を60分間照射したのち、メチレンブルー水溶液と粉体を分離し、溶液中のメチレンブルー濃度を紫外可視吸光光度計により測定し、生成物の乾燥粉体の光触媒性能を、メチレンブルーの紫外線(ブラックライト)照射下における分解の程度を調べることにより評価した。また、光触媒性能の高い試料は、紫外線(ブラックライト)の照射を5分間とした以外は同様にして、溶液中のメチレンブルー濃度を紫外可視吸光光度計により測定し、生成物の乾燥粉体の光触媒性能を評価した。
【0025】
かくして得られた生成物の乾燥粉体のX線回折図形を図1に示す。図1中、TiOは、本発明に係るアナターゼ型チタニア−シリカ複合体の製造法と同じ方法で合成した本発明組成以外の純粋なアナターゼ型TiOの比較例である。このX線回折図より、Ti:Si=100:0、90:10、85:15、80:20、70:30、50:50[mol%]のいずれの出発組成の生成物も、アナターゼ型結晶構造のみが結晶相として同定されることから、アナターゼ型結晶構造を有し、実質的にルチル相を含有しないことが確認された。アナターゼ型結晶の200のミラー指数の回折線からデバイ・シェラーの式を用いて、結晶子径の測定を行った結果、いずれの組成の生成物の乾燥粉体の結晶子径も14〜15nmの範囲にあった。また、生成物の乾燥粉体に標準物質としてSiを加えた試料のX線回折図形より、Ti:Siの組成の変化に対し、回折ピーク位置のシフトはほとんど観察されず、組成に対する格子定数(a軸,c軸)の微妙な変化を除いて、顕著な変化は観察されなかった。なおTi:Si=30:70、10:90と、SiO量が多い試料ではアナターゼの回折ピークが小さくなり、比較例であるTi:Si=0:100では完全な非晶質として同定された。ICP(誘導結合高周波プラズマ)発光分光分析により、得られた生成物の乾燥粉体の分析組成(Ti:Si)を調べた結果、得られた生成物の乾燥粉体の組成は、出発組成に対応し、ほぼ同じであることが確認された。得られた生成物の乾燥粉体のラマン分光による測定結果より、いずれの試料もアナターゼ型結晶に由来するピークのみが観察されたが、生成物中のSi含有量が増えるにしたがい、ピーク強度の減少がはっきり観察され、Ti:Si=50:50[mol%]試料では、アナターゼ型結晶に由来するピークは同定されるものの、極めて弱いことが解った。これより、チタニアのアナターゼ型結晶表面にシリカ成分が非晶質として存在しているか、Si含有量の多い組成物の場合は、非晶質シリカマトリックス中にチタニアのアナターゼ型結晶が存在する微構造であることが理解された。透過型電子顕微鏡により生成物の乾燥粉体(Ti:Si=100:0及び50:50[mol%]試料)を比較観察した結果、比較試料の純粋なアナターゼ型チタニアと比較し、Ti:Si=50:50試料は粒子の輪郭がはっきりせず、ぼけているように観察され、高倍率の格子像の観察される写真からも、非晶質シリカの存在が、ラマン分光測定の結果と兼ねあわせ理解された。BET法による比表面積測定の結果から、比表面積は100〜450m/gの範囲にあり、SiO=30mol%までは100〜130m/gであるが、SiO=30〜90mol%とSiO量が増大するにつれ比表面積は増加し、150〜450m/gとなった。比較例であるSiO=100mol%では200m/gと比表面積は急に低下した。次に、得られた生成物の乾燥粉体を大気中にて800℃で1時間加熱処理した粉体のラマン分光測定の結果より、乾燥粉体と同様に、800℃熱処理粉体はいずれの試料もアナターゼ型結晶に由来するピークのみが観察されたが、生成物中のSi含有量が増えるにしたがい、ピーク強度の減少がはっきり観察され、Ti:Si=50:50[mol%]試料では、アナターゼ型結晶に由来するピークは同定されるものの、極めて弱いことが解り、チタニアのアナターゼ型結晶表面にシリカ成分が非晶質として存在しているか、Si含有量の多い組成物の場合は、非晶質シリカマトリックス中にアナターゼ型結晶が存在する微構造であることが理解された。得られた生成物(Ti:Si=50:50)を大気中、種々の温度で1時間加熱処理した粉体のX線回折図形を図2に示す。また、大気中の熱処理により生じたアナターゼ型からルチル型への相転移の割合をX線回折ピーク(アナターゼ101ルチル110)の積分強度よりSpurrらの式により計算した結果を図3に示す。大気中の熱処理により生じたアナターゼ型からルチル型への相転移は、シリカ含有量の増大にともない抑制され、高温側へシフトし、シリカ含有量15mol%では1100℃処理後も100%アナターゼ型であり、シリカ含有量30mol%では1200℃処理後95%以上がアナターゼ型であった。シリカ含有量50mol%では1300℃で1時間処理後も100%アナターゼ型であって、極めて高い相安定性を示すことが確認された。透過型電子顕微鏡観察結果より、比較例である純粋なアナターゼ型チタニアと比較し、本発明のアナターゼ型チタニア−シリカ複合体は、大気中800℃で1時間の処理後もほとんど粒子成長(結晶子成長)せず、熱処理前と同様な微細な粒子径を保っていることが解った。アナターゼ型結晶の200のミラー指数の回折線からデバイ・シェラーの式を用いて、結晶子径の測定を行った結果を大気中における熱処理温度に対して図4に示す。図中、TiOは、本発明のアナターゼ型チタニア−シリカ複合体の製法と同じ方法で合成した本発明組成以外の純粋なアナターゼ型TiOの比較例である。シリカをアナターゼ型結晶と複合化することにより、結晶子の成長が大幅に抑制されることが解る。シリカ(SiO)の含有量が30mol%以上であり、1200℃で1時間の大気中における熱処理後において、アナターゼ型チタニア結晶の結晶子径が50nm以下であることが確認され、シリカ(SiO)の含有量が50mol%試料は、1200℃で1時間の大気中における熱処理後のアナターゼ型チタニア結晶の結晶子径は40nmであった。図5に生成物の乾燥粉体の紫外可視光吸収スペクトルの測定結果を示す。図中、TiOは、本発明のアナターゼ型チタニア−シリカ複合体の製法と同じ方法で合成した本発明組成以外の純粋なアナターゼ型TiOの比較例である。Ti:Siの組成の変化にともない、吸収スペクトルの吸収端が短波長側に微妙にシフトしていくことが観察される。この吸収スペクトルから生成物の乾燥粉体のバンドギャップを計算した結果を表1に示す。
【0026】
【表1】

Figure 0004424905
【0027】
Si含有量の増大にしたがい、バンドギャップは若干ずつ増大し、組成制御により、若干ではあるがバンドギャップを変化させうることが解る。メチレンブルーの分解を用いて紫外線(ブラックライト)照射下における合成粉体の光触媒性能を評価した結果を、紫外線(ブラックライト)を1時間照射後のメチレンブルーの吸光度(濃度)の変化で図6に示す。図中、TiOは図に示した本発明のアナターゼ型チタニア−シリカ複合体の製法と同じ方法で合成した本発明組成以外の水熱合成された純粋なアナターゼ型TiOの比較例である。また、ST−01は、市販されている石原産業社製の純粋なアナターゼ型TiO光触媒で比較例である。比較例である水熱合成された純粋なアナターゼ型TiO及び市販されている石原産業製の純粋なアナターゼ型TiO光触媒ST−01が、(ブラックライト)を1時間照射後において、メチレンブルーの吸光度(濃度)が光触媒無添加の場合(MB試料)の約2/3から1/2まで低下している程度であるのに対し、Si成分を含有する本発明のアナターゼ型チタニア−シリカ複合体はいずれも、1時間照射の間にメチレンブルーの吸光度(濃度)が急激に減少し、約1/3以下であって、Ti:Si=70:30、50:50[mol%]組成では、ほぼ吸光度(濃度)がゼロであって、極めて高速かつ著しい低下を示すことが解る。さらに、図6において最も優れる性能を示したTi:Si=50:50[mol%]組成物について、大気中における熱処理効果について、600〜1000℃で1時間熱処理した試料について、紫外線(ブラックライト)の照射時間を5分間と1/12に短縮した以外は同様にして、溶液中のメチレンブルー濃度を紫外可視吸光光度計により測定し、大気中における熱処理後の合成粉体の光触媒性能を評価した結果を図7に示す。これより、600〜1000℃と熱処理温度が高くなるにつれてメチレンブルーの吸光度(濃度)が減少し、1000℃処理試料では、ほぼ吸光度(濃度)がゼロ付近であって、5分間という短時間の照射であっても、極めて高速かつ著しい低下(高い優れた光触媒能)を示すことが解る。
【0028】
実施例2
チタン化合物としてオキシ硫酸チタン(TiOSO)を用い、これを溶解した水溶液と、ケイ素化合物としてオルトケイ酸テトラエチル(Si(OC)を、チタンとケイ素の合計の金属イオンの濃度が0.2mol/Lとなり、かつTi:Si=100:0、90:10、85:15、70:30、50:50[mol%]の組成比になるように混合した溶液に、溶液を中和するのに必要な量の2倍量のアンモニア水を加え、沈殿物スラリーを含む混合溶液を用いた以外は実施例1と全く同様な合成操作を行い、生成物を得、洗浄後、65℃で乾燥し、実施例1と同様な測定を行った。
【0029】
かくして得られた生成物の乾燥粉体のX線回折図形より、Ti:Si=100:0、90:10、85:15、70:30、50:50[mol%]のいずれの出発組成の生成物も、アナターゼ型結晶構造のみが結晶相として同定され、アナターゼ型結晶構造を有し、実質的にルチル相を含有しないことが理解された。アナターゼ型結晶の200のミラー指数の回折線からデバイ・シェラーの式を用いて、結晶子径の測定を行った結果、いずれの組成の生成粉体の結晶子径も10〜20nmの範囲にあった。得られた生成物の分析組成(Ti:Si)を調べた結果、得られた生成物の乾燥粉体の組成は、出発組成に対応しほぼ同じであることが確認された。得られた生成物の乾燥粉体のラマン分光による測定結果及び透過型電子顕微鏡観察より、チタニアのアナターゼ型結晶表面にシリカ成分が非晶質として存在しているか、Si含有量の多い組成物の場合は、非晶質シリカマトリックス中にアナターゼ型結晶が存在する微構造であることが理解された。大気中の熱処理により生じたアナターゼ型からルチル型への相転移は、シリカ含有量の増大にともない抑制され、高温側へシフトし、シリカ含有量15mol%では1100℃処理後も100%アナターゼ型であることが確認され、シリカ含有量30mol%以上では1200℃処理後も90%以上がアナターゼ型であることが確認された。シリカ含有量を50mol%では1300℃処理後も100%アナターゼ型であることが確認された。メチレンブルーの分解を用いて紫外線(ブラックライト)照射下における合成粉体の光触媒性能を評価した結果、比較例である水熱合成された純粋なアナターゼ型TiO及び市販されている石原産業社製の純粋なアナターゼ型TiO光触媒ST−01が、紫外線(ブラックライト)を1時間照射後において、メチレンブルーの吸光度(濃度)が光触媒無添加の場合(MB試料)の約2/3から1/2まで低下している程度であるのに対し、シリカ成分を含有する本発明のアナターゼ型チタニア−シリカ複合体はいずれも、1時間照射の間にメチレンブルーの吸光度(濃度)が急激に減少し、約1/3以下であって、Ti:Si=70:30、50:50[mol%]組成では、ほぼ吸光度(濃度)がゼロであって、極めて高速かつ著しい低下を示すことが解った。
【0030】
実施例3
実施例1において、オルトケイ酸テトラエチルの代わりにシリカゲルを使用し、かつTi:Si=40:60、20:80、5:95[mol%]の組成比になるように混合した以外は実施例1と同様に試料を調製した。評価も乾燥物を走査型電子顕微鏡(SEM)観察した以外実施例1と類似の測定を行った。
【0031】
かくして得られた生成物の乾燥粉体のX線回折図形より、いずれの出発組成の生成物も、結晶相としてはアナターゼ型結晶構造のみが同定され、アナターゼ型結晶構造を有し、実質的にルチル相を含有しないことが理解された。また、非晶質シリカゲル表面にアナターゼ型結晶の析出粒子の存在がSEMにより確認された。シリカ成分(シリカゲル)との複合化により、吸着能と同時に光触媒性能が向上し、アナターゼ型の安定性も向上した(1200℃で1時間処理後も100%アナターゼ型であることが確認された)。
【0032】
実施例4
チタン化合物としてオキシ硫酸チタン(TiOSO)を用い、これを溶解した水溶液と、ケイ素化合物としてケイ酸ナトリウム(メタケイ酸ナトリウムNaSiO・9HO)を、チタンとケイ素の合計の金属イオンの濃度が0.2mol/Lとなり、かつTi:Si=100:0、90:10、85:15、70:30、50:50、30:70[mol%]の組成比になるように混合した以外、何も加えず、調製した混合溶液(溶液は酸性の状態)を用いた以外は実施例1と全く同様な合成操作を行い、生成物を得、洗浄後、65℃で乾燥させた。次いで、得られた乾燥物の結晶相について、実施例1と同様な測定を行った。
【0033】
かくして得られた生成物の65℃乾燥粉体のX線回折図形より、Ti:Si=100:0、90:10、85:15、70:30、50:50、30:70[mol%]のいずれの出発組成の生成物も、アナターゼ型結晶構造のみが結晶相として同定され、アナターゼ型結晶構造を有し、実質的にルチル相を含有しないことが理解された。アナターゼ型結晶の200のミラー指数の回折線からデバイ・シェラーの式を用いて、結晶子径の測定を行った結果、いずれの組成の生成粉体の結晶子径も10〜20nmの範囲にあった。ICP(誘導結合高周波プラズマ)発光分光分析により、得られた生成物の乾燥粉体の分析組成(Ti:Si)を調べた結果、得られた生成物の乾燥粉体の組成は、出発組成に対応しほぼ同じであることが確認された。得られた生成物の乾燥粉体のラマン分光による測定結果及び透過型電子顕微鏡観察より、アナターゼ型結晶表面にシリカ成分が非晶質として存在しているか、Si含有量の多い組成物の場合は、非晶質シリカマトリックス中にアナターゼ型結晶が存在する微構造であることが理解された。大気中の熱処理により生じたアナターゼ型からルチル型への相転移は、シリカ含有量の増大にともない抑制され、高温側へシフトし、シリカ含有量15mol%では1100℃処理後も100%アナターゼ型であることが確認され、シリカ含有量30mol%以上では1200℃処理後も100%アナターゼ型であることが確認された。メチレンブルーの分解を用いて紫外線(ブラックライト)照射下における合成粉体の光触媒性能を評価した結果、比較例である水熱合成された純粋なアナターゼ型TiO及び市販されている石原産業社製の純粋なアナターゼ型TiO光触媒ST−01が、紫外線(ブラックライト)を1時間照射後において、メチレンブルーの吸光度(濃度)が光触媒無添加の場合(MB試料)の約2/3から1/2まで低下している程度であるのに対し、シリカ成分を含有する本発明のアナターゼ型チタニア−シリカ複合体はいずれも、60分照射の間にメチレンブルーの吸光度(濃度)が急激に減少し、約1/3以下であって、Ti:Si=70:30、50:50[mol%]組成では、ほぼ吸光度(濃度)がゼロであって、極めて高速かつ著しい低下を示すことが解った。
【0034】
【発明の効果】
以上の説明から明らかなように、本発明にしたがうところのアナターゼ型チタニア−シリカ複合体は、様々な用途に好適であり、例えば光触媒材料としては、有機物分解性に優れるため、水質浄化剤、脱臭剤、悪臭・有機ガス分解剤、抗菌剤、抗カビ剤、抗藻剤、防汚剤、親水材料、大気浄化剤、水分解光触媒材料に用いることができる。また、1100℃で1時間の大気中における高温熱処理後においても、実質的にルチル相を含有せずアナターゼ型チタニアとして存在しうる高い相安定性を持つ(本発明では、シリカ含有量50mol%を含む組成のアナターゼ型チタニア−シリカ複合体では、1300℃で1時間の大気中熱処理後も100%アナターゼ型を保つことができる)。更にシリカ成分(シリカゲル)との複合化により、物質吸着性をも同時に有することが可能であり、物質吸着能と光触媒作用の相乗作用により、一段と性能に優れるため、現在アナターゼ型のチタニアあるいはシリカが応用されている多くの用途に有利に用いられ得るとともに、新しい用途が拡大する可能性がある。
【図面の簡単な説明】
【図1】 本発明に係るアナターゼ型チタニア−シリカ複合体等について、X線回析図を示す図。
【図2】 本発明に係るアナターゼ型チタニア−シリカ複合体等(SiO=50mol%)について、各温度における熱処理物のX線回折図を示す図。
【図3】 本発明に係るアナターゼ型チタニア−シリカ複合体等について、大気中における熱処理により生じたアナターゼ型からルチル型への相転移量(質量%)を示す図。
【図4】 本発明に係るアナターゼ型チタニア−シリカ複合体等について、大気中における熱処理物のアナターゼ型結晶の結晶子径を示す図。
【図5】 本発明に係るアナターゼ型チタニア−シリカ複合体等について、紫外可視光吸収スペクトルの測定結果を示す図。
【図6】 本発明に係るアナターゼ型チタニア−シリカ複合体等について、その光触媒性能を、1時間の紫外線照射後のメチレンブルーの吸光度として示す図。
【図7】 本発明に係るアナターゼ型チタニア−シリカ複合体(Ti:Si=50:50[mol%]試料)について、その光触媒性能を、5分間の紫外線照射後のメチレンブルーの吸光度として示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anatase-type titania-silica composite having a high photocatalytic action, a method for producing the same, and a photocatalytic material.
[0002]
[Prior art]
Titania (TiO 2 ) Belongs to an n-type semiconductor, and among the three types of crystal phases (anatase, rutile, brookite), anatase titania exhibits an excellent photocatalytic action. Since the thermodynamic stable phase of titania is rutile and anatase is a metastable phase, in general, a phase transition from the anatase type to the rutile type is easily caused by heat treatment in the atmosphere. At high temperatures, anatase-type titania is extremely unstable. The phase transition from the anatase type to the rutile type is considered to occur at around 635 ° C. from the kinetic study, but the stability of the anatase phase largely depends on the particle size, impurities, composition, production method, etc. Depending on the precursor used, a phase transition from anatase type to rutile type starts to occur from around 500 ° C.
[0003]
Known methods for producing titania include sol-gel methods using titanium alkoxides as raw materials, and methods involving thermal decomposition and hydrolysis of titanium salt aqueous solutions such as titanium tetrachloride, titanium sulfate, and titanium oxysulfate. It has been. Silica has three types of polymorphs, quartz, tridymite, and cristobalite, and is used industrially in many fields. However, it is the main component of glass and is relatively easily converted into a glass state (amorphous). Can exist. Many amorphous silica materials are also used as industrial silica raw materials. As amorphous silica, for example, silica gel is applied to adsorbents, deodorizers, catalyst carriers, and the like by utilizing a high specific surface area and countlessly developed pores.
[0004]
Furthermore, for titania containing silica, the effect of silica addition on the phase transition from anatase type to rutile type is 4 -SiCl 4 -O 2 CVD-TiO2 synthesized by a gas phase reaction 2 ・ SiO 2 It was investigated in powder and it was found that the phase transition from anatase type to rutile type was suppressed (present in anatase phase up to 980 ° C., see Non-Patent Document 1), and silica was added to anatase type titania particles In addition, a ceramic having a photocatalytic function having a high photocatalytic activity with a low ratio of phase transition to a rutile type even after calcination at 1000 ° C. and a method for producing the same have been disclosed (see Patent Document 1), and further, titanium tetraisopropoxide and There has been a report on a powder synthesized by sol-gel method using tetraethyl orthosilicate, and the solid solution of silica in titania has been discussed, and the effect of increasing the phase transition temperature from anatase type to rutile type by about 300 ° C has been shown. (100% exists in anatase phase up to about 825 ° C., see Non-Patent Document 2).
[0005]
As for the composite of silica gel or the like and a titania photocatalyst, a porous gel photocatalyst is known (see Patent Document 2), and a semiconductor photocatalyst-containing spherical silica gel body, a production method, and a coating composition are known (Patent Document). 3). Prior to the filing of these patent documents, there has already been a report on the combination of titania photocatalysts with silica gel or the like (disclosure of a sol-gel mixture of titania photocatalyst and silica, see Non-Patent Document 3), and silica gel-titania. There are also reports on catalysts (influence of prehydrolysis on the structure and catalytic properties of titania-silica aerogels, see Non-Patent Document 4).
[0006]
However, the titania-silica composites produced by these conventionally known production methods do not have high stability of the anatase phase of titania, and more specifically and objectively improve the photocatalytic function by combining the titania photocatalyst with the silica component. Experimental data is not shown.
[Patent Document 1]
Japanese Patent Laid-Open No. 11-157966
[Patent Document 2]
Japanese Patent Laid-Open No. 10-323568
[Patent Document 3]
JP 2001-104799 A
[Non-Patent Document 1]
Journal of Ceramic Industry Association 86 [3] 119 (1978)
[Non-Patent Document 2]
J. et al. Am. Ceram. Soc. , 84 [7] 1591 (2001)
[Non-Patent Document 3]
Environ. Sci. Technol. , 30 [2] 647-653 (1996)
[Non-Patent Document 4]
J. et al. Catal. 150 [2] 311-320 (1994)
[0007]
[Problems to be solved by the invention]
Pure anatase type titanium oxide easily undergoes a phase transition from anatase type to rutile type by heat treatment in the atmosphere, resulting in a decrease in photocatalytic activity and low phase stability. Although the inhibitory effect of titania on the phase transition from anatase type to rutile type by addition of silica is known, the phase stability of the prior art anatase type titanium oxide is low, and the atmospheric temperature is high at 1100 ° C. for 1 hour. In general, after the heat treatment in the medium, the phase transition from the anatase type to the rutile type has already been completed. Anatase-type titanium oxide shows an excellent photocatalyst in a semiconducting material, but when it is required to further increase the photocatalytic activity, silica has an excellent adsorbing ability but has almost no photocatalytic activity. Amorphous silica is light transmissive, so it has a high specific surface area, infinitely developed pores, and a combination of silica and anatase-type titania, which have excellent adsorption ability, synergistic effect of adsorption ability and photocatalytic ability. Therefore, the application of titanium oxide as a photocatalyst is expected to be expanded to various fields. The present invention synergistically improves the phase stability of the anatase phase of titania and the photocatalytic performance of anatase-type titania by combining with silica by studying the composite method and production method. The present invention provides a novel anatase-type titania-silica composite, its production method, and a photocatalytic material.
[0008]
[Means for Solving the Problems]
The anatase-type titania-silica composite according to the present invention according to claim 1 for solving the problems as described above is obtained by hydrothermal reaction of a titanium compound and a silicon compound. And titania (TiO 2 ) To 15-95 mol% silica (SiO 2) 2 The titania exists as anatase titania after heat treatment in the atmosphere at 1100 ° C. for 1 hour, and the crystallite size of the anatase titania is 70 nm or less, and the following photocatalytic action does not contain silica. It is characterized by being at least twice as much as anatase titania.
Photocatalytic action: 0.01 g of anatase-type titania-silica composite sample powder was added to 20 ml of distilled water, and then 20 ml of a 20 ppm methylene blue aqueous solution was added to make the total solution methylene blue concentration 10 ppm. The photocatalytic action is measured by irradiating UV light for 1 hour and measuring the degree of degradation of methylene blue by the anatase-type titania-silica complex by the change (decrease) in absorbance by 660 nm of methylene blue using a spectrophotometer.
[0009]
The anatase-type titania-silica composite having the above composition is suitable for various applications as a semiconducting substance. For example, as a photocatalyst, it is excellent in organic matter decomposability, water purification, deodorization, antibacterial, antifouling, air It is suitable for purification, has a highly responsive photocatalytic action, and amorphous silica is light transmissive. Therefore, it can be combined with amorphous silica having a high specific surface area and countlessly developed pores. Therefore, it is possible to impart a high substance adsorbing property, and a synergistic effect between the decomposition action of the adsorbing substance and the photocatalytic action is obtained.
[0010]
The anatase titania-silica composite according to the present invention includes silica (SiO 2 Titania-silica composite, which is mainly present as amorphous silica on the surface of titania crystal fine particles, silica (SiO 2 Titania-silica composite in which titania is present as crystalline fine particles in an amorphous silica matrix in which amorphous silica is present as an amorphous silica matrix, silica (SiO 2 ) Is an amorphous silica gel, and a titania-silica composite in which titania is present mainly as anatase crystal fine particles on the surface of the amorphous silica gel is preferable. This is because a preferable synergistic effect between the decomposition action of the adsorbed substance and the photocatalytic action can be obtained.
[0011]
The anatase type titania-silica composite according to the present invention is obtained by hydrothermal reaction of a titanium compound and a silicon compound, as will be described in detail later. 2 ) To 15-95 mol% silica (SiO 2) 2 And the titania exists as anatase titania after heat treatment in the atmosphere at 1100 ° C. for 1 hour, and the crystallite size of the anatase titania is 70 nm or less, and its photocatalytic action is anatase containing no silica. It is more than twice the type titania.
[0012]
Here, silica (SiO 2 ) Content of titania (TiO 2 ) With respect to the internal mol% of 30 mol% or more, and therefore 30 to 95 mol%, and the stability of the anatase type crystal phase is 10% by mass% of the rutile phase after heat treatment in the atmosphere at 1200 ° C. for 1 hour. It is preferable that 90% or more exist as anatase titania and the crystallite diameter of the anatase titania is 50 nm or less.
[0013]
In the anatase-type titania-silica composite according to the present invention, the photocatalytic action is carried out by adding 0.01 g of anatase-type titania-silica composite sample powder to 20 ml of distilled water, and then adding 20 ml of 20 ppm aqueous methylene blue solution. The solution (40 ml) having a methylene blue concentration of 10 ppm was irradiated with ultraviolet light from black light for 1 hour, and the degree of decomposition of methylene blue by the anatase titania-silica complex was determined at 660 nm using a spectrophotometer. It is a photocatalytic action measured by a change (decrease) in absorbance due to.
[0014]
The method for producing an anatase-type titania-silica composite according to the present invention according to claim 3 is a method for producing the anatase-type titania-silica composite according to the present invention, wherein a titanium compound and a silicon compound are used. Produced by dispersing or dissolving in an aqueous medium and / or alcohol medium to produce a mixed solution, and then hydrothermally reacting the mixed solution in a sealed container or adding a precipitation-forming agent to the mixed solution The precipitated precipitate is hydrothermally reacted.
[0015]
In the method for producing an anatase-type titania-silica composite according to the present invention, a titanium compound and a silicon compound are dispersed or dissolved in an aqueous medium and / or an alcohol medium to prepare a mixed solution, or further precipitated from the mixed solution. Precipitates are generated, and these are hydrothermally reacted at a predetermined temperature in a sealed container in a hydrothermal reaction step. Therefore, the Ti component (or titanium oxide) derived from the titanium compound and the Si component (or silicon oxide) derived from the silicon compound are likely to react with each other, resulting in a hydrothermal reaction (that is, a reaction in the presence of high-temperature high-pressure water = It reacts in molecular units by hydrothermal synthesis) and precipitates as anatase crystals. As a result, as described above, silica (SiO 2 Titania-silica composite, which is mainly present as amorphous silica on the surface of titania crystal fine particles, silica (SiO 2 Titania-silica composite in which titania is present as crystalline fine particles in an amorphous silica matrix in which amorphous silica is present as an amorphous silica matrix, silica (SiO 2 ) Is an amorphous silica gel, and a titania-silica composite in which titania exists mainly as anatase type crystal fine particles on the surface of the amorphous silica gel is obtained. In addition, as a precipitation formation agent, alkaline components, such as ammonia water, ammonium carbonate, sodium hydroxide, potassium hydroxide, urea, hexamethylenetetramine, can be used.
[0016]
In the method for producing an anatase-type titania-silica composite according to the present invention, it is preferable to use titanium sulfate as the titanium compound. Examples of the titanium sulfate include titanium oxysulfate and titanium sulfate, but a titanium tetrachloride aqueous solution or a peroxotitanic acid aqueous solution in the presence of sulfuric acid or sulfate ions may also be used. When titanium oxysulfate, titanium sulfate, or the like is used, or a hydrothermal reaction step of 250 ° C. or lower is combined with an aqueous solution of titanium tetrachloride, aqueous peroxotitanic acid, titanium hydroxide in the presence of sulfuric acid or sulfate ions, The anatase-type titania-silica composite thus obtained has both extremely high photocatalytic ability and phase stability.
[0017]
As the silicon compound, artificial silica materials such as silica gel, sodium silicate, Si alcoholate (alkoxide), silica fume, silica aerosol, fly ash and the like can be used. These artificial silica raw materials can control properties such as purity.
[0018]
In the method for producing an anatase-type titania-silica composite according to the present invention, the temperature of the hydrothermal reaction step is 300 ° C. or less, preferably 250 ° C. or less. In this way, since the hydrothermal reaction is performed at a relatively low temperature, a resin container such as a fluororesin can be used in the pressure container.
[0019]
Furthermore, the photocatalyst material according to the present invention described in claim 5 is characterized by comprising the anatase-type titania-silica composite according to the present invention. The photocatalyst material according to the present invention is a water purification agent, deodorant, malodor / organic gas decomposition agent, antibacterial agent, antifungal agent, antialgae agent, antifouling agent, hydrophilic material, air purification agent, water decomposition photocatalyst material, etc. Can be used for various purposes.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a titanium compound and a silicon compound are dispersed or dissolved in an aqueous medium and / or an alcohol medium to form a mixed solution, or a precipitate is further generated from the mixed solution. The total metal ion concentration in the inside is usually 0.001 mol / L to 5.0 mol / L, preferably 0.1 mol / L to 1.0 mol / L.
[0021]
The mixed solution and precipitates as described above are accommodated in a known appropriate reaction vessel, generally a pressure vessel, and heated to a desired temperature to cause a hydrothermal reaction. In the present invention, from the viewpoint of the production apparatus, a hydrothermal reaction step at a lower temperature is preferred, and the hydrothermal reaction is allowed to proceed at 300 ° C. or lower, and particularly, a temperature of 250 ° C. or lower is advantageously employed. The lower limit is about 90 ° C. When the temperature is low, it is necessary to hold for a long time.
[0022]
【Example】
Examples of the present invention will be shown below to clarify the present invention more specifically, but the present invention is not limited to such examples. In addition to the following examples, in addition to the specific description described above, the present invention includes various changes, modifications, and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention. It should be understood that improvements and the like can be added.
[0023]
Example 1
Titanium oxysulfate (TiOSO) as a titanium compound 4 ) And an aqueous solution in which this is dissolved, and tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 ) With a total metal ion concentration of titanium and silicon of 0.2 mol / L, and Ti: Si = 100: 0, 90:10, 85:15, 80:20, 70:30, 50:50, A mixed solution (solution is in an acidic state) was prepared by adding nothing except mixing at a composition ratio of 30:70, 10:90, and 0: 100 [mol%]. Next, this mixed solution is accommodated in a fluororesin container contained in a stainless steel pressure vessel, and the contents are heated while stirring by rotating it, and kept at a temperature of 200 ° C. for 24 hours. Reacted. Thereafter, after the obtained product is solid-liquid separated by ultrafiltration and / or centrifugation, distilled water is further added and stirred again, followed by ultrafiltration and / or centrifugation. Repeatedly, the resulting product was washed and dried at 65 ° C.
[0024]
Next, the crystal phase of the obtained dry powder of the product is identified by X-ray diffraction, while the crystallite diameter is measured from the X-ray diffraction pattern using the Debye-Scherrer equation, and further the standard sample The lattice constant was measured using silicon. Further, the ratio of the phase transition from the anatase type to the rutile type caused by the heat treatment in the atmosphere (rutyl ratio (mass%): F R ) Is the integrated intensity of the X-ray diffraction peak (integrated intensity of anatase 101: I A (101), integrated intensity of rutile 110: I R (110)), the equation of Spurr et al .: F R = 1 / {1 + 0.79 [I A (101) / I R (110)]} (RA Spur et al., Anal. Chem., 29, 760-762 (1957)). Further, the dry powder composition (Ti: Si) of the obtained product was quantitatively analyzed by ICP (inductively coupled radio frequency plasma) emission spectroscopic analysis. The particle diameter and form of the product were observed with a transmission electron microscope. The obtained dry powder of the product was measured by Raman spectroscopy. Moreover, the specific surface area measurement by BET method was performed. Furthermore, using an ultraviolet-visible absorptiometer, diffuse reflected light was measured with an integrating sphere detector, and an ultraviolet-visible light absorption spectrum of the obtained dry powder of the product was measured. From this ultraviolet-visible light absorption spectrum, the band gap of the product dry powder was calculated. Furthermore, 0.01 g of the obtained dry powder of the product was weighed and placed in 20 ml of distilled water, ultrasonically dispersed for 5 minutes, 20 ml of 20 ppm aqueous methylene blue solution was added, and the methylene blue concentration was stirred at 10 ppm. After irradiating with ultraviolet light (black light) for 60 minutes, the methylene blue aqueous solution and the powder were separated, and the concentration of methylene blue in the solution was measured with an ultraviolet-visible spectrophotometer. Evaluation was made by examining the degree of decomposition under ultraviolet (black light) irradiation. For samples with high photocatalytic performance, the concentration of methylene blue in the solution was measured with an ultraviolet-visible spectrophotometer in the same manner except that the irradiation with ultraviolet light (black light) was performed for 5 minutes. Performance was evaluated.
[0025]
The X-ray diffraction pattern of the dry powder of the product thus obtained is shown in FIG. In FIG. 1, TiO 2 Is pure anatase TiO other than the composition of the present invention synthesized by the same method as the method for producing the anatase titania-silica composite according to the present invention. 2 It is a comparative example. From this X-ray diffraction pattern, the product of any starting composition of Ti: Si = 100: 0, 90:10, 85:15, 80:20, 70:30, 50:50 [mol%] is anatase type. Since only the crystal structure is identified as the crystal phase, it was confirmed that it has an anatase type crystal structure and substantially does not contain a rutile phase. As a result of measuring the crystallite size from the diffraction line of the Miller index of 200 of the anatase type crystal using the Debye-Scherrer equation, the crystallite size of the dry powder of the product of any composition is 14 to 15 nm. Was in range. Further, from the X-ray diffraction pattern of the sample obtained by adding Si as a standard substance to the dry powder of the product, the shift of the diffraction peak position is hardly observed with respect to the change in the composition of Ti: Si, and the lattice constant ( Except for subtle changes in the a-axis and c-axis), no significant changes were observed. Ti: Si = 30: 70, 10:90 and SiO 2 In the sample with a large amount, the diffraction peak of anatase became small, and it was identified as completely amorphous in the comparative example Ti: Si = 0: 100. As a result of examining the analysis composition (Ti: Si) of the dry powder of the obtained product by ICP (inductively coupled radio frequency plasma) emission spectroscopic analysis, the composition of the dry powder of the obtained product is the starting composition. Corresponding and confirmed to be almost the same. From the measurement results by Raman spectroscopy of the dry powder of the obtained product, only the peak derived from the anatase type crystal was observed in any sample, but as the Si content in the product increased, the peak intensity The decrease was clearly observed, and it was found that in the Ti: Si = 50: 50 [mol%] sample, although the peak derived from the anatase crystal was identified, it was very weak. From this, the silica component is present as amorphous on the surface of titania anatase type crystal, or in the case of a composition having a high Si content, the microstructure in which the anatase type crystal of titania exists in the amorphous silica matrix It was understood that. As a result of comparative observation of the dry powder of the product (Ti: Si = 100: 0 and 50:50 [mol%] samples) with a transmission electron microscope, it was compared with pure anatase titania as a comparative sample, and Ti: Si = 50: 50 Samples were observed as blurry with no clear outline of the particles. From the photograph of the high-magnification lattice image, the presence of amorphous silica was also combined with the results of Raman spectroscopic measurement. It was also understood. From the results of specific surface area measurement by the BET method, the specific surface area is 100 to 450 m. 2 / G, SiO 2 = 100-130m up to 30mol% 2 / G, but SiO 2 = 30-90 mol% and SiO 2 As the amount increases, the specific surface area increases, 150-450m 2 / G. Comparative example SiO 2 = 200m at 100mol% 2 / G and specific surface area suddenly decreased. Next, from the result of Raman spectroscopic measurement of the powder obtained by heat-treating the obtained dry powder at 800 ° C. for 1 hour in the air, as with the dry powder, In the sample, only a peak derived from the anatase type crystal was observed, but as the Si content in the product increased, a decrease in peak intensity was clearly observed, and in the Ti: Si = 50: 50 [mol%] sample, Although the peak derived from the anatase type crystal is identified, it is understood that the peak is extremely weak, and the silica component is present as an amorphous state on the surface of the titania anatase type crystal, or in the case of a composition having a high Si content, It was understood that this is a microstructure in which anatase-type crystals exist in an amorphous silica matrix. FIG. 2 shows X-ray diffraction patterns of powders obtained by heat-treating the obtained product (Ti: Si = 50: 50) in the atmosphere at various temperatures for 1 hour. Further, FIG. 3 shows the result of calculating the ratio of the phase transition from the anatase type to the rutile type caused by the heat treatment in the atmosphere from the integral intensity of the X-ray diffraction peak (anatase 101 rutile 110) according to the equation of Spurr et al. The phase transition from the anatase type to the rutile type caused by the heat treatment in the atmosphere is suppressed as the silica content increases and shifts to the high temperature side. When the silica content is 15 mol%, it remains 100% anatase after treatment at 1100 ° C. Yes, at a silica content of 30 mol%, 95% or more after an 1200 ° C. treatment was anatase type. It was confirmed that when the silica content was 50 mol%, it was 100% anatase type even after treatment at 1300 ° C. for 1 hour, and showed extremely high phase stability. From the result of observation with a transmission electron microscope, the anatase-type titania-silica complex of the present invention is almost completely grown even after treatment at 800 ° C. for 1 hour in the atmosphere (crystallite). It was found that the same fine particle diameter as before the heat treatment was maintained. FIG. 4 shows the results of measurement of the crystallite diameter from the diffraction line of the Miller index of 200 of the anatase type crystal using the Debye-Scherrer equation with respect to the heat treatment temperature in the atmosphere. In the figure, TiO 2 Is pure anatase TiO other than the composition of the present invention synthesized by the same method as the method for producing the anatase titania-silica composite of the present invention. 2 It is a comparative example. It can be seen that the growth of crystallites is greatly suppressed by complexing silica with anatase crystals. Silica (SiO 2 ) And a crystallite diameter of anatase-type titania crystals is confirmed to be 50 nm or less after heat treatment in the atmosphere at 1200 ° C. for 1 hour. 2 ) Content of 50 mol%, the crystallite size of the anatase-type titania crystal after heat treatment in the atmosphere at 1200 ° C. for 1 hour was 40 nm. FIG. 5 shows the measurement result of the ultraviolet-visible light absorption spectrum of the dry powder of the product. In the figure, TiO 2 Is pure anatase TiO other than the composition of the present invention synthesized by the same method as the method for producing the anatase titania-silica composite of the present invention. 2 It is a comparative example. It is observed that the absorption edge of the absorption spectrum is slightly shifted to the short wavelength side as the composition of Ti: Si changes. Table 1 shows the result of calculating the band gap of the dry product powder from this absorption spectrum.
[0026]
[Table 1]
Figure 0004424905
[0027]
It can be seen that the band gap gradually increases as the Si content increases, and that the band gap can be slightly changed by composition control. The results of evaluating the photocatalytic performance of the synthetic powder under ultraviolet (black light) irradiation using decomposition of methylene blue are shown in FIG. 6 as the change in absorbance (concentration) of methylene blue after 1 hour of ultraviolet light (black light) irradiation. . In the figure, TiO 2 The hydrothermally synthesized pure anatase TiO other than the composition of the present invention synthesized by the same method as the production method of the anatase titania-silica composite of the present invention shown in the figure 2 It is a comparative example. ST-01 is a commercially available pure anatase TiO manufactured by Ishihara Sangyo Co., Ltd. 2 It is a comparative example with a photocatalyst. Hydrothermally synthesized pure anatase TiO as a comparative example 2 And commercially available pure anatase TiO manufactured by Ishihara Sangyo 2 In Photocatalyst ST-01, the absorbance (concentration) of methylene blue was lowered from about 2/3 to ½ of the case where no photocatalyst was added (MB sample) after (black light) was irradiated for 1 hour. On the other hand, all of the anatase titania-silica composites of the present invention containing the Si component rapidly decreased in methylene blue absorbance (concentration) during 1 hour irradiation, being about 1/3 or less, It can be seen that in the Ti: Si = 70: 30, 50:50 [mol%] composition, the absorbance (concentration) is almost zero, showing a very high speed and a significant decrease. Further, with respect to the Ti: Si = 50: 50 [mol%] composition that showed the most excellent performance in FIG. 6, the heat treatment effect in the atmosphere was tested for ultraviolet light (black light) for a sample heat-treated at 600 to 1000 ° C. for 1 hour. As a result of measuring the concentration of methylene blue in the solution with an ultraviolet-visible spectrophotometer and evaluating the photocatalytic performance of the synthetic powder after heat treatment in the atmosphere in the same manner except that the irradiation time of was reduced to 1/12 for 5 minutes. Is shown in FIG. From this, the absorbance (concentration) of methylene blue decreases as the heat treatment temperature increases to 600 to 1000 ° C., and in the 1000 ° C. treated sample, the absorbance (concentration) is almost zero, and irradiation with a short time of 5 minutes Even in such a case, it can be seen that extremely high speed and remarkable decrease (high excellent photocatalytic ability) are exhibited.
[0028]
Example 2
Titanium oxysulfate (TiOSO) as a titanium compound 4 ) And an aqueous solution in which this is dissolved, and tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 ), The total metal ion concentration of titanium and silicon is 0.2 mol / L, and Ti: Si = 100: 0, 90:10, 85:15, 70:30, 50:50 [mol%] Exactly the same as Example 1 except that twice the amount of ammonia water necessary to neutralize the solution was added to the solution mixed so as to have a composition ratio, and a mixed solution containing a precipitate slurry was used. A synthesis operation was performed to obtain a product. After washing, the product was dried at 65 ° C., and the same measurement as in Example 1 was performed.
[0029]
From the X-ray diffraction pattern of the dry powder of the product thus obtained, any starting composition of Ti: Si = 100: 0, 90:10, 85:15, 70:30, 50:50 [mol%] was obtained. It was also understood that the product was only identified as an anatase type crystal structure as a crystal phase, had an anatase type crystal structure and contained substantially no rutile phase. As a result of measuring the crystallite diameter from the diffraction line of the Miller index of 200 of the anatase type crystal using the Debye-Scherrer equation, the crystallite diameter of the product powder of any composition was in the range of 10 to 20 nm. It was. As a result of examining the analytical composition (Ti: Si) of the obtained product, it was confirmed that the composition of the dry powder of the obtained product was almost the same corresponding to the starting composition. From the measurement result of the dried powder of the obtained product by Raman spectroscopy and observation with a transmission electron microscope, the silica component is present as amorphous on the surface of the titania anatase crystal, or the composition of the Si content is high. In some cases, it was understood that the microstructure has anatase-type crystals in an amorphous silica matrix. The phase transition from the anatase type to the rutile type caused by heat treatment in the atmosphere is suppressed as the silica content increases and shifts to the high temperature side, and at a silica content of 15 mol%, it remains 100% anatase after treatment at 1100 ° C. It was confirmed that when the silica content was 30 mol% or more, 90% or more after the treatment at 1200 ° C. was anatase type. When the silica content was 50 mol%, it was confirmed that the silica content was 100% anatase after treatment at 1300 ° C. As a result of evaluating the photocatalytic performance of the synthetic powder under ultraviolet (black light) irradiation using decomposition of methylene blue, hydrothermally synthesized pure anatase TiO as a comparative example 2 And commercially available pure anatase TiO manufactured by Ishihara Sangyo Co., Ltd. 2 In the photocatalyst ST-01, after the ultraviolet ray (black light) was irradiated for 1 hour, the absorbance (concentration) of methylene blue was lowered from about 2/3 to 1/2 of the case where no photocatalyst was added (MB sample). On the other hand, in any of the anatase-type titania-silica composites of the present invention containing a silica component, the absorbance (concentration) of methylene blue rapidly decreases during 1 hour irradiation, and is about 1/3 or less. In the composition of Ti: Si = 70: 30, 50:50 [mol%], it was found that the absorbance (concentration) was almost zero, indicating a very high speed and a significant decrease.
[0030]
Example 3
Example 1 except that silica gel was used in place of tetraethyl orthosilicate and mixing was performed so that the composition ratios were Ti: Si = 40: 60, 20:80, 5:95 [mol%]. Samples were prepared in the same manner as above. Evaluation was also performed in the same manner as in Example 1 except that the dried product was observed with a scanning electron microscope (SEM).
[0031]
From the X-ray diffraction pattern of the dry powder of the product thus obtained, the product of any starting composition was identified only as an anatase type crystal structure as a crystal phase, having an anatase type crystal structure, It was understood that it did not contain a rutile phase. The presence of precipitated particles of anatase type crystals on the amorphous silica gel surface was confirmed by SEM. Compositing with silica component (silica gel) improved the photocatalytic performance as well as the adsorption ability, and also improved the stability of the anatase type (confirmed to be 100% anatase type after treatment at 1200 ° C. for 1 hour) .
[0032]
Example 4
Titanium oxysulfate (TiOSO) as a titanium compound 4 ) And an aqueous solution in which this is dissolved, and sodium silicate (sodium metasilicate Na) as a silicon compound 2 SiO 3 ・ 9H 2 O), the total metal ion concentration of titanium and silicon is 0.2 mol / L, and Ti: Si = 100: 0, 90:10, 85:15, 70:30, 50:50, 30:70 Except that they were mixed so that the composition ratio was [mol%], nothing was added, and the synthesized solution was exactly the same as in Example 1 except that the prepared mixed solution (the solution was in an acidic state) was used. After washing, it was dried at 65 ° C. Subsequently, the measurement similar to Example 1 was performed about the crystal phase of the obtained dried material.
[0033]
From the X-ray diffraction pattern of the 65 ° C. dry powder of the product thus obtained, Ti: Si = 100: 0, 90:10, 85:15, 70:30, 50:50, 30:70 [mol%] In any of the starting compositions, it was understood that only the anatase type crystal structure was identified as the crystalline phase, had the anatase type crystal structure and contained substantially no rutile phase. As a result of measuring the crystallite diameter from the diffraction line of the Miller index of 200 of the anatase type crystal using the Debye-Scherrer equation, the crystallite diameter of the product powder of any composition was in the range of 10 to 20 nm. It was. As a result of examining the analysis composition (Ti: Si) of the dry powder of the obtained product by ICP (inductively coupled radio frequency plasma) emission spectroscopic analysis, the composition of the dry powder of the obtained product is the starting composition. Correspondingly, it was confirmed that they were almost the same. From the measurement result of the dried powder obtained by Raman spectroscopy and observation with a transmission electron microscope, the silica component is present as an amorphous substance on the anatase crystal surface or the composition has a high Si content. It was understood that this is a microstructure in which anatase-type crystals exist in an amorphous silica matrix. The phase transition from the anatase type to the rutile type caused by heat treatment in the atmosphere is suppressed as the silica content increases and shifts to the high temperature side, and at a silica content of 15 mol%, it remains 100% anatase after treatment at 1100 ° C. It was confirmed that it was 100% anatase type even after treatment at 1200 ° C. when the silica content was 30 mol% or more. As a result of evaluating the photocatalytic performance of the synthetic powder under ultraviolet (black light) irradiation using decomposition of methylene blue, hydrothermally synthesized pure anatase TiO as a comparative example 2 And commercially available pure anatase TiO manufactured by Ishihara Sangyo Co., Ltd. 2 In the photocatalyst ST-01, after the ultraviolet ray (black light) was irradiated for 1 hour, the absorbance (concentration) of methylene blue was lowered from about 2/3 to 1/2 of the case where no photocatalyst was added (MB sample). In contrast, in any of the anatase-type titania-silica composites of the present invention containing a silica component, the absorbance (concentration) of methylene blue rapidly decreased during irradiation for 60 minutes, being about 1/3 or less. In the composition of Ti: Si = 70: 30, 50:50 [mol%], it was found that the absorbance (concentration) was almost zero, indicating a very high speed and a significant decrease.
[0034]
【The invention's effect】
As is apparent from the above description, the anatase-type titania-silica composite according to the present invention is suitable for various uses. For example, as a photocatalytic material, it is excellent in organic matter decomposability. It can be used as an agent, malodorous / organic gas decomposing agent, antibacterial agent, antifungal agent, antialgae agent, antifouling agent, hydrophilic material, air purification agent, and water decomposition photocatalytic material. Further, even after high-temperature heat treatment in the atmosphere at 1100 ° C. for 1 hour, it has a high phase stability that does not substantially contain a rutile phase and can exist as anatase titania (in the present invention, a silica content of 50 mol% is reduced). In the anatase-type titania-silica composite having the composition, the 100% anatase type can be maintained even after heat treatment in air at 1300 ° C. for 1 hour). Furthermore, by combining with silica component (silica gel), it is possible to have substance adsorbability at the same time, and because of the synergistic action of substance adsorbing ability and photocatalytic action, it is superior in performance. It can be used advantageously for many applications that are being applied, and new applications may be expanded.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of an anatase titania-silica composite according to the present invention.
[Fig. 2] Anatase-type titania-silica composite according to the present invention (SiO2) 2 = 50 mol%) is a diagram showing an X-ray diffraction pattern of the heat-treated product at each temperature.
FIG. 3 is a diagram showing the amount of anatase-type to rutile-type phase transition (mass%) generated by heat treatment in air for the anatase-type titania-silica composite according to the present invention.
FIG. 4 is a graph showing the crystallite size of an anatase-type crystal of a heat-treated product in the atmosphere for the anatase-type titania-silica composite according to the present invention.
FIG. 5 is a diagram showing the measurement results of the ultraviolet-visible light absorption spectrum of the anatase-type titania-silica composite according to the present invention.
FIG. 6 is a graph showing the photocatalytic performance of the anatase-type titania-silica composite according to the present invention as the absorbance of methylene blue after 1 hour of ultraviolet irradiation.
FIG. 7 is a graph showing the photocatalytic performance of the anatase titania-silica composite (Ti: Si = 50: 50 [mol%] sample) according to the present invention as the absorbance of methylene blue after 5 minutes of ultraviolet irradiation.

Claims (6)

チタン化合物とケイ素化合物とを水熱反応させることにより得られるアナターゼ型チタニア−シリカ複合体であって、チタニア(TiO)に対して内部mol%で1595mol%のシリカ(SiO)を含有し該チタニアは1100℃1時間の大気中における熱処理後においてアナターゼ型チタニアとして存在すると共に該アナターゼ型チタニアの結晶子径が70nm以下であり、下記の光触媒作用がシリカを含有しないアナターゼ型チタニアの2倍以上であることを特徴とするアナターゼ型チタニア−シリカ複合体。
光触媒作用:アナターゼ型チタニア−シリカ複合体の試料粉末0.01gを蒸留水20mlに加えた後、20ppm濃度のメチレンブルー水溶液20mlを加え、全体の溶液のメチレンブルー濃度を10ppmにした溶液に対し、ブラックライトによる紫外線を1時間照射し、該アナターゼ型チタニア−シリカ複合体によるメチレンブルーの分解の程度を、分光光度計を用いた660nmのメチレンブルーによる吸光度の変化(減少)により測定される光触媒作用。
A titanium compound and a silicon compound anatase form of titania is obtainable by hydrothermal reaction - a silica complex, titania (T iO 2) to manually Internal mol% 15 ~ 95mol% of silica (SiO 2) containing, the titania Ri der crystallite diameter 70nm or less of the anatase form of titania as well as present as anatase type titania Te after heat treatment odor in the atmosphere of one hour at 1 100 ° C., the photocatalytic action of the following anatase titania is characterized in that at least twice the anatase form of titania containing no silica mosquitoes - silica composite.
Photocatalytic action: 0.01 g of anatase-type titania-silica composite sample powder was added to 20 ml of distilled water, and then 20 ml of a 20 ppm methylene blue aqueous solution was added to make the total solution methylene blue concentration 10 ppm. The photocatalytic action is measured by irradiating UV light for 1 hour and measuring the degree of degradation of methylene blue by the anatase-type titania-silica complex by the change (decrease) in absorbance by 660 nm of methylene blue using a spectrophotometer.
チタニア(TiO )に対して内部mol%で30〜95mol%のシリカ(SiO含有し、該チタニアは1200℃で1時間の大気中における熱処理後においてルチル相が10質量%未満且つアナターゼ型チタニアが90質量%以上存在すると共に該アナターゼ型チタニアの結晶子径が50nm以下である請求項1記載のアナターゼ型チタニア−シリカ複合体。 Titania containing 30~95Mol% of silica inside mol% relative to (TiO 2) (SiO 2) , rutile phase the titania Te after heat treatment odor in 1 hour in air at 1200 ° C. is less than 10 wt% and the anatase crystallite size of titania authors Ru der below 50nm Motomeko 1 Symbol placement of anatase titania with anatase titania is present more than 90 wt% - silica composite. 請求項1又は2記載のアナターゼ型チタニア−シリカ複合体の製造法であって、チタン化合物とケイ素化合物とを水性媒体中及び/はアルコール媒体中に分散あるいは溶解して混合溶液を作製し、次に該混合溶液を密閉容器中で水熱反応させるか又は該混合溶液に沈殿形成剤添加することにより生成した沈殿析出物水熱反応させることを特徴とするアナターゼ型チタニア−シリカ複合体の製造法。 According to claim 1, wherein anatase-type titania - a method of manufacturing a silica complex, and a titanium compound and a silicon compound to prepare a mixed solution dispersed or dissolved to the aqueous medium and / or alcoholic medium, then anatase form of titania, characterized in that to precipitate precipitates form raw Ri by the addition of precipitation agents or the mixed solution to hydrothermal reaction in a closed vessel of the mixed solution to react hydrothermally - A method for producing a silica composite. 200〜300℃で水熱反応させる請求項3記載のアナターゼ型チタニア−シリカ複合体の製造法。The method for producing an anatase titania-silica composite according to claim 3, wherein the hydrothermal reaction is carried out at 200 to 300 ° C. 請求項1又は2記載のアナターゼ型チタニア−シリカ複合体から成ることを特徴とする光触媒材料。A photocatalytic material comprising the anatase-type titania-silica composite according to claim 1 or 2. 質浄化剤脱臭剤悪臭・有機ガス分解剤抗菌剤抗カビ剤抗藻剤防汚剤親水材料大気浄化剤又は水分解光触媒材料である請求項5記載の光触媒材料。 Water quality purifying agent, deodorizing agent, malodor-organic gas decomposition agents, antibacterial agents, antifungal agents, Komozai, soil release agents, hydrophilic material, the photocatalyst material according to claim 5, wherein the air cleaning agent or water splitting photocatalytic material .
JP2002367377A 2002-11-14 2002-11-14 Anatase type titania-silica composite, production method thereof and photocatalytic material Expired - Fee Related JP4424905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002367377A JP4424905B2 (en) 2002-11-14 2002-11-14 Anatase type titania-silica composite, production method thereof and photocatalytic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367377A JP4424905B2 (en) 2002-11-14 2002-11-14 Anatase type titania-silica composite, production method thereof and photocatalytic material

Publications (2)

Publication Number Publication Date
JP2004161592A JP2004161592A (en) 2004-06-10
JP4424905B2 true JP4424905B2 (en) 2010-03-03

Family

ID=32809901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367377A Expired - Fee Related JP4424905B2 (en) 2002-11-14 2002-11-14 Anatase type titania-silica composite, production method thereof and photocatalytic material

Country Status (1)

Country Link
JP (1) JP4424905B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070102713A (en) 2005-02-15 2007-10-19 미쓰이 가가쿠 가부시키가이샤 Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition
JP6105998B2 (en) * 2013-03-26 2017-03-29 パナホーム株式会社 Method for producing photocatalyst composition and method for producing photocatalyst
CN104474865A (en) * 2014-11-19 2015-04-01 苏州佑君环境科技有限公司 Indoor special environment-friendly purifying agent and preparation method thereof
JP7003513B2 (en) * 2017-09-12 2022-01-20 富士フイルムビジネスイノベーション株式会社 Silica titania composite airgel particles, method for producing silica titania composite airgel particles, photocatalyst forming composition, photocatalyst, and structure.
JP7305995B2 (en) 2019-03-15 2023-07-11 富士フイルムビジネスイノベーション株式会社 Water purification member, hydroponic cultivation device, and water purification device
JP7305996B2 (en) 2019-03-15 2023-07-11 富士フイルムビジネスイノベーション株式会社 Water Purification Particles, Hydroponic Cultivation Device, and Water Purification Device
CN111218184A (en) * 2020-03-28 2020-06-02 格兰天净(北京)科技有限公司 Long-acting reflective heat-insulating coating
CN114365953B (en) * 2021-12-27 2023-07-28 浙江福腾宝家居用品有限公司 Pot cover and cooking utensil
CN115869931A (en) * 2022-12-08 2023-03-31 东莞理工学院 Ceramsite photocatalyst, preparation method and application thereof

Also Published As

Publication number Publication date
JP2004161592A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
Karami Synthesis of TiO2 nano powder by the sol-gel method and its use as a photocatalyst
JP5157561B2 (en) Visible light responsive photocatalyst and method for producing the same
EP2123605A1 (en) Production method of titanium dioxide (TIO2) photocatalyst and TIO2 photocatalyst produced by the same
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
WO2009116181A1 (en) Visible light-responsive photocatalyst and method for producing the same
JP3589177B2 (en) Method for producing inorganic oxynitride
US6645460B2 (en) Titanium hydroxide and photocatalytic coating agent
JP4319184B2 (en) PHOTOCATALYST, ITS MANUFACTURING METHOD, AND ARTICLE USING PHOTOCATALYST
JP2004196641A (en) Anatase type crystal composition and method of manufacturing the same
Wei et al. A novel route for synthesis of UV-resistant hydrophobic titania-containing silica aerogels by using potassium titanate as precursor
KR20130020897A (en) Tungsten oxide photocatalyst and method for producing the same
EP1216092A1 (en) Silicon-containing titanium dioxyde, method for preparing the same and catalytic compositions thereof
JP4424905B2 (en) Anatase type titania-silica composite, production method thereof and photocatalytic material
KR20130000667A (en) Manufacturing method of titanium photocatalyst using hydrothermal method
Szołdra et al. Effect of brookite on the photocatalytic properties of mixed-phase TiO2 obtained at a higher temperature
JP4408349B2 (en) Method for producing photocatalyst-supported porous gel
JP2011079713A (en) Copper ion-modified titanium oxide, method for producing the same, and photocatalyst
Silvestri et al. Doped and undoped anatase-based plates obtained from paper templates for photocatalytic oxidation of NOX
JP4048775B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP4631013B2 (en) Acicular titanium oxide fine particles, production method thereof and use thereof
Yu et al. Phase stabilities and photocatalytic activities of P/Zn–TiO2 nanoparticles able to operate under UV–vis light irradiation
KR100356900B1 (en) Producing method of titania photocatalyst using coal fly ash as a carrier
JP2008093630A (en) Method of manufacturing photocatalyst dispersion
Kominami et al. Thermal Decomposition of Titanium Alkoxide and Silicate Ester in Organic Solvent: A New Method for Synthesizing Large‐Surface‐Area, Silica‐Modified Titanium (IV) Oxide of High Thermal Stability
JP2007117999A (en) Titanium oxide-based photocatalyst and its use

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Ref document number: 4424905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees