JP2011132626A - Textile product supporting photocatalyst - Google Patents

Textile product supporting photocatalyst Download PDF

Info

Publication number
JP2011132626A
JP2011132626A JP2009291804A JP2009291804A JP2011132626A JP 2011132626 A JP2011132626 A JP 2011132626A JP 2009291804 A JP2009291804 A JP 2009291804A JP 2009291804 A JP2009291804 A JP 2009291804A JP 2011132626 A JP2011132626 A JP 2011132626A
Authority
JP
Japan
Prior art keywords
photocatalyst
fabric
dispersion
supported
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009291804A
Other languages
Japanese (ja)
Inventor
Yasuyuki Oki
泰行 沖
Makoto Murata
誠 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009291804A priority Critical patent/JP2011132626A/en
Publication of JP2011132626A publication Critical patent/JP2011132626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Catalysts (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a textile product supporting a photocatalyst exhibiting a high photocatalyst activity. <P>SOLUTION: There is provided the textile product supporting the photocatalyst, wherein the photocatalyst is supported on a textile fabric. The textile product supporting the photocatalyst is obtained by supporting the photocatalyst having an average particle diameter of 0.2-2.5 μm on the textile fabric having at least one surface subjected to a raising treatment, and having 250-500 g/m<SP>2</SP>weight. The photocatalyst is at least one in titanium oxide and tungsten oxide. The textile product supporting the photocatalyst is obtained from a photocatalyst dispersion containing the photocatalyst and an inorganic thickener. Furthermore, the inorganic thickener is a smectitic clay mineral. A woven fabric, knitted fabric or nonwoven fabric is used as the textile fabric. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光触媒体を担持させた繊維製品に関し、詳しくは、特定の平均粒子径を有する光触媒体を、少なくとも片面に起毛処理した繊維生地に担持させた繊維製品に関する。   The present invention relates to a fiber product carrying a photocatalyst, and more particularly to a fiber product carrying a photocatalyst having a specific average particle diameter on a fiber fabric having a brushed surface at least on one side.

半導体にバンドギャップ以上のエネルギーを持つ光を照射すると、価電子帯の電子が伝導体に励起され、価電子帯に正孔が生成する。このようにして生成した正孔は強い酸化力を有し、励起した電子は強い還元力を有することから、半導体に接触した物質に酸化還元作用を及ぼす。この酸化還元作用は光触媒作用と呼ばれており、かかる光触媒作用を示し得る半導体は光触媒体と呼ばれている。このような光触媒体として酸化チタンや酸化タングステンが知られている。   When a semiconductor is irradiated with light having energy greater than or equal to the band gap, electrons in the valence band are excited by the conductor and holes are generated in the valence band. The holes generated in this manner have a strong oxidizing power, and the excited electrons have a strong reducing power, so that the material in contact with the semiconductor has a redox action. This redox action is called a photocatalytic action, and a semiconductor that can exhibit such a photocatalytic action is called a photocatalyst. As such a photocatalyst, titanium oxide or tungsten oxide is known.

光触媒体を繊維生地に担持させた光触媒体担持繊維製品は、消臭作用、抗菌作用などを示すことが知られている。光触媒体は受光によって光触媒作用が活性化するため、繊維の受光表面に担持させることが好ましく、例えば、特許文献1には、繊維を毛羽立たせて光触媒を毛羽先端に塗布することで、光触媒作用を効率よく得る方法が開示されている。しかし、このような起毛処理した繊維生地では、平均粒子径が小さい光触媒体を担持させる場合、光触媒体が起毛処理した繊維生地に埋没したり、毛元側に付着したりするため光が届き難く、そのため受光する光触媒体の割合が低くなり、光触媒活性が低くなるという問題があった。   It is known that a photocatalyst-supported fiber product in which a photocatalyst is supported on a fiber fabric exhibits a deodorizing action, an antibacterial action, and the like. The photocatalyst is activated on the light-receiving surface of the fiber because the photocatalyst is activated by light reception. For example, in Patent Document 1, the photocatalyst is obtained by applying the photocatalyst to the tip of the fluff with the fibers fluffed. An efficient method is disclosed. However, in such a brushed fiber fabric, when a photocatalyst having a small average particle diameter is supported, the photocatalyst is buried in the brushed fiber fabric or attached to the base of the hair, so that it is difficult for light to reach. For this reason, there is a problem that the ratio of the photocatalyst that receives light is lowered and the photocatalytic activity is lowered.

特開2007−321321号JP 2007-332121 A

そこで本発明は、高い光触媒活性を示す光触媒体担持繊維製品を提供することを課題とする。   Then, this invention makes it a subject to provide the photocatalyst body carrying | support fiber product which shows high photocatalytic activity.

本発明者等は、前記課題を解決すべく鋭意研究を重ねた結果、特定の平均粒子径を有する光触媒体を、少なくとも片面に起毛処理した繊維生地に担持させることにより優れた光触媒活性を示す光触媒体担持繊維製品が得られることを見出し本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have developed a photocatalyst exhibiting excellent photocatalytic activity by supporting a photocatalyst having a specific average particle diameter on a fiber fabric having a brushed surface on at least one side. The present inventors have found that a body-supporting fiber product can be obtained and completed the present invention.

すなわち、本発明の光触媒体担持繊維製品は、光触媒体を繊維生地に担持させた光触媒体担持繊維製品であって、平均粒子径が0.2〜2.5μmである前記光触媒体を、少なくとも片面に起毛処理を行った目付け250〜500g/m2の前記繊維生地に担持させることを特徴とする。
本発明の光触媒体には、酸化チタンおよび酸化タングステンを少なくとも1つを含有するのがよい。
前記光触媒体は、酸化チタンおよび/または酸化タングステン、および無機系増粘剤を含む光触媒体分散液を用いて得られるものがよい。
前記無機系増粘剤としては、スメクタイト系粘土鉱物があげられる。
本発明の繊維生地には、織布、編布又は不織布があげられる。
That is, the photocatalyst-supporting fiber product of the present invention is a photocatalyst-supporting fiber product in which a photocatalyst is supported on a fiber fabric, and the photocatalyst having an average particle diameter of 0.2 to 2.5 μm is at least on one side. It is supported on the fiber fabric having a basis weight of 250 to 500 g / m 2 subjected to raising treatment.
The photocatalyst of the present invention preferably contains at least one of titanium oxide and tungsten oxide.
The photocatalyst is preferably obtained by using a photocatalyst dispersion containing titanium oxide and / or tungsten oxide and an inorganic thickener.
Examples of the inorganic thickener include smectite clay minerals.
Examples of the fiber fabric of the present invention include woven fabric, knitted fabric and non-woven fabric.

本発明によれば、特定の平均粒子径を有する光触媒体を、少なくとも片面に起毛処理を行った特定目付け量の繊維生地に担持させることにより、光触媒体の繊維生地内への埋没を抑制し、その結果、優れた光触媒作用を示す光触媒体担持繊維製品を製造することができる。   According to the present invention, a photocatalyst having a specific average particle diameter is supported on a fiber fabric having a specific basis weight at least on one side, thereby preventing the photocatalyst from being buried in the fiber fabric, As a result, a photocatalyst-supported fiber product that exhibits an excellent photocatalytic action can be produced.

(光触媒体)
本発明の光触媒体とは、例えば、紫外線や可視光線の照射により光触媒作用を発現する半導体であり、特定の結晶構造を示す金属元素と酸素、窒素、硫黄、フッ素との化合物等が挙げられる。金属元素としては、例えば、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Ga、In、Tl、Ge、Sn、Pb、Bi、La、Ceが挙げられる。その化合物としては、これら金属の1種類または2種類以上の酸化物、窒化物、硫化物、酸窒化物、酸硫化物、窒弗化物、酸弗化物、酸窒弗化物などが挙げられる。なかでも、Ti、W、Nbの酸化物が好ましく、とりわけメタチタン酸、酸化チタン、酸化タングステンなどが好ましい。なお、光触媒体は単独で用いてもよいし2種類以上を併用してもよい。
(Photocatalyst)
The photocatalyst of the present invention is, for example, a semiconductor that exhibits a photocatalytic action by irradiation with ultraviolet rays or visible light, and examples thereof include a compound of a metal element having a specific crystal structure and oxygen, nitrogen, sulfur, and fluorine. Examples of metal elements include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and Cu. , Ag, Au, Zn, Cd, Ga, In, Tl, Ge, Sn, Pb, Bi, La, and Ce. Examples of the compound include one or more oxides, nitrides, sulfides, oxynitrides, oxysulfides, nitrofluorides, oxyfluorides, and oxynitrofluorides of these metals. Of these, oxides of Ti, W, and Nb are preferable, and metatitanic acid, titanium oxide, tungsten oxide, and the like are particularly preferable. In addition, a photocatalyst body may be used independently and may use 2 or more types together.

(メタチタン酸)
メタチタン酸(H2TiO3、TiO(OH)2、β−水酸化チタン)は、例えば硫酸チタニルの水溶液を加熱して加水分解することにより得ることが出来る。
前記メタチタン酸のBET比表面積は、特に制限されないが、光触媒作用の観点からは、通常100〜500m2/g、好ましくは300〜400m2/gである。
(Metatitanic acid)
Metatitanic acid (H 2 TiO 3 , TiO (OH) 2 , β-titanium hydroxide) can be obtained, for example, by heating and hydrolyzing an aqueous solution of titanyl sulfate.
BET specific surface area of the metatitanic acid is not particularly limited, from the viewpoint of photocatalytic activity, usually 100 to 500 m 2 / g, preferably from 300~400m 2 / g.

(酸化チタン)
酸化チタン(TiO2)は、例えば、(i)硫酸チタニルまたは塩化チタンの水溶液を加熱することなく、これに塩基を加えることにより沈殿物を得、この沈殿物を焼成する方法、(ii)チタンアルコキシドに水、酸性水溶液、塩基性水溶液等を加えて沈殿物を得、この沈殿物を焼成する方法、(iii)メタチタン酸を焼成する方法などによって得ることができる。これらの方法で得られる酸化チタンは、焼成する際の焼成温度や焼成時間を調整することにより、アナターゼ型、ブルッカイト型、ルチル型など所望の結晶型にすることができる。
また酸化チタンとしては、前記の他にも、特開2001−72419号公報、特開2001−190953号公報、特開2001−316116号公報、特開2001−322816号公報、特開2002−29749号公報、特開2002−97019号公報、WO01/10552パンフレット、特開2001−212457公報、特開2002−239395号公報)、WO03/080244パンフレット、WO02/053501パンフレット、特開2007−69093号公報、Chemistry Letters, Vol.32, NO.2, P.196−197(2003)、Chemistry Letters, Vol.32, NO.4, P.364−365(2003)、Chemistry Letters, Vol.32, NO.8, P.772−773(2003)、Chem. Mater., 17, P.1548−1552(2005)等に記載の酸化チタンを用いてもよい。また、特開2001−278625号公報、特開2001−278626号公報、特開2001−278627号公報、特開2001−302241号公報、特開2001−335321号公報、特開2001−354422号公報、特開2002−29750号公報、特開2002−47012号公報、特開2002−60221号公報、特開2002−193618号公報、特開2002−249319号公報などに記載の方法により得ることもできる。
(Titanium oxide)
Titanium oxide (TiO 2 ) is obtained, for example, by (i) a method in which a precipitate is obtained by adding a base to this without heating an aqueous solution of titanyl sulfate or titanium chloride, and (ii) titanium is fired. It can be obtained by adding water, acidic aqueous solution, basic aqueous solution or the like to the alkoxide to obtain a precipitate, and baking this precipitate, or (iii) baking metatitanic acid. The titanium oxide obtained by these methods can be made into a desired crystal type such as anatase type, brookite type, rutile type, etc. by adjusting the baking temperature and baking time at the time of baking.
In addition to the above, as titanium oxide, JP 2001-72419 A, JP 2001-190953 A, JP 2001-316116 A, JP 2001-322816 A, and JP 2002-29749 A. Publication, JP 2002-97019, WO 01/10552 pamphlet, JP 2001-212457, JP 2002-239395, WO 03/080244 pamphlet, WO 02/053501 pamphlet, JP 2007-69093, Chemistry. Letters, Vol. 32, NO. 2, P.196-197 (2003), Chemistry Letters, Vol.32, NO. 4, P.364-365 (2003), Chemistry Letters, Vol.32, NO. 8, P. 772-773 (2003), Chem. Mater., 17, P. 1548-1552 (2005) and the like may be used. JP 2001-278625 A, JP 2001-278626 A, JP 2001-278627 A, JP 2001-302241 A, JP 2001-335321 A, JP 2001-354422 A, It can also be obtained by the methods described in JP 2002-29750 A, JP 2002-47012 A, JP 2002-60221 A, JP 2002-193618 A, JP 2002-249319 A, and the like.

前記酸化チタンのBET比表面積は、特に制限されないが、光触媒作用の観点からは、通常100〜500m2/g、好ましくは300〜400m2/gである。 BET specific surface area of the titanium oxide is not particularly limited, from the viewpoint of photocatalytic activity, usually 100 to 500 m 2 / g, preferably from 300~400m 2 / g.

(酸化タングステン)
酸化タングステン(WO3)は、例えば、(i)タングステン酸塩の水溶液に酸を加えることにより、沈殿物としてタングステン酸を得、このタングステン酸を焼成する方法、(ii)メタタングステン酸アンモニウム、パラタングステン酸アンモニウムを加熱することにより熱分解する方法、等によって得ることができる。
(Tungsten oxide)
Tungsten oxide (WO 3 ) includes, for example, (i) a method of adding tungstic acid as a precipitate by adding an acid to an aqueous solution of tungstate, and firing this tungstic acid, (ii) ammonium metatungstate, para It can be obtained by a method of thermally decomposing by heating ammonium tungstate.

前記酸化タングステンのBET比表面積は、特に制限されないが、光触媒作用の観点からは、通常5〜100m2/g、好ましくは20〜50m2/gである。 BET specific surface area of the tungsten oxide is not particularly limited, from the viewpoint of photocatalytic activity, typically 5 to 100 m 2 / g, preferably from 20 to 50 m 2 / g.

本発明の光触媒体の平均粒子径は、平均粒子径が0.2〜2.5μm、好ましくは0.5〜2.0μm、より好ましくは0.5〜1.8μmである。該平均粒子径が0.2μm未満であると、光触媒体が繊維の間に一部埋没するため、受光する光触媒体の量が少なくなり、光触媒活性が低くなる。また、該粒子径が2.5μmより大きい場合、繊維生地の風合いを損ねてしまう。   The average particle size of the photocatalyst of the present invention is 0.2 to 2.5 μm, preferably 0.5 to 2.0 μm, more preferably 0.5 to 1.8 μm. When the average particle diameter is less than 0.2 μm, the photocatalyst is partially buried between the fibers, so that the amount of the photocatalyst that receives light is reduced and the photocatalytic activity is lowered. On the other hand, when the particle diameter is larger than 2.5 μm, the texture of the fiber fabric is impaired.

(光触媒体分散媒)
本発明の光触媒体を、繊維生地の受光表面へ均一に効率よく担持させるために、光触媒体を分散媒に分散した光触媒体分散液として用いることが好ましく、その分散媒は、前記粒子状の光触媒体が分散できれば特に制限はなく、通常、水を主成分とする水性溶媒が用いられる。具体的には、水単独であってもよいし、水と水溶性有機溶媒との混合溶媒であってもよい。水と水溶性有機溶媒との混合媒体を用いる場合には、水の含有量が50質量%以上であることが好ましい。水溶性有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどの水溶性アルコール、アセトン、メチルエチルケトン等が挙げられる。なお、水溶性有機溶媒は単独で用いてもよいし、2種以上を併用してもよい。前記分散媒は、光触媒体に対して通常、5〜200質量倍、好ましくは10〜100質量倍で含有する。さらに、前記分散媒は、分散液中の光触媒体の分散安定性を向上させる目的で、公知の分散剤を含有してもよい。
(Photocatalyst dispersion medium)
In order to uniformly and efficiently support the photocatalyst of the present invention on the light receiving surface of the fiber fabric, it is preferable to use the photocatalyst as a photocatalyst dispersion in which the photocatalyst is dispersed in a dispersion medium. There is no particular limitation as long as the body can be dispersed, and an aqueous solvent mainly containing water is usually used. Specifically, water alone or a mixed solvent of water and a water-soluble organic solvent may be used. When a mixed medium of water and a water-soluble organic solvent is used, the content of water is preferably 50% by mass or more. Examples of the water-soluble organic solvent include water-soluble alcohols such as methanol, ethanol, propanol, and butanol, acetone, and methyl ethyl ketone. In addition, a water-soluble organic solvent may be used independently and may use 2 or more types together. The dispersion medium is usually contained in an amount of 5 to 200 times by mass, preferably 10 to 100 times by mass with respect to the photocatalyst. Furthermore, the dispersion medium may contain a known dispersant for the purpose of improving the dispersion stability of the photocatalyst in the dispersion.

(電子吸引性物質またはその前駆体)
光触媒体分散液は、光触媒作用を高めるために、電子吸引性物質もしく電子吸引性物質の前駆体を含有することができる。電子吸引性物質とは、光触媒体の表面に担持されて電子吸引性を発揮しうる化合物であり、電子吸引性物質の前駆体とは、光触媒体の表面で電子吸引性物質に遷移しうる化合物(例えば光照射により電子吸引性物質に還元されうる化合物)である。電子吸引性物質が光触媒体の表面に担持されて存在すると光の照射により伝導体に励起された電子と価電子帯に生成した正孔との再結合が抑制され、光触媒作用をより高めることができる。
(Electron-withdrawing substance or its precursor)
The photocatalyst dispersion liquid may contain an electron-withdrawing substance or a precursor of the electron-withdrawing substance in order to enhance the photocatalytic action. The electron-withdrawing substance is a compound that can be carried on the surface of the photocatalyst and can exhibit electron-withdrawing substance, and the precursor of the electron-withdrawing substance is a compound that can transition to the electron-withdrawing substance on the surface of the photocatalyst. (For example, a compound that can be reduced to an electron-withdrawing substance by light irradiation). When an electron-withdrawing substance is supported on the surface of the photocatalyst, recombination of electrons excited by the conductor with light irradiation and holes generated in the valence band is suppressed, and the photocatalytic action is further enhanced. it can.

前記電子吸引性物質の前駆体を添加した場合には、添加後、光触媒体分散液に光照射を行うことが好ましい。照射する光としては、光触媒体のバンドギャップ以上のエネルギーを持つ光であれば特に制限はない。光の照射を行うことにより、光励起によって生成した電子によって前駆体が還元されて電子吸引性物質となり光触媒体の表面に担持される。なお光の照射は、光触媒体分散液に対して行ってもよいが、光触媒層の形成後に行ってもよい。より好ましくは複数の光触媒体を混合する場合は、混合前におこなうのがよい。
さらに、より効率的に電子吸引性物質を担持する目的で光の照射前に犠牲剤としてメタノール、エタノール、蓚酸等を加えることもできる。
When the precursor of the electron-withdrawing substance is added, it is preferable that the photocatalyst dispersion liquid is irradiated with light after the addition. The light to be irradiated is not particularly limited as long as the light has energy higher than the band gap of the photocatalyst. By irradiating with light, the precursor is reduced by the electrons generated by photoexcitation to become an electron-withdrawing substance and is carried on the surface of the photocatalyst. In addition, although light irradiation may be performed with respect to a photocatalyst body dispersion liquid, you may perform after formation of a photocatalyst layer. More preferably, when a plurality of photocatalysts are mixed, it is preferably performed before mixing.
Furthermore, methanol, ethanol, oxalic acid, or the like can be added as a sacrificial agent before irradiation with light for the purpose of more efficiently supporting the electron-withdrawing substance.

前記電子吸引性物質またはその前駆体は、Cu、Pt、Au、Pd、Ag、Fe、Nb、Ru、Ir、RhおよびCoからなる群より選ばれる1種以上の金属原子を含有してなるものであることが好ましい。より好ましくは、Cu、Pt、AuおよびPdのうちの1種以上の金属原子を含有してなるものである。例えば、前記電子吸引性物質としては、前記金属原子からなる金属、もしくは、これらの金属の酸化物や水酸化物等が挙げられ、電子吸引性物質の前駆体としては、前記金属原子からなる金属の硝酸塩、硫酸塩、ハロゲン化物、有機酸塩、炭酸塩、リン酸塩等が挙げられる。   The electron-withdrawing substance or its precursor contains one or more metal atoms selected from the group consisting of Cu, Pt, Au, Pd, Ag, Fe, Nb, Ru, Ir, Rh and Co. It is preferable that More preferably, it contains one or more metal atoms of Cu, Pt, Au and Pd. For example, the electron-withdrawing substance may be a metal made of the metal atom, or an oxide or hydroxide of these metals, and the precursor of the electron-withdrawing substance may be a metal made of the metal atom. Nitrates, sulfates, halides, organic acid salts, carbonates, phosphates, and the like.

電子吸引性物質の好ましい具体例としては、Cu、Pt、Au、Pdの金属が挙げられる。また、電子吸引性物質の前駆体の好ましい具体例としては、Cuを含む前駆体として、硝酸銅〔Cu(NO3)2〕、硫酸銅〔CuSO4〕、塩化銅〔CuCl2、CuCl〕、臭化銅〔CuBr2、CuBr〕、沃化銅〔CuI〕、沃素酸銅〔CuI26〕、塩化アンモニウム銅〔Cu(NH4)2Cl4〕、オキシ塩化銅〔Cu2Cl(OH)3〕、酢酸銅〔CH3COOCu、(CH3COO)2Cu〕、蟻酸銅〔(HCOO)2Cu〕、炭酸銅〔CuCO3〕、蓚酸銅〔CuC24〕、クエン酸銅〔Cu2647〕、リン酸銅〔CuPO4〕が;Ptを含む前駆体として、塩化白金〔PtCl2、PtCl4〕、臭化白金〔PtBr2、PtBr4〕、沃化白金〔PtI2、PtI4〕、塩化白金カリウム〔K2(PtCl4)〕、ヘキサクロロ白金酸〔H2PtCl6〕、亜硫酸白金〔H3Pt(SO3)2OH〕、酸化白金〔PtO2〕、塩化テトラアンミン白金〔Pt(NH3)4Cl2〕、炭酸水素テトラアンミン白金〔C21446Pt〕、テトラアンミン白金リン酸水素〔Pt(NH3)4HPO4〕、水酸化テトラアンミン白金〔Pt(NH3)4(OH)2〕、硝酸テトラアンミン白金〔Pt(NO3)2(NH3)4〕、テトラアンミン白金テトラクロロ白金〔(Pt(NH3)4)(PtCl4)〕、ジニトロジアミン白金〔(Pt(NO2)2(NH3)2)〕が;Auを含む前駆体として、塩化金〔AuCl〕、臭化金〔AuBr〕、沃化金〔AuI〕、水酸化金〔Au(OH)2〕、テトラクロロ金酸〔HAuCl4〕、テトラクロロ金酸カリウム〔KAuCl4〕、テトラブロモ金酸カリウム〔KAuBr4〕、酸化金〔Au23〕が;Pdを含む前駆体として、例えば、酢酸パラジウム〔(CH3COO)2Pd〕、塩化パラジウム〔PdCl2〕、臭化パラジウム〔PdBr2〕、沃化パラジウム〔PdI2〕、水酸化パラジウム〔Pd(OH)2〕、硝酸パラジウム〔Pd(NO3)2〕、酸化パラジウム〔PdO〕、硫酸パラジウム〔PdSO4〕、テトラクロロパラジウム酸カリウム〔K2(PdCl4)〕、テトラブロモパラジウム酸カリウム〔K2(PdBr4)〕、テトラアンミンパラジウム塩化物〔Pd(NH34Cl2〕、テトラアンミンパラジウム臭化物〔Pd(NH34Br2〕、テトラアンミンパラジウム硝酸塩〔Pd(NH34(NO32〕、テトラアンミンパラジウムテトラアンミンパラジウム酸テトラアンミンパラジウム塩化物〔(Pd(NH34)(PdCl4)〕、テトラクロロパラジウム酸アンモニウム〔(NH42PdCl4〕が;それぞれ挙げられる。なお、電子吸引性物質またはその前駆体は、それぞれ単独で用いてもよいし、2種以上を併用してもよい。また、1種以上の電子吸引性物質と1種以上の前駆体とを併用してもよいことは勿論である。 Preferable specific examples of the electron-withdrawing substance include Cu, Pt, Au, and Pd metals. Moreover, as a preferable specific example of the precursor of an electron withdrawing substance, as a precursor containing Cu, copper nitrate [Cu (NO 3 ) 2 ], copper sulfate [CuSO 4 ], copper chloride [CuCl 2 , CuCl], Copper bromide [CuBr 2 , CuBr], copper iodide [CuI], copper iodate [CuI 2 O 6 ], ammonium chloride [Cu (NH 4 ) 2 Cl 4 ], copper oxychloride [Cu 2 Cl (OH) ) 3 ], copper acetate [CH 3 COOCu, (CH 3 COO) 2 Cu], copper formate [(HCOO) 2 Cu], copper carbonate [CuCO 3 ], copper oxalate [CuC 2 O 4 ], copper citrate [ Cu 2 C 6 H 4 O 7 ], copper phosphate [CuPO 4 ]; as a precursor containing Pt, platinum chloride [PtCl 2 , PtCl 4 ], platinum bromide [PtBr 2 , PtBr 4 ], platinum iodide [PtI 2, PtI 4], potassium platinum chloride [K 2 (PtCl 4)], hexa Rollo chloroplatinic acid [H 2 PtCl 6], platinum sulfite [H 3 Pt (SO 3) 2 OH ], platinum oxide [PtO 2], tetraammine platinum chloride [Pt (NH 3) 4 Cl 2], bicarbonate tetraammineplatinum [ C 2 H 14 N 4 O 6 Pt], tetraammineplatinum hydrogen phosphate [Pt (NH 3 ) 4 HPO 4 ], tetraammineplatinum platinum [Pt (NH 3 ) 4 (OH) 2 ], tetraammineplatinum nitrate [Pt ( NO 3 ) 2 (NH 3 ) 4 ], tetraammine platinum tetrachloro platinum [(Pt (NH 3 ) 4 ) (PtCl 4 )], dinitrodiamine platinum [(Pt (NO 2 ) 2 (NH 3 ) 2 )] As a precursor containing Au, gold chloride [AuCl], gold bromide [AuBr], gold iodide [AuI], gold hydroxide [Au (OH) 2 ], tetrachloroauric acid [HAuCl 4 ], tetrachloro; Potassium goldate [KAuCl 4 ], tetrabromoauric acid For example, palladium [KAHBr 4 ], gold oxide [Au 2 O 3 ]; Pd-containing precursors such as palladium acetate [(CH 3 COO) 2 Pd], palladium chloride [PdCl 2 ], palladium bromide [PdBr 2 ] ], Palladium iodide [PdI 2 ], palladium hydroxide [Pd (OH) 2 ], palladium nitrate [Pd (NO 3 ) 2 ], palladium oxide [PdO], palladium sulfate [PdSO 4 ], potassium tetrachloropalladate [K 2 (PdCl 4 )], potassium tetrabromopalladate [K 2 (PdBr 4 )], tetraammine palladium chloride [Pd (NH 3 ) 4 Cl 2 ], tetraammine palladium bromide [Pd (NH 3 ) 4 Br 2 ], Tetraammine palladium nitrate [Pd (NH 3 ) 4 (NO 3 ) 2 ], tetraammine palladium tetraammine palladium acid Tetraamminepalladium chloride [(Pd (NH 3 ) 4 ) (PdCl 4 )], ammonium tetrachloropalladate [(NH 4 ) 2 PdCl 4 ]; In addition, an electron withdrawing substance or its precursor may each be used independently, and may use 2 or more types together. Needless to say, one or more electron-withdrawing substances and one or more precursors may be used in combination.

前記電子吸引性物質またはその前駆体をも含有させる場合、その含有量は、金属原子換算で、光触媒体粒子の合計量100質量部に対して、通常0.005〜0.6質量部、好ましくは0.01〜0.4質量部である。電子吸引性物質またはその前駆体が前記合計量100質量部に対して0.005質量部未満であると、電子吸引性物質による光触媒活性の向上効果が充分に得られないおそれがあり、一方、前記合計量100質量部に対して0.6質量部を超えると、却って光触媒作用が低下するおそれがある。   When the electron-withdrawing substance or its precursor is also contained, the content is usually 0.005 to 0.6 parts by mass, preferably 100 to parts by mass in terms of the total amount of photocatalyst particles, in terms of metal atoms. Is 0.01 to 0.4 parts by mass. If the electron withdrawing substance or its precursor is less than 0.005 parts by mass with respect to the total amount of 100 parts by mass, the effect of improving the photocatalytic activity by the electron withdrawing substance may not be sufficiently obtained, If it exceeds 0.6 parts by mass relative to 100 parts by mass of the total amount, the photocatalytic action may be lowered.

(添加剤)
光触媒体分散液は、光触媒作用を向上させる目的で、添加物を含有することができる。添加剤としては、具体的には、非晶質シリカ、シリカゾル、水ガラス、オルガノポリシロキサンなどの珪素化合物;非晶質アルミナ、アルミナゾル、水酸化アルミニウムなどのアルミニウム化合物;ゼオライト;酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどのアルカリ土類金属酸化物またはアルカリ度類金属水酸化物;リン酸カルシウム、モレキュラーシーブ、活性炭、有機ポリシロキサン化合物の重縮合物、リン酸塩、フッ素系ポリマー、シリコン系ポリマー、アクリル樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂等が挙げられる。
さらに、前記添加剤としては、光触媒体を繊維表面により強固に保持させるために、バインダー等を用いることもできる(例えば、特開2008−237793号公報、特開2008-80237号公報、特開2008-50707号公報、特開2005-194625号公報、特開2005-97773号公報、特開2008-163480号公報、特開2008-307528号公報、特開2008-223175号公報、特開2006-28688号公報、など参照。)
添加剤はそれぞれ単独で用いてもよいし、2種以上を併用してもよい。
(Additive)
The photocatalyst dispersion liquid may contain an additive for the purpose of improving the photocatalytic action. Specific examples of additives include silicon compounds such as amorphous silica, silica sol, water glass, and organopolysiloxane; aluminum compounds such as amorphous alumina, alumina sol, and aluminum hydroxide; zeolite; magnesium oxide, calcium oxide , Strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide and other alkaline earth metal oxides or alkalinity metal hydroxides; calcium phosphate, molecular sieve, activated carbon, organic polysiloxane compounds Polycondensates, phosphates, fluoropolymers, silicone polymers, acrylic resins, polyester resins, melamine resins, urethane resins, alkyd resins, and the like.
Further, as the additive, a binder or the like can be used in order to hold the photocatalyst body more firmly on the fiber surface (for example, JP 2008-237793 A, JP 2008-80237 A, JP 2008). No.-50707, JP-A-2005-194625, JP-A-2005-97773, JP-A-2008-163480, JP-A-2008-307528, JP-A-2008-223175, JP-A-2006-28688. (See the official gazette, etc.)
Each additive may be used alone or in combination of two or more.

また、光触媒体分散液を静置しておくと沈降がみられる場合、増粘剤を加えることで、沈降が抑制され、取り扱い易くなる。増粘剤は特に制限はないが、光触媒活性を阻害しにくいという点で有機系増粘剤よりも無機系増粘剤の方が好ましい。無機系増粘剤としては、例えば、スメクタイト系粘土鉱物(モンモリロナイト、パイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、ペントナイト等)やアルミノ珪酸塩(ゼオライト、モルデナイト等)、合成シリケートなどを挙げることができ、特にスメクタイト系粘土鉱物を用いるのが好ましい。無機系増粘剤は、光触媒体分散液100質量部に対して、0.01〜100質量部、好ましくは、0.1〜10質量部加えるとよい。無機系増粘剤の量が光触媒体分散液100質量部に対して、0.01質量部より少ないと増粘効果は得られず光触媒体は沈降し、また、100質量部より多い場合、無機系増粘剤が光触媒体を覆うため光触媒活性が低下する。   Moreover, when sedimentation is observed when the photocatalyst dispersion liquid is allowed to stand, by adding a thickener, sedimentation is suppressed and handling becomes easy. The thickener is not particularly limited, but an inorganic thickener is preferable to an organic thickener in that it hardly inhibits photocatalytic activity. Examples of inorganic thickeners include smectite clay minerals (montmorillonite, piderite, nontronite, saponite, hectorite, soconite, pentonite, etc.), aluminosilicates (zeolite, mordenite, etc.), and synthetic silicates. In particular, it is preferable to use a smectite clay mineral. An inorganic type thickener is 0.01-100 mass parts with respect to 100 mass parts of photocatalyst body dispersion liquid, Preferably, it is good to add 0.1-10 mass parts. When the amount of the inorganic thickener is less than 0.01 parts by mass with respect to 100 parts by mass of the photocatalyst dispersion, the thickening effect cannot be obtained and the photocatalyst is precipitated. Since the system thickener covers the photocatalyst, the photocatalytic activity decreases.

(光触媒体分散液の調製)
光触媒体分散液は、前記光触媒体を前記光触媒体分散媒に添加し分散することにより得ることができる。分散処理は、例えば、媒体撹拌式分散機を用いる通常の方法により行うことができる。
(Preparation of photocatalyst dispersion)
The photocatalyst dispersion liquid can be obtained by adding and dispersing the photocatalyst body to the photocatalyst dispersion medium. The dispersion treatment can be performed, for example, by an ordinary method using a medium stirring type disperser.

(光触媒体の塗布および乾燥)
このようにして得られた光触媒体分散液を織布、編布もしくは不織布などの繊維生地に塗布し、該繊維生地を乾燥することにより、光触媒体を該繊維生地の表面に担持する。塗布方法としては、水で希釈した光触媒体分散液を繊維生地に含浸させ、ローラープレスにて該繊維生地の水分を除去した後、乾燥させる方法が一般的であるが、スプレー加工、インクジェットプリント加工、スクリーンプリント加工などでもよい。加工後の乾燥の条件としては、繊維の機能を損なわない範囲で行えばよく、通常、100〜200℃であり、乾燥時間は通常、1〜60分である。
(Application and drying of photocatalyst)
The photocatalyst dispersion liquid thus obtained is applied to a fiber fabric such as a woven fabric, a knitted fabric, or a non-woven fabric, and the fiber fabric is dried, whereby the photocatalyst is supported on the surface of the fiber fabric. As a coating method, a photocatalyst dispersion diluted with water is impregnated into a fiber fabric, and after removing moisture from the fiber fabric with a roller press, drying is generally performed. Screen printing processing may be used. The drying condition after processing may be performed within a range not impairing the function of the fiber, and is usually 100 to 200 ° C., and the drying time is usually 1 to 60 minutes.

本発明で用いる繊維生地の材質としては、例えば、ポリエステル、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ナイロン 、セルロース、アセテート、タンパク質系繊維であるプロミックス 、ビニロン、レーヨン、キュプラ、ポリノジック、木綿、麻、絹、羊毛、カシミヤ等があげられる。   Examples of the material of the fiber fabric used in the present invention include, for example, polyester, polyacrylonitrile, polyethylene, polypropylene, polyamide, polyvinyl chloride, polyvinylidene chloride, nylon, cellulose, acetate, protein fibers such as promix, vinylon, rayon, Examples include cupra, polynosic, cotton, hemp, silk, wool and cashmere.

本発明で用いる繊維生地の目付けは、250g/m2〜500g/m2、好ましくは280g/m2〜400g/m2である。目付けが250g/m2以下の場合、繊維製品としての強度が低下し、破れやすくなる等の不具合が生じる。また、前記繊維生地は、少なくとも片面を起毛処理している必要がある。起毛方法としては,エメリー起毛、針布起毛、アザミ起毛のどれを用いてもよく、市販の起毛機で前記繊維生地を起毛処理することができる。 Basis weight of the fiber cloth used in the present invention is, 250g / m 2 ~500g / m 2, preferably from 280g / m 2 ~400g / m 2 . When the basis weight is 250 g / m 2 or less, the strength as a fiber product is lowered, and problems such as easy breakage occur. In addition, the fiber fabric needs to be brushed at least on one side. As a raising method, any of Emery raising, needle cloth raising, and thistle raising may be used, and the fiber fabric can be raised with a commercially available raising machine.

本発明の光触媒体担持繊維製品は、屋外においては勿論のこと、蛍光灯、白熱電球、ハロゲンランプ、ナトリウムランプのような可視光源からの光しか受けない屋内環境においても、光の照射によって高い触媒作用を示す。したがって、本発明の光触媒体分散液を、例えば、カーテン、カーペット、布団カバー、シーツ、衣料、自動車内装材(表面材に繊維製品を用いた自動車用シート、自動車用天井材、自動車用フロアカーペットなど)、マスク、壁材(表面材に繊維製品を用いたものに限る。)、などに塗布して乾燥させると、屋内照明による光の照射によって、気相中に含まれる、ホルムアルデヒド、アセトアルデヒド、芳香族化合物などの揮発性有機物、メルカプタン類、アンモニアなどの悪臭物質、窒素酸化物の濃度を低減させ、さらには黄色ブドウ球菌や大腸菌、炭疽菌、結核、コレラ菌、ジフテリア菌、破傷風菌、ペスト菌、赤痢菌、ボツリヌス菌、およびレジオネラ菌等の病原菌等や、インフルエンザウィルスやノロウィルス等のウィルスを死滅、分解、除去することができる。   The photocatalyst-supported fiber product of the present invention is not only outdoors but also has a high catalyst by irradiation with light even in an indoor environment receiving only light from a visible light source such as a fluorescent lamp, an incandescent lamp, a halogen lamp, and a sodium lamp. Shows the effect. Therefore, the photocatalyst dispersion liquid of the present invention can be used, for example, for curtains, carpets, futon covers, sheets, clothing, automobile interior materials (automobile seats using fiber products as surface materials, automobile ceiling materials, automobile floor carpets, etc. ), Masks, wall materials (limited to those using fiber products as surface materials), etc., and dried, they are exposed to formaldehyde, acetaldehyde, aroma contained in the gas phase by irradiation with light from indoor lighting. Reduces the concentration of volatile organic compounds such as aromatic compounds, mercaptans, ammonia and other malodorous substances, nitrogen oxides, and Staphylococcus aureus, Escherichia coli, Bacillus anthracis, tuberculosis, cholera, diphtheria, tetanus, and plague Eradicates pathogenic bacteria such as Shigella, Clostridium botulinum, Legionella, and viruses such as influenza virus and norovirus Decomposition, can be removed.

揮発性芳香族化合物としては、例えばベンゼン、トルエン、キシレン、メチルベンゼン、トリメチルベンゼン、エチルベンゼン、スチレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、クレゾール、アニリンなどが挙げられる。   Examples of the volatile aromatic compound include benzene, toluene, xylene, methylbenzene, trimethylbenzene, ethylbenzene, styrene, chlorobenzene, dichlorobenzene, trichlorobenzene, cresol, aniline, and the like.

以下、本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

なお、実施例および比較例における各物性の測定およびその光触媒活性の評価については、以下の方法で行った。   In addition, about the measurement of each physical property in an Example and a comparative example, and the evaluation of the photocatalytic activity, it performed with the following method.

<結晶型>
X線回折装置(リガク社製「RINT2000/PC」)を用いてX線回折スペクトルを測定し、そのスペクトルから結晶型を決定した。
<Crystal type>
An X-ray diffraction spectrum was measured using an X-ray diffractometer (“RINT2000 / PC” manufactured by Rigaku Corporation), and a crystal type was determined from the spectrum.

<BET比表面積>
比表面積測定装置(湯浅アイオニクス社製「モノソーブ」)を用いて窒素吸着法により測定した。
<BET specific surface area>
It measured by the nitrogen adsorption method using the specific surface area measuring apparatus ("Monosorb" by Yuasa Ionics Co., Ltd.).

<平均分散粒子径>
サブミクロン粒度分布測定装置(コールター社製「N4Plus」)または粒度分布測定装置(日機装製「MICROTRAC HRA model 9320−X100」)を用いて平均粒子径を測定した。前者では試料を水に分散させて測定した後、装置に付属のソフトにより自動的に単分散モード解析して得られた結果を、平均分散粒子径(nm)とした。後者では、試料をヘキサメタリン酸ナトリウム(和光純薬工業製)の0.2質量%水溶液中に分散させて測定した後、50体積%径を測定し、これを平均粒子径とした。
<Average dispersed particle size>
The average particle size was measured using a submicron particle size distribution measuring device (“N4Plus” manufactured by Coulter) or a particle size distribution measuring device (“MICROTRAC HRA model 9320-X100” manufactured by Nikkiso). In the former, after the sample was dispersed in water and measured, the result obtained by automatically performing the monodisperse mode analysis with the software attached to the apparatus was taken as the average dispersed particle size (nm). In the latter, the sample was dispersed in a 0.2% by mass aqueous solution of sodium hexametaphosphate (manufactured by Wako Pure Chemical Industries, Ltd.) and then measured for 50 volume% diameter, which was taken as the average particle diameter.

<光触媒活性評価>
光触媒体を担持した繊維生地を、ブラックライト(紫外線強度2mW/cm2)を16時間照射した後、内容積1Lのガスバッグに入れ、密閉した後、内部を真空にした。次いで、このガスバッグに酸素および窒素の混合ガスを(体積比1:4)600mLを封入し、トルエン(濃度0.5体積%)を含む窒素ガス0.6mLを封入し、暗所に1時間保持した後、測定サンプル直近の照度が6000ルクスとなるように、白色蛍光灯からの光を照射した。トプコン社製の紫外線強度計〔「UVR−2」〕に同社製の受光部〔「UD−36」〕を装着して、このときの測定サンプル直近における紫外線強度を測定したところ、40μW/cm2であった。光照射22時間後、ガスバッグ内の成分をサンプリングし、ガスクロマトグラフ装置〔島津製作所社製「GC−14A」〕によりトルエンの濃度を測定した。下記の式からトルエンの分解率を算出し、この分解率が大きいほどトルエンの分解能は高い。
トルエンの分解率 = (C0−C22)/C0
(C0:光照射0時間でのトルエン濃度, C22:光照射22時間でのトルエン濃度)
<Photocatalytic activity evaluation>
The fiber fabric carrying the photocatalyst was irradiated with black light (ultraviolet intensity 2 mW / cm 2 ) for 16 hours, then placed in a gas bag with an internal volume of 1 L, sealed, and then the inside was evacuated. Next, 600 mL of a mixed gas of oxygen and nitrogen (volume ratio 1: 4) is sealed in this gas bag, and 0.6 mL of nitrogen gas containing toluene (concentration 0.5% by volume) is sealed, and in the dark for 1 hour. After holding, the light from the white fluorescent lamp was irradiated so that the illuminance immediately before the measurement sample was 6000 lux. A UV light intensity meter [“UD-36”] manufactured by Topcon Corporation was attached to a UV intensity meter [“UVR-2”] manufactured by Topcon Corporation, and the UV intensity of the measurement sample at this time was measured to find 40 μW / cm 2. Met. After 22 hours of light irradiation, the components in the gas bag were sampled, and the concentration of toluene was measured by a gas chromatograph apparatus [“GC-14A” manufactured by Shimadzu Corporation]. The decomposition rate of toluene is calculated from the following formula, and the higher the decomposition rate, the higher the resolution of toluene.
Decomposition rate of toluene = (C 0 -C 22 ) / C 0
(C 0 : toluene concentration at 0 hours of light irradiation, C 22 : toluene concentration at 22 hours of light irradiation)

(製造例1−白金担持酸化タングステン粒子分散液の調製)
酸化タングステン(WO3、日本無機化学製)を1辺が190mmのアルミナサヤに4146g仕込み、高速昇温電気炉(モトヤマ製)に入れ、700℃で2時間、熱処理を行った。次に、熱処理した酸化タングステンをSTJ-200(セイシン企業製)を用い、ジェットミル粉砕を行った。ジェットミル粉砕時の押し込み圧力および粉砕圧力はともに0.68MPa、原料(三酸化タングステン粉末)の供給速度は3kg/hであった。粉砕後の酸化タングステンの平均粒子径を「MICROTRAC HRA model 9320−X100」により測定したところ、0.45μmであった。
(Production Example 1-Preparation of platinum-supported tungsten oxide particle dispersion)
4146 g of tungsten oxide (WO 3 , manufactured by Nippon Inorganic Chemical Co., Ltd.) was charged in an alumina sheath having a side of 190 mm, placed in a high-speed heating furnace (manufactured by Motoyama), and heat-treated at 700 ° C. for 2 hours. Next, the heat-treated tungsten oxide was subjected to jet mill pulverization using STJ-200 (manufactured by Seishin Enterprise). The indentation pressure and pulverization pressure during jet mill pulverization were both 0.68 MPa, and the feed rate of the raw material (tungsten trioxide powder) was 3 kg / h. The average particle diameter of the pulverized tungsten oxide was measured by “MICROTRAC HRA model 9320-X100” and found to be 0.45 μm.

得られた酸化タングステン50gを水445gに分散させ、Ptが酸化タングステン粒子100質量部に対して0.12質量部となるようにヘキサクロロ白金酸水溶液(H2PtCl6)を入れて、攪拌しながら高圧水銀灯(100W,USHIO製)を1時間照射した。その後この酸化タングステン粒子分散液にメタノール5gを加えて、引き続き攪拌しながら上記と同様にして高圧水銀灯の照射を2時間行い、白金担持酸化タングステン粒子分散液を得た。 50 g of the obtained tungsten oxide was dispersed in 445 g of water, and an aqueous hexachloroplatinic acid solution (H 2 PtCl 6 ) was added so that Pt was 0.12 parts by mass with respect to 100 parts by mass of the tungsten oxide particles, while stirring. A high pressure mercury lamp (100 W, manufactured by USHIO) was irradiated for 1 hour. Thereafter, 5 g of methanol was added to the tungsten oxide particle dispersion, followed by irradiation with a high-pressure mercury lamp for 2 hours in the same manner as described above, to obtain a platinum-supported tungsten oxide particle dispersion.

(製造例2−酸化チタン粒子分散液の調製)
リン酸二水素アンモニウム(和光特級試薬)20.7gを水5.39kgに溶解させた。このリン酸二水素アンモニウム水溶液に、硫酸チタニルを加熱加水分解させて得られたメタチタン酸の固形物(ケーキ)(TiO2として固形分濃度46.2質量%)1.49kgを混合した。このとき、該水溶液はメタチタン酸1モルに対してリン酸二水素アンモニウム0.02モルで含有する水溶液であった。得られた混合物を、媒体攪拌式分散機(コトブキ技研社製「ウルトラアペックスミル UAM−1」)を用いて下記の条件で分散処理して、酸化チタン粒子分散液を得た。
分散媒体:直径0.05mmのジルコニア製ビーズ1.85kg
攪拌速度:周速8.1m/秒
流量 :0.25L/分
処理時間:約76分
(Production Example 2-Preparation of titanium oxide particle dispersion)
20.7 g of ammonium dihydrogen phosphate (Wako Special Grade Reagent) was dissolved in 5.39 kg of water. To this aqueous solution of ammonium dihydrogen phosphate, 1.49 kg of a metatitanic acid solid (cake) (solid content concentration of 46.2% by mass as TiO 2 ) obtained by hydrolyzing titanyl sulfate with heating was mixed. At this time, the aqueous solution was an aqueous solution containing 0.02 mol of ammonium dihydrogen phosphate with respect to 1 mol of metatitanic acid. The obtained mixture was subjected to a dispersion treatment under the following conditions using a medium stirring type disperser (“Ultra Apex Mill UAM-1” manufactured by Kotobuki Giken Co., Ltd.) to obtain a titanium oxide particle dispersion.
Dispersion medium: 1.85 kg of zirconia beads having a diameter of 0.05 mm
Stirring speed: peripheral speed 8.1 m / sec Flow rate: 0.25 L / min Processing time: about 76 minutes

得られた酸化チタン粒子分散液中の酸化チタン粒子の平均粒子径を前記した「N4Plus」で測定すると96nmであった。なお、分散処理前の混合物と分散処理後の酸化チタン粒子分散液との一部を真空乾燥して固形分を得、各固形分のX線回折スペクトルをそれぞれ測定して比較したところ、どちらも結晶型はアナターゼ型であり、分散処理による結晶型の変化は見られなかった。   The average particle diameter of the titanium oxide particles in the obtained titanium oxide particle dispersion was 96 nm when measured by the above-mentioned “N4Plus”. A part of the mixture before the dispersion treatment and a part of the titanium oxide particle dispersion after the dispersion treatment were vacuum-dried to obtain a solid content, and the X-ray diffraction spectrum of each solid content was measured and compared. The crystal type was anatase type, and no change in crystal type due to dispersion treatment was observed.

(製造例3−白金担持酸化タングステン粒子分散液の調製)
イオン交換水4kgに、粒子状の酸化タングステン粉末(日本無機化学製)1kgを加えて混合して混合物を得た。この混合物を、媒体攪拌式分散機(コトブキ技研社製「ウルトラアペックスミル UAM−1」)を用いて下記の条件で分散処理して、酸化タングステン粒子分散液を得た。
分散媒体:直径0.05mmのジルコニア製ビーズ1.85kg
攪拌速度:周速12.6m/秒
流量 :0.25L/分
処理時間:約50分
(Production Example 3-Preparation of platinum-supported tungsten oxide particle dispersion)
1 kg of particulate tungsten oxide powder (manufactured by Nippon Inorganic Chemical Co., Ltd.) was added to 4 kg of ion-exchanged water and mixed to obtain a mixture. This mixture was subjected to dispersion treatment under the following conditions using a medium agitating disperser (“Ultra Apex Mill UAM-1” manufactured by Kotobuki Giken Co., Ltd.) to obtain a tungsten oxide particle dispersion.
Dispersion medium: 1.85 kg of zirconia beads having a diameter of 0.05 mm
Stirring speed: peripheral speed 12.6 m / sec Flow rate: 0.25 L / min Processing time: about 50 minutes

得られた酸化タングステン粒子分散液における酸化タングステン粒子の平均粒子径を前記した「N4Plus」で測定すると118nmであった。また、この分散液の一部を真空乾燥して固形分を得たところ、得られた固形分のBET比表面積は40m2/gであった。なお、分散処理の前の混合物についても同様に真空乾燥して固形分を得、分散処理前の混合物の固形分と分散処理後の酸化タングステン粒子分散液の固形分について、X線回折スペクトルをそれぞれ測定して比較したところ、どちらも結晶型はWO3であり、分散処理による結晶型の変化は見られなかった。 The average particle diameter of the tungsten oxide particles in the obtained tungsten oxide particle dispersion was 118 nm as measured by the above-mentioned “N4Plus”. Moreover, when a part of this dispersion was vacuum-dried to obtain a solid content, the BET specific surface area of the obtained solid content was 40 m 2 / g. The mixture before the dispersion treatment is similarly vacuum dried to obtain a solid content, and the X-ray diffraction spectrum is obtained for the solid content of the mixture before the dispersion treatment and the solid content of the tungsten oxide particle dispersion after the dispersion treatment. As a result of measurement and comparison, the crystal form of both was WO 3 , and no change in crystal form due to dispersion treatment was observed.

次いで、得られた酸化タングステン粒子分散液(酸化タングステン50g相当分)に水を添加し、全量495gにした。そこへ、Ptが酸化タングステン粒子100質量部に対して0.12質量部となるようにヘキサクロロ白金酸水溶液(H2PtCl6)を加えて、ヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は、10質量部(固形分濃度10質量%)であった。次いで、このヘキサクロロ白金酸含有酸化タングステン粒子分散液を攪拌しながら高圧水銀灯(100W,USHIO製)を1時間照射した。その後上の酸化タングステン混合液にメタノール5gを加えて、引き続き攪拌しながら上記と同様にして高圧水銀灯の照射を2時間行って、白金担持酸化タングステン分散液を得た。 Next, water was added to the obtained tungsten oxide particle dispersion (corresponding to 50 g of tungsten oxide) to make a total amount of 495 g. Thereto, a hexachloroplatinic acid aqueous solution (H 2 PtCl 6 ) was added so that Pt was 0.12 parts by mass with respect to 100 parts by mass of tungsten oxide particles to obtain a hexachloroplatinic acid-containing tungsten oxide particle dispersion. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 10 parts by mass (solid content concentration 10% by mass). Next, a high pressure mercury lamp (100 W, manufactured by USHIO) was irradiated for 1 hour while stirring the hexachloroplatinic acid-containing tungsten oxide particle dispersion. Thereafter, 5 g of methanol was added to the above tungsten oxide mixed solution, and irradiation with a high-pressure mercury lamp was performed for 2 hours in the same manner as described above with continuous stirring to obtain a platinum-supported tungsten oxide dispersion.

(実施例)
製造例1で得た白金担持酸化タングステン粒子分散液と、硫酸チタニルの水溶液を加水分解し、濾取して得られたメタチタン酸ケーク〔TiO2換算でチタン成分を45質量%含む〕の比率が1:1(質量比)となるように混合したところ、分散液中の白金の含有量は、白金原子換算で、酸化チタン粒子と酸化タングステン粒子との合計使用量100質量部に対して0.06質量部であった。この分散液を更に水で希釈して光触媒体粒子分散液を得た。この光触媒体粒子分散液100質量部中に含まれる固形分(酸化チタン粒子と酸化タングステン粒子との合計量)は11質量部(固形分濃度11質量%)であった。この光触媒体分散液中の光触媒体の平均粒子径を「MICROTRAC HRA model 9320−X100」により測定したところ、1.3μmであった。
(Example)
The platinum-supported tungsten oxide particle dispersion obtained in Production Example 1 and the aqueous solution of titanyl sulfate were hydrolyzed and filtered to obtain a metatitanic acid cake (containing 45 mass% of titanium component in terms of TiO 2 ). When mixed so as to be 1: 1 (mass ratio), the content of platinum in the dispersion is about 0.1 parts by mass with respect to 100 parts by mass of the total amount of titanium oxide particles and tungsten oxide particles in terms of platinum atoms. The amount was 06 parts by mass. This dispersion was further diluted with water to obtain a photocatalyst particle dispersion. The solid content (total amount of titanium oxide particles and tungsten oxide particles) contained in 100 parts by mass of this photocatalyst particle dispersion was 11 parts by mass (solid content concentration 11% by mass). The average particle size of the photocatalyst in the photocatalyst dispersion was measured by “MICROTRAC HRA model 9320-X100” and found to be 1.3 μm.

上記で得られた光触媒体粒子分散液を水で、2.67質量%となるように希釈し、これを起毛処理した目付け322g/m2の織布(ポリエステル製)に含浸した後、ローラープレスにて該織布の水分を取り除き、120℃にて2分間、続いて180℃にて1分間加熱処理した。最終的に、光触媒体の担持量は繊維生地に対して1g/m2であった。また、この繊維生地の光触媒活性を測定したところ、トルエン分解率は58%であった。 The photocatalyst particle dispersion obtained above is diluted with water to 2.67% by mass, impregnated in a woven fabric (made of polyester) having a basis weight of 322 g / m 2 , and then roller press The moisture of the woven fabric was removed by heating at 120 ° C. for 2 minutes and then at 180 ° C. for 1 minute. Finally, the supported amount of the photocatalyst was 1 g / m 2 with respect to the fiber fabric. Moreover, when the photocatalytic activity of this fiber fabric was measured, the toluene decomposition rate was 58%.

(比較例)
製造例2で得た酸化チタン粒子分散液と、製造例3で得た白金担持酸化タングステン粒子分散液を、酸化チタン粒子と酸化タングステン粒子との比率が1:1(質量比)となるように混合して、光触媒体粒子分散液を得た。また、この光触媒体粒子分散液100質量部中に含まれる固形分(酸化チタンと酸化タングステンとの合計量)は5質量部(固形分濃度5質量%)であった。前記した「N4Plus」により、この光触媒体粒子分散液中の光触媒体の平均粒子径を測定したところ、147nmであった。
(Comparative example)
In the titanium oxide particle dispersion obtained in Production Example 2 and the platinum-supported tungsten oxide particle dispersion obtained in Production Example 3, the ratio of titanium oxide particles to tungsten oxide particles is 1: 1 (mass ratio). By mixing, a photocatalyst particle dispersion was obtained. Moreover, the solid content (total amount of titanium oxide and tungsten oxide) contained in 100 parts by mass of the photocatalyst particle dispersion was 5 parts by mass (solid content concentration of 5% by mass). The average particle size of the photocatalyst in the photocatalyst particle dispersion was measured by the above-mentioned “N4Plus” and found to be 147 nm.

上記で得た光触媒体粒子分散液を、起毛処理した目付け322g/m2の織布(ポリエステル製)に含浸させた後、ローラープレスにて該織布の水分を取り除き、120℃にて2分間、続いて180℃にて1分間加熱処理した。最終的に、光触媒体粒子の担持量は該織布に対して1g/m2であった。また、この光触媒体粒子担持織布の光触媒活性を測定したところ、トルエン分解率は23%であった。 The photocatalyst particle dispersion obtained above was impregnated into a woven fabric (made of polyester) with a raised basis weight of 322 g / m 2 , and then the moisture of the woven fabric was removed with a roller press at 120 ° C. for 2 minutes. Subsequently, heat treatment was performed at 180 ° C. for 1 minute. Finally, the supported amount of photocatalyst particles was 1 g / m 2 with respect to the woven fabric. Further, when the photocatalytic activity of the photocatalyst particle-supporting woven fabric was measured, the toluene decomposition rate was 23%.

(参考例)
実施例で得られた光触媒体分散液にスメクトンSA(サポナイト:クニミネ工業製)を光触媒体分散液100質量部に対して、2.8質量部加えることにより、光触媒体の沈降を抑制することができる。
(Reference example)
By adding 2.8 parts by mass of smecton SA (Saponite: manufactured by Kunimine Industries) to 100 parts by mass of the photocatalyst dispersion obtained in the examples, the sedimentation of the photocatalyst can be suppressed. it can.

Claims (5)

光触媒体を繊維生地に担持させた光触媒体担持繊維製品であって、平均粒子径が0.2〜2.5μmである前記光触媒体を、少なくとも片面に起毛処理を行った目付け250〜500g/m2の前記繊維生地に担持させることを特徴とする光触媒体担持繊維製品。 A photocatalyst-supported fiber product in which a photocatalyst is supported on a fiber fabric, wherein the photocatalyst having an average particle size of 0.2 to 2.5 μm is subjected to raising treatment on at least one side, and has a basis weight of 250 to 500 g / m 2. A photocatalyst-supporting fiber product, which is supported on the fiber fabric. 前記光触媒体が、酸化チタンおよび/または酸化タングステンである請求項1に記載の光触媒体担持繊維製品   The photocatalyst-supporting fiber product according to claim 1, wherein the photocatalyst is titanium oxide and / or tungsten oxide. 前記光触媒体が、酸化チタンおよび/または酸化タングステン、および無機系増粘剤を含む光触媒体分散液から得られたものである請求項1に記載の光触媒体担持繊維製品。   The photocatalyst-supported fiber product according to claim 1, wherein the photocatalyst is obtained from a photocatalyst dispersion containing titanium oxide and / or tungsten oxide and an inorganic thickener. 前記無機系増粘剤が、スメクタイト系粘土鉱物である請求項1又は3に記載の光触媒体担持繊維製品。   The photocatalyst-supported fiber product according to claim 1 or 3, wherein the inorganic thickener is a smectite clay mineral. 前記繊維生地が、織布、編布又は不織布である請求項1〜4のいずれかに記載の光触媒体担持繊維製品。   The photocatalyst-supported fiber product according to any one of claims 1 to 4, wherein the fiber fabric is a woven fabric, a knitted fabric, or a nonwoven fabric.
JP2009291804A 2009-12-24 2009-12-24 Textile product supporting photocatalyst Pending JP2011132626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291804A JP2011132626A (en) 2009-12-24 2009-12-24 Textile product supporting photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291804A JP2011132626A (en) 2009-12-24 2009-12-24 Textile product supporting photocatalyst

Publications (1)

Publication Number Publication Date
JP2011132626A true JP2011132626A (en) 2011-07-07

Family

ID=44345663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291804A Pending JP2011132626A (en) 2009-12-24 2009-12-24 Textile product supporting photocatalyst

Country Status (1)

Country Link
JP (1) JP2011132626A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038949A1 (en) * 2011-09-16 2013-03-21 住化エンビロサイエンス株式会社 Anti-allergen composition
JP2013158698A (en) * 2012-02-03 2013-08-19 Toshiba Corp Sheet with deodorization function
KR101390689B1 (en) 2012-03-12 2014-04-30 이동수 Fabric with thermo barrier coating
JP2020032405A (en) * 2018-08-27 2020-03-05 シャープ株式会社 Photocatalyst composition
US10682637B2 (en) 2014-11-20 2020-06-16 Kao Corporation Method for producing catalyst fibrous structure
JP2020196863A (en) * 2019-05-28 2020-12-10 シャープ株式会社 Composition, coating method, and multilayer structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119957A (en) * 1998-10-15 2000-04-25 Komatsu Seiren Co Ltd Fiber textile having deodorant, antimicrobial and stain- proofing functions and its production
JP2000119971A (en) * 1998-10-13 2000-04-25 Toray Ind Inc Stainproof fiber structure
JP2006233343A (en) * 2005-02-22 2006-09-07 Nippon Soda Co Ltd Photocatalyst liquid composition
JP2007321321A (en) * 2006-06-05 2007-12-13 Toyota Motor Corp Method for attaching photocatalytic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119971A (en) * 1998-10-13 2000-04-25 Toray Ind Inc Stainproof fiber structure
JP2000119957A (en) * 1998-10-15 2000-04-25 Komatsu Seiren Co Ltd Fiber textile having deodorant, antimicrobial and stain- proofing functions and its production
JP2006233343A (en) * 2005-02-22 2006-09-07 Nippon Soda Co Ltd Photocatalyst liquid composition
JP2007321321A (en) * 2006-06-05 2007-12-13 Toyota Motor Corp Method for attaching photocatalytic material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038949A1 (en) * 2011-09-16 2013-03-21 住化エンビロサイエンス株式会社 Anti-allergen composition
JP2013064058A (en) * 2011-09-16 2013-04-11 Sumika Enviro-Science Co Ltd Anti-allergen composition
JP2013158698A (en) * 2012-02-03 2013-08-19 Toshiba Corp Sheet with deodorization function
KR101390689B1 (en) 2012-03-12 2014-04-30 이동수 Fabric with thermo barrier coating
US10682637B2 (en) 2014-11-20 2020-06-16 Kao Corporation Method for producing catalyst fibrous structure
JP2020032405A (en) * 2018-08-27 2020-03-05 シャープ株式会社 Photocatalyst composition
CN112275277A (en) * 2018-08-27 2021-01-29 夏普株式会社 Photocatalyst composition
JP7241632B2 (en) 2018-08-27 2023-03-17 シャープ株式会社 Photocatalyst composition
JP2020196863A (en) * 2019-05-28 2020-12-10 シャープ株式会社 Composition, coating method, and multilayer structure
JP7349394B2 (en) 2019-05-28 2023-09-22 シャープ株式会社 Composition, coating method and multilayer structure

Similar Documents

Publication Publication Date Title
JP6721742B2 (en) Interior material manufacturing method
KR20100129186A (en) Photocatalyst dispersion liquid and photocatalyst functional product using the same
JP2011132626A (en) Textile product supporting photocatalyst
US20110045964A1 (en) Method for producing noble metal-supported photocatalyst particles
US10010869B2 (en) Aqueous dispersion and coating material using the same, and photocatalytic film and product
EP2133311B1 (en) Zirconium oxalate sol
US20090305879A1 (en) Photocatalyst dispersion liquid and process for producing the same
TW201040234A (en) Hydrophilizing agent, method of producing a hydrophilizing agent and hydrophilic product
JP2012110831A (en) Photocatalyst for decomposing volatile aromatic compound, and product having photocatalytic function
JP2011078930A (en) Photocatalyst dispersion and photocatalyst functional product using the same
JP2011178930A (en) Photocatalytic coating liquid and article having photocatalytic layer coated with the coating liquid
JP2011020009A (en) Photocatalyst body for decomposing volatile aromatic compound, and functional product of photocatalyst
JP5313051B2 (en) Zirconium oxalate sol
JP5342370B2 (en) Precoat liquid for underlayer of photocatalyst layer, wallpaper intermediate with photocatalyst layer, and wallpaper with photocatalyst layer
JP2010215781A (en) Precoating liquid for photocatalyst layer, wallpaper intermediate including photocatalyst layer with precoating liquid applied thereto, and wallpaper including photocatalyst layer
JP2010214309A (en) Photocatalytic body-dispersed liquid and application thereof
JP6258827B2 (en) Photocatalytic material
JP5512223B2 (en) Noble metal-supported photocatalyst particle dispersion and photocatalyst functional product
JP2010120805A (en) Photocatalytic body dispersion
JP2011050802A (en) Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
JP2010270543A (en) Product with photocatalytic body layer
WO2020188860A1 (en) Photocatalytic body having tungsten oxide particles as core and photocatalyst member using same
JP2010214234A (en) Product having photocatalytic body layer, and wallpaper having photocatalytic body layer
JPWO2020188860A1 (en) Method for manufacturing a photocatalyst having tungsten oxide particles as nuclei
CA2668256A1 (en) Photocatalyst dispersion liquid and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730