JPS6317221A - Crystalline titanium oxide sol and production thereof - Google Patents

Crystalline titanium oxide sol and production thereof

Info

Publication number
JPS6317221A
JPS6317221A JP15767486A JP15767486A JPS6317221A JP S6317221 A JPS6317221 A JP S6317221A JP 15767486 A JP15767486 A JP 15767486A JP 15767486 A JP15767486 A JP 15767486A JP S6317221 A JPS6317221 A JP S6317221A
Authority
JP
Japan
Prior art keywords
sol
titanium oxide
gel
water
oxide sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15767486A
Other languages
Japanese (ja)
Other versions
JPH0262499B2 (en
Inventor
Shin Yamamoto
伸 山本
Hiroshi Nishikura
西倉 宏
Yukio Terao
寺尾 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP15767486A priority Critical patent/JPS6317221A/en
Publication of JPS6317221A publication Critical patent/JPS6317221A/en
Publication of JPH0262499B2 publication Critical patent/JPH0262499B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the titled sol composed of ultrafine particles, having excellent purity and dispersibility, etc., and stabilized with an alkaline ion, by reacting a water-soluble titanium compound with an alkali and subjecting the produced gel to hydrothermal treatment at a high temperature. CONSTITUTION:A water-soluble titanium compound (e.g. titanium tetrachloride) is made to react with an alkali metal hydroxide or carbonate and/or an ammonium compound to obtain a gel. The gel is filtered and washed to remove impurities, added with a water-soluble alkali (e.g. ammonium hydroxide) and subjected to hydrothermal treatment at >=100 deg.C to obtain crystalline anatase titanium oxide sol stabilized with alkaline ion and having particle diameter of <=500Angstrom . The obtained titanium oxide sol is useful for the delustering of artificial fiber, coating of paper, etc., as well as a raw material for IR-reflection multi-layer film, catalyst, piezoelectric material, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アルカリ性イオンで安定化された結晶質アナ
ターゼ型酸化チタンゾル及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crystalline anatase-type titanium oxide sol stabilized with alkaline ions and a method for producing the same.

酸化チタンは、顔料、ペースト改良剤、湿度センサー、
赤外線反射多層膜、触媒、圧電体(チタン酸塩)の原料
、二酸化チタン被覆雲母等の多方面の分野に於て使用さ
れている工業材料である。
Titanium oxide is used as pigment, paste improver, humidity sensor,
It is an industrial material used in many fields such as infrared reflective multilayer films, catalysts, piezoelectric materials (titanate) raw materials, and titanium dioxide-coated mica.

(従来の技術) これらの用途に用いられる酸化チタン原料粉末は、通常
イルメナイトに硫酸を加え、その硫酸塩の加水分解によ
り先ずメタチタン酸を得る。 そしてこれをろ過、乾燥
、焼成する方法(硫酸法)、硫酸の代わりに塩酸を用い
る塩酸法、或いは無水塩化チタンを気相で熱分解させる
方法等により生産されている。
(Prior Art) Titanium oxide raw material powder used for these purposes is usually obtained by adding sulfuric acid to ilmenite and hydrolyzing the sulfate to first obtain metatitanic acid. It is produced by a method in which it is filtered, dried, and calcined (sulfuric acid method), a hydrochloric acid method in which hydrochloric acid is used instead of sulfuric acid, or a method in which anhydrous titanium chloride is thermally decomposed in a gas phase.

しかし、これらの方法により得られた酸化チタン粉末は
、一般に粒子径が粗く、また不揃いであり、特に均−超
微細性を要求される分野への適用については問題があっ
た。
However, titanium oxide powders obtained by these methods generally have coarse and irregular particle sizes, which poses a problem, especially when applied to fields that require uniform to ultra-fine particles.

一方、無水塩化チタンを気相で熱分解させ製造する方法
が知られているが、この方法は微細な均一粒子が得られ
る反面、粒子の分散性が悪く、水等の溶媒に分散させる
と、経時と共に沈降分離することで問題がある。
On the other hand, a method of producing anhydrous titanium chloride by thermal decomposition in the gas phase is known, but although this method yields fine, uniform particles, the particles have poor dispersibility, and when dispersed in a solvent such as water, There is a problem with sedimentation and separation over time.

また、特開昭59−223231号記載の内容によれば
、硫酸法による酸化チタンの製造の際、焼成によりルチ
ル型への転位を促進するため、核物質として添加される
ものと基本的に同一であるものをチタニアゾルと云って
いる。
Furthermore, according to the content described in JP-A No. 59-223231, when producing titanium oxide using the sulfuric acid method, it is basically the same material as that added as a nuclear material in order to promote the rearrangement to the rutile type by calcination. It is called titania sol.

しかし、このものはその製造方法から明らかなように、
微粒子酸化チタンの製造中間体として得られるチタニア
ゾルとして、多量の酸を含むことから、本発明の結晶質
酸化チタンゾルとは異なるものである。
However, as is clear from the manufacturing method,
The titania sol obtained as an intermediate for producing fine-particle titanium oxide contains a large amount of acid, and is therefore different from the crystalline titanium oxide sol of the present invention.

従って、赤外線反射多層膜、触媒、圧電体用原料、二酸
化チタン被覆雲母等に適用する場合には、これらの二酸
化チタン粉末では、純度、粒度、分散性に於て充分でな
く、問題が残されているのが現状である。
Therefore, when applied to infrared reflective multilayer films, catalysts, raw materials for piezoelectric materials, mica coated with titanium dioxide, etc., these titanium dioxide powders do not have sufficient purity, particle size, and dispersibility, and problems remain. The current situation is that

(発明が解決しようとする問題点) 本発明者らはこれらの実情に鑑み、純度、粒度、分散性
Vの緒特性に於て優れる結晶質の酸化チタンゾルを得べ
く、鋭意研究を重ねた結果、新規なアルカリ性イオンで
安定化された結晶質アナターゼ型酸化チタンゾルを見出
し、本発明を完成したものである。
(Problems to be Solved by the Invention) In view of these circumstances, the present inventors have conducted extensive research to obtain a crystalline titanium oxide sol that is excellent in purity, particle size, and dispersibility characteristics. discovered a new crystalline anatase-type titanium oxide sol stabilized with alkaline ions, and completed the present invention.

(問題点を解決するための手段) 即ち本発明は、アルカリ性イオンで安定化された結晶質
アナターゼ型酸化チタンゾル及びその製造方法に関し、
水弟−の発明は、粒子径500A以下のアルカリ性イオ
ンで安定化された結晶質アナターゼ型酸化チタンゾルで
あり、また、本第二の発明は、水溶性チタン化合物とア
ルカリ金属の水酸化物又は炭酸塩、及び/又はアンモニ
ウム化合物とを反応させゲルを生成させた後、これを1
00℃以上で水熱処理することからなる粒子径soo!
以下のアルカリ性イオンで安定化された結晶質アナター
ゼ型酸化チタンゾルの製造方法に関する。
(Means for solving the problems) That is, the present invention relates to a crystalline anatase-type titanium oxide sol stabilized with alkaline ions and a method for producing the same.
Mizutoshi's invention is a crystalline anatase-type titanium oxide sol stabilized with alkaline ions with a particle size of 500A or less, and the second invention is a water-soluble titanium compound and an alkali metal hydroxide or carbonate sol. After reacting with a salt and/or an ammonium compound to generate a gel, this is
Particle size soo! resulting from hydrothermal treatment at 00℃ or higher!
The present invention relates to the following method for producing a crystalline anatase-type titanium oxide sol stabilized with alkaline ions.

(作 用) 先ず、水弟−の発明である粒子径500ス以下のアルカ
リ性イオンで安定化された結晶質アナターゼ型酸化チタ
ンゾルについて詳細に説明する。
(Function) First, the crystalline anatase-type titanium oxide sol stabilized with alkaline ions and having a particle size of 500 s or less, which is an invention by Mizue, will be explained in detail.

従来、酸化チタンのゾルを製造する方法として、無機チ
タン塩水溶液を原料とし、これに含まれる酸根を何等か
の方法により除去するか、或いはアし酸チタンを水に加
え、加水分解を行うことにより得る方法が提案されてい
る。 また別に、チタンアルコキシドを各種の手段で加
水分解し、ゾルを得る方法も提案されている。
Conventionally, the method for manufacturing titanium oxide sol has been to use an inorganic titanium salt aqueous solution as a raw material and remove the acid groups contained therein by some method, or add titanium acetate to water and perform hydrolysis. A method has been proposed. Separately, methods have also been proposed in which titanium alkoxide is hydrolyzed by various means to obtain a sol.

しかし、これらの方法により得られるゾルは何れもその
結晶形が無定形か或いはチタンの水酸化物であり、アナ
ターゼ型の結晶質酸化チタンゾルではない。
However, the sols obtained by these methods are either amorphous or titanium hydroxide, and are not anatase-type crystalline titanium oxide sols.

これに対し、本発明のアルカリ性イオンで安定化された
結晶質酸化チタンゾルはアナターゼ型の結晶形をもち、
且つこれが500に以下という極めて微細なコロイド粒
子を水溶液状態で供与し、安定なゾル溶液を形成するも
のである。
In contrast, the crystalline titanium oxide sol stabilized with alkaline ions of the present invention has an anatase crystal form,
Moreover, this provides very fine colloidal particles of less than 500 mm in size in an aqueous solution state to form a stable sol solution.

非晶質からなる従来のゾルは、化繊、合繊等の艶消しや
、製紙のコーティングに用いた場合には、基材の耐熱性
が低いため、非晶質ゾルを結晶化させることができなか
った。 しかし本発明のアルカリ性イオンで安定化され
た結晶質酸化チタンゾルは、このような基材に結晶質の
ものを乾燥程度の低温処理でコーティングできることよ
り、耐薬品性、耐水性が非晶質のものに比べ著しく向上
し、広範な条件下での使用が可能となるものである。
Conventional amorphous sols cannot be crystallized when used for matting synthetic fibers, synthetic fibers, etc., or for coating paper manufacturing, due to the low heat resistance of the base material. Ta. However, the crystalline titanium oxide sol stabilized with alkaline ions of the present invention can be coated with a crystalline material on such a base material by low-temperature treatment such as drying. This is a significant improvement over the previous model, and it can be used under a wide range of conditions.

このようなゾルは従来全く知られていなかったものであ
り、酸化チタン系複合材料の適用分野に於て、新たな用
途を生み出すものである。
Such a sol has not been previously known and will create new uses in the field of application of titanium oxide composite materials.

その特徴を挙げれば次の通りである。Its characteristics are as follows.

第一に、本発明のアルカリ性イオンで安定化された結晶
質アナターゼ型ゾルは、無、定形ゾルに比べて高濃度な
ゾルで得ることができ、酸化チタン−シリカの多層赤外
線反射膜を作成するような場合、−回のコーティングで
所望の膜厚や反射性能を得ることができる。
First, the crystalline anatase-type sol stabilized with alkaline ions of the present invention can be obtained at a higher concentration than a non-formed sol, and can be used to create a multilayer infrared reflective film of titanium oxide-silica. In such cases, the desired film thickness and reflection performance can be obtained by coating twice.

第二に、本発明のアルカリ性イオンで安定化された結晶
質アナターゼ型酸化チタンゾルは、ゾルの安定性に優れ
ているので、従来の二酸化チタン粉末ではコーティング
等の作業の際に、均一な膜形成が困難であったのに比べ
、本発明品では長期間の保存後もゾルが均一に分散し、
均一なコーテイング膜が得られる。
Second, the crystalline anatase-type titanium oxide sol stabilized with alkaline ions of the present invention has excellent sol stability, so conventional titanium dioxide powder can form a uniform film during coating and other operations. In contrast, with the product of the present invention, the sol is evenly dispersed even after long-term storage.
A uniform coating film can be obtained.

しかも5ooX以下という超微細粒子であるから、酸化
チタンにスズやバナジウムを含む湿度又はガスセンサー
に適用した場合には、比表面積が大きい故に、著しく高
感度のセンサーが得られる。
Moreover, since they are ultrafine particles of 5ooX or less, when applied to a humidity or gas sensor containing tin or vanadium in titanium oxide, a sensor with extremely high sensitivity can be obtained due to the large specific surface area.

更に、無定形ゾルに比べて高濃度での被覆が可能である
なめ、硬牢なものが得られる。
Furthermore, since it is possible to coat at a higher concentration than an amorphous sol, a tough product can be obtained.

これらのことは、酸化チタン系セラミックのコーテイン
グ膜の製造に於て非常に有益である。
These facts are very useful in the production of titanium oxide ceramic coating films.

尚、コロイド粒子径の測定は、電子顕微鏡観察により行
ったが、本発明のゾルは、実質上全てのコロイド粒子が
500X以下の粒子径であった。
The colloidal particle size was measured by electron microscopic observation, and in the sol of the present invention, substantially all colloidal particles had a particle size of 500X or less.

次に、本第二の発明であるアルカリ性イオンで安定化さ
れた結晶質アナターゼ型酸化チタンゾルの製造方法につ
いて詳述する。
Next, a method for producing a crystalline anatase-type titanium oxide sol stabilized with alkaline ions, which is the second invention, will be described in detail.

本第二の発明は、水溶性チタン化合物とアルカリ金属の
水酸化物又は炭酸塩、及び/又はアンモニウム化合物と
を反応させゲルを生成させた後、これを1008C以上
で水熱処理することからなる粒子径500Å以下のアル
カリ性イオンで安定化された結晶質アナターゼ型酸化チ
タンゾルの製造方法に関する。 本発明に用いる水溶性
チタン化合物としては、四塩化チタン、硝酸チタン、硫
酸チタン等を例示でき、またアルカリ金属の水酸化物と
して、水酸化ナトリウム、水酸化カリウム、水酸化リチ
ウム、アルカリ金属の炭酸塩としては、炭酸ナトリウム
、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム等
を例示できる。
The second invention provides particles obtained by reacting a water-soluble titanium compound with an alkali metal hydroxide or carbonate, and/or an ammonium compound to form a gel, and then hydrothermally treating the gel at a temperature of 1008C or higher. The present invention relates to a method for producing a crystalline anatase-type titanium oxide sol stabilized with alkaline ions having a diameter of 500 Å or less. Examples of water-soluble titanium compounds used in the present invention include titanium tetrachloride, titanium nitrate, and titanium sulfate. Examples of alkali metal hydroxides include sodium hydroxide, potassium hydroxide, lithium hydroxide, and alkali metal carbonate. Examples of the salt include sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, and the like.

更に、アンモニウム化合物としては、重炭酸アンモニウ
ム、炭酸アンモニウム、アンモニア水等を例示すること
ができるが、これらに限定されるものではない。
Further, examples of ammonium compounds include ammonium bicarbonate, ammonium carbonate, aqueous ammonia, etc., but are not limited thereto.

本発明では、先ず前記の水溶性チタン化合物とアルカリ
金属の水酸化物又は炭酸塩、及び/又はアンモニウム化
合物とを反応させ、ゲルを生成させる。
In the present invention, first, the water-soluble titanium compound and an alkali metal hydroxide or carbonate, and/or an ammonium compound are reacted to form a gel.

このゲルの製造条件に関して云えば、両者の反応の際の
温度は、大略10〜90°Cで行う。
Regarding the conditions for producing this gel, the temperature during the reaction between the two is approximately 10 to 90°C.

また添加割合については、アルカリ金属の水酸化物又は
炭酸塩、及び/又はアンモニウム化合物(A)と、水溶
性チタン化合物に由来する酸根(B)の当量比A/Bが
1.0〜1.3の範囲となるように行う。
Regarding the addition ratio, the equivalent ratio A/B of the alkali metal hydroxide or carbonate and/or ammonium compound (A) and the acid radical derived from the water-soluble titanium compound (B) is 1.0 to 1. Do this so that it falls within the range of 3.

しかしこの範囲を逸脱しても、後述する生成ゲルを洗浄
する工程で、上限を越えた場合、希薄な酸溶液で洗浄し
、また下限以下では@薄なアルカリ性溶液で洗浄するこ
とにより、所望のゾルを得ることができ、特段に限定す
るものではないが、経済的理由から上記範囲が望ましい
、 また、添加順序に関しても特段限定はされず、水溶
性チタン化合物またはアンモニウム化合物のいずれか一
方を先に、あるいは両者を同時に添加する方法により行
うことができる。
However, even if it deviates from this range, in the step of washing the produced gel described below, if the upper limit is exceeded, washing with a dilute acid solution is performed, and if it is below the lower limit, the desired result is washed with a dilute alkaline solution. Although not particularly limited, the above range is desirable for economic reasons. There is also no particular limitation on the order of addition, with either the water-soluble titanium compound or the ammonium compound added first. This can be carried out by adding either one or both at the same time.

このようにして製造したゲルは、次いでろ過、洗浄を行
い、不純物を除去する。
The gel thus produced is then filtered and washed to remove impurities.

この残存不純物は、酸化チタンゾルの製造上、また用途
上、少ないほうが好ましく、例えば上述のろ過洗浄作業
を全く行なわない場合には、得られるゾルは不安定なも
のとなり、以て本発明のゾルを得ることができない。
It is preferable that the amount of residual impurities be as small as possible in terms of the production and use of the titanium oxide sol. For example, if the above-mentioned filtration and cleaning operation is not performed at all, the resulting sol will be unstable, and the sol of the present invention will not be able to be used. can't get it.

ろ過、洗浄手段に関しては特に限定されず、通常用いら
れているフィルタープレスや遠心ろ過のような注水ろ過
、リパルプ−遠心分離法等の任意の手段を用いることが
できる。
The filtration and washing means are not particularly limited, and any commonly used means such as a filter press, water filtration such as centrifugal filtration, repulp-centrifugation method, etc. can be used.

ろ過、洗浄後のゲルに次いで水溶性アルカリを添加し、
水熱処理に供する。
After filtration and washing, a water-soluble alkali is added to the gel,
Subject to hydrothermal treatment.

添加する水溶性アルカリの種類としては、水酸化アンモ
ニウム、水酸化ナトリウム、水酸化カリウム、水酸化リ
チウム、メチルアミン、トリメチルアミン、エチレンジ
アミン、エタノールアミン等を例示できる。
Examples of the water-soluble alkali to be added include ammonium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydroxide, methylamine, trimethylamine, ethylenediamine, and ethanolamine.

また水溶性アルカリの添加量は、概ねTi021モルに
対して0.O1〜0.60モルの範囲で、且つゾル液の
PHが8〜12の範囲、より好ましくはPH9〜11.
5の範囲となるように行う。
Further, the amount of water-soluble alkali added is approximately 0.00000000000000000000000000000000000000000000000 O is in the range of 1 to 0.60 mol, and the pH of the sol is in the range of 8 to 12, more preferably PH 9 to 11.
Do this so that it falls within the range of 5.

この場合、添加量がこの範囲を逸脱すると、本発明の分
散性に優れたゾルを得ることができない。
In this case, if the amount added exceeds this range, the sol with excellent dispersibility of the present invention cannot be obtained.

水熱処理条件に関しては、温度は10000以上で行う
が、一般に処理温度が高く、また処理時間が長くなるほ
ど、結晶形の発達が良好であり、粒径の大きなコロイド
粒子が得られる。
Regarding the hydrothermal treatment conditions, the temperature is 10,000 or higher, and generally, the higher the treatment temperature and the longer the treatment time, the better the development of crystal form and the larger the particle size can be obtained.

また、1000Cを下回る温度での処理は、長時間行っ
てもゲルが結晶化せず、たとえ一部が結晶化してもその
結晶化度は著しく低く、無定形の性質が残り、本発明の
目的を達成することができない。
In addition, if the treatment is carried out at a temperature below 1000C, the gel will not crystallize even if it is carried out for a long time, and even if a part of it crystallizes, its crystallinity will be extremely low and its amorphous nature will remain, which is the object of the present invention. cannot be achieved.

蓋し、本発明の結晶質酸化チタンゾルの各用途に応じて
処理条件を選択し、所望する粒子径のゾルを得ることが
でき、その制御が水熱処理条件の選択によって可能であ
る点が本発明の大きな特徴である。
An advantage of the present invention is that it is possible to obtain a sol with a desired particle size by selecting treatment conditions according to each use of the crystalline titanium oxide sol of the present invention, and that this can be controlled by selecting the hydrothermal treatment conditions. This is a major feature of

(実施54) 以下に本発明の実施例を掲げ、更に説明を行うが、本発
明はこれらに限定されるものではない。
(Example 54) Examples of the present invention will be listed below to further explain the present invention, but the present invention is not limited thereto.

また、%は特にことわらない限り、全て重量%を示す。Moreover, unless otherwise specified, all percentages indicate weight percent.

実施例1 四塩化チタン水溶9i(Ti022%)2000gにア
ンモニア水(NH32%)2212g (NH3/CI
当量比1.3)を攪はん下で)ケ加し、ゲルを生成させ
た。
Example 1 2000 g of titanium tetrachloride aqueous solution 9i (Ti022%) and 2212 g of ammonia water (NH32%) (NH3/CI
An equivalent ratio of 1.3) was added under stirring to form a gel.

これをろ液中に塩素イオンが認められなくなる迄ろ過水
洗し、Ti0810%、NH30,3%のゲルを得た。
This was filtered and washed with water until no chloride ions were observed in the filtrate, to obtain a gel containing 10% Ti08 and 30.3% NH.

このゲル400gに、NH3/τ102モル比0.2と
なるように水酸化アンモニウム(NH34,5%)11
.2gを添加し、これをオートクレーブに入れ、160
°Cで4時間の水熱処理を行ない、本発明のゾルを得た
。尚、このゾル液のPHは10.8であった。
Add 11 ammonium hydroxide (NH34, 5%) to 400 g of this gel so that the NH3/τ102 molar ratio is 0.2.
.. Add 2g and put this in an autoclave, 160
Hydrothermal treatment was carried out at °C for 4 hours to obtain the sol of the present invention. Note that the pH of this sol solution was 10.8.

またこのゾルをTi021.0%に希釈し、静置したと
ころ、1力月後の分散安定率は99%であった。 更に
、電子顕微鏡観察によるコロイド粒子径は105Aであ
り、X線回折の結果はアナターゼ型結晶質であった。
Further, when this sol was diluted to 1.0% Ti0 and left to stand, the dispersion stability rate after 1 month was 99%. Furthermore, the colloid particle diameter was 105A when observed under an electron microscope, and the result of X-ray diffraction showed that it was anatase type crystalline.

尚、分散安定率は1力月後にゾル液の上層部からサンプ
リングした液の1102濃度を測定し、次式により算出
した。
The dispersion stability rate was calculated by measuring the 1102 concentration of a liquid sampled from the upper layer of the sol liquid after one month, and using the following formula.

実施例2〜4 四塩化チタン水溶液(11083%)10000gと重
炭酸ナトリウム水溶液(Na 2%)18135g(H
a/cl当量比1.05)を、水5000gを予め添加
した反応槽に攪はんを行いながら同時に添加した。
Examples 2 to 4 10,000 g of titanium tetrachloride aqueous solution (11,083%) and 18,135 g of sodium bicarbonate aqueous solution (Na 2%) (H
a/cl equivalent ratio of 1.05) was simultaneously added to a reaction tank to which 5000 g of water had been previously added while stirring.

生成したゲルを水洗、ろ過し、Tide 10.8%の
ゲル2758gを得た。 このゲルを水で希釈し、τ1
0゜3%としたゲル400gに水酸化ナトリウムをHa
/TiO□モル比0.08となるように添加し、これを
オートクレーブに入れ、第1表に示したような処理条件
で処理を行い、本発明のゾルを得た。尚、このゾル液の
PHは11.3であった。
The generated gel was washed with water and filtered to obtain 2758 g of gel containing 10.8% Tide. This gel was diluted with water and τ1
Add sodium hydroxide to 400g of gel with a concentration of 0.3%.
/TiO□ molar ratio of 0.08, this was placed in an autoclave, and treated under the treatment conditions shown in Table 1 to obtain the sol of the present invention. Note that the pH of this sol solution was 11.3.

これらのX線回折結果を第1表に示し、また実施例2の
X線回折図を第1図に示した。
These X-ray diffraction results are shown in Table 1, and the X-ray diffraction diagram of Example 2 is shown in FIG.

更に、X線回折の結果から5cherrerの式%式%
() β;半価巾(ラン9アン) cosθ;2θ=25.3”とした により粒子径を算出した。
Furthermore, from the results of X-ray diffraction, 5cherrer's formula % formula %
The particle diameter was calculated using () β: half width (run 9 am) cos θ; 2θ = 25.3”.

粒子径は、電子al@鏡観察結果からの粒子径と5ch
errerの式からの粒子径がほぼ一致していた。
The particle size is the particle size from the electronic al@mirror observation result and 5ch
The particle diameters from the error equation were almost the same.

また比較例として、上記のゲルを同量三ツロフラスコに
入れ、マントルヒーターで第1表記載の条件で処理した
。 結果を第1表に示した。
Further, as a comparative example, the same amount of the above gel was placed in a Mitsuro flask and treated with a mantle heater under the conditions listed in Table 1. The results are shown in Table 1.

第1表 実施例5 炭酸ナトリウム水溶液(Na1%) 10000gに硝
酸チタン水溶液(11021%)8515g (Na/
NO3当量比1.02)を、攪はんを行いながら添加し
た。 得られたゲルを充分に水洗し、硝酸がウェットケ
ーキ中に残留していないことを確認後、これを水で希釈
し、Ti028%のスラリーを得た。
Table 1 Example 5 10000g of sodium carbonate aqueous solution (Na1%) and 8515g of titanium nitrate aqueous solution (11021%) (Na/
NO3 equivalent ratio 1.02) was added with stirring. After thoroughly washing the obtained gel with water and confirming that no nitric acid remained in the wet cake, it was diluted with water to obtain a slurry containing 28% Ti.

次いで、このスラリー400gにNH8/TIQeモル
比0.2となるように25%のアンモニア水5.4gを
添加し、200°Cで4時間の水熱処理を行ない、本発
明のゾルを得た。尚、このゾル液のPHは10.1であ
った。
Next, 5.4 g of 25% ammonia water was added to 400 g of this slurry so that the NH8/TIQe molar ratio was 0.2, and hydrothermal treatment was performed at 200° C. for 4 hours to obtain the sol of the present invention. Note that the pH of this sol solution was 10.1.

この本発明のゾルは、X線回折の結果アナターゼ型結晶
形を有し、粒子径は1aoXであり、また分散安定率は
92%であった。
As a result of X-ray diffraction, the sol of the present invention had an anatase crystal form, a particle size of 1aoX, and a dispersion stability rate of 92%.

実施例6 実施例5と同様に、炭酸ナトリウム水溶液と硝酸チタン
水溶液によりゲルを得た。このゲルスラリー(Ti02
8%)の400gに、NH2/τi0.モル比0.02
となるようにモノエタノールアミン0.49gを添加し
、200’Cで4時間の水熱処理を行なうことにより、
ゾル液PHが11.5である本発明のゾルを得た。
Example 6 In the same manner as in Example 5, a gel was obtained using an aqueous sodium carbonate solution and an aqueous titanium nitrate solution. This gel slurry (Ti02
8%) to 400 g of NH2/τi0. Molar ratio 0.02
By adding 0.49 g of monoethanolamine and performing hydrothermal treatment at 200'C for 4 hours,
A sol of the present invention having a sol liquid pH of 11.5 was obtained.

この本発明のゾルは、X線回折の結果アナターゼ型結晶
形を有し、粒子径は180′Aであり、また分散安定率
は89%であった。
As a result of X-ray diffraction, the sol of the present invention had an anatase crystal form, a particle size of 180'A, and a dispersion stability rate of 89%.

実施例7 硝酸チタン水溶液(TiO33%)2000gとアンモ
ニア水(NH33%)221;’g (NH3/NO3
当量比1.3)を攪はん下で添加し、ゲルを生成させた
Example 7 Titanium nitrate aqueous solution (TiO33%) 2000g and ammonia water (NH33%) 221;'g (NH3/NO3
(equivalent ratio 1.3) was added under stirring to form a gel.

これをろ液中に硝酸イオンが認められなくなる迄ろ過水
洗し、110210.6%、NH30,29%のゲルを
得た。
This was filtered and washed with water until no nitrate ions were observed in the filtrate, yielding a gel containing 10.6% of 1102 and 29% of NH3.

コノゲル400gに、(NH3+Na)/Ti0I!−
!ニル比0.3となるように炭酸水素ナトリウム7.6
gを添加し、これをオートクレーブに入れ、250°C
で2時間の水熱処理を行ない、ゾル液P)Iが10.3
の本発明のゾルを得た。
Add (NH3+Na)/Ti0I to 400g of Conogel! −
! Sodium hydrogen carbonate is 7.6 to give a nil ratio of 0.3.
g and put it in an autoclave at 250°C.
After 2 hours of hydrothermal treatment, the sol liquid P)I was 10.3
A sol of the present invention was obtained.

この本発明のゾルは、X線回折の結果アナターゼ型結晶
形を有し、粒子径は180大であり、また分散安定率は
96%であった。
As a result of X-ray diffraction, this sol of the present invention had an anatase type crystal form, a particle size of 180, and a dispersion stability rate of 96%.

また比較のために、上記と同様にゲルを得た後、ろ過水
洗を全く行なわずにオートクレーブ処理を行なった。そ
の結果、液PHは9.4であったが、このものはゾル状
態を示さなかった。
For comparison, a gel was obtained in the same manner as above and then autoclaved without any filtration and water washing. As a result, the liquid pH was 9.4, but this product did not exhibit a sol state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例2で得た本発明アルカリ性イオンで安
定化された結晶質アナターゼ型酸化チタンゾルの60℃
乾燥物のX線回折図である。
Figure 1 shows the crystalline anatase type titanium oxide sol stabilized with alkaline ions of the present invention obtained in Example 2 at 60°C.
It is an X-ray diffraction diagram of a dried product.

Claims (2)

【特許請求の範囲】[Claims] (1)粒子径500Å以下のアルカリ性イオンで安定化
された結晶質アナターゼ型酸化チタンゾル。
(1) Crystalline anatase-type titanium oxide sol stabilized with alkaline ions with a particle size of 500 Å or less.
(2)水溶性チタン化合物とアルカリ金属の水酸化物又
は炭酸塩、及び/又はアンモニウム化合物とを反応させ
ゲルを生成させた後、これを100℃以上で水熱処理す
ることからなる粒子径500Å以下のアルカリ性イオン
で安定化された結晶質アナターゼ型酸化チタンゾルの製
造方法。
(2) A particle size of 500 Å or less is obtained by reacting a water-soluble titanium compound with an alkali metal hydroxide or carbonate, and/or an ammonium compound to form a gel, and then hydrothermally treating the gel at 100°C or higher. A method for producing a crystalline anatase-type titanium oxide sol stabilized with alkaline ions.
JP15767486A 1986-07-03 1986-07-03 Crystalline titanium oxide sol and production thereof Granted JPS6317221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15767486A JPS6317221A (en) 1986-07-03 1986-07-03 Crystalline titanium oxide sol and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15767486A JPS6317221A (en) 1986-07-03 1986-07-03 Crystalline titanium oxide sol and production thereof

Publications (2)

Publication Number Publication Date
JPS6317221A true JPS6317221A (en) 1988-01-25
JPH0262499B2 JPH0262499B2 (en) 1990-12-25

Family

ID=15654903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15767486A Granted JPS6317221A (en) 1986-07-03 1986-07-03 Crystalline titanium oxide sol and production thereof

Country Status (1)

Country Link
JP (1) JPS6317221A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same
WO1996037560A1 (en) * 1995-05-24 1996-11-28 The Procter & Gamble Company Titanium dioxide hydrogel and sunscreen composition containing it
WO2000046153A1 (en) * 1999-02-04 2000-08-10 Kawasaki Jukogyo Kabushiki Kaisha Method for producing anatase type titanium dioxide and titanium dioxide coating material
JP2001262007A (en) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc Titania coating liquid and its production method, and titania film and its formation method
KR20020004131A (en) * 2000-07-03 2002-01-16 이종국 Preparation Method of Nanotube-shaped TiO2 Powder
KR20020031359A (en) * 2002-01-28 2002-05-01 김영도 A Titania Moistness Gel And Method Manufacturing The Same
US6429169B1 (en) * 1996-03-29 2002-08-06 Saga-Ken Photocatalytic body and method for making same
KR100381921B1 (en) * 2000-07-21 2003-04-26 김정환 Titania coating solution and Method for manufacturing the same
KR20030043536A (en) * 2001-11-28 2003-06-02 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol by hydrothermal method
KR100413720B1 (en) * 2001-06-04 2003-12-31 (주)아해 Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
KR100421243B1 (en) * 2000-12-01 2004-03-12 (주) 에이엔티케미칼 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR100444892B1 (en) * 2001-06-01 2004-08-18 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol containing active metals
EP1752218A2 (en) 1998-11-20 2007-02-14 Asahi Kasei Kabushiki Kaisha Sol of a modified photocatalyst
DE102006032755A1 (en) * 2006-07-14 2008-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stable suspensions of crystalline TiO2 particles from hydrothermally treated sol-gel precursor powders
WO2012014654A1 (en) 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Near-infrared reflective film, method for manufacturing near-infrared reflective film, and near-infrared reflector
WO2012014655A1 (en) 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Near-infrared reflective film and near-infrared reflector provided with same
WO2012014644A1 (en) 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Method for manufacturing near infrared reflective film and near infrared reflective body provided with same
WO2012077477A1 (en) 2010-12-09 2012-06-14 コニカミノルタホールディングス株式会社 Near-infrared reflection film and near-infrared reflection body equipped with same
WO2012128109A1 (en) 2011-03-18 2012-09-27 コニカミノルタホールディングス株式会社 Heat-ray reflecting film, method for producing same, and heat-ray reflecting body
WO2012157692A1 (en) 2011-05-17 2012-11-22 コニカミノルタホールディングス株式会社 Infrared shielding film, method for producing infrared shielding film, and infrared shield
WO2012176891A1 (en) 2011-06-23 2012-12-27 コニカミノルタホールディングス株式会社 Optical reflection film and method for producing same
WO2013065679A1 (en) 2011-10-31 2013-05-10 コニカミノルタホールディングス株式会社 Reflective optical film and optical reflector using same
WO2013089066A1 (en) 2011-12-12 2013-06-20 コニカミノルタ株式会社 Optical laminated film, infrared shielding film and infrared shielding body
WO2013111735A1 (en) 2012-01-25 2013-08-01 コニカミノルタアドバンストレイヤー株式会社 Optical film
WO2013129335A1 (en) 2012-02-29 2013-09-06 コニカミノルタ株式会社 Near-infrared reflective film and near-infrared reflective glass using same
WO2014024873A1 (en) 2012-08-06 2014-02-13 コニカミノルタ株式会社 Light-reflective film, and light reflector produced using same
WO2021248896A1 (en) * 2020-06-12 2021-12-16 三达膜科技(厦门)有限公司 Preparation method for titania ceramic ultrafiltration membrane

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897995B2 (en) * 2012-06-07 2016-04-06 テイカ株式会社 Alkaline anatase titania sol and method for producing the same
JP2015044738A (en) * 2014-10-14 2015-03-12 テイカ株式会社 Amorphous titania sol and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534158A (en) * 1976-06-30 1978-01-14 Matsushita Electric Works Ltd Converting of motion equipment
JPS5328099A (en) * 1977-05-16 1978-03-15 Kyushu Refractories Method of making anataseetype titanium dioxide fibers
JPS55154317A (en) * 1979-05-18 1980-12-01 Ishihara Sangyo Kaisha Ltd Manufacture of fine titanium dioxide composition powder
JPS5950604A (en) * 1982-09-16 1984-03-23 Seiko Instr & Electronics Ltd Oscillating circuit
JPS61106414A (en) * 1984-07-10 1986-05-24 Ishihara Sangyo Kaisha Ltd Fine powder of electroconductive titanium oxide of low oxidation state and its preparation
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534158A (en) * 1976-06-30 1978-01-14 Matsushita Electric Works Ltd Converting of motion equipment
JPS5328099A (en) * 1977-05-16 1978-03-15 Kyushu Refractories Method of making anataseetype titanium dioxide fibers
JPS55154317A (en) * 1979-05-18 1980-12-01 Ishihara Sangyo Kaisha Ltd Manufacture of fine titanium dioxide composition powder
JPS5950604A (en) * 1982-09-16 1984-03-23 Seiko Instr & Electronics Ltd Oscillating circuit
JPS61106414A (en) * 1984-07-10 1986-05-24 Ishihara Sangyo Kaisha Ltd Fine powder of electroconductive titanium oxide of low oxidation state and its preparation
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same
JPH0587446B2 (en) * 1986-10-29 1993-12-16 Catalysts & Chem Ind Co
WO1996037560A1 (en) * 1995-05-24 1996-11-28 The Procter & Gamble Company Titanium dioxide hydrogel and sunscreen composition containing it
US5700451A (en) * 1995-05-24 1997-12-23 The Procter & Gamble Company Sunscreen composition
US6429169B1 (en) * 1996-03-29 2002-08-06 Saga-Ken Photocatalytic body and method for making same
EP1752217A2 (en) 1998-11-20 2007-02-14 Asahi Kasei Kabushiki Kaisha Sol of a modified photocatalyst
EP1752218A2 (en) 1998-11-20 2007-02-14 Asahi Kasei Kabushiki Kaisha Sol of a modified photocatalyst
WO2000046153A1 (en) * 1999-02-04 2000-08-10 Kawasaki Jukogyo Kabushiki Kaisha Method for producing anatase type titanium dioxide and titanium dioxide coating material
US6770257B1 (en) 1999-02-04 2004-08-03 Kawasaki Jukogyo Kabushiki Kaisha Processes for producing anatase titanium oxide and titanium oxide coating material
JP2001262007A (en) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc Titania coating liquid and its production method, and titania film and its formation method
KR20020004131A (en) * 2000-07-03 2002-01-16 이종국 Preparation Method of Nanotube-shaped TiO2 Powder
KR100381921B1 (en) * 2000-07-21 2003-04-26 김정환 Titania coating solution and Method for manufacturing the same
KR100421243B1 (en) * 2000-12-01 2004-03-12 (주) 에이엔티케미칼 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR100444892B1 (en) * 2001-06-01 2004-08-18 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol containing active metals
KR100413720B1 (en) * 2001-06-04 2003-12-31 (주)아해 Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
KR20030043536A (en) * 2001-11-28 2003-06-02 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol by hydrothermal method
KR20020031359A (en) * 2002-01-28 2002-05-01 김영도 A Titania Moistness Gel And Method Manufacturing The Same
DE102006032755A1 (en) * 2006-07-14 2008-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stable suspensions of crystalline TiO2 particles from hydrothermally treated sol-gel precursor powders
WO2012014654A1 (en) 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Near-infrared reflective film, method for manufacturing near-infrared reflective film, and near-infrared reflector
WO2012014655A1 (en) 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Near-infrared reflective film and near-infrared reflector provided with same
WO2012014644A1 (en) 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Method for manufacturing near infrared reflective film and near infrared reflective body provided with same
WO2012077477A1 (en) 2010-12-09 2012-06-14 コニカミノルタホールディングス株式会社 Near-infrared reflection film and near-infrared reflection body equipped with same
WO2012128109A1 (en) 2011-03-18 2012-09-27 コニカミノルタホールディングス株式会社 Heat-ray reflecting film, method for producing same, and heat-ray reflecting body
WO2012157692A1 (en) 2011-05-17 2012-11-22 コニカミノルタホールディングス株式会社 Infrared shielding film, method for producing infrared shielding film, and infrared shield
WO2012176891A1 (en) 2011-06-23 2012-12-27 コニカミノルタホールディングス株式会社 Optical reflection film and method for producing same
WO2013065679A1 (en) 2011-10-31 2013-05-10 コニカミノルタホールディングス株式会社 Reflective optical film and optical reflector using same
WO2013089066A1 (en) 2011-12-12 2013-06-20 コニカミノルタ株式会社 Optical laminated film, infrared shielding film and infrared shielding body
WO2013111735A1 (en) 2012-01-25 2013-08-01 コニカミノルタアドバンストレイヤー株式会社 Optical film
WO2013129335A1 (en) 2012-02-29 2013-09-06 コニカミノルタ株式会社 Near-infrared reflective film and near-infrared reflective glass using same
WO2014024873A1 (en) 2012-08-06 2014-02-13 コニカミノルタ株式会社 Light-reflective film, and light reflector produced using same
WO2021248896A1 (en) * 2020-06-12 2021-12-16 三达膜科技(厦门)有限公司 Preparation method for titania ceramic ultrafiltration membrane

Also Published As

Publication number Publication date
JPH0262499B2 (en) 1990-12-25

Similar Documents

Publication Publication Date Title
JPS6317221A (en) Crystalline titanium oxide sol and production thereof
JPH0262498B2 (en)
CN101238069B (en) Process for preparing barium titanate
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
JP3980272B2 (en) Perovskite-type titanium-containing composite oxide particles, sol and production method thereof, and thin film
CN101456583B (en) Synthetic method for preparing rutile type nano titanium dioxide sol or powder at low temperature
KR102372694B1 (en) Titanium oxide fine particles and method for producing same
JP2012507457A (en) Method for preparing titanates
JPH05139744A (en) Easily sinterable barium titanate fine particle powder and production therefor
JPH06305729A (en) Fine powder of perovskite type compound and its production
KR101764016B1 (en) Method for preparation of pure anatase type TiO2 powders
Kolen'ko et al. Phase composition of nanocrystalline titania synthesized under hydrothermal conditions from different titanyl compounds
JP7116473B2 (en) Ribbon-shaped nanostructure of vanadium oxide and method for producing the same, method for producing aqueous solution containing flaky nanostructure of vanadium oxide, and method for producing vanadium oxide nanoparticles
Yamabi et al. Fabrication of rutile TiO2 foils with high specific surface area via heterogeneous nucleation in aqueous solutions
JPH05163022A (en) Spherical anatase titanium oxide and its production
JPH0524089B2 (en)
JPH0445453B2 (en)
KR100424069B1 (en) Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JP3415733B2 (en) Method for producing fine particles of calcium titanate
JPH0249251B2 (en)
KR100503858B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids
JP3653112B2 (en) Granular titanium dioxide and method for producing the same
JP4829771B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide
JPH0427168B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term