JPS6317221A - Crystalline titanium oxide sol and production thereof - Google Patents
Crystalline titanium oxide sol and production thereofInfo
- Publication number
- JPS6317221A JPS6317221A JP15767486A JP15767486A JPS6317221A JP S6317221 A JPS6317221 A JP S6317221A JP 15767486 A JP15767486 A JP 15767486A JP 15767486 A JP15767486 A JP 15767486A JP S6317221 A JPS6317221 A JP S6317221A
- Authority
- JP
- Japan
- Prior art keywords
- sol
- titanium oxide
- gel
- water
- oxide sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 52
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000002245 particle Substances 0.000 claims abstract description 26
- 150000002500 ions Chemical class 0.000 claims abstract description 17
- 150000003609 titanium compounds Chemical class 0.000 claims abstract description 9
- 150000003868 ammonium compounds Chemical class 0.000 claims abstract description 8
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims abstract description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 6
- 238000010335 hydrothermal treatment Methods 0.000 abstract description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 abstract description 6
- 239000003513 alkali Substances 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 5
- 239000000908 ammonium hydroxide Substances 0.000 abstract description 3
- 239000003054 catalyst Substances 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 3
- 229920002994 synthetic fiber Polymers 0.000 abstract description 3
- 239000011882 ultra-fine particle Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical compound [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- -1 titanium alkoxide Chemical class 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 102100034228 Grainyhead-like protein 1 homolog Human genes 0.000 description 1
- 101001069933 Homo sapiens Grainyhead-like protein 1 homolog Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- INNSZZHSFSFSGS-UHFFFAOYSA-N acetic acid;titanium Chemical compound [Ti].CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O INNSZZHSFSFSGS-UHFFFAOYSA-N 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000011824 nuclear material Substances 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、アルカリ性イオンで安定化された結晶質アナ
ターゼ型酸化チタンゾル及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crystalline anatase-type titanium oxide sol stabilized with alkaline ions and a method for producing the same.
酸化チタンは、顔料、ペースト改良剤、湿度センサー、
赤外線反射多層膜、触媒、圧電体(チタン酸塩)の原料
、二酸化チタン被覆雲母等の多方面の分野に於て使用さ
れている工業材料である。Titanium oxide is used as pigment, paste improver, humidity sensor,
It is an industrial material used in many fields such as infrared reflective multilayer films, catalysts, piezoelectric materials (titanate) raw materials, and titanium dioxide-coated mica.
(従来の技術)
これらの用途に用いられる酸化チタン原料粉末は、通常
イルメナイトに硫酸を加え、その硫酸塩の加水分解によ
り先ずメタチタン酸を得る。 そしてこれをろ過、乾燥
、焼成する方法(硫酸法)、硫酸の代わりに塩酸を用い
る塩酸法、或いは無水塩化チタンを気相で熱分解させる
方法等により生産されている。(Prior Art) Titanium oxide raw material powder used for these purposes is usually obtained by adding sulfuric acid to ilmenite and hydrolyzing the sulfate to first obtain metatitanic acid. It is produced by a method in which it is filtered, dried, and calcined (sulfuric acid method), a hydrochloric acid method in which hydrochloric acid is used instead of sulfuric acid, or a method in which anhydrous titanium chloride is thermally decomposed in a gas phase.
しかし、これらの方法により得られた酸化チタン粉末は
、一般に粒子径が粗く、また不揃いであり、特に均−超
微細性を要求される分野への適用については問題があっ
た。However, titanium oxide powders obtained by these methods generally have coarse and irregular particle sizes, which poses a problem, especially when applied to fields that require uniform to ultra-fine particles.
一方、無水塩化チタンを気相で熱分解させ製造する方法
が知られているが、この方法は微細な均一粒子が得られ
る反面、粒子の分散性が悪く、水等の溶媒に分散させる
と、経時と共に沈降分離することで問題がある。On the other hand, a method of producing anhydrous titanium chloride by thermal decomposition in the gas phase is known, but although this method yields fine, uniform particles, the particles have poor dispersibility, and when dispersed in a solvent such as water, There is a problem with sedimentation and separation over time.
また、特開昭59−223231号記載の内容によれば
、硫酸法による酸化チタンの製造の際、焼成によりルチ
ル型への転位を促進するため、核物質として添加される
ものと基本的に同一であるものをチタニアゾルと云って
いる。Furthermore, according to the content described in JP-A No. 59-223231, when producing titanium oxide using the sulfuric acid method, it is basically the same material as that added as a nuclear material in order to promote the rearrangement to the rutile type by calcination. It is called titania sol.
しかし、このものはその製造方法から明らかなように、
微粒子酸化チタンの製造中間体として得られるチタニア
ゾルとして、多量の酸を含むことから、本発明の結晶質
酸化チタンゾルとは異なるものである。However, as is clear from the manufacturing method,
The titania sol obtained as an intermediate for producing fine-particle titanium oxide contains a large amount of acid, and is therefore different from the crystalline titanium oxide sol of the present invention.
従って、赤外線反射多層膜、触媒、圧電体用原料、二酸
化チタン被覆雲母等に適用する場合には、これらの二酸
化チタン粉末では、純度、粒度、分散性に於て充分でな
く、問題が残されているのが現状である。Therefore, when applied to infrared reflective multilayer films, catalysts, raw materials for piezoelectric materials, mica coated with titanium dioxide, etc., these titanium dioxide powders do not have sufficient purity, particle size, and dispersibility, and problems remain. The current situation is that
(発明が解決しようとする問題点)
本発明者らはこれらの実情に鑑み、純度、粒度、分散性
Vの緒特性に於て優れる結晶質の酸化チタンゾルを得べ
く、鋭意研究を重ねた結果、新規なアルカリ性イオンで
安定化された結晶質アナターゼ型酸化チタンゾルを見出
し、本発明を完成したものである。(Problems to be Solved by the Invention) In view of these circumstances, the present inventors have conducted extensive research to obtain a crystalline titanium oxide sol that is excellent in purity, particle size, and dispersibility characteristics. discovered a new crystalline anatase-type titanium oxide sol stabilized with alkaline ions, and completed the present invention.
(問題点を解決するための手段)
即ち本発明は、アルカリ性イオンで安定化された結晶質
アナターゼ型酸化チタンゾル及びその製造方法に関し、
水弟−の発明は、粒子径500A以下のアルカリ性イオ
ンで安定化された結晶質アナターゼ型酸化チタンゾルで
あり、また、本第二の発明は、水溶性チタン化合物とア
ルカリ金属の水酸化物又は炭酸塩、及び/又はアンモニ
ウム化合物とを反応させゲルを生成させた後、これを1
00℃以上で水熱処理することからなる粒子径soo!
以下のアルカリ性イオンで安定化された結晶質アナター
ゼ型酸化チタンゾルの製造方法に関する。(Means for solving the problems) That is, the present invention relates to a crystalline anatase-type titanium oxide sol stabilized with alkaline ions and a method for producing the same.
Mizutoshi's invention is a crystalline anatase-type titanium oxide sol stabilized with alkaline ions with a particle size of 500A or less, and the second invention is a water-soluble titanium compound and an alkali metal hydroxide or carbonate sol. After reacting with a salt and/or an ammonium compound to generate a gel, this is
Particle size soo! resulting from hydrothermal treatment at 00℃ or higher!
The present invention relates to the following method for producing a crystalline anatase-type titanium oxide sol stabilized with alkaline ions.
(作 用)
先ず、水弟−の発明である粒子径500ス以下のアルカ
リ性イオンで安定化された結晶質アナターゼ型酸化チタ
ンゾルについて詳細に説明する。(Function) First, the crystalline anatase-type titanium oxide sol stabilized with alkaline ions and having a particle size of 500 s or less, which is an invention by Mizue, will be explained in detail.
従来、酸化チタンのゾルを製造する方法として、無機チ
タン塩水溶液を原料とし、これに含まれる酸根を何等か
の方法により除去するか、或いはアし酸チタンを水に加
え、加水分解を行うことにより得る方法が提案されてい
る。 また別に、チタンアルコキシドを各種の手段で加
水分解し、ゾルを得る方法も提案されている。Conventionally, the method for manufacturing titanium oxide sol has been to use an inorganic titanium salt aqueous solution as a raw material and remove the acid groups contained therein by some method, or add titanium acetate to water and perform hydrolysis. A method has been proposed. Separately, methods have also been proposed in which titanium alkoxide is hydrolyzed by various means to obtain a sol.
しかし、これらの方法により得られるゾルは何れもその
結晶形が無定形か或いはチタンの水酸化物であり、アナ
ターゼ型の結晶質酸化チタンゾルではない。However, the sols obtained by these methods are either amorphous or titanium hydroxide, and are not anatase-type crystalline titanium oxide sols.
これに対し、本発明のアルカリ性イオンで安定化された
結晶質酸化チタンゾルはアナターゼ型の結晶形をもち、
且つこれが500に以下という極めて微細なコロイド粒
子を水溶液状態で供与し、安定なゾル溶液を形成するも
のである。In contrast, the crystalline titanium oxide sol stabilized with alkaline ions of the present invention has an anatase crystal form,
Moreover, this provides very fine colloidal particles of less than 500 mm in size in an aqueous solution state to form a stable sol solution.
非晶質からなる従来のゾルは、化繊、合繊等の艶消しや
、製紙のコーティングに用いた場合には、基材の耐熱性
が低いため、非晶質ゾルを結晶化させることができなか
った。 しかし本発明のアルカリ性イオンで安定化され
た結晶質酸化チタンゾルは、このような基材に結晶質の
ものを乾燥程度の低温処理でコーティングできることよ
り、耐薬品性、耐水性が非晶質のものに比べ著しく向上
し、広範な条件下での使用が可能となるものである。Conventional amorphous sols cannot be crystallized when used for matting synthetic fibers, synthetic fibers, etc., or for coating paper manufacturing, due to the low heat resistance of the base material. Ta. However, the crystalline titanium oxide sol stabilized with alkaline ions of the present invention can be coated with a crystalline material on such a base material by low-temperature treatment such as drying. This is a significant improvement over the previous model, and it can be used under a wide range of conditions.
このようなゾルは従来全く知られていなかったものであ
り、酸化チタン系複合材料の適用分野に於て、新たな用
途を生み出すものである。Such a sol has not been previously known and will create new uses in the field of application of titanium oxide composite materials.
その特徴を挙げれば次の通りである。Its characteristics are as follows.
第一に、本発明のアルカリ性イオンで安定化された結晶
質アナターゼ型ゾルは、無、定形ゾルに比べて高濃度な
ゾルで得ることができ、酸化チタン−シリカの多層赤外
線反射膜を作成するような場合、−回のコーティングで
所望の膜厚や反射性能を得ることができる。First, the crystalline anatase-type sol stabilized with alkaline ions of the present invention can be obtained at a higher concentration than a non-formed sol, and can be used to create a multilayer infrared reflective film of titanium oxide-silica. In such cases, the desired film thickness and reflection performance can be obtained by coating twice.
第二に、本発明のアルカリ性イオンで安定化された結晶
質アナターゼ型酸化チタンゾルは、ゾルの安定性に優れ
ているので、従来の二酸化チタン粉末ではコーティング
等の作業の際に、均一な膜形成が困難であったのに比べ
、本発明品では長期間の保存後もゾルが均一に分散し、
均一なコーテイング膜が得られる。Second, the crystalline anatase-type titanium oxide sol stabilized with alkaline ions of the present invention has excellent sol stability, so conventional titanium dioxide powder can form a uniform film during coating and other operations. In contrast, with the product of the present invention, the sol is evenly dispersed even after long-term storage.
A uniform coating film can be obtained.
しかも5ooX以下という超微細粒子であるから、酸化
チタンにスズやバナジウムを含む湿度又はガスセンサー
に適用した場合には、比表面積が大きい故に、著しく高
感度のセンサーが得られる。Moreover, since they are ultrafine particles of 5ooX or less, when applied to a humidity or gas sensor containing tin or vanadium in titanium oxide, a sensor with extremely high sensitivity can be obtained due to the large specific surface area.
更に、無定形ゾルに比べて高濃度での被覆が可能である
なめ、硬牢なものが得られる。Furthermore, since it is possible to coat at a higher concentration than an amorphous sol, a tough product can be obtained.
これらのことは、酸化チタン系セラミックのコーテイン
グ膜の製造に於て非常に有益である。These facts are very useful in the production of titanium oxide ceramic coating films.
尚、コロイド粒子径の測定は、電子顕微鏡観察により行
ったが、本発明のゾルは、実質上全てのコロイド粒子が
500X以下の粒子径であった。The colloidal particle size was measured by electron microscopic observation, and in the sol of the present invention, substantially all colloidal particles had a particle size of 500X or less.
次に、本第二の発明であるアルカリ性イオンで安定化さ
れた結晶質アナターゼ型酸化チタンゾルの製造方法につ
いて詳述する。Next, a method for producing a crystalline anatase-type titanium oxide sol stabilized with alkaline ions, which is the second invention, will be described in detail.
本第二の発明は、水溶性チタン化合物とアルカリ金属の
水酸化物又は炭酸塩、及び/又はアンモニウム化合物と
を反応させゲルを生成させた後、これを1008C以上
で水熱処理することからなる粒子径500Å以下のアル
カリ性イオンで安定化された結晶質アナターゼ型酸化チ
タンゾルの製造方法に関する。 本発明に用いる水溶性
チタン化合物としては、四塩化チタン、硝酸チタン、硫
酸チタン等を例示でき、またアルカリ金属の水酸化物と
して、水酸化ナトリウム、水酸化カリウム、水酸化リチ
ウム、アルカリ金属の炭酸塩としては、炭酸ナトリウム
、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム等
を例示できる。The second invention provides particles obtained by reacting a water-soluble titanium compound with an alkali metal hydroxide or carbonate, and/or an ammonium compound to form a gel, and then hydrothermally treating the gel at a temperature of 1008C or higher. The present invention relates to a method for producing a crystalline anatase-type titanium oxide sol stabilized with alkaline ions having a diameter of 500 Å or less. Examples of water-soluble titanium compounds used in the present invention include titanium tetrachloride, titanium nitrate, and titanium sulfate. Examples of alkali metal hydroxides include sodium hydroxide, potassium hydroxide, lithium hydroxide, and alkali metal carbonate. Examples of the salt include sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, and the like.
更に、アンモニウム化合物としては、重炭酸アンモニウ
ム、炭酸アンモニウム、アンモニア水等を例示すること
ができるが、これらに限定されるものではない。Further, examples of ammonium compounds include ammonium bicarbonate, ammonium carbonate, aqueous ammonia, etc., but are not limited thereto.
本発明では、先ず前記の水溶性チタン化合物とアルカリ
金属の水酸化物又は炭酸塩、及び/又はアンモニウム化
合物とを反応させ、ゲルを生成させる。In the present invention, first, the water-soluble titanium compound and an alkali metal hydroxide or carbonate, and/or an ammonium compound are reacted to form a gel.
このゲルの製造条件に関して云えば、両者の反応の際の
温度は、大略10〜90°Cで行う。Regarding the conditions for producing this gel, the temperature during the reaction between the two is approximately 10 to 90°C.
また添加割合については、アルカリ金属の水酸化物又は
炭酸塩、及び/又はアンモニウム化合物(A)と、水溶
性チタン化合物に由来する酸根(B)の当量比A/Bが
1.0〜1.3の範囲となるように行う。Regarding the addition ratio, the equivalent ratio A/B of the alkali metal hydroxide or carbonate and/or ammonium compound (A) and the acid radical derived from the water-soluble titanium compound (B) is 1.0 to 1. Do this so that it falls within the range of 3.
しかしこの範囲を逸脱しても、後述する生成ゲルを洗浄
する工程で、上限を越えた場合、希薄な酸溶液で洗浄し
、また下限以下では@薄なアルカリ性溶液で洗浄するこ
とにより、所望のゾルを得ることができ、特段に限定す
るものではないが、経済的理由から上記範囲が望ましい
、 また、添加順序に関しても特段限定はされず、水溶
性チタン化合物またはアンモニウム化合物のいずれか一
方を先に、あるいは両者を同時に添加する方法により行
うことができる。However, even if it deviates from this range, in the step of washing the produced gel described below, if the upper limit is exceeded, washing with a dilute acid solution is performed, and if it is below the lower limit, the desired result is washed with a dilute alkaline solution. Although not particularly limited, the above range is desirable for economic reasons. There is also no particular limitation on the order of addition, with either the water-soluble titanium compound or the ammonium compound added first. This can be carried out by adding either one or both at the same time.
このようにして製造したゲルは、次いでろ過、洗浄を行
い、不純物を除去する。The gel thus produced is then filtered and washed to remove impurities.
この残存不純物は、酸化チタンゾルの製造上、また用途
上、少ないほうが好ましく、例えば上述のろ過洗浄作業
を全く行なわない場合には、得られるゾルは不安定なも
のとなり、以て本発明のゾルを得ることができない。It is preferable that the amount of residual impurities be as small as possible in terms of the production and use of the titanium oxide sol. For example, if the above-mentioned filtration and cleaning operation is not performed at all, the resulting sol will be unstable, and the sol of the present invention will not be able to be used. can't get it.
ろ過、洗浄手段に関しては特に限定されず、通常用いら
れているフィルタープレスや遠心ろ過のような注水ろ過
、リパルプ−遠心分離法等の任意の手段を用いることが
できる。The filtration and washing means are not particularly limited, and any commonly used means such as a filter press, water filtration such as centrifugal filtration, repulp-centrifugation method, etc. can be used.
ろ過、洗浄後のゲルに次いで水溶性アルカリを添加し、
水熱処理に供する。After filtration and washing, a water-soluble alkali is added to the gel,
Subject to hydrothermal treatment.
添加する水溶性アルカリの種類としては、水酸化アンモ
ニウム、水酸化ナトリウム、水酸化カリウム、水酸化リ
チウム、メチルアミン、トリメチルアミン、エチレンジ
アミン、エタノールアミン等を例示できる。Examples of the water-soluble alkali to be added include ammonium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydroxide, methylamine, trimethylamine, ethylenediamine, and ethanolamine.
また水溶性アルカリの添加量は、概ねTi021モルに
対して0.O1〜0.60モルの範囲で、且つゾル液の
PHが8〜12の範囲、より好ましくはPH9〜11.
5の範囲となるように行う。Further, the amount of water-soluble alkali added is approximately 0.00000000000000000000000000000000000000000000000 O is in the range of 1 to 0.60 mol, and the pH of the sol is in the range of 8 to 12, more preferably PH 9 to 11.
Do this so that it falls within the range of 5.
この場合、添加量がこの範囲を逸脱すると、本発明の分
散性に優れたゾルを得ることができない。In this case, if the amount added exceeds this range, the sol with excellent dispersibility of the present invention cannot be obtained.
水熱処理条件に関しては、温度は10000以上で行う
が、一般に処理温度が高く、また処理時間が長くなるほ
ど、結晶形の発達が良好であり、粒径の大きなコロイド
粒子が得られる。Regarding the hydrothermal treatment conditions, the temperature is 10,000 or higher, and generally, the higher the treatment temperature and the longer the treatment time, the better the development of crystal form and the larger the particle size can be obtained.
また、1000Cを下回る温度での処理は、長時間行っ
てもゲルが結晶化せず、たとえ一部が結晶化してもその
結晶化度は著しく低く、無定形の性質が残り、本発明の
目的を達成することができない。In addition, if the treatment is carried out at a temperature below 1000C, the gel will not crystallize even if it is carried out for a long time, and even if a part of it crystallizes, its crystallinity will be extremely low and its amorphous nature will remain, which is the object of the present invention. cannot be achieved.
蓋し、本発明の結晶質酸化チタンゾルの各用途に応じて
処理条件を選択し、所望する粒子径のゾルを得ることが
でき、その制御が水熱処理条件の選択によって可能であ
る点が本発明の大きな特徴である。An advantage of the present invention is that it is possible to obtain a sol with a desired particle size by selecting treatment conditions according to each use of the crystalline titanium oxide sol of the present invention, and that this can be controlled by selecting the hydrothermal treatment conditions. This is a major feature of
(実施54)
以下に本発明の実施例を掲げ、更に説明を行うが、本発
明はこれらに限定されるものではない。(Example 54) Examples of the present invention will be listed below to further explain the present invention, but the present invention is not limited thereto.
また、%は特にことわらない限り、全て重量%を示す。Moreover, unless otherwise specified, all percentages indicate weight percent.
実施例1
四塩化チタン水溶9i(Ti022%)2000gにア
ンモニア水(NH32%)2212g (NH3/CI
当量比1.3)を攪はん下で)ケ加し、ゲルを生成させ
た。Example 1 2000 g of titanium tetrachloride aqueous solution 9i (Ti022%) and 2212 g of ammonia water (NH32%) (NH3/CI
An equivalent ratio of 1.3) was added under stirring to form a gel.
これをろ液中に塩素イオンが認められなくなる迄ろ過水
洗し、Ti0810%、NH30,3%のゲルを得た。This was filtered and washed with water until no chloride ions were observed in the filtrate, to obtain a gel containing 10% Ti08 and 30.3% NH.
このゲル400gに、NH3/τ102モル比0.2と
なるように水酸化アンモニウム(NH34,5%)11
.2gを添加し、これをオートクレーブに入れ、160
°Cで4時間の水熱処理を行ない、本発明のゾルを得た
。尚、このゾル液のPHは10.8であった。Add 11 ammonium hydroxide (NH34, 5%) to 400 g of this gel so that the NH3/τ102 molar ratio is 0.2.
.. Add 2g and put this in an autoclave, 160
Hydrothermal treatment was carried out at °C for 4 hours to obtain the sol of the present invention. Note that the pH of this sol solution was 10.8.
またこのゾルをTi021.0%に希釈し、静置したと
ころ、1力月後の分散安定率は99%であった。 更に
、電子顕微鏡観察によるコロイド粒子径は105Aであ
り、X線回折の結果はアナターゼ型結晶質であった。Further, when this sol was diluted to 1.0% Ti0 and left to stand, the dispersion stability rate after 1 month was 99%. Furthermore, the colloid particle diameter was 105A when observed under an electron microscope, and the result of X-ray diffraction showed that it was anatase type crystalline.
尚、分散安定率は1力月後にゾル液の上層部からサンプ
リングした液の1102濃度を測定し、次式により算出
した。The dispersion stability rate was calculated by measuring the 1102 concentration of a liquid sampled from the upper layer of the sol liquid after one month, and using the following formula.
実施例2〜4
四塩化チタン水溶液(11083%)10000gと重
炭酸ナトリウム水溶液(Na 2%)18135g(H
a/cl当量比1.05)を、水5000gを予め添加
した反応槽に攪はんを行いながら同時に添加した。Examples 2 to 4 10,000 g of titanium tetrachloride aqueous solution (11,083%) and 18,135 g of sodium bicarbonate aqueous solution (Na 2%) (H
a/cl equivalent ratio of 1.05) was simultaneously added to a reaction tank to which 5000 g of water had been previously added while stirring.
生成したゲルを水洗、ろ過し、Tide 10.8%の
ゲル2758gを得た。 このゲルを水で希釈し、τ1
0゜3%としたゲル400gに水酸化ナトリウムをHa
/TiO□モル比0.08となるように添加し、これを
オートクレーブに入れ、第1表に示したような処理条件
で処理を行い、本発明のゾルを得た。尚、このゾル液の
PHは11.3であった。The generated gel was washed with water and filtered to obtain 2758 g of gel containing 10.8% Tide. This gel was diluted with water and τ1
Add sodium hydroxide to 400g of gel with a concentration of 0.3%.
/TiO□ molar ratio of 0.08, this was placed in an autoclave, and treated under the treatment conditions shown in Table 1 to obtain the sol of the present invention. Note that the pH of this sol solution was 11.3.
これらのX線回折結果を第1表に示し、また実施例2の
X線回折図を第1図に示した。These X-ray diffraction results are shown in Table 1, and the X-ray diffraction diagram of Example 2 is shown in FIG.
更に、X線回折の結果から5cherrerの式%式%
()
β;半価巾(ラン9アン)
cosθ;2θ=25.3”とした
により粒子径を算出した。Furthermore, from the results of X-ray diffraction, 5cherrer's formula % formula %
The particle diameter was calculated using () β: half width (run 9 am) cos θ; 2θ = 25.3”.
粒子径は、電子al@鏡観察結果からの粒子径と5ch
errerの式からの粒子径がほぼ一致していた。The particle size is the particle size from the electronic al@mirror observation result and 5ch
The particle diameters from the error equation were almost the same.
また比較例として、上記のゲルを同量三ツロフラスコに
入れ、マントルヒーターで第1表記載の条件で処理した
。 結果を第1表に示した。Further, as a comparative example, the same amount of the above gel was placed in a Mitsuro flask and treated with a mantle heater under the conditions listed in Table 1. The results are shown in Table 1.
第1表
実施例5
炭酸ナトリウム水溶液(Na1%) 10000gに硝
酸チタン水溶液(11021%)8515g (Na/
NO3当量比1.02)を、攪はんを行いながら添加し
た。 得られたゲルを充分に水洗し、硝酸がウェットケ
ーキ中に残留していないことを確認後、これを水で希釈
し、Ti028%のスラリーを得た。Table 1 Example 5 10000g of sodium carbonate aqueous solution (Na1%) and 8515g of titanium nitrate aqueous solution (11021%) (Na/
NO3 equivalent ratio 1.02) was added with stirring. After thoroughly washing the obtained gel with water and confirming that no nitric acid remained in the wet cake, it was diluted with water to obtain a slurry containing 28% Ti.
次いで、このスラリー400gにNH8/TIQeモル
比0.2となるように25%のアンモニア水5.4gを
添加し、200°Cで4時間の水熱処理を行ない、本発
明のゾルを得た。尚、このゾル液のPHは10.1であ
った。Next, 5.4 g of 25% ammonia water was added to 400 g of this slurry so that the NH8/TIQe molar ratio was 0.2, and hydrothermal treatment was performed at 200° C. for 4 hours to obtain the sol of the present invention. Note that the pH of this sol solution was 10.1.
この本発明のゾルは、X線回折の結果アナターゼ型結晶
形を有し、粒子径は1aoXであり、また分散安定率は
92%であった。As a result of X-ray diffraction, the sol of the present invention had an anatase crystal form, a particle size of 1aoX, and a dispersion stability rate of 92%.
実施例6
実施例5と同様に、炭酸ナトリウム水溶液と硝酸チタン
水溶液によりゲルを得た。このゲルスラリー(Ti02
8%)の400gに、NH2/τi0.モル比0.02
となるようにモノエタノールアミン0.49gを添加し
、200’Cで4時間の水熱処理を行なうことにより、
ゾル液PHが11.5である本発明のゾルを得た。Example 6 In the same manner as in Example 5, a gel was obtained using an aqueous sodium carbonate solution and an aqueous titanium nitrate solution. This gel slurry (Ti02
8%) to 400 g of NH2/τi0. Molar ratio 0.02
By adding 0.49 g of monoethanolamine and performing hydrothermal treatment at 200'C for 4 hours,
A sol of the present invention having a sol liquid pH of 11.5 was obtained.
この本発明のゾルは、X線回折の結果アナターゼ型結晶
形を有し、粒子径は180′Aであり、また分散安定率
は89%であった。As a result of X-ray diffraction, the sol of the present invention had an anatase crystal form, a particle size of 180'A, and a dispersion stability rate of 89%.
実施例7
硝酸チタン水溶液(TiO33%)2000gとアンモ
ニア水(NH33%)221;’g (NH3/NO3
当量比1.3)を攪はん下で添加し、ゲルを生成させた
。Example 7 Titanium nitrate aqueous solution (TiO33%) 2000g and ammonia water (NH33%) 221;'g (NH3/NO3
(equivalent ratio 1.3) was added under stirring to form a gel.
これをろ液中に硝酸イオンが認められなくなる迄ろ過水
洗し、110210.6%、NH30,29%のゲルを
得た。This was filtered and washed with water until no nitrate ions were observed in the filtrate, yielding a gel containing 10.6% of 1102 and 29% of NH3.
コノゲル400gに、(NH3+Na)/Ti0I!−
!ニル比0.3となるように炭酸水素ナトリウム7.6
gを添加し、これをオートクレーブに入れ、250°C
で2時間の水熱処理を行ない、ゾル液P)Iが10.3
の本発明のゾルを得た。Add (NH3+Na)/Ti0I to 400g of Conogel! −
! Sodium hydrogen carbonate is 7.6 to give a nil ratio of 0.3.
g and put it in an autoclave at 250°C.
After 2 hours of hydrothermal treatment, the sol liquid P)I was 10.3
A sol of the present invention was obtained.
この本発明のゾルは、X線回折の結果アナターゼ型結晶
形を有し、粒子径は180大であり、また分散安定率は
96%であった。As a result of X-ray diffraction, this sol of the present invention had an anatase type crystal form, a particle size of 180, and a dispersion stability rate of 96%.
また比較のために、上記と同様にゲルを得た後、ろ過水
洗を全く行なわずにオートクレーブ処理を行なった。そ
の結果、液PHは9.4であったが、このものはゾル状
態を示さなかった。For comparison, a gel was obtained in the same manner as above and then autoclaved without any filtration and water washing. As a result, the liquid pH was 9.4, but this product did not exhibit a sol state.
第1図は、実施例2で得た本発明アルカリ性イオンで安
定化された結晶質アナターゼ型酸化チタンゾルの60℃
乾燥物のX線回折図である。Figure 1 shows the crystalline anatase type titanium oxide sol stabilized with alkaline ions of the present invention obtained in Example 2 at 60°C.
It is an X-ray diffraction diagram of a dried product.
Claims (2)
された結晶質アナターゼ型酸化チタンゾル。(1) Crystalline anatase-type titanium oxide sol stabilized with alkaline ions with a particle size of 500 Å or less.
は炭酸塩、及び/又はアンモニウム化合物とを反応させ
ゲルを生成させた後、これを100℃以上で水熱処理す
ることからなる粒子径500Å以下のアルカリ性イオン
で安定化された結晶質アナターゼ型酸化チタンゾルの製
造方法。(2) A particle size of 500 Å or less is obtained by reacting a water-soluble titanium compound with an alkali metal hydroxide or carbonate, and/or an ammonium compound to form a gel, and then hydrothermally treating the gel at 100°C or higher. A method for producing a crystalline anatase-type titanium oxide sol stabilized with alkaline ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15767486A JPS6317221A (en) | 1986-07-03 | 1986-07-03 | Crystalline titanium oxide sol and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15767486A JPS6317221A (en) | 1986-07-03 | 1986-07-03 | Crystalline titanium oxide sol and production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6317221A true JPS6317221A (en) | 1988-01-25 |
JPH0262499B2 JPH0262499B2 (en) | 1990-12-25 |
Family
ID=15654903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15767486A Granted JPS6317221A (en) | 1986-07-03 | 1986-07-03 | Crystalline titanium oxide sol and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6317221A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229139A (en) * | 1986-10-29 | 1988-09-26 | Catalysts & Chem Ind Co Ltd | Titanium oxide sol and preparation of same |
WO1996037560A1 (en) * | 1995-05-24 | 1996-11-28 | The Procter & Gamble Company | Titanium dioxide hydrogel and sunscreen composition containing it |
WO2000046153A1 (en) * | 1999-02-04 | 2000-08-10 | Kawasaki Jukogyo Kabushiki Kaisha | Method for producing anatase type titanium dioxide and titanium dioxide coating material |
JP2001262007A (en) * | 2000-03-17 | 2001-09-26 | Mitsubishi Gas Chem Co Inc | Titania coating liquid and its production method, and titania film and its formation method |
KR20020004131A (en) * | 2000-07-03 | 2002-01-16 | 이종국 | Preparation Method of Nanotube-shaped TiO2 Powder |
KR20020031359A (en) * | 2002-01-28 | 2002-05-01 | 김영도 | A Titania Moistness Gel And Method Manufacturing The Same |
US6429169B1 (en) * | 1996-03-29 | 2002-08-06 | Saga-Ken | Photocatalytic body and method for making same |
KR100381921B1 (en) * | 2000-07-21 | 2003-04-26 | 김정환 | Titania coating solution and Method for manufacturing the same |
KR20030043536A (en) * | 2001-11-28 | 2003-06-02 | 티오켐 주식회사 | Synthesis of highly active photocatalytic TiO2-sol by hydrothermal method |
KR100413720B1 (en) * | 2001-06-04 | 2003-12-31 | (주)아해 | Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method |
KR100421243B1 (en) * | 2000-12-01 | 2004-03-12 | (주) 에이엔티케미칼 | The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment |
KR100444892B1 (en) * | 2001-06-01 | 2004-08-18 | 티오켐 주식회사 | Synthesis of highly active photocatalytic TiO2-sol containing active metals |
EP1752218A2 (en) | 1998-11-20 | 2007-02-14 | Asahi Kasei Kabushiki Kaisha | Sol of a modified photocatalyst |
DE102006032755A1 (en) * | 2006-07-14 | 2008-01-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Stable suspensions of crystalline TiO2 particles from hydrothermally treated sol-gel precursor powders |
WO2012014654A1 (en) | 2010-07-24 | 2012-02-02 | コニカミノルタホールディングス株式会社 | Near-infrared reflective film, method for manufacturing near-infrared reflective film, and near-infrared reflector |
WO2012014655A1 (en) | 2010-07-24 | 2012-02-02 | コニカミノルタホールディングス株式会社 | Near-infrared reflective film and near-infrared reflector provided with same |
WO2012014644A1 (en) | 2010-07-24 | 2012-02-02 | コニカミノルタホールディングス株式会社 | Method for manufacturing near infrared reflective film and near infrared reflective body provided with same |
WO2012077477A1 (en) | 2010-12-09 | 2012-06-14 | コニカミノルタホールディングス株式会社 | Near-infrared reflection film and near-infrared reflection body equipped with same |
WO2012128109A1 (en) | 2011-03-18 | 2012-09-27 | コニカミノルタホールディングス株式会社 | Heat-ray reflecting film, method for producing same, and heat-ray reflecting body |
WO2012157692A1 (en) | 2011-05-17 | 2012-11-22 | コニカミノルタホールディングス株式会社 | Infrared shielding film, method for producing infrared shielding film, and infrared shield |
WO2012176891A1 (en) | 2011-06-23 | 2012-12-27 | コニカミノルタホールディングス株式会社 | Optical reflection film and method for producing same |
WO2013065679A1 (en) | 2011-10-31 | 2013-05-10 | コニカミノルタホールディングス株式会社 | Reflective optical film and optical reflector using same |
WO2013089066A1 (en) | 2011-12-12 | 2013-06-20 | コニカミノルタ株式会社 | Optical laminated film, infrared shielding film and infrared shielding body |
WO2013111735A1 (en) | 2012-01-25 | 2013-08-01 | コニカミノルタアドバンストレイヤー株式会社 | Optical film |
WO2013129335A1 (en) | 2012-02-29 | 2013-09-06 | コニカミノルタ株式会社 | Near-infrared reflective film and near-infrared reflective glass using same |
WO2014024873A1 (en) | 2012-08-06 | 2014-02-13 | コニカミノルタ株式会社 | Light-reflective film, and light reflector produced using same |
WO2021248896A1 (en) * | 2020-06-12 | 2021-12-16 | 三达膜科技(厦门)有限公司 | Preparation method for titania ceramic ultrafiltration membrane |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5897995B2 (en) * | 2012-06-07 | 2016-04-06 | テイカ株式会社 | Alkaline anatase titania sol and method for producing the same |
JP2015044738A (en) * | 2014-10-14 | 2015-03-12 | テイカ株式会社 | Amorphous titania sol and method for producing the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS534158A (en) * | 1976-06-30 | 1978-01-14 | Matsushita Electric Works Ltd | Converting of motion equipment |
JPS5328099A (en) * | 1977-05-16 | 1978-03-15 | Kyushu Refractories | Method of making anataseetype titanium dioxide fibers |
JPS55154317A (en) * | 1979-05-18 | 1980-12-01 | Ishihara Sangyo Kaisha Ltd | Manufacture of fine titanium dioxide composition powder |
JPS5950604A (en) * | 1982-09-16 | 1984-03-23 | Seiko Instr & Electronics Ltd | Oscillating circuit |
JPS61106414A (en) * | 1984-07-10 | 1986-05-24 | Ishihara Sangyo Kaisha Ltd | Fine powder of electroconductive titanium oxide of low oxidation state and its preparation |
JPS62207718A (en) * | 1986-03-06 | 1987-09-12 | Taki Chem Co Ltd | Sol of crystalline titanium oxide and its preparation |
-
1986
- 1986-07-03 JP JP15767486A patent/JPS6317221A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS534158A (en) * | 1976-06-30 | 1978-01-14 | Matsushita Electric Works Ltd | Converting of motion equipment |
JPS5328099A (en) * | 1977-05-16 | 1978-03-15 | Kyushu Refractories | Method of making anataseetype titanium dioxide fibers |
JPS55154317A (en) * | 1979-05-18 | 1980-12-01 | Ishihara Sangyo Kaisha Ltd | Manufacture of fine titanium dioxide composition powder |
JPS5950604A (en) * | 1982-09-16 | 1984-03-23 | Seiko Instr & Electronics Ltd | Oscillating circuit |
JPS61106414A (en) * | 1984-07-10 | 1986-05-24 | Ishihara Sangyo Kaisha Ltd | Fine powder of electroconductive titanium oxide of low oxidation state and its preparation |
JPS62207718A (en) * | 1986-03-06 | 1987-09-12 | Taki Chem Co Ltd | Sol of crystalline titanium oxide and its preparation |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229139A (en) * | 1986-10-29 | 1988-09-26 | Catalysts & Chem Ind Co Ltd | Titanium oxide sol and preparation of same |
JPH0587446B2 (en) * | 1986-10-29 | 1993-12-16 | Catalysts & Chem Ind Co | |
WO1996037560A1 (en) * | 1995-05-24 | 1996-11-28 | The Procter & Gamble Company | Titanium dioxide hydrogel and sunscreen composition containing it |
US5700451A (en) * | 1995-05-24 | 1997-12-23 | The Procter & Gamble Company | Sunscreen composition |
US6429169B1 (en) * | 1996-03-29 | 2002-08-06 | Saga-Ken | Photocatalytic body and method for making same |
EP1752217A2 (en) | 1998-11-20 | 2007-02-14 | Asahi Kasei Kabushiki Kaisha | Sol of a modified photocatalyst |
EP1752218A2 (en) | 1998-11-20 | 2007-02-14 | Asahi Kasei Kabushiki Kaisha | Sol of a modified photocatalyst |
WO2000046153A1 (en) * | 1999-02-04 | 2000-08-10 | Kawasaki Jukogyo Kabushiki Kaisha | Method for producing anatase type titanium dioxide and titanium dioxide coating material |
US6770257B1 (en) | 1999-02-04 | 2004-08-03 | Kawasaki Jukogyo Kabushiki Kaisha | Processes for producing anatase titanium oxide and titanium oxide coating material |
JP2001262007A (en) * | 2000-03-17 | 2001-09-26 | Mitsubishi Gas Chem Co Inc | Titania coating liquid and its production method, and titania film and its formation method |
KR20020004131A (en) * | 2000-07-03 | 2002-01-16 | 이종국 | Preparation Method of Nanotube-shaped TiO2 Powder |
KR100381921B1 (en) * | 2000-07-21 | 2003-04-26 | 김정환 | Titania coating solution and Method for manufacturing the same |
KR100421243B1 (en) * | 2000-12-01 | 2004-03-12 | (주) 에이엔티케미칼 | The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment |
KR100444892B1 (en) * | 2001-06-01 | 2004-08-18 | 티오켐 주식회사 | Synthesis of highly active photocatalytic TiO2-sol containing active metals |
KR100413720B1 (en) * | 2001-06-04 | 2003-12-31 | (주)아해 | Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method |
KR20030043536A (en) * | 2001-11-28 | 2003-06-02 | 티오켐 주식회사 | Synthesis of highly active photocatalytic TiO2-sol by hydrothermal method |
KR20020031359A (en) * | 2002-01-28 | 2002-05-01 | 김영도 | A Titania Moistness Gel And Method Manufacturing The Same |
DE102006032755A1 (en) * | 2006-07-14 | 2008-01-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Stable suspensions of crystalline TiO2 particles from hydrothermally treated sol-gel precursor powders |
WO2012014654A1 (en) | 2010-07-24 | 2012-02-02 | コニカミノルタホールディングス株式会社 | Near-infrared reflective film, method for manufacturing near-infrared reflective film, and near-infrared reflector |
WO2012014655A1 (en) | 2010-07-24 | 2012-02-02 | コニカミノルタホールディングス株式会社 | Near-infrared reflective film and near-infrared reflector provided with same |
WO2012014644A1 (en) | 2010-07-24 | 2012-02-02 | コニカミノルタホールディングス株式会社 | Method for manufacturing near infrared reflective film and near infrared reflective body provided with same |
WO2012077477A1 (en) | 2010-12-09 | 2012-06-14 | コニカミノルタホールディングス株式会社 | Near-infrared reflection film and near-infrared reflection body equipped with same |
WO2012128109A1 (en) | 2011-03-18 | 2012-09-27 | コニカミノルタホールディングス株式会社 | Heat-ray reflecting film, method for producing same, and heat-ray reflecting body |
WO2012157692A1 (en) | 2011-05-17 | 2012-11-22 | コニカミノルタホールディングス株式会社 | Infrared shielding film, method for producing infrared shielding film, and infrared shield |
WO2012176891A1 (en) | 2011-06-23 | 2012-12-27 | コニカミノルタホールディングス株式会社 | Optical reflection film and method for producing same |
WO2013065679A1 (en) | 2011-10-31 | 2013-05-10 | コニカミノルタホールディングス株式会社 | Reflective optical film and optical reflector using same |
WO2013089066A1 (en) | 2011-12-12 | 2013-06-20 | コニカミノルタ株式会社 | Optical laminated film, infrared shielding film and infrared shielding body |
WO2013111735A1 (en) | 2012-01-25 | 2013-08-01 | コニカミノルタアドバンストレイヤー株式会社 | Optical film |
WO2013129335A1 (en) | 2012-02-29 | 2013-09-06 | コニカミノルタ株式会社 | Near-infrared reflective film and near-infrared reflective glass using same |
WO2014024873A1 (en) | 2012-08-06 | 2014-02-13 | コニカミノルタ株式会社 | Light-reflective film, and light reflector produced using same |
WO2021248896A1 (en) * | 2020-06-12 | 2021-12-16 | 三达膜科技(厦门)有限公司 | Preparation method for titania ceramic ultrafiltration membrane |
Also Published As
Publication number | Publication date |
---|---|
JPH0262499B2 (en) | 1990-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6317221A (en) | Crystalline titanium oxide sol and production thereof | |
JPH0262498B2 (en) | ||
CN101238069B (en) | Process for preparing barium titanate | |
JP4093744B2 (en) | Method for producing tubular titanium oxide particles and tubular titanium oxide particles | |
JP3980272B2 (en) | Perovskite-type titanium-containing composite oxide particles, sol and production method thereof, and thin film | |
CN101456583B (en) | Synthetic method for preparing rutile type nano titanium dioxide sol or powder at low temperature | |
KR102372694B1 (en) | Titanium oxide fine particles and method for producing same | |
JP2012507457A (en) | Method for preparing titanates | |
JPH05139744A (en) | Easily sinterable barium titanate fine particle powder and production therefor | |
JPH06305729A (en) | Fine powder of perovskite type compound and its production | |
KR101764016B1 (en) | Method for preparation of pure anatase type TiO2 powders | |
Kolen'ko et al. | Phase composition of nanocrystalline titania synthesized under hydrothermal conditions from different titanyl compounds | |
JP7116473B2 (en) | Ribbon-shaped nanostructure of vanadium oxide and method for producing the same, method for producing aqueous solution containing flaky nanostructure of vanadium oxide, and method for producing vanadium oxide nanoparticles | |
Yamabi et al. | Fabrication of rutile TiO2 foils with high specific surface area via heterogeneous nucleation in aqueous solutions | |
JPH05163022A (en) | Spherical anatase titanium oxide and its production | |
JPH0524089B2 (en) | ||
JPH0445453B2 (en) | ||
KR100424069B1 (en) | Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method | |
KR100395218B1 (en) | METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS | |
JP3415733B2 (en) | Method for producing fine particles of calcium titanate | |
JPH0249251B2 (en) | ||
KR100503858B1 (en) | Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids | |
JP3653112B2 (en) | Granular titanium dioxide and method for producing the same | |
JP4829771B2 (en) | Spherical peroxotitanium hydrate and method for producing spherical titanium oxide | |
JPH0427168B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |