JPH0262498B2 - - Google Patents

Info

Publication number
JPH0262498B2
JPH0262498B2 JP61050170A JP5017086A JPH0262498B2 JP H0262498 B2 JPH0262498 B2 JP H0262498B2 JP 61050170 A JP61050170 A JP 61050170A JP 5017086 A JP5017086 A JP 5017086A JP H0262498 B2 JPH0262498 B2 JP H0262498B2
Authority
JP
Japan
Prior art keywords
sol
titanium oxide
acid
present
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61050170A
Other languages
Japanese (ja)
Other versions
JPS62207718A (en
Inventor
Shin Yamamoto
Hiroshi Nishikura
Yukio Terao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP5017086A priority Critical patent/JPS62207718A/en
Publication of JPS62207718A publication Critical patent/JPS62207718A/en
Publication of JPH0262498B2 publication Critical patent/JPH0262498B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、結晶質アナターゼ型酸化チタンゾル
及びその製造方法に関する。 酸化チタンは、願料、ペースト改良剤、湿度セ
ンサー、赤外線反射多層膜、触媒、圧電体(チタ
ン酸塩)の原料、二酸化チタン被覆雲母等の多方
面の分野に於て使用されている工業材料である。 (従来の技術) これらの用途に用いられる酸化チタン原料粉末
は、通常イルメナイトに硫酸を加え、その硫酸塩
の加水分解により先ずメタチタン酸を得る。そし
てこれらをろ過、乾燥、焼成する方法(硫酸
法))、硫酸の代わりに塩酸を用いる塩酸法、或い
は無水塩化チタンを気相で熱分解させる方法等に
より生産されている。 しかし、これらの方法により得られた酸化チタ
ン粉末は、一般に粒子径が粗く、また不揃いであ
り、特に均一超微細性を要求される分野への適用
については問題があつた。 一方、無水塩化チタンを気相で熱分解させ製造
する方法が知られているが、この方法は微細な均
一粒子が得られる反面、粒子の分散性が悪く、水
等の溶媒に分散させると、経時と共に沈降分離す
ることで問題がある。 また、特開昭59−223231号記載の内容によれ
ば、硫酸法による酸化チタン製造の際、焼成によ
りルチル型の転位を促進するため、核物質として
添加されるものと基本的に同一であるものをチタ
ニアゾルと云つている。 しかし、このものはその製造方法に明らかなよ
うに、微粒子酸化チタンの製造中間体として得ら
れるチタニアゾルとして、多量の酸を含むことか
ら、本発明の結晶質酸化チタンゾルとは異なるも
のである。 従つて、赤外線反射多層膜、触媒、圧電体用原
料、二酸化チタン被覆雲母等に適用する場合に
は、これらの二酸化チタン粉末では、純度、粒
度、分散性に於て充分でなく、問題が残されてい
るのが現状である。 (発明が解決しようとする問題点) 本発明者らはこれらの実情に鑑み、純度、粒
度、分散性等の諸特性に於て優れる結晶質の酸化
チタンゾルを得べく、鋭意研究を重ねた結果、新
規な結晶質アナターゼ型酸化チタンゾルを見出
し、本発明を完成したものである。 (問題点を解決するための手段) 即ち本発明は、結晶質アナターゼ型酸化チタン
ゾル及びその製造方法に関し、本第一の発明は、
粒子径500Å以下の結晶質アナターゼ型酸化チタ
ンゾルであり、また、本第二の発明は、水溶溶性
チタン化合物とアンモニウム化合物とを反応させ
ゲルを生成させた後、これを100℃以上で水熱処
理し、酸を添加することからなる粒子径500Å以
下の結晶質アナターゼ型酸化チタンゾルの製造方
法に関する。 (作用) 先ず、本第一の発明である粒子径500Å以下の
結晶質アナターゼ型酸化チタンゾルについて詳細
に説明する。 従来、酸化チタンゾルを製造する方法として、
無機チタン塩水溶液を原料とし、これに含まれる
酸根を何等かの方法により除去するか、或いは酸
チタンを水に加え、加水分解を行うことにより得
る方法が提案されている。また別に、チタンアル
コキシドを各種の手段で加水分解し、ゾルを得る
方法も提案されている。 しかし、これらの方法により得られるゾルは何
れもその結晶形が無定形か或いはチタンの水酸化
物であり、アナターゼ型の結晶質酸化チタンゾル
ではない。 これに対し、本発明の結晶質酸化チタンゾルは
アナターゼ型の結晶形をもち、且つこれが500Å
以下という極めて細なコロイド粒子をを水溶液状
態で供与し、安定なゾル溶液を形成するものであ
る。 非結晶からなる従来のゾルは、化繊、合繊等の
艶消しや、製紙のコーデイングに用いた場合に
は、基材の耐熱性が低いため、非晶質ゾルを結晶
化させることができなかつた。しかし本発明の結
晶質酸化チタンゾルは、このような基材に結晶質
のものを乾燥程度の低温処理でコーデイングでき
ることより、耐薬品性、耐水性が非晶質のものに
比べ著しく向上し、広範な条件下での使用が可能
となるものである。 このようなゾルは従来全く知られていなかつた
ものであり、酸化チタン系複合材料の適用分野に
於て、新たな用途を生み出すものである。 その特徴を挙げれば次の通りである。 第一に、本発明の結晶質アナターゼ型ゾルは、
無定形ゾルに比べて高濃度なゾルで得ることがで
き、酸化チタン−シリカの多層赤外線反射膜を作
成するような場合、一回のコーデイングで所望の
膜厚や反射性能を得ることができる。 第二に、本発明の結晶質アナターゼ型酸化チタ
ンゾルは、ゾルの安定性に優れているので、従来
の二酸化チタン粉末ではコーデイング等の作業の
際に、均一な膜形成が困難であつたのに比べ、本
発明では長期間の保存後もゾルが均一に分散し、
均一なコーデイング膜が得られる。しかも500Å
以下という超微細粒子であるから、二酸化チタン
被覆雲母に適用した場合には、粒子が分子分散状
に均一に分散し、優れた真珠光沢性を与える。 更に、無定形ゾルに比べて高濃度での被覆が可
能であるため、硬牢なものが得られる。 これらのことは、酸化チタン系セラミツクのコ
ーデイング膜の製造に於て非常に有益である。 尚、コロイド粒子径の測定は、電子顕微鏡観察
により行つたが、本発明のゾルは、実質上全ての
コロイド粒子が500Å以下の粒子径であつた。 次に、本第二の発明でる結晶質のアナターゼ型
酸化チタンゾルの製造方法について詳述する。 本第二の発明は、水溶溶性チタン化合物とアン
モニウム化合物とを反応させゲルを生成させた
後、これを100℃以上で水熱処理し、酸を添加す
ることからなる粒子径500Å以下の結晶質アナタ
ーゼ型酸化チタンゾルの製造方法に関する。 本発明に用いる水溶性チタン化合物としては、
四塩化チタン、硝酸チタン、硫酸チタン等を例示
でき、またアンモニウム化合物としては、重炭酸
アンモニウム、炭酸アンモニウム、アンモニア水
等を例示することができるが、これらに限定され
るものではない。 また上記以外の原料として、重炭酸アルカリ金
属塩や炭酸アルカリ金属塩等の使用は、製品ゾル
中にアルカリ金属塩が残留することにより好まし
くない。 本発明では、先ず前記の水溶性チタン化合物と
アンモニウム化合物とを反応させ、ゲルを生成さ
せる。 このゲルの製造条件に関して云えば、両者の反
応の際の温度は、大略10〜90℃で行う。 また添加割合については、アンモニウム化合物
のアンモニウムAと水溶性チタン化合物に由来す
る酸根Bの当量比A/Bが0.9〜1.3の範囲となる
ように行う。しかしこの範囲を逸脱しても、後述
する生成ゲルを洗浄する工程で、上限を越えた場
合、希薄な酸溶液で洗浄し、また下限以下では希
薄なアルカリ性溶液で洗浄することにより、所望
のゾルを得ることができ、特段に限定するもので
はないが、経済的理由から上記範囲が望ましい。
また、添加順序に関しても特段限定はされず、水
溶液チタン化合物またはアンモニウム化合物のい
ずれか一方を先に、あるいは両者を同時に添加す
る方法により行うことができる。 このようにして製造したゲルは、次いでろ過、
洗浄を行い、不純物を除去する。 この残存不純物は、酸化チタンゾルの製造上、
また用途上、少ないほうが好ましい。 ろ過、洗浄手段に関しては特に限定されず、通
常用いられているフイルタープレスや遠心ろ過の
ような注水ろ過、リパルプー遠心分離法等の任意
の手段を用いることができる。 ろ過、洗浄後のゲルは、次いで水熱処理に供さ
れる。 水熱処理条件に関しては、温度は100℃以上で
行うが、一般に処理温度が高く、また処理時間が
長くなるほど、結晶形の発達が良好であり、粒径
の大きなコロイド粒子が得られる。 また、100℃を下回る温度での処理は、長時間
行つてもコロイド粒子が結晶化せず、たとえ一部
が結晶化してもその結晶化は著しく低く、無定形
の性質が残り、本発明の目的を達成することがで
きない。 蓋し、本発明の結晶質酸化チタンゾルの各用途
に応じて処理条件を選択し、所望する粒子径のゾ
ルを得ることができ、その制御が水熱処理条件の
選択によつて可能である点が本発明の大きな特徴
である。 続いて、本発明の水熱処理条件に酸の添加を行
う。添加する酸の種類としては、塩酸、硝酸、酢
酸、蟻酸、乳酸、グリコール酸等を例示できる。 また酸の添加量は、TiO21モルに対して0.01〜
0.60モルの範囲で行う。 この場合、添加量がこの範囲を逸脱すると、本
発明の分散性に優れたゾルを得ることができな
い。 更に、本発明では水熱処理後に酸を添加するこ
とが殊に重要であり、水熱処理前の酸の添加では
本発明のゾルを得ることができない。 (実施例) 以下に本発明の実施例を掲げ、更に説明を行う
が、本発明はこれらに限定されるものではない。
また%は特にことわらない限り、全て重量%を示
す。 実施例 1 四塩化チタン水溶液(TiO22%)2000gとアン
モニア水(NH32%)2042g(NH3/cl当量比
1.2)を撹はん下で添加し、ゲルを生成した。 これをろ過水洗し、TiO210%のゲルを得た。
このゲル400gをオートクレーブに入れ、250℃で
2時間の水熱処理を行つた後、酢酸/TiO2モル
比0.3となるように酢酸9gを添加し、本発明の
ゾルを得た。このゾルを濃縮するとTiO223%で
流動限界であつた。 またこのゾルをTiO21.0%に希釈し、静置した
ところ、1カ月後の分散安定率は99%であつた。 更に、電子顕微鏡観察によるコロイド粒子径は
170Åであり、X線回折の結果はアナターゼ型結
晶質であつた。 尚、分散安定率は1カ月後にゾル液の上層部か
らサンプリングした液のTiO2濃度を測定し、次
式により算出した。 分散安定率(%)=1カ月後のTiO2濃度/初期のTiO2
度×100 実施例 2〜4 四塩化チタン水溶液(TiO23%)10000gと重
炭酸アンモニウム水溶液(NH32%)13404g
(NH3/c1当量比1.05)を、水5000gを予め添加
した反応槽に撹はんを行いながら同時に添加し
た。 生成したゲルを水洗、ろ過し、TiO218%のゲ
ル1630gを得た。このゲルを水で希釈し、TiO23
%としたゲル400gをオートクレーブに入れ、第
1表に示したような処理条件で処理を行つた。 処理後、61%の硝酸1.55g(硝酸/TiO2モル
比0.1)を添加し、本発明のゾルを得た。 これらのX線回折結果を第1表に示し、また実
施例2のX線回折図を第1図に示した。 更に、X線回折の結果からScherrerの式 t=(Å)0.9λ/βcosθ 但し、 t;粒子径(Å) λ;λ=1.542Å(CuKα) β;半価巾(ラジアン) cosθ;2θ=25.3゜とした。 により粒子径を算出した。 粒子径は、電子顕微鏡観察結果からの粒子径と
Scherrerの式からの粒子径がほぼ一致していた。 また比較例として、上記のゲルを同量三ツ口フ
ラスコに入れ、マントルヒータで第1表記載の条
件で処理した。結果を第1表に示した。
(Industrial Application Field) The present invention relates to a crystalline anatase titanium oxide sol and a method for producing the same. Titanium oxide is an industrial material used in many fields such as application materials, paste improvers, humidity sensors, infrared reflective multilayer films, catalysts, raw materials for piezoelectric bodies (titanates), and titanium dioxide-coated mica. It is. (Prior Art) Titanium oxide raw material powder used for these purposes is usually obtained by adding sulfuric acid to ilmenite and hydrolyzing the sulfate to first obtain metatitanic acid. They are produced by a method in which they are filtered, dried, and calcined (sulfuric acid method), a hydrochloric acid method in which hydrochloric acid is used instead of sulfuric acid, or a method in which anhydrous titanium chloride is thermally decomposed in a gas phase. However, the titanium oxide powders obtained by these methods generally have coarse and irregular particle diameters, which poses a problem, especially when applied to fields that require uniform ultra-fineness. On the other hand, a method of producing anhydrous titanium chloride by thermal decomposition in the gas phase is known, but although this method yields fine, uniform particles, the particles have poor dispersibility, and when dispersed in a solvent such as water, There is a problem with sedimentation and separation over time. Furthermore, according to the content described in JP-A No. 59-223231, it is basically the same as that added as a nuclear material in order to promote rutile-type dislocation by calcination when producing titanium oxide by the sulfuric acid method. The substance is called titania sol. However, as is clear from the manufacturing method, this sol is different from the crystalline titanium oxide sol of the present invention because it contains a large amount of acid as a titania sol obtained as an intermediate for manufacturing fine particle titanium oxide. Therefore, when applied to infrared reflective multilayer films, catalysts, raw materials for piezoelectric materials, mica coated with titanium dioxide, etc., these titanium dioxide powders do not have sufficient purity, particle size, or dispersibility, and problems remain. The current situation is that (Problems to be Solved by the Invention) In view of these circumstances, the present inventors have conducted intensive research to obtain a crystalline titanium oxide sol that is excellent in various properties such as purity, particle size, and dispersibility. discovered a new crystalline anatase-type titanium oxide sol and completed the present invention. (Means for solving the problems) That is, the present invention relates to a crystalline anatase-type titanium oxide sol and a method for producing the same, and the first invention includes:
It is a crystalline anatase-type titanium oxide sol with a particle size of 500 Å or less, and the second invention is made by reacting a water-soluble titanium compound and an ammonium compound to form a gel, and then hydrothermally treating the gel at 100°C or higher. , relates to a method for producing a crystalline anatase-type titanium oxide sol with a particle size of 500 Å or less, which comprises adding an acid. (Function) First, the crystalline anatase-type titanium oxide sol with a particle size of 500 Å or less, which is the first invention, will be explained in detail. Conventionally, as a method for producing titanium oxide sol,
Proposed methods include using an inorganic titanium salt aqueous solution as a raw material and removing the acid radicals contained therein by some method, or adding acid titanium to water and performing hydrolysis. Separately, methods have also been proposed in which titanium alkoxide is hydrolyzed by various means to obtain a sol. However, the sols obtained by these methods are either amorphous or titanium hydroxide, and are not anatase-type crystalline titanium oxide sols. On the other hand, the crystalline titanium oxide sol of the present invention has an anatase type crystal form, and this has a crystalline shape of 500 Å.
The following extremely fine colloidal particles are provided in an aqueous solution state to form a stable sol solution. Conventional sols made of amorphous materials cannot be crystallized when used for matting synthetic fibers, synthetic fibers, etc., or for coding in paper manufacturing, due to the low heat resistance of the base material. Ta. However, the crystalline titanium oxide sol of the present invention can be coated with a crystalline material on such a base material by drying or low-temperature treatment, so its chemical resistance and water resistance are significantly improved compared to amorphous ones. It can be used under a wide range of conditions. Such a sol is completely unknown in the past, and will create new uses in the field of application of titanium oxide composite materials. Its characteristics are as follows. First, the crystalline anatase type sol of the present invention is
It can be obtained with a highly concentrated sol compared to amorphous sol, and when creating a multilayer infrared reflective film of titanium oxide and silica, the desired film thickness and reflective performance can be obtained with one coding. . Secondly, the crystalline anatase-type titanium oxide sol of the present invention has excellent sol stability, which makes it difficult to form a uniform film during coding and other operations with conventional titanium dioxide powder. In contrast, in the present invention, the sol is evenly dispersed even after long-term storage,
A uniform coding film can be obtained. And 500Å
Since the ultrafine particles are as follows, when applied to titanium dioxide-coated mica, the particles are uniformly dispersed in a molecular dispersion state, giving excellent pearlescent properties. Furthermore, since it is possible to coat with a higher concentration than an amorphous sol, a tough product can be obtained. These facts are very useful in the production of titanium oxide ceramic coding films. The colloidal particle size was measured by electron microscopy, and in the sol of the present invention, substantially all colloidal particles had a particle size of 500 Å or less. Next, a method for producing a crystalline anatase-type titanium oxide sol according to the second invention will be described in detail. The second invention is a crystalline anatase with a particle size of 500 Å or less, which is obtained by reacting a water-soluble titanium compound and an ammonium compound to form a gel, then hydrothermally treating the gel at 100°C or higher, and adding an acid. The present invention relates to a method for producing a type titanium oxide sol. The water-soluble titanium compound used in the present invention includes:
Examples include titanium tetrachloride, titanium nitrate, titanium sulfate, etc., and examples of ammonium compounds include ammonium bicarbonate, ammonium carbonate, aqueous ammonia, etc., but are not limited to these. Furthermore, the use of alkali metal bicarbonates, alkali metal carbonates, and the like as raw materials other than those mentioned above is not preferable because the alkali metal salts remain in the product sol. In the present invention, first, the water-soluble titanium compound and ammonium compound are reacted to form a gel. Regarding the conditions for producing this gel, the temperature during the reaction between the two is approximately 10 to 90°C. Further, the addition ratio is such that the equivalent ratio A/B of ammonium A of the ammonium compound and acid radical B derived from the water-soluble titanium compound is in the range of 0.9 to 1.3. However, even if it deviates from this range, in the step of washing the generated gel described later, if the upper limit is exceeded, the desired sol is washed with a dilute acid solution, and if it is below the lower limit, the desired sol is washed with a dilute alkaline solution. Although not particularly limited, the above range is desirable for economic reasons.
Further, there is no particular limitation on the order of addition, and either the aqueous titanium compound or the ammonium compound can be added first, or both can be added at the same time. The gel produced in this way is then filtered,
Wash to remove impurities. This residual impurity is removed during the production of titanium oxide sol.
Further, from the viewpoint of usage, it is preferable to have a smaller amount. The filtration and washing means are not particularly limited, and any commonly used means such as filter presses, water filtration such as centrifugal filtration, and repulp centrifugation can be used. The gel after filtering and washing is then subjected to hydrothermal treatment. Regarding hydrothermal treatment conditions, the temperature is 100° C. or higher, and generally, the higher the treatment temperature and the longer the treatment time, the better the development of crystal form and the larger the particle size can be obtained. In addition, if the treatment is carried out at a temperature below 100°C, the colloidal particles will not crystallize even if it is carried out for a long time, and even if some of them crystallize, the crystallization will be extremely low and the amorphous nature will remain. unable to achieve the goal. The point is that it is possible to obtain a sol with a desired particle size by selecting treatment conditions according to each use of the crystalline titanium oxide sol of the present invention, and that this can be controlled by selecting the hydrothermal treatment conditions. This is a major feature of the present invention. Subsequently, acid is added to the hydrothermal treatment conditions of the present invention. Examples of the type of acid to be added include hydrochloric acid, nitric acid, acetic acid, formic acid, lactic acid, and glycolic acid. In addition, the amount of acid added is 0.01 to 1 mole of TiO 2
Do this in a range of 0.60 mol. In this case, if the amount added exceeds this range, the sol with excellent dispersibility of the present invention cannot be obtained. Furthermore, in the present invention, it is particularly important to add an acid after the hydrothermal treatment, and the sol of the present invention cannot be obtained by adding an acid before the hydrothermal treatment. (Examples) Examples of the present invention will be listed below to further explain the present invention, but the present invention is not limited to these.
All percentages are by weight unless otherwise specified. Example 1 2000 g of titanium tetrachloride aqueous solution (TiO 2 2%) and 2042 g of ammonia water (NH 3 2%) (NH 3 /cl equivalent ratio
1.2) was added under stirring to form a gel. This was filtered and washed with water to obtain a 10% TiO 2 gel.
After 400 g of this gel was placed in an autoclave and subjected to hydrothermal treatment at 250° C. for 2 hours, 9 g of acetic acid was added so that the acetic acid/TiO 2 molar ratio was 0.3 to obtain the sol of the present invention. When this sol was concentrated, the flow limit was reached at 23% TiO 2 . When this sol was diluted to 1.0% TiO 2 and allowed to stand, the dispersion stability rate after one month was 99%. Furthermore, the colloidal particle size observed by electron microscopy is
170 Å, and X-ray diffraction results showed that it was anatase crystalline. The dispersion stability rate was calculated by measuring the TiO 2 concentration of a liquid sampled from the upper layer of the sol solution one month later, and using the following formula. Dispersion stability rate (%) = TiO 2 concentration after 1 month / initial TiO 2 concentration × 100 Examples 2 to 4 Titanium tetrachloride aqueous solution (TiO 2 3%) 10,000 g and ammonium bicarbonate aqueous solution (NH 3 2%) 13,404 g
(NH 3 /c1 equivalent ratio 1.05) was simultaneously added to a reaction tank to which 5000 g of water had been added while stirring. The generated gel was washed with water and filtered to obtain 1630 g of gel containing 18% TiO 2 . This gel was diluted with water and TiO 2 3
% gel was placed in an autoclave and treated under the treatment conditions shown in Table 1. After the treatment, 1.55 g of 61% nitric acid (nitric acid/TiO 2 molar ratio 0.1) was added to obtain the sol of the present invention. These X-ray diffraction results are shown in Table 1, and the X-ray diffraction diagram of Example 2 is shown in FIG. Furthermore, from the results of X-ray diffraction, Scherrer's formula t=(Å)0.9λ/βcosθ However, t: Particle diameter (Å) λ: λ=1.542Å (CuKα) β: Half-value width (radian) cosθ; 2θ= It was set to 25.3°. The particle size was calculated by The particle size is based on the particle size obtained from electron microscopy observation.
The particle diameters from Scherrer's equation were almost the same. As a comparative example, the same amount of the above gel was placed in a three-necked flask and treated with a mantle heater under the conditions listed in Table 1. The results are shown in Table 1.

【表】 実施例 5 炭酸アンモニウム水溶液(NH31%)10000g
に硝酸チタン水溶液(TiO21%)11520g
(NH3/NO3当量比1.02)を、撹はんを行いなが
ら添加した。得られたゲルを充分に水洗し、硝酸
がウエツトケーキ中に残留していないことを確認
後、これを水で希釈し、TiO28%のスラリー400
gとして200℃で4時間の水熱処理に供した。 次いで、HNO3/TiO2モル比0.05となるように
61%の硝酸2.0gを添加し、本発明のゾルを得た。 この本発明のゾルは、X線回折の結果アナター
ゼ型結晶形を有し、粒子径は180Åであり、また
分散安定率は98%であつた。 また比較のために、水熱処理を行う前に、前記
と同様の硝酸を加えた後水熱処理を行つたが、本
発明のゾルを得ることができなかつた。
[Table] Example 5 Ammonium carbonate aqueous solution (NH 3 1%) 10000g
Titanium nitrate aqueous solution (TiO 2 1%) 11520g
(NH 3 /NO 3 equivalent ratio 1.02) was added with stirring. After thoroughly washing the obtained gel with water and confirming that no nitric acid remained in the wet cake, it was diluted with water to make a slurry of 8% TiO 2 400%.
It was subjected to hydrothermal treatment at 200°C for 4 hours. Next, the HNO 3 /TiO 2 molar ratio was 0.05.
2.0 g of 61% nitric acid was added to obtain the sol of the present invention. As a result of X-ray diffraction, the sol of the present invention had an anatase crystal form, a particle size of 180 Å, and a dispersion stability rate of 98%. For comparison, nitric acid was added in the same manner as above before the hydrothermal treatment, and then the hydrothermal treatment was carried out, but the sol of the present invention could not be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例2で得た本発明結晶質アナタ
ーゼ型酸化チタンゾルの60℃乾燥物のX線回折図
である。
FIG. 1 is an X-ray diffraction diagram of the crystalline anatase type titanium oxide sol of the present invention obtained in Example 2, dried at 60°C.

Claims (1)

【特許請求の範囲】 1 粒子径500Å以下の結晶質アナターゼ型酸化
チタンゾル。 2 水溶性チタン化合物とアンモニウム化合物と
を反応させゲルを生成させた後、これを100℃以
上で水熱処理し、酸を添加することからなる粒子
径500Å以下の結晶質アナターゼ型酸化チタンゾ
ルの製造方法。
[Claims] 1. A crystalline anatase-type titanium oxide sol with a particle size of 500 Å or less. 2. A method for producing a crystalline anatase-type titanium oxide sol with a particle size of 500 Å or less, which comprises reacting a water-soluble titanium compound and an ammonium compound to generate a gel, then hydrothermally treating the gel at 100°C or higher, and adding an acid. .
JP5017086A 1986-03-06 1986-03-06 Sol of crystalline titanium oxide and its preparation Granted JPS62207718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5017086A JPS62207718A (en) 1986-03-06 1986-03-06 Sol of crystalline titanium oxide and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5017086A JPS62207718A (en) 1986-03-06 1986-03-06 Sol of crystalline titanium oxide and its preparation

Publications (2)

Publication Number Publication Date
JPS62207718A JPS62207718A (en) 1987-09-12
JPH0262498B2 true JPH0262498B2 (en) 1990-12-25

Family

ID=12851727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5017086A Granted JPS62207718A (en) 1986-03-06 1986-03-06 Sol of crystalline titanium oxide and its preparation

Country Status (1)

Country Link
JP (1) JPS62207718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044738A (en) * 2014-10-14 2015-03-12 テイカ株式会社 Amorphous titania sol and method for producing the same

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317221A (en) * 1986-07-03 1988-01-25 Taki Chem Co Ltd Crystalline titanium oxide sol and production thereof
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same
FR2677012B1 (en) * 1991-05-31 1993-09-03 Rhone Poulenc Chimie TITANIUM DIOXIDE IN PLATELET FORM AND PROCESS FOR PREPARING THE SAME.
US5700451A (en) * 1995-05-24 1997-12-23 The Procter & Gamble Company Sunscreen composition
US6770257B1 (en) * 1999-02-04 2004-08-03 Kawasaki Jukogyo Kabushiki Kaisha Processes for producing anatase titanium oxide and titanium oxide coating material
KR100396085B1 (en) * 1999-12-21 2003-08-27 주식회사 포스코 A Titanium Dioxide powder and The method for preparation thereof
JP2001262007A (en) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc Titania coating liquid and its production method, and titania film and its formation method
KR100381921B1 (en) * 2000-07-21 2003-04-26 김정환 Titania coating solution and Method for manufacturing the same
KR100421243B1 (en) * 2000-12-01 2004-03-12 (주) 에이엔티케미칼 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR100404449B1 (en) * 2001-02-16 2003-11-05 한상목 The manufacturing method of titanium oxide powder by dropping precipitant
KR20040025899A (en) * 2001-02-27 2004-03-26 유겐가이샤 칸코우 데바이스 켄큐쇼 Bleaching composition and method of bleaching tooth
KR100444892B1 (en) * 2001-06-01 2004-08-18 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol containing active metals
US7045005B2 (en) 2001-07-19 2006-05-16 Sumitomo Chemical Company, Limited Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
KR100436240B1 (en) * 2001-11-01 2004-06-16 김대승 Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof
JP4184060B2 (en) * 2002-02-07 2008-11-19 学校法人日本大学 Method for producing sol and method for water repellent treatment of substrate
JP4374869B2 (en) 2002-05-27 2009-12-02 住友化学株式会社 Manufacturing method of ceramic dispersion
JP2004026553A (en) 2002-06-25 2004-01-29 Sumitomo Chem Co Ltd Titanium oxide dispersion and preservation container for the same
JP2004196626A (en) 2002-12-20 2004-07-15 Sumitomo Chem Co Ltd Method for producing titanium oxide
KR100611632B1 (en) * 2003-11-14 2006-08-11 (주)지엔씨글로텍 photocatalyst composition and manufacturing method thereof
JP4705361B2 (en) * 2004-11-19 2011-06-22 日揮触媒化成株式会社 Method for producing zirconia sol
DE102006032755A1 (en) * 2006-07-14 2008-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stable suspensions of crystalline TiO2 particles from hydrothermally treated sol-gel precursor powders
WO2008036176A1 (en) 2006-09-21 2008-03-27 Tokusen U.S.A., Inc. Low temperature process for producing nano-sized titanium dioxide particles
US8802159B2 (en) 2008-11-12 2014-08-12 Nissan Chemical Industries, Ltd. Production method of titanium oxide sol
JP5223828B2 (en) * 2009-09-18 2013-06-26 堺化学工業株式会社 Anatase type ultrafine particle titanium oxide, dispersion containing anatase type ultrafine particle titanium oxide, and method for producing the titanium oxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843439A (en) * 1971-09-30 1973-06-23
JPS5950604A (en) * 1982-09-16 1984-03-23 Seiko Instr & Electronics Ltd Oscillating circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843439A (en) * 1971-09-30 1973-06-23
JPS5950604A (en) * 1982-09-16 1984-03-23 Seiko Instr & Electronics Ltd Oscillating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044738A (en) * 2014-10-14 2015-03-12 テイカ株式会社 Amorphous titania sol and method for producing the same

Also Published As

Publication number Publication date
JPS62207718A (en) 1987-09-12

Similar Documents

Publication Publication Date Title
JPH0262498B2 (en)
JPH0262499B2 (en)
JP3578757B2 (en) Barium titanate and method for producing the same
JP3980272B2 (en) Perovskite-type titanium-containing composite oxide particles, sol and production method thereof, and thin film
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
JP2634210B2 (en) Method for producing powdery barium titanate
JPH0222127A (en) Production of titanium oxide
JP2007230824A (en) Porous titanium oxide particle and its producing method
US20060088732A1 (en) Perovskite titanium-type composite oxide particle and production process thereof
JPH05178617A (en) Production of spherical particulate made of titanate and spherical particulate obtained by the same
JPS6272525A (en) Production of barium titanate or strontium titanate
JP3537885B2 (en) Method for producing anatase-type titanium oxide
KR100424069B1 (en) Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method
JP3415733B2 (en) Method for producing fine particles of calcium titanate
JP3668985B2 (en) Manufacturing method of ceramic powder
JPS6191015A (en) Production of barium titanate
KR100503858B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids
JPH0573696B2 (en)
JPH0524089B2 (en)
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPH07242422A (en) Fine particle-shaped acicular titanium oxide and production thereof
WO2001010781A1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPH0573695B2 (en)
US20060275201A1 (en) Production of perovskite particles
JP4829771B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees