JPH02255532A - Production of rutile type titanium oxide sol - Google Patents

Production of rutile type titanium oxide sol

Info

Publication number
JPH02255532A
JPH02255532A JP7892889A JP7892889A JPH02255532A JP H02255532 A JPH02255532 A JP H02255532A JP 7892889 A JP7892889 A JP 7892889A JP 7892889 A JP7892889 A JP 7892889A JP H02255532 A JPH02255532 A JP H02255532A
Authority
JP
Japan
Prior art keywords
titanium oxide
sol
soln
tin
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7892889A
Other languages
Japanese (ja)
Other versions
JP2783417B2 (en
Inventor
Hirokazu Tanaka
博和 田中
Hideyasu Hiraoka
平岡 秀逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP1078928A priority Critical patent/JP2783417B2/en
Publication of JPH02255532A publication Critical patent/JPH02255532A/en
Application granted granted Critical
Publication of JP2783417B2 publication Critical patent/JP2783417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the title sol which is excellent in dispersibility and is also excellent in long-term stability and light resistance by heating a soln. prepd. by dissolving the gel or sol of titanium hydroxide in hydrogen peroxide in the presence of a specific ratio of a tin compd. CONSTITUTION:An alkali is added to an aq. sol. of a Ti salt, such as titanium chloride, to neutralize the soln. and the soln. is washed to obtain the titanium hydroxide gel. The aq. soln. of the Ti salt is otherwise passed through an ion exchange resin to remove anions therefrom or to hydrolyze the titanium alkoxide to obtain the titanium hydroxide sol. The hydrogen peroxide is added to the resulted gel or sol or the mixture composed of both to dissolve the titanium hydroxide. The uniform aq. soln. is thus prepd. The tin compd. (tin salt, such as tin chloride, stannic acid salt, such as potassium stannate, the oxide or hydroxide of tin) is added to this aq. soln. at a ratio of TiO2/SnO2=1.5 to 14 (by weight) and thereafter, the soln. is heated and is thereby hydrolyzed. The rutile type titanium oxide sol is thus obtd.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、ルチル型酸化チタンゾルの製造法に関する。[Detailed description of the invention] Technical field of invention The present invention relates to a method for producing a rutile-type titanium oxide sol.

近年、酸化チタン粒子は、その化学的特性を利用した用
途が広がりつつある。たとえば酸化チタンは、酸素と適
−当な結合力を有するとともに耐酸性をも有するため、
酸化還元触媒として用いられたり、あるいは紫外線の遮
断力を利用して化粧材料またはプラスチックの表面コー
ト材として用いられたり、また高屈折率を利用して反射
防止コート材として用いられたり、導電性を利用した帯
電防止材として用いられたり、さらにはこれらの効果を
組み合せて機能性ハードコート材などとして用いられて
いる。
In recent years, titanium oxide particles have been increasingly used to utilize their chemical properties. For example, titanium oxide has an appropriate bonding strength with oxygen and is also acid resistant.
It is used as a redox catalyst, or as a surface coating material for cosmetic materials or plastics due to its ultraviolet blocking power, or as an antireflection coating material due to its high refractive index, or as a conductive material. It is used as an antistatic material, and it is also used as a functional hard coat material by combining these effects.

上記のように酸化チタンは多くの用途に用いられている
が、いずれの場合であっても酸化チタンには多くの機能
が要求される。たとえば、触媒として酸化チタンを用い
る場合には、主反応に対する活性だけでなく、選択性、
機械的強度、耐熱性、耐酸性あるいは耐久性が求められ
、また化粧材料として酸化チタンを用いる場合には、紫
外線の遮蔽効果だけではなく、円滑性、肌ざわり、透明
性などが求められている。さらにコート材として酸化チ
タンを用いる場合には、透明性、高屈折率に加えて、さ
らに優れた被膜形成性、密着性、被膜硬度、機械的強度
、耐摩耗性などが求められている。
As mentioned above, titanium oxide is used for many purposes, but in each case, titanium oxide is required to have many functions. For example, when using titanium oxide as a catalyst, not only the activity for the main reaction but also the selectivity and
Mechanical strength, heat resistance, acid resistance, and durability are required, and when titanium oxide is used as a cosmetic material, it is required not only to have a UV shielding effect but also to have smoothness, texture, and transparency. . Furthermore, when titanium oxide is used as a coating material, in addition to transparency and high refractive index, it is required to have even better film forming properties, adhesion, film hardness, mechanical strength, abrasion resistance, and the like.

このように酸化チタン粒子を種々の用途に用いるには、
酸化チタン粒子は、それぞれの用途に応じて種々の特性
を有することが求められるが、どのような用途に用いる
にしても、超微粒子であることが好ましい。しかも酸化
チタン粒子に透明性が要求される場合には、この粒子は
粒子形状および大きさが揃っているばかりでなく、配合
時に媒体中に高分散することが求められる。:れらの特
性を満たすような酸化チタン粒子を製造するには、高分
散したコロイド状酸化チタン(酸化チタンゾル)を用い
ることが特に好ましい。
In order to use titanium oxide particles for various purposes,
Titanium oxide particles are required to have various properties depending on their use, but ultrafine particles are preferable no matter what purpose they are used for. Moreover, when titanium oxide particles are required to have transparency, the particles are required not only to be uniform in particle shape and size, but also to be highly dispersed in the medium during blending. : In order to produce titanium oxide particles that satisfy these characteristics, it is particularly preferable to use highly dispersed colloidal titanium oxide (titanium oxide sol).

ところで酸化チタンにはアナターゼ型とルチル型とがあ
るが、アナターゼ型はルチル型に比べて耐光性、耐熱性
、紫外線吸収能等の面で劣ってるため、ルチル型酸化チ
タンの方が好ましい。
By the way, there are two types of titanium oxide: anatase type and rutile type, and since anatase type is inferior to rutile type in terms of light resistance, heat resistance, ultraviolet absorption ability, etc., rutile type titanium oxide is preferable.

このようなルチル型酸化チタン微粒子が分散したルチル
型酸化チタンゾルの製造法としては、チタン塩水溶液を
加水分解して得られる水和酸化チタンを苛性アルカリで
処理したのち、塩酸中で熟成する方法等が知られている
A method for producing such a rutile-type titanium oxide sol in which rutile-type titanium oxide fine particles are dispersed includes a method of treating hydrated titanium oxide obtained by hydrolyzing an aqueous titanium salt solution with caustic alkali, and then aging it in hydrochloric acid. It has been known.

これらの方法で得られたルチル型酸化チタンゾルは、ゾ
ル中にチタン塩に由来する陰イオン、またはアルカリに
由来する金属イオンが含まれているので、これらを除去
する必要がある。しかし、ゾルからこれらのイオンを洗
浄除去するのはきわめて困難である。また、従来のゾル
は酸性領域でしか安定には存在できない等の問題点があ
る。
The rutile-type titanium oxide sols obtained by these methods contain anions derived from titanium salts or metal ions derived from alkali, so these must be removed. However, it is extremely difficult to wash these ions out of the sol. Furthermore, conventional sols have problems such as being able to exist stably only in an acidic region.

また、特開昭63−210027号公報には、チタン化
合物とスズ化合物の混合ゲルを水熱処理することにより
、結晶質酸化チタン・酸化、スズ−ゾルを得ることが開
示されている。
Further, JP-A-63-210027 discloses that a crystalline titanium oxide/tin oxide sol can be obtained by hydrothermally treating a mixed gel of a titanium compound and a tin compound.

ところで本願出願人は、先に水和酸化チタンゲルまたは
ゾルを過酸化水素で溶解した後、SiO2等の無機化合
物の共存下で加熱、加水分解することを特徴とするアナ
ターゼ型酸化チタン粒子が分散した酸化チタンゾルの製
造法につき特許出願した(特開昭63−229139号
公報)。
By the way, the applicant of the present application has disclosed that anatase-type titanium oxide particles are dispersed by first dissolving a hydrated titanium oxide gel or sol with hydrogen peroxide, and then heating and hydrolyzing it in the coexistence of an inorganic compound such as SiO2. A patent application was filed for a method for producing titanium oxide sol (Japanese Unexamined Patent Publication No. 63-229139).

本発明者等は、上記のような技術を基礎に鋭意研究を重
ねた結果、水和酸化チタンのゲルまたはゾルに過酸化水
素を加えて水和酸化チタンを溶解させ、得られた溶液を
特定量のS n O2の存在下に加熱すれば、得られる
酸化チタンゾル中の分散粒子がルチル型酸化チタンとな
ることを見出し、本発明を完成するに至った。
As a result of extensive research based on the above technology, the present inventors added hydrogen peroxide to the gel or sol of hydrated titanium oxide to dissolve the hydrated titanium oxide, and identified the resulting solution. The present inventors have discovered that when heated in the presence of a certain amount of SnO2, the dispersed particles in the resulting titanium oxide sol become rutile-type titanium oxide, and have completed the present invention.

発明の目的 本発明は、上記のような問題点を解決しようとするもの
であって、分散性に優れるとともに長期安定性、耐光性
にも優れるようなルチル型酸化チタンゾルの製造方法を
提供することを目的としている。
Purpose of the Invention The present invention aims to solve the above-mentioned problems, and provides a method for producing a rutile-type titanium oxide sol that has excellent dispersibility, long-term stability, and light resistance. It is an object.

発明の概要 本発明に係るルチル型酸化チタンゾルの製造方法は、水
和酸化チタンのゲルまたはゾルに過酸化水素を加えて水
和酸化チタンを溶解し、次いで得られた溶液を、T i
O/ S n O2= 1 、 5〜14(重量比)の
量のスズ化合物の共存下で加熱することを特徴としてい
る。
Summary of the Invention The method for producing a rutile-type titanium oxide sol according to the present invention includes adding hydrogen peroxide to a gel or sol of hydrated titanium oxide to dissolve the hydrated titanium oxide, and then adding the resulting solution to Ti
It is characterized by heating in the coexistence of a tin compound in an amount of O/S n O2 = 1, 5 to 14 (weight ratio).

発明の詳細な説明 以下本発明に係るルチル型酸化チタンゾルについて具体
的に説明する。
DETAILED DESCRIPTION OF THE INVENTION The rutile-type titanium oxide sol according to the present invention will be specifically described below.

本発明ではルチル型酸化チタンゾルを製造するには、ま
ず、従来公知の方法によって水和酸化チタンのゲルまた
はゾルを調製する。水和酸化チタンゲルは、たとえば塩
化チタン、硫酸チタンなどのチタン塩の水溶液にアルカ
リを加えて中和し、洗浄することによって得ることがで
きる。また水和酸化チタンゾルは、チタン塩の水溶液を
イオン交換樹脂に通して陰イオンを除去するか、あるい
はチタンアルコキシドを加水分解することによって得る
ことができる。
In the present invention, in order to produce a rutile-type titanium oxide sol, first, a gel or sol of hydrated titanium oxide is prepared by a conventionally known method. Hydrated titanium oxide gel can be obtained, for example, by adding an alkali to an aqueous solution of a titanium salt such as titanium chloride or titanium sulfate, neutralizing the solution, and washing the solution. Further, a hydrated titanium oxide sol can be obtained by passing an aqueous solution of a titanium salt through an ion exchange resin to remove anions, or by hydrolyzing titanium alkoxide.

得られたゲルまたはゾル中の水和酸化チタン粒子は、非
晶質であることが好ましく、さらに、その比表面積が1
50r+f/g以上好ましくは155rr?/g以上で
あることが、ルチル型の酸化チタンを得るうえで望まし
い。
The hydrated titanium oxide particles in the obtained gel or sol are preferably amorphous, and further have a specific surface area of 1
50r+f/g or more preferably 155rr? /g or more is desirable in order to obtain rutile-type titanium oxide.

ここでいう水和酸化チタンとは、上記のような方法で得
られる酸化チタンの水和物、水酸化チタンまたは含水チ
タン酸と呼ばれているものの総称である。
The hydrated titanium oxide herein is a general term for hydrated titanium oxide obtained by the above method, titanium hydroxide, or hydrated titanic acid.

なお、本発明の比表面積は、ゲルまたはゾルを乾燥し、
280℃、16時間焼成後の粉末をBET法で測定した
値である。
Note that the specific surface area of the present invention is determined by drying the gel or sol,
This is a value measured by the BET method on the powder after firing at 280° C. for 16 hours.

次に上記のようにして得られた水和酸化チタンゾルまた
はゲルあるいはこれらの混合物に、過酸化水素を加えて
水和酸化チタンを溶解して均一な水溶液(以下チタン酸
水溶液ということがある)を調製する。このようなチタ
ン酸水溶液を調製するに際して、必要に応じて約50℃
以上に加熱あるいは撹拌することが好ましい。またこの
際、水和酸化チタンの濃度が高くなりすぎると、その溶
解に長時間を必要とし、さらに未溶解状態のゲルが沈澱
したり、あるいは得られる水溶液が粘稠になることがあ
る。このためT L 02濃度としては、約10重量%
以下好ましくは約5重量%以下であることが望ましい。
Next, hydrogen peroxide is added to the hydrated titanium oxide sol or gel or a mixture thereof obtained as described above to dissolve the hydrated titanium oxide to form a homogeneous aqueous solution (hereinafter sometimes referred to as titanic acid aqueous solution). Prepare. When preparing such a titanic acid aqueous solution, the temperature may be adjusted to about 50°C as necessary.
It is preferable to heat or stir the mixture to a higher level. At this time, if the concentration of hydrated titanium oxide becomes too high, it will take a long time to dissolve it, and undissolved gel may precipitate, or the resulting aqueous solution may become viscous. Therefore, the T L 02 concentration is approximately 10% by weight.
The content is preferably about 5% by weight or less.

加えるべき過酸化水素の量は、H20□/T iO2重
量比で1以上であれば、水和酸化チタンを完全に溶解す
ることができる。H202/T iO2比が1未満であ
ると、水和酸化チタンが完全に溶解せず、未反応のゲル
またはゾルが残存することがある。またH20□/ T
 L O□比は大きいほど、水和酸化チタンの溶解速度
は大きく反応は短時間で終了するが、あまり過剰に過酸
化水素を用いても、未反応の過酸化水素が系内に大量に
残存するだけであり、経済的でない。このような量で過
酸化水素を用いると、水和酸化チタンは0.5〜20時
間程度で完全に溶解する。
The amount of hydrogen peroxide to be added can completely dissolve hydrated titanium oxide as long as the H20□/TiO2 weight ratio is 1 or more. When the H202/TiO2 ratio is less than 1, hydrated titanium oxide may not be completely dissolved, and unreacted gel or sol may remain. Also H20□/T
The larger the L O□ ratio, the higher the dissolution rate of hydrated titanium oxide, and the reaction will complete in a shorter time. However, even if hydrogen peroxide is used in excess, a large amount of unreacted hydrogen peroxide will remain in the system. It is not economical. When hydrogen peroxide is used in such an amount, hydrated titanium oxide is completely dissolved in about 0.5 to 20 hours.

次いで、得られたチタン酸水溶液にスズ化合物を添加す
る。
Next, a tin compound is added to the obtained titanic acid aqueous solution.

スズ化合物としては、塩化スズ、硝酸スズ等のスズ塩、
スズ酸カリ等のスズ酸塩、または酸化物、水酸化物が用
いられる。
Examples of tin compounds include tin salts such as tin chloride and tin nitrate;
A stannate such as potassium stannate, or an oxide or hydroxide is used.

これらのスズ化合物は、通常、水溶液の形で添加するが
、粉末状を加えてもよい。さらには、酸化スズ水和物の
ゲルまたはゾルを加えてもよい。
These tin compounds are usually added in the form of an aqueous solution, but may also be added in the form of a powder. Furthermore, a gel or sol of tin oxide hydrate may be added.

スズ化合物の添加量は、T iO2/ S n O2(
重量比)として1.5〜14好ましくは2〜10の範囲
から選ばれる。
The amount of tin compound added is T iO2/S n O2 (
(weight ratio) is selected from the range of 1.5 to 14, preferably 2 to 10.

スズ化合物の添加量を上記範囲よりも少なくしていくと
、結晶構造がルチル構造からずれて、アナターゼ型の酸
化チタンとなる。また、添加量を上記範囲よりも増して
いくと、ルチル構造とは異なる結晶構造を示すようにな
る。
When the amount of the tin compound added is reduced below the above range, the crystal structure shifts from the rutile structure, resulting in anatase-type titanium oxide. Furthermore, if the amount added is increased beyond the above range, a crystal structure different from the rutile structure will be exhibited.

スズ化合物を添加した混合溶液は、次いで約60℃以上
好ましくは80℃以上の温度に加熱し、加水分解すれば
目的のルチル型酸化チタンゾルが得られる。
The mixed solution to which the tin compound has been added is then heated to a temperature of about 60° C. or higher, preferably 80° C. or higher, and hydrolyzed to obtain the desired rutile-type titanium oxide sol.

チタン酸水溶液とスズ化合物の混合方法としては、特に
制限はなく、所定量のチタン酸水溶液とスズ化合物とを
一時に混合してもよく、またチタン酸水溶液とスズ化合
物の一部ずつを最初に混合して加熱し、反応が進むにし
たがって、両者の残りを加えてもよい。
There are no particular restrictions on the method of mixing the titanic acid aqueous solution and the tin compound, and a predetermined amount of the titanic acid aqueous solution and the tin compound may be mixed at once, or a portion of the titanic acid aqueous solution and a portion of the tin compound may be mixed first. Mix and heat, and as the reaction progresses, the remainder of both may be added.

さらには、スズ化合物の全量とチタン酸水溶液の一部と
を最初に混合して加熱し、その後残りのチタン酸水溶液
を加える方法もとり得る。
Furthermore, it is also possible to first mix and heat the entire amount of the tin compound and a portion of the titanic acid aqueous solution, and then add the remaining titanic acid aqueous solution.

また、スズ化合物の混合時期は、必ずしも水和酸化チタ
ンが過酸、化水素に溶解した後である必要はなく、過酸
化水素に溶解前のゲルまたはゾルの段階で混合してもよ
く、さらには水和酸化チタンのゲルまたはゾルの調製時
に混合してもよい。要するにチタン酸水溶液を加熱加水
分解する際に、前述のスズ化合物が反応系に存在してい
ればよい。
Furthermore, the timing of mixing the tin compound does not necessarily have to be after the hydrated titanium oxide has been dissolved in peracid and hydrogen hydride; it may be mixed in the gel or sol stage before being dissolved in hydrogen peroxide; may be mixed during the preparation of the hydrated titanium oxide gel or sol. In short, when heating and hydrolyzing a titanic acid aqueous solution, it is sufficient that the above-mentioned tin compound is present in the reaction system.

本発明では、チタン酸水溶液とスズ化合物との混合水溶
液に、さらにケイ素化合物を共存させて、加熱、加水分
解すると、得られるルチル型酸化チタンゾルの安定性を
増すことができる。
In the present invention, the stability of the resulting rutile-type titanium oxide sol can be increased by adding a silicon compound to the mixed aqueous solution of a titanic acid aqueous solution and a tin compound, and heating and hydrolyzing the mixture.

ケイ素化合物を添加する場合には、ケイ素化合物の添加
量は、SiO2/(T102+5no2)として、0.
05〜0,2(重量比)であることが好ましく、ケイ素
化合物としては、水ガラス等のアルカリ金属ケイ酸塩、
あるいはアルカリ金属ケイ酸塩水溶液を脱アルカリして
得られるケイ酸液、またはシリカゲル、シリカゾル等が
用いられる。
When adding a silicon compound, the amount of the silicon compound added is 0.
05 to 0.2 (weight ratio), and the silicon compound includes alkali metal silicates such as water glass,
Alternatively, a silicic acid solution obtained by dealkalizing an aqueous alkali metal silicate solution, silica gel, silica sol, or the like may be used.

このようにして得られたルチル型酸化チタンゾルの分散
粒子は、約40〜150人(デバイ・シエラー法)の大
きさの結晶粒子が成長したもの、または結晶粒子の集合
した多結晶体からなり、平均粒径が約5〜100mμの
範囲にあるきわめて均一な粒子が分散したゾルである。
The dispersed particles of the rutile-type titanium oxide sol obtained in this way consist of crystal grains with a size of about 40 to 150 people (Debye-Sierer method) grown, or a polycrystalline body of aggregated crystal grains. It is a sol in which extremely uniform particles having an average particle size in the range of about 5 to 100 mμ are dispersed.

このような本発明により得られる酸化チタンゾルは、そ
のまま目的の用途に供することができるが、減圧蒸発、
限外濾過など公知の方法で適宜の濃度まで濃縮して用い
ることもできる。また、用途によっては、イソプロパツ
ール等のアルコール、エチレングリコール等のグリコー
ル、ジメチルホルムアミド等の有機溶媒と混合または溶
媒置換して有機溶媒分散ゾルとすることもできる。また
、酸化チタン粒子の表面処理により、トルエン、キシレ
ン等の有機溶媒分散ゾルも得られる。
The titanium oxide sol obtained by the present invention can be used as it is for the intended purpose, but it can be used by vacuum evaporation,
It can also be used after being concentrated to an appropriate concentration by a known method such as ultrafiltration. Depending on the application, it can also be mixed with or replaced with an alcohol such as isopropanol, a glycol such as ethylene glycol, or an organic solvent such as dimethylformamide to form an organic solvent-dispersed sol. Furthermore, by surface treatment of titanium oxide particles, a sol dispersed in an organic solvent such as toluene or xylene can also be obtained.

したがって、本発明により得られるルチル型酸化チタン
ゾルをプラスチックの配合剤として用いれば、プラスチ
ックの紫外線による変質防止など種々の効果が期待でき
、食品包装用のプラスチックシートに配合すれば、従来
の包装材に比較して長期保存が可能となる。
Therefore, if the rutile-type titanium oxide sol obtained by the present invention is used as a compounding agent for plastics, various effects such as preventing deterioration of plastics due to ultraviolet rays can be expected. In comparison, long-term storage is possible.

さらに、本発明により得られるルチル型酸化チタン微粒
子は、紫外線遮蔽効果とともに従来のルチル(TiO□
)とほぼ同じ高屈折率を示し、また導電性を示すことか
ら、ガラス、プラスチック等の基材の表面コート剤とし
て用いれば、透明性、紫外線遮蔽効果に優れた高屈折率
の導電性被膜が得られる。したがって、高屈折率を要求
されるレンズのコーティング剤、あるいは帯電防止機能
が要求されるブラウン管等の前面板コート剤として有用
である。また、合成繊維に配合することによって帯電防
止繊維が得られる。
Furthermore, the rutile-type titanium oxide fine particles obtained by the present invention have an ultraviolet shielding effect as well as the conventional rutile (TiO□
), and it also exhibits conductivity, so if used as a surface coating agent for substrates such as glass and plastic, it can create a high refractive index conductive film with excellent transparency and ultraviolet shielding effects. can get. Therefore, it is useful as a coating agent for lenses that require a high refractive index, or as a coating agent for front plates of cathode ray tubes and the like that require an antistatic function. Moreover, by blending it with synthetic fibers, antistatic fibers can be obtained.

発明の効果 本発明により得られるルチル型酸化チタンゾルは、分散
性に優れるとともに長期安定性、耐光性にも優れており
、また、紫外線遮蔽効果および透明性に関しても、従来
の酸、化チタン微粒子分散液と比較して、優れた特性を
備えている。しかも、有機溶媒と混合あるいは溶媒置換
してもゲル化、沈澱を生ずることがない。
Effects of the Invention The rutile-type titanium oxide sol obtained by the present invention has excellent dispersibility, long-term stability, and light resistance, and is superior to conventional acid and titanium oxide fine particle dispersions in terms of ultraviolet shielding effect and transparency. It has superior properties compared to liquids. Furthermore, even when mixed with an organic solvent or replaced with a solvent, no gelation or precipitation occurs.

以下本発明を実施例により説明するが、本発明はこれら
実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 硫酸チタニル溶液を純水で希釈してTiO2として1.
0重量%含有する水溶液を得た。この水溶液を10℃に
維持しつつ、撹拌しながら15重量%アンモニア水を添
加し、pH−9,5の白色スラリー液を得た。このスラ
リーを濾過洗浄し、固型分が10.2重量%である水和
酸化チタンゲルのケーキを得た。
Example 1 A titanyl sulfate solution was diluted with pure water to obtain TiO2.
An aqueous solution containing 0% by weight was obtained. While maintaining this aqueous solution at 10° C., 15% by weight aqueous ammonia was added while stirring to obtain a white slurry liquid with a pH of −9.5. This slurry was filtered and washed to obtain a cake of hydrated titanium oxide gel having a solid content of 10.2% by weight.

このケーキ882gに35%過酸化水素水771gと純
水597gとを加えた後、83℃で3時間加熱したとこ
ろ、T i 02として4.0重量%のチタン酸水溶液
2250gが得られた。このチタン酸水溶液は、黄褐色
透明でpH−8,8であった。
After adding 771 g of 35% hydrogen peroxide solution and 597 g of pure water to 882 g of this cake, the mixture was heated at 83° C. for 3 hours to obtain 2250 g of a 4.0 wt % titanic acid aqueous solution as T i 02. This titanic acid aqueous solution was yellowish brown and transparent and had a pH of -8.8.

次に、スズ酸カリウム水溶液を陽イオン交換樹脂で脱ア
ルカリしたS n O2として1.6重量%のスズ酸水
溶液626gと、上記チタン酸水溶液2250gと純水
6020gとを混合した。さらに平均粒子径が7mμで
あり、シリカ濃度が15重量%であるシリカゾル94.
6.を上記混合液に混合した後、150℃で18時間加
熱した。溶液は最初黄褐色であったが、18時間後には
淡い乳白青色透明なコロイド液となった。
Next, 626 g of a 1.6% by weight stannic acid aqueous solution (S n O2 obtained by dealkalizing a potassium stannate aqueous solution with a cation exchange resin), 2250 g of the titanic acid aqueous solution, and 6020 g of pure water were mixed. Furthermore, silica sol 94. has an average particle diameter of 7 mμ and a silica concentration of 15% by weight.
6. was mixed with the above liquid mixture, and then heated at 150°C for 18 hours. The solution was initially yellowish brown, but after 18 hours it became a pale milky blue and transparent colloidal liquid.

このようにして得られたコロイド液を真空蒸発法で固形
分濃度25.6重量%まで濃縮して安定な酸化チタンゾ
ルを得た。このゾルの分散粒子の比表面積、結晶子径(
デバイ・シェラ−法による)およびX線回折図を測定し
た。結果を表1および第1図に示す。
The colloidal liquid thus obtained was concentrated by vacuum evaporation to a solid content concentration of 25.6% by weight to obtain a stable titanium oxide sol. Specific surface area of dispersed particles of this sol, crystallite diameter (
(by Debye-Scherrer method) and X-ray diffraction patterns were measured. The results are shown in Table 1 and FIG.

なおX線回折は、ゾル分散粒子を110℃で乾燥した後
、理学電機製LAD−nc型、Cu管球、35KV、1
2.5mAの条件で測定した。
X-ray diffraction was performed using a Rigaku Denki LAD-nc model, Cu tube, 35KV, 1 after drying the sol dispersed particles at 110°C.
Measurement was performed under the condition of 2.5 mA.

このX線回折から、得られた酸化チタンゾルはルチル型
であることがわかる。
This X-ray diffraction reveals that the obtained titanium oxide sol is of rutile type.

実施例2 実施例1のチタン酸水溶液、スズ酸水溶液および純水を
混合し、T i O2/ S n O2−2、3(vt
/wt)、(TlO+5n02 )0.5重量%の混合
水溶液を調製した。その後は実施例1と同様にして酸化
チタンゾルを得た。結果を表1および第2図に示す。
Example 2 The titanic acid aqueous solution, stannic acid aqueous solution and pure water of Example 1 were mixed, and T i O2/S n O2-2,3 (vt
/wt), (TlO+5n02) 0.5% by weight mixed aqueous solution was prepared. Thereafter, a titanium oxide sol was obtained in the same manner as in Example 1. The results are shown in Table 1 and Figure 2.

実施例3 実施例1のチタン酸水溶液に陽イオン交換樹脂粒子を加
え、pH3,8とした。これにS n 02として3.
0重量%のスズ酸カリウム水溶液を、pHが4.5を超
えないように、T t O2/S n O2−9(vt
/vt)になるまで徐々に加えた。
Example 3 Cation exchange resin particles were added to the titanic acid aqueous solution of Example 1 to adjust the pH to 3.8. Add 3 to this as S n 02.
A 0% by weight potassium stannate aqueous solution was diluted with T t O2/S n O2-9 (vt
/vt).

その後陽イオン交換樹脂粒子を分離し、実施例1で用い
たシリカゾルおよび純水を加え、5i02/ (T10
  +5n02) −0,17(vt/wt)、(81
0+TiO2+5nO2)濃度2.0重量%の混合水溶
液とした。これを180℃、12時間加熱した。溶液は
、最初黄褐色であったが、12時間後、淡い乳白青色の
透明なコロイド液となった。
Thereafter, the cation exchange resin particles were separated, the silica sol used in Example 1 and pure water were added, and 5i02/(T10
+5n02) -0,17(vt/wt),(81
A mixed aqueous solution having a concentration of 2.0% by weight (0+TiO2+5nO2) was prepared. This was heated at 180°C for 12 hours. The solution was initially yellow-brown in color, but after 12 hours it became a clear colloidal liquid with a pale milky blue color.

このコロイド液を実施例1と同様に濃縮して得た酸化チ
タンゾルの分散粒子の性状を、表1および第3図に示す
Table 1 and FIG. 3 show the properties of dispersed particles of titanium oxide sol obtained by concentrating this colloidal liquid in the same manner as in Example 1.

実施例4 四塩化チタンと塩化第2スズとをTiO22/SnO2
−9(wt/wt)  固形分(T102+5nO3)
濃度4重量%となるよう純水を加え、混合溶解した。こ
れに5重量%のアンモニア水を、液温が20℃以上とな
らないようコントロールし、pH9,5になるまで添加
した。生成したゲルを0.5重量%のアンモニア水で洗
浄した後純水で洗浄し、固形分濃度11.4%の混合ゲ
ルを877.2gを得た。これに35重量%の過酸化水
素水1429gと純水2694gとを加えた後、83℃
で4時間加熱し、(T 102 + S n 02 )
として2.0重量%の溶液5眩を得た。この溶液は黄褐
色透明でpHは9.1であった。
Example 4 Titanium tetrachloride and stannic chloride were combined into TiO22/SnO2
-9 (wt/wt) Solid content (T102+5nO3)
Pure water was added to give a concentration of 4% by weight, and the mixture was mixed and dissolved. 5% by weight of aqueous ammonia was added to the solution until the pH reached 9.5, while controlling the temperature so that it did not exceed 20°C. The generated gel was washed with 0.5% by weight ammonia water and then with pure water to obtain 877.2 g of a mixed gel with a solid content concentration of 11.4%. After adding 1,429 g of 35% by weight hydrogen peroxide solution and 2,694 g of pure water, it was heated to 83°C.
Heated for 4 hours at (T 102 + S n 02 )
5 ml of a 2.0% by weight solution was obtained. This solution was yellowish brown and transparent and had a pH of 9.1.

次に平均粒子径が5mμであり、シリカ濃度が15重量
%であるシリカゾル111gと上記の黄褐色透明な液5
kgと純水4.5kgとを混合した後、143℃で17
2時間加熱した。溶液は最初黄褐色透明な液であったが
、172時間後には淡い乳淡青白色透明なコロイド液と
なった。
Next, 111 g of silica sol with an average particle diameter of 5 mμ and a silica concentration of 15% by weight and the above yellow-brown transparent liquid 5 were added.
kg and 4.5 kg of pure water and heated to 17 kg at 143°C.
Heated for 2 hours. The solution was initially a yellowish brown and transparent liquid, but after 172 hours it became a pale milky bluish white transparent colloidal liquid.

このようにして得られたコロイド液を限外膜で固形分濃
度24.5重量%まで濃縮し、安定な酸化チタンゾルを
得た。得られたゾルの分散粒子の性状を表1および第4
図に示す。
The colloidal liquid thus obtained was concentrated to a solid content concentration of 24.5% by weight using an ultramembrane to obtain a stable titanium oxide sol. The properties of the dispersed particles of the obtained sol are shown in Tables 1 and 4.
As shown in the figure.

実施例5 実施例1において、シリカゾルを加えない以外は、実施
例1と同じ方法で酸化チタンゾルを製造した。得られた
ゾルの分散粒子の性状を表1および第5図に示す。
Example 5 A titanium oxide sol was produced in the same manner as in Example 1, except that silica sol was not added. The properties of the dispersed particles of the obtained sol are shown in Table 1 and FIG. 5.

実施例6 TiO□濃度7.4重量%の硫酸チタニル水溶液を用い
て、実施例1と同様の方法でチタン酸水溶液を調製した
。次いで、このチタン酸水溶液を用いて実施例3と同様
の方法で酸化チタンゾルを製造した。得られた酸化チタ
ンゾルの分散粒子の性状を表1および第6図に示す。
Example 6 A titanic acid aqueous solution was prepared in the same manner as in Example 1 using a titanyl sulfate aqueous solution having a TiO□ concentration of 7.4% by weight. Next, a titanium oxide sol was produced in the same manner as in Example 3 using this titanic acid aqueous solution. The properties of the dispersed particles of the titanium oxide sol obtained are shown in Table 1 and FIG.

比較例1 実施例1において、S n 02濃度0.8重量%のス
ズ酸水溶液を用いた以外は、実施例1と同様の方法で酸
化チタンゾルを得た。
Comparative Example 1 A titanium oxide sol was obtained in the same manner as in Example 1, except that an aqueous stannic acid solution having a S n 02 concentration of 0.8% by weight was used.

比較例2 硫酸チタニル溶液を純水で希釈して、T iO2として
5.0重量%含有する水溶液を得た。この水溶液を攪拌
しながら、15%アンモニア水を添加し、pH9,5の
白色スラリーを得た。添加中の液温は約40℃であった
。このスラリーを濾過洗浄し、固形分濃度15.1重量
%である水和酸化チタンゲルのケーキを得た。
Comparative Example 2 A titanyl sulfate solution was diluted with pure water to obtain an aqueous solution containing 5.0% by weight of TiO2. While stirring this aqueous solution, 15% ammonia water was added to obtain a white slurry with a pH of 9.5. The liquid temperature during the addition was about 40°C. This slurry was filtered and washed to obtain a cake of hydrated titanium oxide gel having a solid content concentration of 15.1% by weight.

このケーキ596gに35%過酸化水素水771gと純
水883にとを加えた後、83℃で3時間加熱し、T 
iO2として4.0重量%のチタン酸水溶液2250g
を得た。このチタン酸水溶液は、黄褐色透明でpH−8
,7であった。
After adding 771 g of 35% hydrogen peroxide solution and 883 g of pure water to 596 g of this cake, the mixture was heated at 83°C for 3 hours, and T
2250 g of 4.0% by weight titanic acid aqueous solution as iO2
I got it. This titanic acid aqueous solution is yellowish-brown and transparent with a pH of -8.
,7.

このチタン酸水溶液に陽イオン交換樹脂粒子を加えてp
H3,8とした。これ以後の操作および条件は、実施例
3と同様にして酸化チタンゾルを得た。
Add cation exchange resin particles to this titanic acid aqueous solution and p
It was set as H3.8. The subsequent operations and conditions were the same as in Example 3 to obtain a titanium oxide sol.

比較例3 実施例3において、TiO22/SnO2−1(vt/
wt)となるようにスズ酸カリウムを添加した以外は、
実施例3と同様の方法で酸化チタンゾルを得た。
Comparative Example 3 In Example 3, TiO22/SnO2-1 (vt/
wt) except that potassium stannate was added.
A titanium oxide sol was obtained in the same manner as in Example 3.

比較例1〜3で得られた酸化チタンゾルの分散粒子の性
状を、表1、第7図、第8図および第9図に示す。
The properties of the dispersed particles of titanium oxide sols obtained in Comparative Examples 1 to 3 are shown in Table 1, FIG. 7, FIG. 8, and FIG. 9.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は、本発明により得られたルチル型酸化
チタンゾル中の酸化チタンのX線回折図であり、第7図
〜第9図は比較例で得られた酸化チタンゾル中の酸化チ
タンのX線回折図である。
Figures 1 to 6 are X-ray diffraction diagrams of titanium oxide in the rutile-type titanium oxide sol obtained by the present invention, and Figures 7 to 9 are the oxidized It is an X-ray diffraction diagram of titanium.

Claims (1)

【特許請求の範囲】 1、水和酸化チタンのゲルまたはゾルに過酸化水素を加
えて水和酸化チタンを溶解し、次いで得られた溶液を、
TiO_2/SnO_2=1.5〜14(重量比)の量
のスズ化合物の共存下で加熱することを特徴とするルチ
ル型酸化チタンゾルの製造法。 2、前記ゲルまたはゾル中に存在する水和酸化チタン粒
子の比表面積が150m^2/g以上であることを特徴
とする請求項第1項に記載のルチル型酸化チタンゾルの
製造法。
[Claims] 1. Hydrogen peroxide is added to a gel or sol of hydrated titanium oxide to dissolve the hydrated titanium oxide, and then the resulting solution is
A method for producing a rutile-type titanium oxide sol, which comprises heating in the coexistence of a tin compound in an amount of TiO_2/SnO_2=1.5 to 14 (weight ratio). 2. The method for producing a rutile-type titanium oxide sol according to claim 1, wherein the specific surface area of the hydrated titanium oxide particles present in the gel or sol is 150 m^2/g or more.
JP1078928A 1989-03-30 1989-03-30 Manufacturing method of rutile type titanium oxide sol Expired - Lifetime JP2783417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078928A JP2783417B2 (en) 1989-03-30 1989-03-30 Manufacturing method of rutile type titanium oxide sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078928A JP2783417B2 (en) 1989-03-30 1989-03-30 Manufacturing method of rutile type titanium oxide sol

Publications (2)

Publication Number Publication Date
JPH02255532A true JPH02255532A (en) 1990-10-16
JP2783417B2 JP2783417B2 (en) 1998-08-06

Family

ID=13675532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078928A Expired - Lifetime JP2783417B2 (en) 1989-03-30 1989-03-30 Manufacturing method of rutile type titanium oxide sol

Country Status (1)

Country Link
JP (1) JP2783417B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296943B1 (en) * 1994-03-05 2001-10-02 Nissan Chemical Industries, Ltd. Method for producing composite sol, coating composition, and optical element
KR100444892B1 (en) * 2001-06-01 2004-08-18 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol containing active metals
JP2005068001A (en) * 2003-08-01 2005-03-17 Catalysts & Chem Ind Co Ltd Fibrous titanium oxide particle, production method therefor, and application of the particle
JP2005132706A (en) * 2003-10-31 2005-05-26 Mitsui Chemicals Inc Manufacturing method of rutile type titanium oxide superfine particle
WO2006001487A1 (en) * 2004-06-29 2006-01-05 Mitsui Chemicals, Inc. Fine particles of tin-modified rutile-type titanium dioxide
JP2006083033A (en) * 2004-09-17 2006-03-30 Tayca Corp Rutile-type titanium oxide sol
JP2006298731A (en) * 2005-04-25 2006-11-02 Mitsui Chemicals Inc Compound oxide ultrafine particle and method for manufacturing the same
JP2006306980A (en) * 2005-04-27 2006-11-09 Mitsui Chemicals Inc Coating resin composition having high refractive index
WO2007052580A1 (en) * 2005-11-02 2007-05-10 Mitsui Chemicals, Inc. Resin composition containing ultrafine particle of oxide
CN100345767C (en) * 2004-05-14 2007-10-31 泉耀科技股份有限公司 Method for synthesizing sol of Nano powder of titanium dioxide in visible light type
JP2008081378A (en) * 2006-09-28 2008-04-10 Catalysts & Chem Ind Co Ltd Method for producing niobium-based oxide fine particle
US7431903B2 (en) 2001-10-30 2008-10-07 Catalysts & Chemicals Industries Co., Ltd. Tubular titanium oxide particles and process for preparing same
JP2008308386A (en) * 2007-06-18 2008-12-25 Sumitomo Osaka Cement Co Ltd Composite rutile fine particle, composite rutile fine particle dispersion liquid, high refractive index material, high refractive index member, and method for manufacturing composite rutile fine particle
JP2009179521A (en) * 2008-01-31 2009-08-13 Jgc Catalysts & Chemicals Ltd Method for producing rutile type titanium oxide fine particle
JP2009227519A (en) * 2008-03-24 2009-10-08 Jgc Catalysts & Chemicals Ltd Method for producing rutile-type titanium dioxide fine particles
WO2012111717A1 (en) 2011-02-15 2012-08-23 日産化学工業株式会社 Method for producing rutile-type titanium oxide sol
US8361607B2 (en) 2011-04-14 2013-01-29 Exatec Llc Organic resin laminate
WO2013081136A1 (en) * 2011-12-02 2013-06-06 日産化学工業株式会社 Method for producing rutile-type titanium oxide sol
JPWO2012046493A1 (en) * 2010-10-08 2014-02-24 信越化学工業株式会社 Rutile-type titanium oxide fine particle dispersion, method for producing the same, and member having the rutile-type titanium oxide thin film on the surface
US9441133B2 (en) 2011-08-26 2016-09-13 Exatec, Llc Organic resin laminate, methods of making and using the same, and articles comprising the same
US9555399B2 (en) 2011-11-14 2017-01-31 Shin-Etsu Chemical Co., Ltd. Visible-light-responsive titanium oxide microparticle dispersion, method for manufacturing same, and member having surficial photocatalyst thin film formed using same dispersion
US9604198B2 (en) 2012-09-19 2017-03-28 Shin-Etsu Chemical Co., Ltd. Visible light-responsive photocatalytic nanoparticle dispersion liquid, method for producing same, and member having photocatalytic thin film on surface
US9833776B2 (en) 2013-10-16 2017-12-05 Shin-Etsu Chemical Co., Ltd. Dispersion liquid of titanium oxide-tungsten oxide composite photocatalytic fine particles, production method for same, and member having photocatalytic thin film on surface thereof
WO2018181241A1 (en) 2017-03-31 2018-10-04 日揮触媒化成株式会社 Method for producing dispersion of iron-containing rutile-type titanium oxide microparticles, iron-containing rutile-type titanium oxide microparticles and use thereof
WO2022210973A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Particles having rutile crystal structure, production method therefor, and production method for particle dispersion liquid, coating liquid, and substrate with film
KR20220160005A (en) 2020-03-31 2022-12-05 닛키 쇼쿠바이카세이 가부시키가이샤 Method for producing zirconia-coated titanium oxide fine particles, zirconia-coated titanium oxide fine particles and uses thereof
JPWO2023106194A1 (en) * 2021-12-06 2023-06-15

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952051B2 (en) 2006-05-10 2012-06-13 ソニー株式会社 METAL OXIDE NANOPARTICLE, ITS MANUFACTURING METHOD, LIGHT EMITTING ELEMENT ASSEMBLY AND OPTICAL MATERIAL
JP2010202731A (en) 2009-03-02 2010-09-16 Shin-Etsu Chemical Co Ltd Uv-shielding silicone coating composition and coated article
CN103502333B (en) 2011-04-14 2016-05-04 埃克阿泰克有限责任公司 organic resin laminate
JP5704133B2 (en) 2012-07-19 2015-04-22 信越化学工業株式会社 Core-shell type tetragonal titanium oxide solid solution aqueous dispersion, method for producing the same, ultraviolet shielding silicone coating composition, and coated article
EP4332178A1 (en) 2021-04-28 2024-03-06 JGC Catalysts and Chemicals Ltd. Coating composition for forming hard coating layer, method for producing same, substrate with hard coating layer, and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296943B1 (en) * 1994-03-05 2001-10-02 Nissan Chemical Industries, Ltd. Method for producing composite sol, coating composition, and optical element
KR100444892B1 (en) * 2001-06-01 2004-08-18 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol containing active metals
US7431903B2 (en) 2001-10-30 2008-10-07 Catalysts & Chemicals Industries Co., Ltd. Tubular titanium oxide particles and process for preparing same
EP2223895A1 (en) 2001-10-30 2010-09-01 JGC Catalysts and Chemicals Ltd. Tubular titanium oxide particles and use of the same
JP2005068001A (en) * 2003-08-01 2005-03-17 Catalysts & Chem Ind Co Ltd Fibrous titanium oxide particle, production method therefor, and application of the particle
JP2005132706A (en) * 2003-10-31 2005-05-26 Mitsui Chemicals Inc Manufacturing method of rutile type titanium oxide superfine particle
CN100345767C (en) * 2004-05-14 2007-10-31 泉耀科技股份有限公司 Method for synthesizing sol of Nano powder of titanium dioxide in visible light type
US7575731B2 (en) 2004-06-29 2009-08-18 Mitsui Chemicals, Inc. Fine particles of tin-modified rutile-type titanium dioxide and method of making thereof
KR100809758B1 (en) * 2004-06-29 2008-03-04 미쓰이 가가쿠 가부시키가이샤 Fine particles of tin-modified rutile-type titanium dioxide
WO2006001487A1 (en) * 2004-06-29 2006-01-05 Mitsui Chemicals, Inc. Fine particles of tin-modified rutile-type titanium dioxide
JP2006083033A (en) * 2004-09-17 2006-03-30 Tayca Corp Rutile-type titanium oxide sol
JP2006298731A (en) * 2005-04-25 2006-11-02 Mitsui Chemicals Inc Compound oxide ultrafine particle and method for manufacturing the same
JP4641212B2 (en) * 2005-04-25 2011-03-02 三井化学株式会社 Composite oxide ultrafine particles and process for producing the same
JP4673664B2 (en) * 2005-04-27 2011-04-20 三井化学株式会社 High refractive index resin composition for coating
JP2006306980A (en) * 2005-04-27 2006-11-09 Mitsui Chemicals Inc Coating resin composition having high refractive index
WO2007052580A1 (en) * 2005-11-02 2007-05-10 Mitsui Chemicals, Inc. Resin composition containing ultrafine particle of oxide
JPWO2007052580A1 (en) * 2005-11-02 2009-04-30 三井化学株式会社 Resin composition containing ultrafine oxide particles
JP2008081378A (en) * 2006-09-28 2008-04-10 Catalysts & Chem Ind Co Ltd Method for producing niobium-based oxide fine particle
JP2008308386A (en) * 2007-06-18 2008-12-25 Sumitomo Osaka Cement Co Ltd Composite rutile fine particle, composite rutile fine particle dispersion liquid, high refractive index material, high refractive index member, and method for manufacturing composite rutile fine particle
JP2009179521A (en) * 2008-01-31 2009-08-13 Jgc Catalysts & Chemicals Ltd Method for producing rutile type titanium oxide fine particle
JP2009227519A (en) * 2008-03-24 2009-10-08 Jgc Catalysts & Chemicals Ltd Method for producing rutile-type titanium dioxide fine particles
JPWO2012046493A1 (en) * 2010-10-08 2014-02-24 信越化学工業株式会社 Rutile-type titanium oxide fine particle dispersion, method for producing the same, and member having the rutile-type titanium oxide thin film on the surface
JP5633571B2 (en) * 2010-10-08 2014-12-03 信越化学工業株式会社 Method for producing rutile type titanium oxide fine particle dispersion
US8747542B2 (en) 2011-02-15 2014-06-10 Nissan Chemical Industries, Ltd. Method for producing rutile titanium oxide sol
KR20140016290A (en) 2011-02-15 2014-02-07 닛산 가가쿠 고교 가부시키 가이샤 Method for producing rutile-type titanium oxide sol
WO2012111717A1 (en) 2011-02-15 2012-08-23 日産化学工業株式会社 Method for producing rutile-type titanium oxide sol
US8361607B2 (en) 2011-04-14 2013-01-29 Exatec Llc Organic resin laminate
US9441133B2 (en) 2011-08-26 2016-09-13 Exatec, Llc Organic resin laminate, methods of making and using the same, and articles comprising the same
US9555399B2 (en) 2011-11-14 2017-01-31 Shin-Etsu Chemical Co., Ltd. Visible-light-responsive titanium oxide microparticle dispersion, method for manufacturing same, and member having surficial photocatalyst thin film formed using same dispersion
WO2013081136A1 (en) * 2011-12-02 2013-06-06 日産化学工業株式会社 Method for producing rutile-type titanium oxide sol
JPWO2013081136A1 (en) * 2011-12-02 2015-04-27 日産化学工業株式会社 Method for producing rutile type titanium oxide sol
US9023147B2 (en) 2011-12-02 2015-05-05 Nissan Chemical Industries, Ltd. Method for producing rutile type titanium oxide sol
US9604198B2 (en) 2012-09-19 2017-03-28 Shin-Etsu Chemical Co., Ltd. Visible light-responsive photocatalytic nanoparticle dispersion liquid, method for producing same, and member having photocatalytic thin film on surface
US9833776B2 (en) 2013-10-16 2017-12-05 Shin-Etsu Chemical Co., Ltd. Dispersion liquid of titanium oxide-tungsten oxide composite photocatalytic fine particles, production method for same, and member having photocatalytic thin film on surface thereof
WO2018181241A1 (en) 2017-03-31 2018-10-04 日揮触媒化成株式会社 Method for producing dispersion of iron-containing rutile-type titanium oxide microparticles, iron-containing rutile-type titanium oxide microparticles and use thereof
KR20190135997A (en) 2017-03-31 2019-12-09 니끼 쇼꾸바이 카세이 가부시키가이샤 Method for producing iron-containing rutile titanium oxide fine particle dispersion, iron-containing rutile titanium oxide fine particle and use thereof
US11679990B2 (en) 2017-03-31 2023-06-20 Jgc Catalysts And Chemicals Ltd. Method for producing dispersion of iron-containing rutile titanium oxide fine particles, iron-containing rutile titanium oxide fine particles, and use thereof
KR20220160005A (en) 2020-03-31 2022-12-05 닛키 쇼쿠바이카세이 가부시키가이샤 Method for producing zirconia-coated titanium oxide fine particles, zirconia-coated titanium oxide fine particles and uses thereof
WO2022210973A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Particles having rutile crystal structure, production method therefor, and production method for particle dispersion liquid, coating liquid, and substrate with film
JPWO2023106194A1 (en) * 2021-12-06 2023-06-15
WO2023106194A1 (en) * 2021-12-06 2023-06-15 三井金属鉱業株式会社 Composite metal acid compound dispersion solution, composite metal acid compound powder, composite metal acid compound film, and methods respectively for producing those products

Also Published As

Publication number Publication date
JP2783417B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JPH02255532A (en) Production of rutile type titanium oxide sol
US5403513A (en) Titanium oxide sol and process for preparation thereof
US5215580A (en) Process for the production of a fine particle titanium dioxide
US20080031806A1 (en) Continuous process for making nanocrystalline metal dioxide
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
JP5657197B2 (en) Titanium oxide particles and method for producing the same
JP5126783B2 (en) Method for producing rutile type titanium oxide fine particles
JP2000053421A (en) Titanium oxide sol and its preparation
JPH10158015A (en) Production of surface-treated titanium dioxide sol
JP3515034B2 (en) Titanium oxide sol and method for producing the same
JP4312299B2 (en) Method for producing titanium oxide fine particles containing brookite-type crystals
JPH0811693B2 (en) Titania sol and method for producing the same
US4115144A (en) Method of preparing metal oxide slurries
JP2008081378A (en) Method for producing niobium-based oxide fine particle
JPS63185820A (en) Production of modified titania sol
EP0084965B1 (en) Alumina coated tio2
JP4849778B2 (en) Antibacterial deodorant and method for producing the same
JP3137623B1 (en) Dispersed gel and solution of titanium oxide fine particles and methods for producing them
US5554216A (en) High gloss durable TiO2 pigment
JPH0339017B2 (en)
JPH06650B2 (en) Titanium oxide / cerium oxide composite sol and transparent thin film formed from this sol
JP4111701B2 (en) Modified titanium oxide particles
JP4139090B2 (en) Method for producing spherical particles with crystalline titanium oxide coating layer
KR100224732B1 (en) Process for producing a micropowder type crystalline titanium oxide
JPH0980203A (en) Modified metal oxide sol and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

EXPY Cancellation because of completion of term