JP4849778B2 - Antibacterial deodorant and method for producing the same - Google Patents

Antibacterial deodorant and method for producing the same Download PDF

Info

Publication number
JP4849778B2
JP4849778B2 JP2004138472A JP2004138472A JP4849778B2 JP 4849778 B2 JP4849778 B2 JP 4849778B2 JP 2004138472 A JP2004138472 A JP 2004138472A JP 2004138472 A JP2004138472 A JP 2004138472A JP 4849778 B2 JP4849778 B2 JP 4849778B2
Authority
JP
Japan
Prior art keywords
inorganic oxide
oxide fine
fine particles
antibacterial
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004138472A
Other languages
Japanese (ja)
Other versions
JP2005318999A (en
Inventor
田中  敦
嗣雄 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2004138472A priority Critical patent/JP4849778B2/en
Priority to US11/117,329 priority patent/US8486433B2/en
Priority to KR1020050037526A priority patent/KR101233570B1/en
Publication of JP2005318999A publication Critical patent/JP2005318999A/en
Application granted granted Critical
Publication of JP4849778B2 publication Critical patent/JP4849778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は抗菌性消臭剤に関し、特に、樹脂、塗料、繊維、皮革、家具類、化粧品などに添加または塗布して抗菌効果、消臭効果、防黴効果を発揮する抗菌性消臭剤に関するものである。   The present invention relates to an antibacterial deodorant, and more particularly, to an antibacterial deodorant that exhibits an antibacterial effect, a deodorizing effect, and an antifungal effect by adding or applying to a resin, paint, fiber, leather, furniture, cosmetics, and the like. Is.

従来、例えば、特開平2−225402号公報(特許文献1)等には、ゼオライトやシリカゲル、酸化チタンなどの粉末に抗菌性を有する金属成分を担持した抗菌性組成物が知られている。   Conventionally, for example, in JP-A-2-225402 (Patent Document 1) and the like, an antibacterial composition in which a metal component having antibacterial properties is supported on a powder of zeolite, silica gel, titanium oxide or the like is known.

しかしながら、従来公知の粉末状の抗菌性組成物には、次のような問題点があった。
(1)樹脂、塗料、繊維、皮革、化粧品などに添加したときの分散性が悪い。
(2)抗菌性が効果的に発現しにくく、所望の抗菌活性を得るためには、多量の抗菌性組成物を添加する必要がある。
(3)添加量が多くなると粉末の凝集が生じ易く、また、金属成分の含有量も多くなるので、銀などの抗菌性金属成分を用いた組成物では変色が起こる。
(4)繊維の原料樹脂に抗菌性組成物を混合して紡糸する場合には、粒子径の大きい粉末状の組成物では糸切れを引き起こす原因となる。
(5)樹脂などの材料の表面に粉末状の抗菌性組成物を含有する塗料を塗布して塗膜を形成し、抗菌性を付与する場合には、塗膜が厚くなり膜強度の低下を生じ、また、剥離が起きやすい。さらに透明性が要求される場合には適用できない。
(6)皮革などの表面に粉末状の粉末状の抗菌性組成物を含有する塗料を塗布して塗膜を形成しても剥離が生じやすく、風合いや色合いの問題が生じる。
However, conventionally known powdery antibacterial compositions have the following problems.
(1) Poor dispersibility when added to resins, paints, fibers, leather, cosmetics, etc.
(2) It is necessary to add a large amount of an antibacterial composition in order to effectively exhibit antibacterial activity and to obtain a desired antibacterial activity.
(3) When the amount added is increased, the powder tends to agglomerate, and the content of the metal component also increases, so discoloration occurs in the composition using an antibacterial metal component such as silver.
(4) When an antibacterial composition is mixed and spun into a fiber raw material resin, a powdery composition having a large particle diameter causes thread breakage.
(5) When a paint film containing a powdered antibacterial composition is applied to the surface of a material such as a resin to form a coating film, and the antibacterial property is imparted, the coating film becomes thick and the film strength is reduced. And peeling is likely to occur. Furthermore, it is not applicable when transparency is required.
(6) Even if a coating material containing a powdery antibacterial composition is applied to the surface of leather or the like to form a coating film, peeling is likely to occur, resulting in problems of texture and color.

そこで、本願の発明者等は特開平3−275627号公報(特許文献2)により、無機のオキソ酸の塩の金属イオンを、抗菌性を有する金属イオンでイオン交換してなる新規な抗菌性組成物を提案したが、前述の問題点を解決する上で必ずしも満足のいくものではなかった。   Therefore, the inventors of the present application disclosed a novel antibacterial composition obtained by ion-exchanging metal ions of inorganic oxoacid salts with metal ions having antibacterial properties according to JP-A-3-275627 (Patent Document 2). I proposed a product, but it was not always satisfactory in solving the above-mentioned problems.

また、特開平1−258792号公報(特許文献3)には、アルミナゾル中の酸化アルミニウムの表面に、抗菌作用を有する金属又はその化合物が付着した抗菌性を有するアルミナゾルを含有する抗菌剤が提案されている。当該発明はアルミナゾルの有する塗膜形成機能を利用して、上記問題点(5)を解消したもののようであるが、(1)〜(4)に掲げた問題点は依然として残されていた。
さらに、特開平4−321628号公報(特許文献4)には、抗菌性の高い銀コロイド粒子からなる抗菌剤が提案されているが、該コロイド溶液は灰褐色に着色しており、透明性に欠け、また、銀成分そのものがコロイド粒子であるため、凝集し易く安定性に欠けるという問題点を有している。
JP-A-1-258792 (Patent Document 3) proposes an antibacterial agent containing an antibacterial alumina sol in which a metal having an antibacterial action or a compound thereof adheres to the surface of aluminum oxide in the alumina sol. ing. The invention seems to have solved the above problem (5) by utilizing the coating film forming function of the alumina sol, but the problems listed in (1) to (4) still remain.
Furthermore, Japanese Patent Application Laid-Open No. 4-321628 (Patent Document 4) proposes an antibacterial agent composed of silver colloidal particles having high antibacterial properties. However, the colloidal solution is colored grey-brown and is transparent. Further, since the silver component itself is a colloidal particle, it has a problem that it is easy to aggregate and lacks stability.

そこで、本発明者等は、前述の粉末状の抗菌性組成物あるいは消臭剤組成物に特有な問題点を解決するために、特開平6−80527号公報(特許文献5)および特開平7−33616号公報(特許文献6)において、新規な抗菌性無機酸化物コロイド溶液からなる抗菌剤を提案した。
これらの発明により(1)〜(6)に掲げた問題点はある程度解決したものの、消臭性能が不充分な場合があり、このため、用途によってはさらに充分な消臭性能を有する抗菌性消臭剤が求められている。特に、生活環境、住環境の面で、シックハウス症候群等が問題視され、ダニ、ノミ等を駆除できるほか、アルデヒド、トルエン、キシレン等の臭気性の有機化合物を分解したり、喫煙に伴って発生する一酸化炭素ガスなどの有害ガス、タールなどの有機物等を除去できることが求められている。
In order to solve the problems peculiar to the above-mentioned powdery antibacterial composition or deodorant composition, the present inventors have disclosed Japanese Patent Laid-Open Nos. 6-80527 (Patent Document 5) and 7 No. 33616 (Patent Document 6) proposed an antibacterial agent comprising a novel antibacterial inorganic oxide colloid solution.
Although the problems listed in (1) to (6) have been solved to some extent by these inventions, there are cases where the deodorizing performance is insufficient. There is a need for odorants. In particular, sick house syndrome is seen as a problem in terms of living environment and living environment, and it can eliminate mites, fleas, etc., decompose odorous organic compounds such as aldehyde, toluene, xylene, etc. Therefore, it is required to remove harmful gases such as carbon monoxide gas and organic substances such as tar.

特開平2−225402号公報JP-A-2-225402 特開平3−275627号公報JP-A-3-275627 特開平1−258792号公報Japanese Patent Laid-Open No. 1-258792 特開平4−321628号公報Japanese Patent Laid-Open No. 4-321628 特開平6−80527号公報JP-A-6-80527 特開平7−33616号公報JP 7-33616 A

本発明者等は鋭意検討した結果、抗菌剤を構成する酸化チタンとシリカおよび/またはジルコニアとからな無機酸化物において、酸化チタンが結晶性酸化チタン、特にアナタース型酸化チタンである場合に抗菌性能と共に優れた光触媒作用、消臭効果を発現することを見出して本発明を完成するに至った。
即ち、本発明は、前記(1)〜(6)の問題点を解決し、抗菌性能を有するとともに高い消臭性能を有する抗菌性消臭剤を提供することを発明が解決しようとする課題としている。
The present inventors have a result of intensive studies, the inorganic oxide ing from titanium oxide and silica and / or zirconia constituting the antimicrobial agent, the antimicrobial when titanium oxide is crystalline titanium oxide, in particular anatase-type titanium oxide The present invention has been completed by finding that it exhibits excellent photocatalytic activity and deodorizing effect as well as performance.
That is, the present invention solves the above problems (1) to (6) and provides an antibacterial deodorant having antibacterial performance and high deodorization performance as a problem to be solved by the invention. Yes.

本発明に係る第1の抗菌性消臭剤は、金属成分と該金属成分以外の無機酸化物とから構成される無機酸化物微粒子であって、前記無機酸化物が酸化チタンとシリカおよび/またはジルコニアとを含んでなり、該酸化チタンが結晶性酸化チタンであることを特徴としている。
前記無機酸化物微粒子中の金属成分の含有量は、酸化物に換算して0.1〜30重量%の範囲にあることが好ましい。
前記無機酸化物微粒子の平均粒子径が2〜500nmの範囲にあることが好ましい。
The first antibacterial deodorant according to the present invention is inorganic oxide fine particles composed of a metal component and an inorganic oxide other than the metal component, wherein the inorganic oxide is titanium oxide, silica and / or Zirconia is included, and the titanium oxide is crystalline titanium oxide.
The content of the metal component in the inorganic oxide fine particles is preferably in the range of 0.1 to 30% by weight in terms of oxide.
The average particle diameter of the inorganic oxide fine particles is preferably in the range of 2 to 500 nm.

本発明に係る第2の抗菌性消臭剤は、金属成分と該金属成分以外の無機酸化物とから構成される無機酸化物微粒子が分散してなる無機酸化物微粒子分散液であって、前記無機酸化物が酸化チタンとシリカおよび/またはジルコニアとを含んでなり、該酸化チタンが結晶性酸化チタンであることを特徴としている。
前記無機酸化物微粒子中の金属成分の含有量は、酸化物に換算して0.1〜30重量%の範囲にあることが好ましい。
前記無機酸化物微粒子の平均粒子径が2〜500nmの範囲にあり、無機酸化物微粒子の濃度が酸化物に換算して1〜20重量%の範囲にあることが好ましい。
前記無機酸化物微粒子は無機酸化物のコロイド微粒子であることが好ましい。
The second antibacterial deodorant according to the present invention is an inorganic oxide fine particle dispersion obtained by dispersing inorganic oxide fine particles composed of a metal component and an inorganic oxide other than the metal component, The inorganic oxide comprises titanium oxide and silica and / or zirconia, and the titanium oxide is crystalline titanium oxide.
The content of the metal component in the inorganic oxide fine particles is preferably in the range of 0.1 to 30% by weight in terms of oxide.
The average particle diameter of the inorganic oxide fine particles is preferably in the range of 2 to 500 nm, and the concentration of the inorganic oxide fine particles is preferably in the range of 1 to 20% by weight in terms of oxide.
The inorganic oxide fine particles are preferably inorganic oxide colloidal fine particles.

本発明に係る無機酸化物微粒子分散液からなる抗菌性消臭剤の製造方法は、オルソチタン酸のゲルおよび/またはゾルに過酸化水素を添加してペルオキソチタン酸水溶液を得、金属成分の水溶液とケイ素化合物および/またはジルコニウム化合物を添加し、50℃以上で加熱処理して無機酸化物微粒子前駆体分散液を調製し、ついで、必要に応じてケイ素化合物および/またはジルコニウム化合物を添加した後、120〜280℃で水熱処理することを特徴とするものである。
また、本発明に係る無機酸化物微粒子からなる抗菌性消臭剤の製造方法は、前記得られた無機酸化物微粒子分散液を乾燥して無機酸化物微粒子粉末を得ることを特徴とするものである。
A method for producing an antibacterial deodorant comprising an inorganic oxide fine particle dispersion according to the present invention comprises adding hydrogen peroxide to a gel and / or sol of orthotitanic acid to obtain a peroxotitanic acid aqueous solution, and an aqueous solution of a metal component And a silicon compound and / or a zirconium compound, and heat treatment at 50 ° C. or higher to prepare an inorganic oxide fine particle precursor dispersion, and then, if necessary, adding a silicon compound and / or a zirconium compound, Hydrothermal treatment is performed at 120 to 280 ° C.
The method for producing an antibacterial deodorant comprising inorganic oxide fine particles according to the present invention is characterized by drying the obtained inorganic oxide fine particle dispersion to obtain inorganic oxide fine particle powder. is there.

本発明に係る抗菌性消臭剤は、抗菌性能に加えて、優れた光触媒作用と高い消臭効果を有している。   The antibacterial deodorant according to the present invention has excellent photocatalytic action and high deodorizing effect in addition to antibacterial performance.

以下、本発明の最良の形態について説明する。
[抗菌性消臭剤]
第1の抗菌性消臭剤
本発明に係る第1の抗菌性消臭剤は、金属成分と該金属成分以外の無機酸化物とから構成される無機酸化物微粒子であって、前記無機酸化物が酸化チタンとシリカおよび/またはジルコニアとを含んでなり、該酸化チタンが結晶性酸化チタンであることを特徴としている。
Hereinafter, the best mode of the present invention will be described.
[Antimicrobial deodorant]
1st antibacterial deodorant The 1st antibacterial deodorant which concerns on this invention is inorganic oxide microparticles | fine-particles comprised from a metal component and inorganic oxides other than this metal component, Comprising: The said inorganic oxide Comprises titanium oxide and silica and / or zirconia, wherein the titanium oxide is crystalline titanium oxide.

無機酸化物微粒子
本発明において無機酸化物微粒子は、金属成分と金属成分以外の無機酸化物とから構成されている。
Inorganic oxide fine particles In the present invention, the inorganic oxide fine particles are composed of a metal component and an inorganic oxide other than the metal component.

金属成分
本発明において金属成分としては抗菌機能と消臭機能を有する金属成分が用いられ、金属成分は、後述する無機酸化物との混合物または化合物の形で粒子を形成するか、あるいは、無機酸化物の粒子の表面に結合している。
このような金属成分としては、例えば、銀、銅、亜鉛、錫、鉛、ビスマス、カドミウム、クロム、水銀などが例示される。特に、銀、銅、亜鉛から選択される1種以上の金属成分は、抗菌機能、消臭機能、変色及び人体に対する安全性等の観点から好ましい。
抗菌性成分、消臭性成分としての銅イオンは青色を呈するが、銀イオンはそもそも無色である。しかし、銀イオンは光化学反応や酸化作用により金属銀の凝集体あるいは酸化物となり、褐色または黒色に変色する。特に紫外線の光化学反応による銀成分の変色を防止するためには、チタン、ジルコニウムなどを銀成分と組合わせて使用することが望ましい。これは、チタン、ジルコニウム等が紫外線吸収剤として作用して、銀成分の変色を防止する効果を有しているからである。
Metal component In the present invention, a metal component having an antibacterial function and a deodorizing function is used as the metal component, and the metal component forms particles in the form of a mixture or compound with an inorganic oxide described later, or an inorganic oxide. It is bound to the surface of the object particle.
Examples of such metal components include silver, copper, zinc, tin, lead, bismuth, cadmium, chromium, mercury, and the like. In particular, one or more metal components selected from silver, copper, and zinc are preferable from the viewpoint of antibacterial function, deodorizing function, discoloration, safety to human body, and the like.
Copper ions as antibacterial and deodorant components are blue, but silver ions are colorless in the first place. However, silver ions become an aggregate or oxide of metallic silver by a photochemical reaction or oxidation action, and turn brown or black. In particular, in order to prevent discoloration of the silver component due to the photochemical reaction of ultraviolet rays, it is desirable to use titanium, zirconium or the like in combination with the silver component. This is because titanium, zirconium or the like acts as an ultraviolet absorber and has an effect of preventing discoloration of the silver component.

本発明に係る第1の抗菌性消臭剤(無機酸化物微粒子)中の金属成分の量は、固形分を基準として酸化物換算で0.1〜30重量%、さらには0.1〜15重量%の範囲にあることが望ましい。金属成分が0.1重量%よりも少ない場合は、抗菌性能と消臭性能が充分に発現しない場合がある。また、金属成分を酸化物換算で30重量%よりも多くしても、30重量%の場合と比較して抗菌性能、消臭性能に大差がなく、また、銀成分などを多く含む場合は変色することがある。   The amount of the metal component in the first antibacterial deodorant (inorganic oxide fine particles) according to the present invention is 0.1 to 30% by weight in terms of oxide based on the solid content, and further 0.1 to 15%. It is desirable to be in the range of wt%. When the metal component is less than 0.1% by weight, the antibacterial performance and deodorizing performance may not be sufficiently exhibited. Moreover, even if the metal component is more than 30% by weight in terms of oxide, there is no great difference in antibacterial performance and deodorant performance compared to the case of 30% by weight, and discoloration occurs when a large amount of silver component is contained. There are things to do.

無機酸化物
次に、本発明において金属成分以外の無機酸化物は酸化チタンとシリカおよび/またはジルコニアとを含んで構成されている。
酸化チタンを含むことによって、光や熱などの外的エネルギーにより活性化し、消臭性能、光触媒活性が向上し、抗菌性能に優れた抗菌性消臭剤を得ることができる。
無機酸化物微粒子中の酸化チタンの含有量は50〜95重量%、さらには70〜90重量%の範囲にあることが好ましい。無機酸化物微粒子中の酸化チタンの含有量が50重量%未満の場合は、充分な消臭性能、光触媒活性が得られないことがある。無機酸化物微粒子中の酸化チタンの含有量が95重量%を越えると、後述するシリカおよび/またはジルコニアの含有量が少なすぎて安定性が低下し、無機酸化物微粒子分散液あるいは塗膜を形成するための塗布液中の無機酸化物微粒子が凝集することがあり、得られる塗膜の透明性が低下したり、剥離することがある。
Inorganic Oxide Next, in the present invention, the inorganic oxide other than the metal component includes titanium oxide and silica and / or zirconia.
By including titanium oxide, it is activated by external energy such as light and heat, and the deodorizing performance and photocatalytic activity are improved, so that an antibacterial deodorant excellent in antibacterial performance can be obtained.
The content of titanium oxide in the inorganic oxide fine particles is preferably in the range of 50 to 95% by weight, more preferably 70 to 90% by weight. When the content of titanium oxide in the inorganic oxide fine particles is less than 50% by weight, sufficient deodorizing performance and photocatalytic activity may not be obtained. When the content of titanium oxide in the inorganic oxide fine particles exceeds 95% by weight, the content of silica and / or zirconia described later is too small to deteriorate the stability, and an inorganic oxide fine particle dispersion or coating film is formed. In some cases, the inorganic oxide fine particles in the coating solution for agglomeration may agglomerate, and the transparency of the resulting coating film may be lowered or peeled off.

また、シリカを含むことによって、安定性が向上し、無機酸化物微粒子分散液あるいは塗膜を形成するための塗布液中の無機酸化物微粒子が高分散し、得られる塗膜は基材との密着性、透明性に優れている。
無機酸化物微粒子中のシリカの含有量は0〜30重量%、さらには1〜20重量%の範囲にあることが好ましい。無機酸化物微粒子がシリカを含有しない場合は、ジルコニアの含有量にもよるが、安定性が不充分で、前記したように得られる塗膜の透明性が低下したり、剥離することがある。無機酸化物微粒子中のシリカの含有量が30重量%を越えても、さらに安定性が向上することもなく、酸化チタンの含有量が低下することによって消臭性能が低下する傾向にある。
Further, by containing silica, the stability is improved, and the inorganic oxide fine particles in the coating liquid for forming the inorganic oxide fine particle dispersion or coating film are highly dispersed. Excellent adhesion and transparency.
The silica content in the inorganic oxide fine particles is preferably in the range of 0 to 30% by weight, more preferably 1 to 20% by weight. When the inorganic oxide fine particles do not contain silica, although depending on the content of zirconia, the stability is insufficient and the transparency of the coating film obtained as described above may be reduced or peeled off. Even when the content of silica in the inorganic oxide fine particles exceeds 30% by weight, the stability is not further improved, and the deodorizing performance tends to be lowered by the decrease in the content of titanium oxide.

また、ジルコニアを含むことによって、シリカと同様に安定性が向上するとともに、得られる抗菌性消臭剤の耐光性、耐性が向上し、用いる金属成分の種類によっては、例えば銀などでは変色を抑制することができる。
無機酸化物微粒子中のジルコニアの含有量は0〜30重量%、さらには1〜20重量%の範囲にあることが好ましい。無機酸化物微粒子がジルコニアを含有しない場合は、シリカの含有量にもよるが、安定性が不充分で、前記したような抗菌性消臭剤の耐光性、耐性が得られないことがあり、さらに、用いる金属成分の種類によっては変色を抑制できない場合がある。無機酸化物微粒子中のジルコニアの含有量が30重量%を越えても、さらに安定性が向上することもなく、また、さらに耐光性、耐性が向上することもない。
Further, by including zirconia, with silica as with stability is improved, light resistance of the antimicrobial deodorant obtained, resistance to weathering is improved, depending on the type of metal components to be used, for example, discoloration, etc. of silver Can be suppressed.
The content of zirconia in the inorganic oxide fine particles is preferably in the range of 0 to 30% by weight, more preferably 1 to 20% by weight. If the inorganic oxide fine particles containing no zirconia, depending on the silica content, stability is insufficient, light fastness of the antimicrobial deodorant as described above, be resistant weather resistance can not be obtained In addition, discoloration may not be suppressed depending on the type of metal component used. Even if the zirconia content of the inorganic oxide fine particles exceeds 30 wt%, no further improvement in stability, also further light resistance, are nor improved resistance to weather resistance.

前記酸化チタンは結晶性酸化チタンであり、特にアナタース型酸化チタンであることが好ましい。結晶性酸化チタンとしては、アナタース型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタンがある。
このような結晶性酸化チタンを含んでいると、光活性が向上するとともに高い消臭性能が得られる。特に、アナタース型酸化チタンは比較的低温の水熱処理で得ることができるとともに、得られる抗菌性消臭剤は消臭性能に優れている。
本発明の無機酸化物は更に、前記酸化チタン、シリカ、ジルコニア以外に、必要に応じてFe23、Sb25、WO3、SnO2、CeO2、MgO等を含んでいてもよい。このような酸化物を含んでいると、臭気の種類によっては消臭性能がさらに向上することがある。
The titanium oxide is crystalline titanium oxide, and particularly preferably anatase type titanium oxide. Examples of crystalline titanium oxide include anatase type titanium oxide, rutile type titanium oxide, and brookite type titanium oxide.
When such crystalline titanium oxide is contained, photoactivity is improved and high deodorizing performance is obtained. In particular, anatase-type titanium oxide can be obtained by hydrothermal treatment at a relatively low temperature, and the obtained antibacterial deodorant is excellent in deodorizing performance.
The inorganic oxide of the present invention may further contain Fe 2 O 3 , Sb 2 O 5 , WO 3 , SnO 2 , CeO 2 , MgO or the like, if necessary, in addition to the titanium oxide, silica, and zirconia. . When such an oxide is contained, the deodorizing performance may be further improved depending on the type of odor.

前記無機酸化物微粒子の平均粒子径は2〜500nm、さらには3〜250nmの範囲にあることが望ましい。無機酸化物微粒子の平均粒子径が大きくなるにつれて、これを用いて形成した塗膜、あるいは無機酸化物微粒子を混合して調製した用途(抗菌性消臭剤)製品の透明性が悪くなる傾向にある。このため、無機酸化物微粒子の平均粒子径が500nm以下にあることが好ましい。
無機酸化物微粒子の平均粒子径が2nm未満の場合は、容易に凝集することがあり、分散性、安定性に優れた抗菌性消臭剤を調製することができなかったり、抗菌性消臭剤としての性能が充分発揮されない場合がある。
The average particle diameter of the inorganic oxide fine particles is preferably in the range of 2 to 500 nm, more preferably 3 to 250 nm. As the average particle size of the inorganic oxide fine particles increases, the transparency of the coating film formed using this or the application (antibacterial deodorant) product prepared by mixing the inorganic oxide fine particles tends to deteriorate. is there. For this reason, it is preferable that the average particle diameter of the inorganic oxide fine particles is 500 nm or less.
When the average particle size of the inorganic oxide fine particles is less than 2 nm, it may easily aggregate and an antibacterial deodorant excellent in dispersibility and stability cannot be prepared. As a result, the performance of the

第2の抗菌性消臭剤
本発明に係る第2の抗菌性消臭剤は、金属成分と該金属成分以外の無機酸化物とから構成される無機酸化物微粒子が分散してなる無機酸化物微粒子分散液であって、前記無機酸化物が酸化チタンとシリカおよび/またはジルコニアとを含んでなり、該酸化チタンが結晶性酸化チタンであることを特徴としている。
無機酸化物微粒子としては前記した無機酸化物微粒子を用いることができる。
無機酸化物微粒子分散液中の無機酸化物微粒子の濃度は用途によって異なり、特に制限はないが、概ね、酸化物に換算して1〜20重量%、さらには1〜10重量%の範囲にあることが好ましい。無機酸化物微粒子の濃度が酸化物に換算して1重量%未満の場合は、濃度が低すぎて用途に制限があり、無機酸化物微粒子の濃度が酸化物に換算して20重量%を越えると、シリカおよび/またはジルコニアの含有量が少ない場合に安定性が不充分となることがある。
Second antibacterial deodorant The second antibacterial deodorant according to the present invention is an inorganic oxide in which inorganic oxide fine particles composed of a metal component and an inorganic oxide other than the metal component are dispersed. A fine particle dispersion characterized in that the inorganic oxide comprises titanium oxide and silica and / or zirconia, and the titanium oxide is crystalline titanium oxide.
The inorganic oxide fine particles described above can be used as the inorganic oxide fine particles.
The concentration of the inorganic oxide fine particles in the inorganic oxide fine particle dispersion varies depending on the application and is not particularly limited, but is generally in the range of 1 to 20% by weight, more preferably 1 to 10% by weight in terms of oxide. It is preferable. When the concentration of the inorganic oxide fine particles is less than 1% by weight in terms of oxide, the concentration is too low to limit the application, and the concentration of the inorganic oxide fine particles exceeds 20% by weight in terms of oxide. When the content of silica and / or zirconia is low, the stability may be insufficient.

前記無機酸化物微粒子分散液中の無機酸化物微粒子は無機酸化物のコロイド微粒子であることが好ましい。すなわち、無機酸化物微粒子が同種の電荷に帯電し、互いに反発しながら安定に分散したコロイド溶液であることが好ましい。無機酸化物微粒子が無機酸化物コロイド微粒子であると、透明性に優れた抗菌性消臭剤が得られ、多くの透明性が要求される用途に好適に用いることができる。   The inorganic oxide fine particles in the inorganic oxide fine particle dispersion are preferably inorganic oxide colloidal fine particles. That is, it is preferably a colloidal solution in which inorganic oxide fine particles are charged to the same kind of charge and stably dispersed while repelling each other. When the inorganic oxide fine particles are inorganic oxide colloidal fine particles, an antibacterial deodorant excellent in transparency can be obtained, and can be suitably used for applications requiring a lot of transparency.

[抗菌性消臭剤の製造方法]
続いて、上記した抗菌性消臭剤の好ましい製造方法について説明する。
本発明の抗菌性消臭剤である無機酸化物微粒子と無機酸化物微粒子分散液は、例えば、特開平5−132309号公報に記載された複合酸化物コロイド溶液の製造方法に準じて調製することができる。即ち、アルカリ金属、アンモニウムまたは有機塩基の珪酸塩と、アルカリ可溶の無機化合物と、抗菌性金属成分の水溶液とを、pH10以上のアルカリ水溶液中に同時に添加し、抗菌性金属成分を含有する無機酸化物コロイド粒子を生成させる。
[Production method of antibacterial deodorant]
Then, the preferable manufacturing method of an above-mentioned antibacterial deodorant is demonstrated.
The inorganic oxide fine particles and the inorganic oxide fine particle dispersion, which are antibacterial deodorants of the present invention, should be prepared, for example, according to the method for producing a composite oxide colloid solution described in JP-A-5-132309. Can do. That is, an inorganic material containing an antibacterial metal component by simultaneously adding an alkali metal, ammonium or organic base silicate, an alkali-soluble inorganic compound, and an aqueous solution of an antibacterial metal component into an alkaline aqueous solution having a pH of 10 or more. Oxide colloidal particles are produced.

抗菌性消臭剤の第1の製造方法
本発明に係る抗菌性消臭剤の好ましい製造方法では、先ず、特開昭63−270620号公報に記載された方法に準じて無定型の酸化チタンを含む複合体微粒子(無機酸化物微粒子前駆体)分散液を調製する。次いで高温で水熱処理し、結晶性酸化チタンを含む無機酸化物微粒子分散液とする。
First production method of antibacterial deodorant In a preferred production method of the antibacterial deodorant according to the present invention, first, an amorphous titanium oxide is prepared according to the method described in JP-A-63-270620. A composite fine particle (inorganic oxide fine particle precursor) dispersion liquid is prepared. Next, hydrothermal treatment is performed at a high temperature to obtain an inorganic oxide fine particle dispersion containing crystalline titanium oxide.

具体的には、まず、従来公知の方法によってチタン化合物を加水分解してオルソチタン酸のゾルまたはゲルを調製する。オルソチタン酸のゲルは、例えば、チタン化合物として塩化チタン、硫酸チタン、硫酸チタニルなどのチタン塩を使用し、この水溶液にアルカリを加えて中和し、洗浄することによって得ることができる。また、オルソチタン酸のゾルは、チタン塩の水溶液をイオン交換樹脂に通して陰イオンを除去するか、あるいはチタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシドなどのチタンアルコキシドの水および/または有機溶媒に酸またはアルカリを加えて加水分解することによって得ることができる。   Specifically, first, a titanium compound is hydrolyzed by a conventionally known method to prepare an orthotitanic acid sol or gel. The orthotitanic acid gel can be obtained, for example, by using a titanium salt such as titanium chloride, titanium sulfate, or titanyl sulfate as a titanium compound, neutralizing the aqueous solution by adding an alkali, and washing. In addition, the sol of orthotitanic acid is used to remove anions by passing an aqueous solution of a titanium salt through an ion exchange resin, or water of titanium alkoxide such as titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide and the like. It can be obtained by adding an acid or alkali to an organic solvent and hydrolyzing it.

中和あるいは加水分解する際のチタン化合物の溶液のpHは6〜13の範囲にあることが好ましい。チタン化合物溶液のpHが上記範囲にあると比表面積の高いオルソチタン酸のゲルまたはゾルが得られる。
この段階で得られたゲルまたはゾル中のオルソチタン酸粒子は、非晶質であることが好ましい。
The pH of the titanium compound solution during neutralization or hydrolysis is preferably in the range of 6-13. When the pH of the titanium compound solution is in the above range, a gel or sol of orthotitanic acid having a high specific surface area can be obtained.
The orthotitanic acid particles in the gel or sol obtained at this stage are preferably amorphous.

次いで、オルソチタン酸のゲルまたはゾルあるいはこれらの混合物に過酸化水素を添加してオルソチタン酸のゲルまたはゾルを溶解してペルオキソチタン酸水溶液を調製する。
ペルオキソチタン酸水溶液を調製するに際しては、オルソチタン酸のゲルまたはゾルあるいはこれらの混合物を、必要に応じて約50℃以上、好ましくは60〜100℃の温度範囲で加熱し、攪拌することが好ましい。また、この際、オルソチタン酸の濃度が高くなり過ぎると、その溶解に長時間を必要とし、さらに未溶解のゲルが沈殿したり、あるいは得られるペルオキソチタン酸水溶液が粘調になることがある。このため、TiO2濃度としては、約10重量%以下であることが好ましく、さらに約5重量%以下であることが望ましい。
Next, hydrogen peroxide is added to the orthotitanic acid gel or sol or a mixture thereof to dissolve the orthotitanic acid gel or sol to prepare a peroxotitanic acid aqueous solution.
In preparing the peroxotitanic acid aqueous solution, it is preferable to heat and stir the orthotitanic acid gel or sol or a mixture thereof in a temperature range of about 50 ° C. or higher, preferably 60 to 100 ° C., if necessary. . In this case, if the concentration of orthotitanic acid becomes too high, it takes a long time to dissolve the solution, and undissolved gel may precipitate, or the resulting peroxotitanic acid aqueous solution may become viscous. . For this reason, the TiO 2 concentration is preferably about 10% by weight or less, and more preferably about 5% by weight or less.

添加する過酸化水素の量は、H22/TiO2(オルソチタン酸はTiO2に換算)重量比で1以上であれば、オルソチタン酸を完全に溶解することができる。H22/TiO2重量比が1未満であると、オルソチタン酸が完全には溶解せず、未反応のゲルまたはゾルが残存することがある。また、H22/TiO2重量比は大きいほど、オルソチタン酸の溶解速度は大きく反応時間は短時間で終了するが、あまり過剰に過酸化水素を用いても、未反応の過酸化水素が系内に残存して経済的でない。このような量で過酸化水素を用いると、オルソチタン酸は0.5〜20時間程度で溶解する。 If the amount of hydrogen peroxide to be added is 1 or more in terms of the weight ratio of H 2 O 2 / TiO 2 (ortho titanic acid is converted to TiO 2 ), the ortho titanic acid can be completely dissolved. If the H 2 O 2 / TiO 2 weight ratio is less than 1, orthotitanic acid may not be completely dissolved, and an unreacted gel or sol may remain. In addition, as the H 2 O 2 / TiO 2 weight ratio is larger, the dissolution rate of orthotitanic acid is larger and the reaction time is completed in a shorter time. Remains in the system and is not economical. When hydrogen peroxide is used in such an amount, orthotitanic acid dissolves in about 0.5 to 20 hours.

ついで、ペルオキソチタン酸水溶液に金属成分の水溶液とケイ素化合物および/またはジルコニウム化合物の水溶液あるいは分散液を添加し、50〜100℃の温度で加熱処理して無機酸化物微粒子前駆体分散液を調製する。
ペルオキソチタン酸水溶液の濃度は、酸化チタンに換算して0.1〜5重量%、さらには0.2〜3重量%の範囲にあることが好ましい。チタン酸水溶液の濃度が酸化チタンに換算して0.1重量%未満の場合は収率が低く、生産効率が低下する。チタン酸水溶液の濃度が酸化チタンに換算して5重量%を越えると、得られる無機酸化物微粒子前駆体粒子の粒子径が不均一であったり、凝集粒子となり、最終的に得られる抗菌性消臭剤の透明性や密着性の他、抗菌性能、消臭性能が不充分となることがある。
Next, an aqueous solution of a metal component and an aqueous solution or dispersion of a silicon compound and / or a zirconium compound are added to a peroxotitanic acid aqueous solution, and heat treatment is performed at a temperature of 50 to 100 ° C. to prepare an inorganic oxide fine particle precursor dispersion. .
The concentration of the peroxotitanic acid aqueous solution is preferably in the range of 0.1 to 5% by weight, more preferably 0.2 to 3% by weight in terms of titanium oxide. When the concentration of the titanic acid aqueous solution is less than 0.1% by weight in terms of titanium oxide, the yield is low and the production efficiency is lowered. When the concentration of the titanic acid aqueous solution exceeds 5% by weight in terms of titanium oxide, the resulting inorganic oxide fine particle precursor particles have non-uniform particle sizes or aggregated particles, and the antibacterial antibacterial product finally obtained is obtained. In addition to the transparency and adhesion of the odorant, antibacterial performance and deodorization performance may be insufficient.

金属成分の水溶液としては銀、銅、亜鉛、錫、鉛、ビスマス、カドミウム、クロム、水銀等の硝酸塩、硫酸塩、塩化物、錯塩等の水溶液が挙げられる。このなかでは、酸化亜鉛、酸化銀あるいは酸化銅などをアンモニア水に溶解して得られる亜鉛、銀あるいは銅などのアンミン錯塩水溶液は好適に用いることができる。
金属成分の使用量は、最終的に得られる無機酸化物微粒子中の金属成分の含有量が酸化物に換算して0.1〜30重量%、さらには0.1〜15重量%の範囲となるように用いることが好ましい。
Examples of the aqueous solution of the metal component include aqueous solutions of nitrates such as silver, copper, zinc, tin, lead, bismuth, cadmium, chromium and mercury, sulfates, chlorides and complex salts. Among these, an aqueous solution of an ammine complex salt such as zinc, silver or copper obtained by dissolving zinc oxide, silver oxide, copper oxide or the like in aqueous ammonia can be suitably used.
The use amount of the metal component is such that the content of the metal component in the finally obtained inorganic oxide fine particles is 0.1 to 30% by weight, more preferably 0.1 to 15% by weight in terms of oxide. It is preferable to use it as follows.

また、ケイ素化合物としては、酸化チタンと複合化することができ、分散性、分散安定性を向上することができ、最終的に得られる無機酸化物微粒子を構成する酸化チタンが結晶性酸化チタンであれば特に制限はなく、従来公知のケイ素化合物を用いることができる。例えば、テトラアルコキシシラン等の有機ケイ素化合物、珪酸アルカリの他、珪酸アルカリを脱アルカリして得られる酸性珪酸液、シリカゾル等が挙げられる。特に、シリカゾルは、最終的に得られる無機酸化物微粒子の分散性、分散安定性が高く、結晶性の高い結晶性酸化チタンを含んだ無機酸化物微粒子が得られるので好ましい。
ケイ素化合物の使用量は、最終的に得られる無機酸化物微粒子中の珪素の含有量が酸化物(シリカ)に換算して1〜30重量%、さらには2〜20重量%の範囲となるように用いることが好ましい。
Moreover, as a silicon compound, it can be compounded with titanium oxide, dispersibility and dispersion stability can be improved, and the titanium oxide constituting the finally obtained inorganic oxide fine particles is crystalline titanium oxide. There is no particular limitation as long as it is a conventional silicon compound. For example, in addition to organosilicon compounds such as tetraalkoxysilane and alkali silicate, acidic silicate liquid obtained by dealkalizing alkali silicate, silica sol and the like can be mentioned. In particular, silica sol is preferable because inorganic oxide fine particles containing crystalline titanium oxide having high dispersibility and dispersion stability of the finally obtained inorganic oxide fine particles and high crystallinity can be obtained.
The amount of silicon compound used is such that the silicon content in the finally obtained inorganic oxide fine particles is in the range of 1 to 30% by weight, more preferably 2 to 20% by weight in terms of oxide (silica). It is preferable to use for.

また、ジルコニウム化合物としては、酸化チタンと複合化することができ、分散性、分散安定性に加えて耐光性、耐性を向上することができ、最終的に得られる無機酸化物微粒子を構成する酸化チタンが結晶性酸化チタンであれば特に制限はなく、従来公知のジルコニウム化合物を用いることができる。例えば、テトラアルコキシジルコニウム等の有機ジルコニウム化合物、塩化ジルコニウム等のジルコニウム塩、ジルコニアゾル等が挙げられる。特に、ジルコニアゾルは、最終的に得られる無機酸化物微粒子の耐候性が高く、結晶性の高い結晶性酸化チタンを含んだ無機酸化物微粒子が得られるので好ましい。
ジルコニウム化合物の使用量は、最終的に得られる無機酸化物微粒子中のジルコニウムの含有量が酸化物(ジルコニア)に換算して1〜30重量%、さらには2〜20重量%の範囲となるように用いることが好ましい。
As the zirconium compound can be complexed with titanium oxide, dispersibility, dispersion in addition to the stability can be improved light resistance, resistance to weather resistance, constituting the finally obtained inorganic oxide fine particles If the titanium oxide to perform is crystalline titanium oxide, there will be no restriction | limiting in particular, A conventionally well-known zirconium compound can be used. For example, organic zirconium compounds such as tetraalkoxyzirconium, zirconium salts such as zirconium chloride, zirconia sol and the like can be mentioned. In particular, zirconia sol, weather resistance of the finally obtained inorganic oxide fine particles is high, since highly crystalline I containing crystalline titanium oxide fine inorganic oxide particles can be obtained.
The amount of zirconium compound used is such that the zirconium content in the inorganic oxide fine particles finally obtained is in the range of 1 to 30% by weight, more preferably 2 to 20% by weight in terms of oxide (zirconia). It is preferable to use for.

次に、前記加熱処理温度が50℃未満の場合は、得られる無機酸化物微粒子前駆体の安定性、分散安定性が不充分で、ついで水熱処理する際に無機酸化物微粒子前駆体が凝集する場合があり、加熱処理温度が100℃を越えると、金属成分の使用量によっては最終的に得られる無機酸化物微粒子の抗菌性能、消臭性能が不充分となることがある。   Next, when the heat treatment temperature is less than 50 ° C., the resulting inorganic oxide fine particle precursor has insufficient stability and dispersion stability, and then the inorganic oxide fine particle precursor aggregates during hydrothermal treatment. When the heat treatment temperature exceeds 100 ° C., the antibacterial performance and deodorization performance of the finally obtained inorganic oxide fine particles may be insufficient depending on the amount of the metal component used.

このようにして得られた無機酸化物微粒子前駆体分散液に、再度、ケイ素化合物および/またはジルコニウム化合物を添加した後、120〜280℃、好ましくは140〜250℃の温度で水熱処理する。また、このときの無機酸化物微粒子前駆体分散液の濃度は、酸化物に換算して0.1〜20重量%、さらには0.5〜10重量%の範囲にあることが好ましい。
ケイ素化合物および/またはジルコニウム化合物としては前記したと同様のものを用いることができ、なかでもシリカゾル、ジルコニアゾルは好適に用いることができる。ここで、ケイ素化合物および/またはジルコニウム化合物を用いると、結晶性酸化チタン含有粒子とするために高温で水熱処理しても無機酸化物微粒子前駆体が凝集することなく単分散した無機酸化物微粒子の抗菌性消臭剤を得ることができる。
ケイ素化合物および/またはジルコニウム化合物の使用量は、前記したと同様に、最終的に得られる無機酸化物微粒子中の珪素および/またはジルコニウムの含有量が酸化物に換算して1〜30重量%、さらには2〜20重量%の範囲となるように用いることが好ましい。
After adding the silicon compound and / or the zirconium compound again to the inorganic oxide fine particle precursor dispersion liquid thus obtained, hydrothermal treatment is performed at a temperature of 120 to 280 ° C, preferably 140 to 250 ° C. Moreover, it is preferable that the density | concentration of the inorganic oxide fine particle precursor dispersion liquid at this time exists in the range of 0.1-20 weight% in conversion of an oxide, Furthermore, 0.5-10 weight%.
As the silicon compound and / or zirconium compound, the same compounds as described above can be used, and among them, silica sol and zirconia sol can be preferably used. Here, when a silicon compound and / or a zirconium compound is used, in order to obtain crystalline titanium oxide-containing particles, the inorganic oxide fine particles monodispersed without aggregation of the inorganic oxide fine particle precursors even when hydrothermally treated at a high temperature. An antibacterial deodorant can be obtained.
The amount of silicon compound and / or zirconium compound used is the same as described above, and the content of silicon and / or zirconium in the finally obtained inorganic oxide fine particles is 1 to 30% by weight in terms of oxide, Furthermore, it is preferable to use so that it may become the range of 2-20 weight%.

水熱処理温度が120℃未満の場合は、無機酸化物微粒子中の酸化チタンが結晶性にならず、抗菌性消臭剤の消臭性能、光触媒活性に伴う消臭性能が不充分となる。水熱処理温度が280℃を超えると金属成分の含有量によっては抗菌性能、消臭性能が不充分となることがある。
なお、水熱処理時間は、水熱処理温度によって異なり、得られる無機酸化物微粒子中に結晶性酸化チタンが認められれば特に制限はないが、概ね1〜48時間の範囲である。
When the hydrothermal treatment temperature is less than 120 ° C., the titanium oxide in the inorganic oxide fine particles does not become crystalline, and the deodorizing performance of the antibacterial deodorant and the deodorizing performance associated with the photocatalytic activity are insufficient. When the hydrothermal treatment temperature exceeds 280 ° C., the antibacterial performance and deodorization performance may be insufficient depending on the content of the metal component.
The hydrothermal treatment time varies depending on the hydrothermal treatment temperature, and is not particularly limited as long as crystalline titanium oxide is observed in the obtained inorganic oxide fine particles, but is generally in the range of 1 to 48 hours.

抗菌性消臭剤の第2の製造方法
好ましい第2方法として、本願の出願人が先に出願した特開平6−80527号公報に記載した抗菌性無機酸化物コロイド溶液からなる抗菌剤の製造方法において、負の電荷を有する無機酸化物コロイド粒子が分散したコロイド溶液に金属成分の水溶液を添加した後、該コロイド溶液を60℃以上、好ましくは100〜200℃で加熱処理して無機酸化物微粒子前駆体分散液を調製し、ついで、必要に応じてケイ素化合物および/またはジルコニウム化合物を添加した後、第1の方法と同様に120〜280℃、好ましくは140〜250℃の温度で水熱処理する方法がある。
Second production method of antibacterial deodorant As a preferred second method, a method for producing an antibacterial agent comprising an antibacterial inorganic oxide colloid solution described in JP-A-6-80527 previously filed by the applicant of the present application In addition, an aqueous solution of a metal component is added to a colloidal solution in which inorganic oxide colloidal particles having a negative charge are dispersed, and then the colloidal solution is heat-treated at 60 ° C. or higher, preferably 100 to 200 ° C. After preparing a precursor dispersion and then adding a silicon compound and / or a zirconium compound as necessary, hydrothermal treatment is performed at a temperature of 120 to 280 ° C., preferably 140 to 250 ° C., as in the first method. There is a way.

金属成分の水溶液としては、第1の方法と同様、銀、銅、亜鉛、錫、鉛、ビスマス、カドミウム、クロム、水銀等の硝酸塩、硫酸塩、塩化物、錯塩等の水溶液が挙げられる。なかでも、酸化亜鉛、酸化銀あるいは酸化銅などをアンモニア水に溶解して得られる亜鉛、銀あるいは銅などのアンミン錯塩水溶液は好適に用いることができる。
金属成分の使用量は、最終的に得られる無機酸化物微粒子中の金属成分の含有量が酸化物に換算して0.1〜30重量%、さらには0.1〜15重量%の範囲となるように用いることが好ましい。
ケイ素化合物および/またはジルコニウム化合物の種類および使用量は前記したと同様である。
Examples of the aqueous solution of the metal component include aqueous solutions of nitrates such as silver, copper, zinc, tin, lead, bismuth, cadmium, chromium and mercury, sulfates, chlorides and complex salts, as in the first method. Among them, an aqueous solution of an ammine complex salt such as zinc, silver or copper obtained by dissolving zinc oxide, silver oxide, copper oxide or the like in aqueous ammonia can be preferably used.
The use amount of the metal component is such that the content of the metal component in the finally obtained inorganic oxide fine particles is 0.1 to 30% by weight, more preferably 0.1 to 15% by weight in terms of oxide. It is preferable to use it as follows.
The type and amount of the silicon compound and / or zirconium compound are the same as described above.

上記方法で得られた無機酸化物微粒子分散液の分散媒である水は、限外濾過膜法等従来公知の方法により有機溶媒と置換して、有機溶媒を分散媒とする抗菌性無機酸化物コロイド溶液からなる抗菌性消臭剤とすることも可能である。有機溶媒としては、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、エチレングリコール等のグリコール類、酢酸メチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、カルボン酸類およびN,N-ジメチルホルムアミド等を使用することができる。これらの有機溶媒は2種以上を混合して用いることもできる。   Water, which is a dispersion medium of the inorganic oxide fine particle dispersion obtained by the above method, is replaced with an organic solvent by a conventionally known method such as an ultrafiltration membrane method, and an antibacterial inorganic oxide using the organic solvent as a dispersion medium An antibacterial deodorant made of a colloidal solution can also be used. Examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, cellosolves such as methyl cellosolve and ethyl cellosolve, glycols such as ethylene glycol, esters such as methyl acetate and ethyl acetate, acetone, and methyl ethyl ketone. Ketones, ethers such as diethyl ether and tetrahydrofuran, aromatic hydrocarbons such as toluene and xylene, carboxylic acids and N, N-dimethylformamide can be used. These organic solvents can be used in combination of two or more.

また、これらの無機酸化物微粒子分散液は、限外濾過膜法等公知の方法により所望の濃度に調整される。
このようにして本発明に係る第2の抗菌性消臭剤(無機酸化物微粒子分散液)を得ることができる。また、得られた無機酸化物微粒子分散液を適宜乾燥することによって本発明に係る第1の抗菌性消臭剤(無機酸化物微粒子粉末)を得ることができる。
以下に実施例を示し、本発明を更に具体的に説明する。
These inorganic oxide fine particle dispersions are adjusted to a desired concentration by a known method such as an ultrafiltration membrane method.
Thus, the second antibacterial deodorant (inorganic oxide fine particle dispersion) according to the present invention can be obtained. Moreover, the 1st antibacterial deodorant (inorganic oxide fine particle powder) based on this invention can be obtained by drying the obtained inorganic oxide fine particle dispersion suitably.
Hereinafter, the present invention will be described more specifically with reference to examples.

抗菌性消臭剤(1)の調製
硫酸チタニル2水塩結晶(テイカ(株)製:TM結晶)6.25kgを水33.75kgに溶解した。ついで、濃度15重量%のアンモニア水をpHが約7になるまで加え、オルトチタン酸のゲルを調製し、濾過し、100kgの純水を掛けて洗浄した。洗浄したオルトチタン酸のゲルを水に分散させ全量160kgのスラリーとした。ついで、スラリーを50℃に昇温し、濃度35重量%の過酸化水素水12.32kgを加え、10分間撹拌した後、90℃に昇温し、2時間加熱処理してTiO2として濃度1.2重量%のペルオキソチタン酸水溶液を調製した。
Preparation of antibacterial deodorant (1 ) 6.25 kg of titanyl sulfate dihydrate crystal (manufactured by Teika Co., Ltd .: TM crystal) was dissolved in 33.75 kg of water. Next, ammonia water having a concentration of 15% by weight was added until the pH reached about 7, to prepare a gel of orthotitanic acid, filtered, and washed with 100 kg of pure water. The washed orthotitanic acid gel was dispersed in water to make a total slurry of 160 kg. Next, the temperature of the slurry was raised to 50 ° C., 12.32 kg of 35% by weight hydrogen peroxide solution was added, stirred for 10 minutes, heated to 90 ° C., and heat-treated for 2 hours to obtain a TiO 2 concentration of 1 A 2 wt% aqueous peroxotitanic acid solution was prepared.

別途、18.24gの硝酸銅Cu(NO32・3H2Oに水3648gを加えて、濃度0.5重量%の硝酸銅水溶液を調製した。次に、TiO2濃度が1重量%のペルオキソチタン酸水溶液4.0kgをビーカーに採取し、これを攪拌しながら温度を50℃に調製した。この時、pHは7.9であった。このペルオキソチタン酸水溶液に前記硝酸銅水溶液を10g/minの速度で添加した。硝酸銅水溶液の添加によりペルオキソチタン水溶液のpHが低下し始めたところで、陰イオン交換樹脂(三菱化学(株)製)をpH7.9を維持するように少量ずつ添加し、全硝酸銅水溶液の添加が終了するまで、この操作を継続した。陰イオン交換樹脂の全使用量は310gであり、また、ペルオキソチタン水溶液の最終pHは8.1であった。ついで、95℃で1時間加熱して無機酸化物微粒子前駆体分散液を調製した。 Separately, 3648 g of water was added to 18.24 g of copper nitrate Cu (NO 3 ) 2 .3H 2 O to prepare a copper nitrate aqueous solution having a concentration of 0.5% by weight. Next, 4.0 kg of a peroxotitanic acid aqueous solution having a TiO 2 concentration of 1% by weight was collected in a beaker, and the temperature was adjusted to 50 ° C. while stirring the solution. At this time, the pH was 7.9. The copper nitrate aqueous solution was added to the peroxotitanic acid aqueous solution at a rate of 10 g / min. When the pH of the peroxotitanium aqueous solution began to drop due to the addition of the copper nitrate aqueous solution, anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was added little by little to maintain pH 7.9, and the addition of the total copper nitrate aqueous solution This operation was continued until. The total amount of anion exchange resin used was 310 g, and the final pH of the aqueous peroxotitanium solution was 8.1. Subsequently, it heated at 95 degreeC for 1 hour, and prepared the inorganic oxide fine particle precursor dispersion liquid.

ついで、ペルオキソチタン酸水溶液を限外濾過膜でTiO2重量に対して200倍の水で洗浄した後、シリカゾル(触媒化成工業(株)製:SN−350、平均粒子径10nm、固形分濃度16重量%)62.5gを添加し、155℃で16時間水熱処理した後、濃縮し、固形分濃度10重量%の安定な銅担持無機酸化物微粒子(1)分散液を得た。
銅担持無機酸化物微粒子(1)分散液は1ケ月放置しても安定であった。無機酸化物微粒子(1)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(1)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(1)分散液を抗菌性消臭剤(1)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Next, the aqueous peroxotitanic acid solution was washed with water 200 times the weight of TiO 2 with an ultrafiltration membrane, and then silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: SN-350, average particle size 10 nm, solid content concentration 16 62.5 g (% by weight) was added, hydrothermally treated at 155 ° C. for 16 hours, and then concentrated to obtain a stable copper-supported inorganic oxide fine particle (1) dispersion having a solid content concentration of 10% by weight.
The copper-supported inorganic oxide fine particle (1) dispersion was stable even after being left for 1 month. Table 1 shows the results obtained by measuring the supported amount of the metal component in the inorganic oxide fine particles (1) in terms of oxide and the average particle size of the inorganic oxide fine particles (1). Further, the dispersion of the inorganic oxide fine particles (1) was used as an antibacterial deodorant (1), antibacterial performance, deodorization performance and photocatalytic performance were evaluated, and the results are shown in Table 1.

(1)抗菌性の評価
大腸菌試験:50mlのリン酸緩衝液に大腸菌(Escherichia coli IFO 3972)を懸濁させ、抗菌性消臭剤(1)0.1gを添加し、室温で1時間、330rpmで撹拌した後、生菌数(B)を測定した。
別途、上記において抗菌性消臭剤(1)を添加しない空試験として、大腸菌添加1時間後の生菌数(A)を測定し、増減値差(LogA−LogB)として評価し、結果を表1に示した。
なお、前記リン酸緩衝液とは、リン酸2水素カリウム34gを1000mlの精製水に溶解し、水酸化ナトリウムでpHを7.2に調製した液を濃度0.85重量%の塩化ナトリウム水溶液で800倍に希釈した溶液である。
黄色ぶどう球菌試験:大腸菌に代えて黄色ぶどう球菌(Staphylococcus aureuse IFO 12732)を用いた以外は(A)大腸菌試験と同様にして評価し、結果を表1に示した。
(1) Antibacterial evaluation
Escherichia coli test : Escherichia coli IFO 3972 is suspended in 50 ml of phosphate buffer, 0.1 g of antibacterial deodorant (1) is added, and the mixture is stirred at 330 rpm for 1 hour at room temperature. The number (B) was measured.
Separately, as a blank test in which antibacterial deodorant (1) was not added in the above, the viable cell count (A) was measured 1 hour after addition of E. coli and evaluated as the difference in increase / decrease (LogA-LogB). It was shown in 1.
The phosphate buffer is a solution prepared by dissolving 34 g of potassium dihydrogen phosphate in 1000 ml of purified water and adjusting the pH to 7.2 with sodium hydroxide with a 0.85 wt% sodium chloride aqueous solution. It is a solution diluted 800 times.
S. aureus test : Evaluation was carried out in the same manner as in the (A) E. coli test, except that Staphylococcus aureuse IFO 12732 was used instead of E. coli, and the results are shown in Table 1.

(2)消臭性能の評価
抗菌性消臭剤(1)を105℃で2時間乾燥した後、20℃、相対湿度65%で24時間湿度調整した。ついで、湿度調整した抗菌性消臭剤(1)粉末1gを5Lのテトラバッグに入れ、濃度14ppmのアセトアルデヒド臭気ガス3Lを封入し、2時間後に検知管(ガステック社製:92L)にてアセトアルデヒド濃度を測定し、アセトアルデヒドの減少率を消臭率として表1に示した。
(2) Evaluation of deodorant performance The antibacterial deodorant (1) was dried at 105 ° C for 2 hours, and then the humidity was adjusted at 20 ° C and relative humidity of 65% for 24 hours. Next, 1 g of the antibacterial deodorant (1) whose humidity has been adjusted is put in a 5 L tetra bag, 3 L of acetaldehyde odor gas with a concentration of 14 ppm is sealed, and 2 hours later, acetaldehyde is detected in a detector tube (92 L made by GASTEC). The concentration was measured, and the reduction rate of acetaldehyde is shown in Table 1 as the deodorization rate.

(3)光触媒性能の評価
抗菌性消臭剤(1)を105℃で2時間乾燥した後、20℃、相対湿度65%で24時間湿度調整した。ついで、2本のブラックライト蛍光ランプ(東芝(株)製:FL20S-BLB)で紫外線を24時間照射した後、抗菌性消臭剤(1)粉末0.13gを5Lのテトラバッグに入れ、濃度100ppmのアセトアルデヒド臭気ガス3Lを封入し、5時間後に検知管(ガステック社製:92L)にてアセトアルデヒド濃度を測定し、アセトアルデヒドの減少率を消臭率として表1に示した。
(3) Evaluation of photocatalytic performance After the antibacterial deodorant (1) was dried at 105 ° C for 2 hours, the humidity was adjusted at 20 ° C and relative humidity of 65% for 24 hours. Next, after irradiating with ultraviolet light with two black light fluorescent lamps (Toshiba Corp .: FL20S-BLB) for 24 hours, 0.13 g of antibacterial deodorant (1) powder was put into a 5 L tetra bag, and the concentration 100 L of acetaldehyde odor gas of 100 ppm was sealed, and after 5 hours, the acetaldehyde concentration was measured with a detector tube (manufactured by Gastec: 92 L), and the reduction rate of acetaldehyde was shown in Table 1 as the deodorization rate.

(4)耐候性
ウエザーメーター(ガス試験機器(株)製)を用いて抗菌性消臭剤(1)粉末に100時間紫外線を照射して耐候試験を行い、変色度合いを観察した。
○・・・変色が見られないもの
△・・・変色が僅かに見られるもの
×・・・変色が見られるもの
(4) Weather resistance Using a weather meter (manufactured by Gas Testing Equipment Co., Ltd.), the antibacterial deodorant (1) powder was irradiated with ultraviolet rays for 100 hours to conduct a weather resistance test, and the degree of discoloration was observed.
○ ・ ・ ・ No discoloration △ ・ ・ ・ Slight discoloration × ・ ・ ・ Discoloration

(5)変色性
濃度1重量%に調製した抗菌性消臭剤(1)に10cm×10cmのガーゼを浸し、太陽光のもとで乾燥した。乾燥過程で紫外線のために遊離Agイオンが還元されてAgとなり、褐色乃至黒色に変化する度合いを観察した。
○・・・変色が見られないもの。
△・・・変色が僅かに見られるもの
×・・・変色が見られるもの。
(5) Discoloration 10 cm × 10 cm of gauze was dipped in the antibacterial deodorant (1) prepared to a concentration of 1% by weight and dried under sunlight. In the drying process, the degree to which free Ag ions were reduced to Ag due to ultraviolet rays and changed from brown to black was observed.
○ ・ ・ ・ No discoloration.
Δ: A slight discoloration is observed ×: Discoloration is observed

抗菌性消臭剤(2)の調製
実施例1において、水熱処理温度を200℃とした以外は同様にして固形分濃度10重量%の安定な銅担持無機酸化物微粒子(2)分散液を得た。
銅担持無機酸化物微粒子(2)分散液は1ケ月放置しても安定であった。無機酸化物微粒子(2)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(2)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(2)分散液を抗菌性消臭剤(2)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (2) A stable copper-supported inorganic oxide fine particle (2) dispersion having a solid concentration of 10% by weight was obtained in the same manner as in Example 1 except that the hydrothermal treatment temperature was 200 ° C. It was.
The copper-supported inorganic oxide fine particle (2) dispersion was stable even after being left for 1 month. Table 1 shows the results obtained by measuring the supported amount of metal component in the oxide of inorganic oxide (2) in terms of oxide and the average particle diameter of the inorganic oxide fine particles (2). Further, the dispersion of inorganic oxide fine particles (2) was used as an antibacterial deodorant (2), and antibacterial performance, deodorization performance and photocatalytic performance were evaluated, and the results are shown in Table 1.

抗菌性消臭剤(3)の調製
実施例1において、硝酸銅Cu(NO32・3H2Oの代わりに14.6gの硝酸亜鉛Zn(NO32・6H2Oを用いた以外は同様にして固形分濃度10重量%の亜鉛担持無機酸化物微粒子(3)分散液を得た。
亜鉛担持無機酸化物微粒子(3)分散液は1ケ月放置しても安定であった。無機酸化物微粒子(3)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(3)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(3)分散液を抗菌性消臭剤(3)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (3) In Example 1, except that 14.6 g of zinc nitrate Zn (NO 3 ) 2 · 6H 2 O was used instead of copper nitrate Cu (NO 3 ) 2 · 3H 2 O In the same manner, a zinc-supported inorganic oxide fine particle (3) dispersion having a solid concentration of 10% by weight was obtained.
The zinc-supported inorganic oxide fine particle (3) dispersion was stable even after being left for 1 month. Table 1 shows the results obtained by measuring the supported amount of the metal component in the oxide of inorganic oxide (3) in terms of oxide and the average particle size of the inorganic oxide fine particles (3). In addition, antimicrobial deodorant (3) was used as the inorganic oxide fine particle (3) dispersion, and antibacterial performance, deodorization performance and photocatalytic performance were evaluated, and the results are shown in Table 1.

抗菌性消臭剤(4)の調製
実施例1において、硝酸銅Cu(NO32・3H2Oの代わりに3.68gの硝酸銀AgNO3を用いた以外は同様にして固形分濃度10重量%の銀担持無機酸化物微粒子(4)分散液を得た。
銀担持無機酸化物微粒子(4)分散液は1ケ月放置しても安定であった。無機酸化物微粒子(4)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(4)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(4)分散液を抗菌性消臭剤(4)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (4) In Example 1, a solid content concentration of 10 wt.% Was used except that 3.68 g of silver nitrate AgNO 3 was used instead of copper nitrate Cu (NO 3 ) 2 .3H 2 O. % Silver-supported inorganic oxide fine particle (4) dispersion liquid was obtained.
The silver-supported inorganic oxide fine particle (4) dispersion was stable even after being left for 1 month. Table 1 shows the results obtained by measuring the amount of the metal component in the inorganic oxide fine particles (4) in terms of oxide and the average particle size of the inorganic oxide fine particles (4). Further, the antibacterial deodorant (4) was used as the inorganic oxide fine particle (4) dispersion, and the antibacterial performance, deodorization performance and photocatalytic performance were evaluated, and the results are shown in Table 1.

抗菌性消臭剤(5)の調製
実施例4において、シリカゾル(触媒化成工業(株)製:SN−350、平均粒子径10nm、固形分濃度16重量%)31.3gを添加した以外は同様にして、固形分濃度10重量%の安定な銀担持無機酸化物微粒子(5)分散液を得た。
銀担持無機酸化物微粒子(5)分散液は1ケ月放置しても安定であった。無機酸化物微粒子(5)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(5)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(5)分散液を抗菌性消臭剤(5)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (5) Same as Example 4 except that 31.3 g of silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: SN-350, average particle size 10 nm, solid concentration 16% by weight) was added. Thus, a stable silver-carrying inorganic oxide fine particle (5) dispersion having a solid content concentration of 10% by weight was obtained.
The dispersion of silver-supported inorganic oxide fine particles (5) was stable even after being left for 1 month. Table 1 shows the results of measurement of the amount of the metal component in the inorganic oxide fine particles (5) in terms of oxide and the average particle diameter of the inorganic oxide fine particles (5). In addition, the antibacterial deodorant (5) was used as the inorganic oxide fine particle (5) dispersion, and the antibacterial performance, deodorization performance and photocatalytic performance were evaluated, and the results are shown in Table 1.

抗菌性消臭剤(6)の調製
実施例4において、シリカゾル(触媒化成工業(株)製:SN−350、平均粒子径10nm、固形分濃度16重量%)31.3gと、ジルコニアゾル(第一稀元素(株)製:AL-7、平均粒子径5nm、固形分濃度13重量%)38.5gとを添加した以外は同様にして、固形分濃度10重量%の安定な銀担持無機酸化物微粒子(6)分散液を得た。
銀担持無機酸化物微粒子(6)分散液は1ケ月放置しても安定であった。無機酸化物微粒子(6)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(6)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(6)分散液を抗菌性消臭剤(6)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation Example 4 of Antibacterial Deodorant (6) In Example 4 of silica sol (Catalyst Chemical Industries, Ltd .: SN-350, average particle size 10 nm, solid content concentration 16% by weight), 31.3 g of zirconia sol (No. 1) A stable silver-carrying inorganic oxide having a solid content concentration of 10% by weight, except that 38.5 g of a rare element (manufactured by Co., Ltd .: AL-7, average particle size 5 nm, solid content concentration 13% by weight) was added. A fine particle (6) dispersion was obtained.
The silver-supported inorganic oxide fine particle (6) dispersion was stable even after being left for 1 month. The supported amount of metal component in the oxide of inorganic oxide (6) in terms of oxide and the average particle size of the inorganic oxide fine particles (6) were measured, and the results are shown in Table 1. Moreover, the antibacterial deodorant (6) was used as the inorganic oxide fine particle (6) dispersion, and the antibacterial performance, deodorization performance, and photocatalytic performance were evaluated, and the results are shown in Table 1.

抗菌性消臭剤(7)の調製
実施例5において、シリカゾルの代わりにジルコニアゾル(第一稀元素(株)製:AL-7、平均粒子径5nm、固形分濃度13重量%)38.5gを添加した以外は同様にして、固形分濃度10重量%の安定な銀担持無機酸化物微粒子(7)分散液を得た。
銀担持無機酸化物微粒子(7)分散液は1ケ月放置しても安定であった。無機酸化物微粒子(7)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(7)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(7)分散液を抗菌性消臭剤(7)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (7) In Example 5, instead of silica sol, zirconia sol (manufactured by Daiichi Rare Element Co., Ltd .: AL-7, average particle size 5 nm, solid content concentration 13% by weight) 38.5 g A stable silver-carrying inorganic oxide fine particle (7) dispersion having a solid content concentration of 10% by weight was obtained in the same manner except that was added.
The silver-supported inorganic oxide fine particle (7) dispersion was stable even after being left for 1 month. The supported amount of metal component in the oxide of inorganic oxide (7) in terms of oxide and the average particle diameter of the inorganic oxide fine particles (7) were measured, and the results are shown in Table 1. Further, the inorganic oxide fine particle (7) dispersion was used as an antibacterial deodorant (7), and the antibacterial performance, deodorization performance and photocatalytic performance were evaluated, and the results are shown in Table 1.

比較例1Comparative Example 1

抗菌性消臭剤(R1)の調製
実施例1と同様にして無機酸化物微粒子前駆体分散液を調製した。
ついで、ペルオキソチタン酸水溶液を限外濾過膜でTiO2重量に対して200倍の水で洗浄した後、濃縮し、固形分濃度10重量%の安定な銅担持無機酸化物微粒子(R1)分散液を得た。
銅担持無機酸化物微粒子(R1)分散液は1ケ月放置後、透明性が低下すると共に寒天状になることがあり、また一部粒子の沈降が認められた。無機酸化物微粒子(R1)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(R1)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(R1)分散液を抗菌性消臭剤(R1)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (R1) In the same manner as in Example 1, an inorganic oxide fine particle precursor dispersion was prepared.
Next, the peroxotitanic acid aqueous solution was washed with water 200 times the weight of TiO 2 with an ultrafiltration membrane, and then concentrated, and a stable copper-supported inorganic oxide fine particle (R1) dispersion having a solid concentration of 10% by weight. Got.
After the copper-supported inorganic oxide fine particle (R1) dispersion was allowed to stand for 1 month, the transparency was lowered and it sometimes became agar-like, and precipitation of some particles was observed. The supported amount of metal component in the oxide of inorganic oxide (R1) in terms of oxide and the average particle diameter of the inorganic oxide fine particles (R1) were measured, and the results are shown in Table 1. In addition, the antibacterial deodorant (R1) was used as the inorganic oxide fine particle (R1) dispersion, and the antibacterial performance, deodorization performance and photocatalytic performance were evaluated. The results are shown in Table 1.

比較例2Comparative Example 2

抗菌性消臭剤(R2)の調製
比較例1において、硝酸銅Cu(NO32・3H2Oの代わりに14.6gの硝酸亜鉛Zn(NO32・6H2Oを用いた以外は同様にして固形分濃度10重量%の亜鉛担持無機酸化物微粒子(R2)分散液を得た。
亜鉛担持無機酸化物微粒子(R2)分散液は1ケ月放置後、透明性が低下すると共に寒天状になることがあり、また一部粒子の沈降が認められた。無機酸化物微粒子(R2)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(R2)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(R2)分散液を抗菌性消臭剤(R2)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (R2) In Comparative Example 1, except that 14.6 g of zinc nitrate Zn (NO 3 ) 2 .6H 2 O was used instead of copper nitrate Cu (NO 3 ) 2 .3H 2 O In the same manner, a zinc-supported inorganic oxide fine particle (R2) dispersion having a solid concentration of 10% by weight was obtained.
After the zinc-supported inorganic oxide fine particle (R2) dispersion was allowed to stand for 1 month, the transparency was lowered and it sometimes became agar-like, and precipitation of some particles was observed. Table 1 shows the results of measuring the amount of metal component supported in oxide in the inorganic oxide fine particles (R2) and the average particle diameter of the inorganic oxide fine particles (R2). Moreover, the inorganic oxide fine particle (R2) dispersion was used as an antibacterial deodorant (R2), and the antibacterial performance, deodorization performance and photocatalytic performance were evaluated, and the results are shown in Table 1.

比較例3Comparative Example 3

抗菌性消臭剤(R3)の調製
比較例1において、硝酸銅Cu(NO32・3H2Oの代わりに14.6gの硝酸銀AgNO3を用いた以外は同様にして固形分濃度10重量%の銀担持無機酸化物微粒子(R3)分散液を得た。
銀担持無機酸化物微粒子(R3)分散液は1ケ月放置後、透明性が低下すると共に寒天状になることがあり、また一部粒子の沈降が認められた。無機酸化物微粒子(R3)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(R3)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(R3)分散を抗菌性消臭剤(R3)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (R3) In Comparative Example 1, the solid content concentration was 10 weights except that 14.6 g of silver nitrate AgNO 3 was used instead of copper nitrate Cu (NO 3 ) 2 .3H 2 O. % Silver-supported inorganic oxide fine particle (R3) dispersion liquid was obtained.
After the silver-supported inorganic oxide fine particle (R3) dispersion was allowed to stand for 1 month, the transparency decreased and it sometimes became agar-like, and precipitation of some particles was observed. Table 1 shows the results obtained by measuring the supported amount of the metal component in the inorganic oxide fine particles (R3) in terms of oxide and the average particle size of the inorganic oxide fine particles (R3). The inorganic oxide fine particles (R3) dispersion antimicrobial deodorant and (R3), antibacterial performance, the evaluation results deodorizing performance and photocatalytic performance is shown in Table 1.

比較例4Comparative Example 4

抗菌性消臭剤(R4)の調製
実施例5と同様にして無機酸化物微粒子前駆体分散液を調製し、ついで濃縮して、固形分濃度10重量%の銀担持無機酸化物微粒子(R4)分散液を得た。
銀担持無機酸化物微粒子(R4)分散液は1ケ月放置後、わずかに一部粒子の沈降が認められた。無機酸化物微粒子(R4)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(R4)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(R4)分散を抗菌性消臭剤(R4)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (R4) An inorganic oxide fine particle precursor dispersion was prepared in the same manner as in Example 5, then concentrated to a silver-supported inorganic oxide fine particle (R4) having a solid content of 10% by weight. A dispersion was obtained.
After the silver-supported inorganic oxide fine particle (R4) dispersion was allowed to stand for one month, some of the particles settled. Table 1 shows the results obtained by measuring the amount of the metal component in the inorganic oxide fine particles (R4) in terms of oxide and the average particle diameter of the inorganic oxide fine particles (R4). The inorganic oxide fine particles (R4) dispersion antimicrobial deodorant and (R4), antibacterial performance, the evaluation results deodorizing performance and photocatalytic performance is shown in Table 1.

比較例5Comparative Example 5

抗菌性消臭剤(R5)の調製
実施例7と同様にして無機酸化物微粒子前駆体分散液を調製し、ついで濃縮して、固形分濃度10重量%の銀担持無機酸化物微粒子(R5)分散液を得た。
銀担持無機酸化物微粒子(R5)分散液は1ケ月放置後、わずかに一部粒子の沈降が認められた。無機酸化物微粒子(R5)中の金属成分の酸化物換算の担持量、無機酸化物微粒子(R5)の平均粒子径を測定し、結果を表1に示した。また、無機酸化物微粒子(R5)分散を抗菌性消臭剤(R5)とし、抗菌性能、消臭性能および光触媒性能を評価し結果を表1に示した。
Preparation of antibacterial deodorant (R5) An inorganic oxide fine particle precursor dispersion was prepared in the same manner as in Example 7, and then concentrated to obtain a silver-supported inorganic oxide fine particle (R5) having a solid content of 10% by weight. A dispersion was obtained.
After the silver-supported inorganic oxide fine particle (R5) dispersion was allowed to stand for 1 month, a slight precipitation of the particles was observed. The supported amount of metal component in the oxide of inorganic oxide (R5) in terms of oxide and the average particle diameter of the inorganic oxide fine particles (R5) were measured. The results are shown in Table 1. The inorganic oxide fine particles (R5) dispersion antimicrobial deodorant and (R5), antibacterial performance, the evaluation results deodorizing performance and photocatalytic performance is shown in Table 1.

Figure 0004849778
Figure 0004849778

Claims (2)

銀、銅または亜鉛から選択される1種以上の金属成分と該金属成分以外の無機酸化物とから構成される無機酸化物微粒子が分散してなる無機酸化物微粒子分散液であって、該無機酸化物微粒子の平均粒子径が2〜500nmの範囲にあり、該無機酸化物微粒子の濃度が酸化物に換算して1〜20重量%の範囲にあり、該無機酸化物微粒子中の前記金属成分の含有量が酸化物に換算して0.1〜30重量%の範囲にあり、前記無機酸化物が前記無機酸化物微粒子中に、50〜95重量%の酸化チタンと0〜30重量%のシリカおよび/または0〜30重量%のジルコニアとを含んでなり、該酸化チタンが結晶性酸化チタンであることを特徴とする抗菌性消臭剤。 An inorganic oxide fine particle dispersion obtained by dispersing inorganic oxide fine particles composed of at least one metal component selected from silver, copper or zinc and an inorganic oxide other than the metal component, The average particle diameter of the oxide fine particles is in the range of 2 to 500 nm, the concentration of the inorganic oxide fine particles is in the range of 1 to 20% by weight in terms of the oxide, and the metal component in the inorganic oxide fine particles In the range of 0.1 to 30% by weight in terms of oxide, the inorganic oxide is contained in the inorganic oxide fine particles in an amount of 50 to 95% by weight of titanium oxide and 0 to 30% by weight. An antibacterial deodorant comprising silica and / or 0 to 30% by weight of zirconia, wherein the titanium oxide is crystalline titanium oxide. 前記無機酸化物微粒子が無機酸化物のコロイド微粒子であることを特徴とする請求項に記載の抗菌性消臭剤。 The antibacterial deodorant according to claim 1 , wherein the inorganic oxide fine particles are inorganic oxide colloidal fine particles.
JP2004138472A 2004-05-07 2004-05-07 Antibacterial deodorant and method for producing the same Expired - Lifetime JP4849778B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004138472A JP4849778B2 (en) 2004-05-07 2004-05-07 Antibacterial deodorant and method for producing the same
US11/117,329 US8486433B2 (en) 2004-05-07 2005-04-29 Antibacterial deodorant
KR1020050037526A KR101233570B1 (en) 2004-05-07 2005-05-04 Antibacterial deodorant and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138472A JP4849778B2 (en) 2004-05-07 2004-05-07 Antibacterial deodorant and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010126852A Division JP4964331B2 (en) 2010-06-02 2010-06-02 Method for producing antibacterial deodorant

Publications (2)

Publication Number Publication Date
JP2005318999A JP2005318999A (en) 2005-11-17
JP4849778B2 true JP4849778B2 (en) 2012-01-11

Family

ID=35466725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138472A Expired - Lifetime JP4849778B2 (en) 2004-05-07 2004-05-07 Antibacterial deodorant and method for producing the same

Country Status (1)

Country Link
JP (1) JP4849778B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4999388B2 (en) * 2006-07-24 2012-08-15 日揮触媒化成株式会社 Modified titanium oxide particles, method for producing the same, and exhaust gas treatment catalyst using the modified titanium oxide particles
JP5317432B2 (en) * 2007-05-18 2013-10-16 日揮触媒化成株式会社 Deodorant antibacterial composition and method for producing dispersion thereof
JP2009108448A (en) * 2007-10-31 2009-05-21 Jgc Catalysts & Chemicals Ltd Deodorizing and antimicrobial fiber
JP4980204B2 (en) * 2007-11-29 2012-07-18 日揮触媒化成株式会社 Method for producing titanium oxide-based deodorant
JP5483853B2 (en) * 2008-09-30 2014-05-07 国立大学法人 熊本大学 Deodorant antibacterial agent for human or animal
JP5574813B2 (en) * 2010-05-13 2014-08-20 日揮触媒化成株式会社 Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating
JP5925081B2 (en) * 2012-08-08 2016-05-25 日揮触媒化成株式会社 Titanium oxide antibacterial deodorant, dispersion thereof, and product provided with titanium oxide antibacterial deodorant
JP6027394B2 (en) * 2012-10-26 2016-11-16 宝栄産業株式会社 Emulsion type paint
JP6668495B2 (en) * 2016-10-21 2020-03-18 ラサ工業株式会社 White deodorant, chemical product with deodorant function, method of using white deodorant, and method of producing white deodorant
JP6930343B2 (en) 2017-09-29 2021-09-01 信越化学工業株式会社 Deodorant / antibacterial / antifungal agent-containing dispersion, its manufacturing method, and members having deodorant / antibacterial / antifungal agent on the surface
KR102693681B1 (en) 2018-04-12 2024-08-12 신에쓰 가가꾸 고교 가부시끼가이샤 Interior material having a deodorizing and antibacterial surface layer and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988811B2 (en) * 1993-07-16 1999-12-13 触媒化成工業株式会社 Antibacterial agent
JP2000070728A (en) * 1998-08-31 2000-03-07 Mitsubishi Materials Corp Photocatalytic material irradiated with electron beam, its coating material and coating film
JP2000070673A (en) * 1998-09-03 2000-03-07 Daido Steel Co Ltd Antibacterial deodorizing photocatalyst type filter and its production
JP2002320862A (en) * 2001-04-26 2002-11-05 Asahi Kasei Corp Photocatalyst thin film in which metal is supported on titanium oxide thin film
JP4139090B2 (en) * 2001-06-28 2008-08-27 触媒化成工業株式会社 Method for producing spherical particles with crystalline titanium oxide coating layer
JP4180316B2 (en) * 2002-07-05 2008-11-12 日揮触媒化成株式会社 Tubular titanium oxide particles and method for producing tubular titanium oxide particles

Also Published As

Publication number Publication date
JP2005318999A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
KR101233570B1 (en) Antibacterial deodorant and method for producing the same
CN107427818B (en) Visible light responsive photocatalytic titanium oxide fine particle dispersion, method for producing same, and member having photocatalytic film on surface
JP6040021B2 (en) Antibacterial antiviral composition and method for producing the same
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
JP2988790B2 (en) Antibacterial agent
JP5512934B2 (en) Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid
JP4849778B2 (en) Antibacterial deodorant and method for producing the same
JPH02255532A (en) Production of rutile type titanium oxide sol
JP6154036B1 (en) Coating agent containing antibacterial catalyst and method for producing the same
JP5354852B2 (en) Deodorant antibacterial composition
US8298979B2 (en) Zirconium oxalate sol
WO2011145385A1 (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
KR20190047001A (en) A visible light-responsive photocatalytic titanium dioxide fine particle mixture, a dispersion thereof, a production method of a dispersion, a photocatalytic thin film, and a member having a photocatalytic thin film on its surface
JP5317432B2 (en) Deodorant antibacterial composition and method for producing dispersion thereof
JP4964331B2 (en) Method for producing antibacterial deodorant
JP5313051B2 (en) Zirconium oxalate sol
JP2002068915A (en) Sol
CN113518763A (en) Titanium oxide fine particle mixture, dispersion thereof, method for producing dispersion thereof, photocatalyst thin film, and member having photocatalyst thin film
JP4619075B2 (en) Method for producing antibacterial and deodorant titanium oxide colloidal solution
JP2004202335A (en) Photocatalyst compound powder having visible light responsiveness
JP2013123591A (en) Titanium oxide-based antibacterial deodorant, dispersion liquid of the titanium oxide-based antibacterial deodorant, and fiber or cloth with titanium oxide-based antibacterial deodorant
WO2022059520A1 (en) Titanium oxide particles and liquid dispersion thereof, photocatalyst thin film, member having photocatalyst thin film formed on surface thereof, and method for producing liquid dispersion of titanium oxide particles
KR20050103602A (en) Photocatalyst coating agent for indoor and preparation method thereof
JPH09202620A (en) Rutile-type titanium dioxide particle and its production
JP7288709B2 (en) Visible light responsive photocatalyst tungsten compound and paint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100714

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4849778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term