JP5574813B2 - Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating - Google Patents

Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating Download PDF

Info

Publication number
JP5574813B2
JP5574813B2 JP2010111489A JP2010111489A JP5574813B2 JP 5574813 B2 JP5574813 B2 JP 5574813B2 JP 2010111489 A JP2010111489 A JP 2010111489A JP 2010111489 A JP2010111489 A JP 2010111489A JP 5574813 B2 JP5574813 B2 JP 5574813B2
Authority
JP
Japan
Prior art keywords
antibacterial
deodorant
titanium oxide
weight
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010111489A
Other languages
Japanese (ja)
Other versions
JP2011236106A (en
Inventor
田中  敦
陽子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2010111489A priority Critical patent/JP5574813B2/en
Publication of JP2011236106A publication Critical patent/JP2011236106A/en
Application granted granted Critical
Publication of JP5574813B2 publication Critical patent/JP5574813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、超微細で均一な粒子径分布を有する酸化チタン系微粒子の製造方法、該方法によって得られる酸化チタン系微粒子、該酸化チタン系微粒子を含む抗菌・消臭剤、抗菌・消臭性塗膜形成用塗布液、および抗菌・消臭性塗膜付基材に関する。   The present invention relates to a method for producing a titanium oxide fine particle having an ultrafine and uniform particle size distribution, a titanium oxide fine particle obtained by the method, an antibacterial / deodorant containing the titanium oxide fine particle, and an antibacterial / deodorant property. The present invention relates to a coating liquid for forming a coating film and a substrate with an antibacterial / deodorant coating film.

近年、清潔志向、衛生志向、安全志向、快適志向等、生活環境の向上が求められている。
従来、シリカゲル、複合酸化物、酸化チタン等の粉末、あるいはコロイド粒子に抗菌性を有する銀、銅、亜鉛等の金属成分を担持した抗菌性組成物が知られている。
In recent years, there has been a demand for improvement in living environment such as cleanliness, hygiene, safety, and comfort.
Conventionally, an antibacterial composition in which a metal component such as silver, copper, or zinc having antibacterial properties is supported on a powder of silica gel, composite oxide, titanium oxide, or colloidal particles is known.

例えば、本願出願人は無機酸化物コロイド粒子に抗菌性金属成分を付着せしめた抗菌剤(特開平6−80527号公報:特許文献1)あるいはメタ珪酸アルミン酸マグネシウムに抗菌性を有する金属イオンをイオン交換した抗菌剤(特開平3−275627号公報:特許文献2)を開示している。
抗菌効果の持続性および抗菌物質の安定性を改善する目的で、抗菌性の金属イオンをゼオライトあるいはアルミノ珪酸塩に担持した抗菌性組成物も知られている(特開平1−283204号公報:特許文献3)。
For example, the applicant of the present application ionizes an antibacterial agent in which an antibacterial metal component is attached to inorganic oxide colloidal particles (Japanese Patent Laid-Open No. 6-80527: Patent Document 1) or metal ions having antibacterial properties in magnesium metasilicate aluminate. An exchanged antibacterial agent (JP-A-3-275627: Patent Document 2) is disclosed.
An antibacterial composition in which an antibacterial metal ion is supported on zeolite or aluminosilicate for the purpose of improving the durability of the antibacterial effect and the stability of the antibacterial substance is also known (Japanese Patent Laid-Open No. 1-283204: Patent). Reference 3).

また、本願出願人は、金属成分と該金属成分以外の無機酸化物とから構成される無機酸化物微粒子であって、前記無機酸化物が酸化チタンとシリカおよび/またはジルコニアとを含んでなり、該酸化チタンが結晶性酸化チタンである抗菌性消臭剤を開示している(特開2005−318999号公報:特許文献4)。この抗菌性消臭剤は抗菌性能の他、揮発性有機化合物(VOC)の分解による消臭性能を有することを開示している。   The applicant of the present invention is an inorganic oxide fine particle composed of a metal component and an inorganic oxide other than the metal component, and the inorganic oxide comprises titanium oxide and silica and / or zirconia. An antibacterial deodorant in which the titanium oxide is crystalline titanium oxide is disclosed (Japanese Patent Laid-Open No. 2005-318999: Patent Document 4). It is disclosed that this antibacterial deodorant has a deodorizing performance due to decomposition of a volatile organic compound (VOC) in addition to the antibacterial performance.

上記した無機酸化物粒子系の抗菌剤、消臭剤、抗菌・消臭剤は、通常、微粒子粉体を樹脂、あるいは繊維に練り込んで使用したり、塗料やインキにしてこれを基材に塗布して使用している。あるいは成型してろ材として使用している。
しかしながら、無機酸化物粒子系の抗菌剤、消臭剤を基材上に塗布して薄膜を形成して用いる場合、基材との密着性、膜表面の平坦性、透明性、耐久性等に問題があった。
従来、基材上に膜を形成して使用するにはバインダー成分が使用されるが、従来公知のバインダー成分を使用すると抗菌性能、消臭性能が充分発揮できない問題があった。
The above-mentioned inorganic oxide particle-based antibacterial agent, deodorant, and antibacterial / deodorant are usually used by kneading fine particle powder into resin or fiber, or using it as a base material in paint or ink. Apply and use. Alternatively, it is molded and used as a filter medium.
However, when an inorganic oxide particle-based antibacterial agent or deodorant is applied to a substrate to form a thin film, the adhesion to the substrate, flatness of the film surface, transparency, durability, etc. There was a problem.
Conventionally, a binder component is used to form and use a film on a substrate. However, when a conventionally known binder component is used, there is a problem that antibacterial performance and deodorizing performance cannot be sufficiently exhibited.

本願出願人は、特開平07−286114号公報(特許文献5)にマトリックス成分としてペルオキソポリチタン酸を水および/または有機溶媒に溶解した状態で含有している被膜形成用塗布液を開示しているが、その後、この被膜形成用塗布液を用いて形成した被膜はアンモニア等の臭気成分を分解して無臭化できることを見出している。   The applicant of the present application discloses a coating solution for forming a film containing peroxopolytitanic acid dissolved in water and / or an organic solvent as a matrix component in Japanese Patent Application Laid-Open No. 07-286114 (Patent Document 5). However, after that, it has been found that a film formed using this coating liquid for forming a film can decompose without odor components such as ammonia by decomposing odor components.

しかしながら、このようなペルオキソポリチタン酸をマトリックス成分として用いた、無機酸化物粒子系の抗菌剤、消臭剤を含む薄膜を形成しても、塗布液の安定性が不充分となり、得られる薄膜は基材との密着性、透明性、表面の平坦性が不充分となったり、クラックが発生する場合があり、加えて抗菌性能、消臭性能も充分とは言えなかった。
However, even when a thin film containing an inorganic oxide particle-based antibacterial agent or deodorant using such peroxopolytitanic acid as a matrix component is formed, the stability of the coating solution becomes insufficient, and the resulting thin film May have insufficient adhesion to the base material, transparency and surface flatness, and cracks may occur, and in addition, antibacterial performance and deodorization performance were not sufficient.

近年、居住空間、公共施設、医療施設、養護施設、自動車内装等において、抗菌、防かび、防藻、坑ウイルス、抗アレルゲン、害虫忌避等の他、建材等に含まれるホルムアルデヒド、煙草喫煙時に発生するアセトアルデヒド等の有害物質の除去、便所等で発生するアンモニア等に対する消臭性能が求められ、しかも、美観等を損ねることのない、抗菌・消臭性透明薄膜が求められている。しかも、上記性能をさらに向上させるとともに長期にわたって維持できる抗菌・消臭剤が求められている。
また、抗菌・消臭剤が結晶性酸化チタンを用いる場合は、有機系基材、繊維等と接触させて用いると変色したり、性能が低下し、用途、用法に制限があった。
Recently, in living spaces, public facilities, medical facilities, nursing homes, car interiors, etc., in addition to antibacterial, antifungal, algal, antiviral, antiallergen, insect pest repellent, formaldehyde contained in building materials, cigarette smoking Therefore, there is a need for an antibacterial and deodorant transparent thin film that removes harmful substances such as acetaldehyde and has a deodorizing performance against ammonia generated in a toilet, etc., and does not impair the aesthetics. Moreover, an antibacterial and deodorant that can further improve the above performance and can be maintained over a long period of time is demanded.
Further, when crystalline titanium oxide is used as the antibacterial / deodorant, discoloration or performance is deteriorated when it is used in contact with an organic base material, fiber or the like, and there is a limitation in use and usage.

酸化チタン系微粒子の製造方法としては、例えば、特開昭63−17221号公報(特許文献6)、特開昭62−235215号公報(特許文献7)、特開平7−286114号公報(特許文献8)、特開2008−44826号公報(特許文献9)等に種々開示されているが、粒子径が小さく、粒子径分布が均一で、且つ無定型酸化チタン微粒子は開示されていない。   As a method for producing titanium oxide-based fine particles, for example, JP-A 63-17221 (Patent Document 6), JP-A 62-235215 (Patent Document 7), JP-A 7-286114 (Patent Document) 8), variously disclosed in Japanese Patent Application Laid-Open No. 2008-44826 (Patent Document 9), etc., but the particle size is small, the particle size distribution is uniform, and amorphous titanium oxide fine particles are not disclosed.

本発明者等は鋭意検討した結果、酸化チタン系微粒子の調製において、チタニウム化合物の加水分解(中和)にアンモニアを用い、室温より低温で、アンモニアの添加速度を所定の速度範囲で行うと、微細な酸化チタン水和物が得られ、これを過酸化水素に溶解し、必用に応じて加熱処理すると、平均粒子径が10nm以下で、粒子径分布が均一な無定型の酸化チタン系微粒子が高収率で得られることを見出した。
また、抗菌・消臭性金属成分を含む上記酸化チタン系微粒子をチタンキレート化合物水溶液に分散させた分散液はゲル化することなく長期安定で、しかもこの分散液を塗布して得られる薄膜は透明で、基材との密着性に優れていることを見出して本発明を完成するに至った。
As a result of intensive studies, the present inventors have used ammonia for the hydrolysis (neutralization) of titanium compounds in the preparation of titanium oxide-based fine particles, and when the addition rate of ammonia is performed within a predetermined speed range at a temperature lower than room temperature, Fine titanium oxide hydrate is obtained. When this is dissolved in hydrogen peroxide and heat-treated as necessary, amorphous titanium oxide fine particles having an average particle size of 10 nm or less and a uniform particle size distribution are obtained. It was found that it can be obtained in high yield.
In addition, a dispersion in which the above titanium oxide fine particles containing antibacterial and deodorant metal components are dispersed in an aqueous solution of a titanium chelate compound is stable for a long time without gelation, and the thin film obtained by applying this dispersion is transparent. Thus, the present invention has been completed by finding that it has excellent adhesion to the substrate.

特開平6−80527号公報JP-A-6-80527 特開平3−275627号公報JP-A-3-275627 特開平1−283204号公報Japanese Patent Laid-Open No. 1-283204 特開2005−318999号公報JP 2005-318999 A 特開平07−286114号公報JP 07-286114 A 特開昭63−17221号公報JP-A-63-17221 特開昭62−235215号公報Japanese Patent Laid-Open No. 62-235215 特開平7−286114号公報JP 7-286114 A 特開2008−44826号公報JP 2008-44826 A

本発明は、酸化チタン系微粒子が超微粒子であるために抗菌・消臭成分を多く担持することができ、微細であっても安定で凝集することがなく、抗菌・消臭剤に好適に用いることのできる酸化チタン系微粒子の高収率の製造方法、得られる酸化チタン系微粒子、該酸化チタン系微粒子を用いた抗菌・消臭剤、抗菌・消臭性塗膜形成用塗布液、抗菌・消臭性塗膜付基材を提供することを目的としている。
Since the titanium oxide-based fine particles are ultrafine particles, the present invention can carry a large amount of antibacterial / deodorant components, and even if it is fine, it does not agglomerate stably and is suitably used as an antibacterial / deodorant. Production method of titanium oxide fine particles that can be obtained, titanium oxide fine particles obtained, antibacterial / deodorant using the titanium oxide fine particles, antibacterial / deodorant coating film forming liquid, It aims at providing the base material with a deodorizing coating film.

本発明の酸化チタン系微粒子の製造方法は、下記の工程(a)〜(e)からなることを特徴とする。
(a)TiO2としての濃度が0.5〜20重量%のチタニウム化合物水溶液を調製する工程。
(b)チタニウム化合物水溶液の温度を0〜30℃の範囲に維持しながら、チタニウム化合物のTiO2としてのモル数(MTiO2)を1としたとき、添加するアンモニア水溶液のアンモニアのモル数(MNH3)が1〜10の範囲となり、1〜10時間/1モル(MNH3)の速度でアンモニア水溶液を添加して酸化チタン水和物を調製する工程。
(c)酸化チタン水和物を洗浄する工程。
(d)TiO2としての濃度が0.1〜10重量%の酸化チタン水和物分散液に、過酸化水素水を、酸化チタン水和物のTiO2としてのモル数(MTiO2)と過酸化水素のモル数(MH2O2)とのモル比(MH2O2)/(MTiO2)が1〜10の範囲となるように添加し、温度10〜100℃で溶解する工程。
(e)温度30〜100℃で撹拌しながら過酸化水素を除去し、熟成する工程。
The method for producing titanium oxide-based fine particles of the present invention is characterized by comprising the following steps (a) to (e).
(A) A step of preparing an aqueous titanium compound solution having a concentration of 0.5 to 20% by weight as TiO 2 .
(B) When the number of moles of titanium compound as TiO 2 (M TiO2 ) is 1, while maintaining the temperature of the aqueous titanium compound solution in the range of 0 to 30 ° C., the number of moles of ammonia in the aqueous ammonia solution (M NH3 ) is in the range of 1 to 10, and an aqueous ammonia solution is added at a rate of 1 to 10 hours / 1 mole (M NH3 ) to prepare titanium oxide hydrate.
(C) A step of washing titanium oxide hydrate.
(D) To a titanium oxide hydrate dispersion having a concentration of 0.1 to 10% by weight as TiO 2 , hydrogen peroxide water is added to the number of moles (M TiO2 ) of titanium oxide hydrate as TiO 2. A step of adding at a molar ratio (M H2O2 ) / (M TiO2 ) to the molar number of hydrogen oxide (M H2O2 ) in the range of 1 to 10 and dissolving at a temperature of 10 to 100 ° C.
(E) A step of removing hydrogen peroxide while stirring at a temperature of 30 to 100 ° C. and aging.

前記工程(e)についで、下記の工程(f)を行うことが好ましい。
(f)シリカゾルおよび/またはジルコニアゾルをTiO2に対して0.1〜15重量%となるように添加する工程。
前記工程(f)についで、下記の工程(g)を行うことが好ましい。
(g)温度30〜80℃で熟成する工程。
前記酸化チタン系微粒子が無定型であることが好ましい。
Following the step (e), the following step (f) is preferably performed.
(F) A step of adding silica sol and / or zirconia sol to 0.1 to 15% by weight with respect to TiO 2 .
Following the step (f), the following step (g) is preferably performed.
(G) A step of aging at a temperature of 30 to 80 ° C.
The titanium oxide-based fine particles are preferably amorphous.

本発明の酸化チタン系微粒子は、平均粒子径(D)が3〜10nmの範囲にあり、平均粒子径(D)±2nmの粒子径を有する酸化チタン系微粒子の個数割合が70%以上であることを特徴とする。
本発明の酸化チタン系微粒子は、前記いずれかの製造方法によって得られたものである。
The titanium oxide-based fine particles of the present invention have an average particle diameter (D) in the range of 3 to 10 nm, and the number ratio of titanium oxide-based fine particles having a particle diameter of average particle diameter (D) ± 2 nm is 70% or more. It is characterized by that.
The titanium oxide-based fine particles of the present invention are obtained by any one of the above production methods.

本発明の抗菌・消臭剤は、抗菌・消臭性成分を酸化物換算で0.1〜25重量%の範囲で含む酸化チタン系微粒子であって、平均粒子径(D)が3〜10nmの範囲にあり、平均粒子径(D)±2nmの粒子径を有する酸化チタン微粒子の個数割合が70%以上であることを特徴とする。
前記抗菌・消臭性成分が銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上の成分であることが好ましい。
前記酸化チタン系微粒子がシリカおよび/またはジルコニアをTiO2に対して0.1〜15重量%の範囲で含有することが好ましい。
前記酸化チタン系微粒子が無定型であることが好ましい。
前記いずれかに記載の抗菌・消臭剤は、香料化合物を含有する水系分散媒中に分散してなることが好ましい。
The antibacterial / deodorant of the present invention is a titanium oxide-based fine particle containing an antibacterial / deodorant component in the range of 0.1 to 25% by weight in terms of oxide, and has an average particle diameter (D) of 3 to 10 nm. In this range, the number ratio of titanium oxide fine particles having an average particle diameter (D) ± 2 nm is 70% or more.
The antibacterial / deodorant component is preferably one or more components selected from silver, copper, zinc, tin, cobalt, nickel, and manganese.
The titanium oxide-based fine particles preferably contain silica and / or zirconia in the range of 0.1 to 15% by weight with respect to TiO 2 .
The titanium oxide-based fine particles are preferably amorphous.
The antibacterial / deodorant described above is preferably dispersed in an aqueous dispersion medium containing a fragrance compound.

本発明の抗菌・消臭性塗膜形成用塗布液は、前記いずれかに記載の抗菌・消臭剤を含んでなることを特徴とする。
この抗菌・消臭性塗膜形成用塗布液は、水溶性金属キレート化合物を含んでなることが好ましく、水溶性金属キレート化合物がチタンキレート化合物であることが好ましく、チタンキレート化合物がチタンラクテートアンモニウム塩であることが好ましい。
The coating liquid for forming an antibacterial / deodorant coating film of the present invention comprises any one of the above antibacterial / deodorant agents.
This antibacterial / deodorant coating film-forming coating solution preferably contains a water-soluble metal chelate compound, the water-soluble metal chelate compound is preferably a titanium chelate compound, and the titanium chelate compound is a titanium lactate ammonium salt. It is preferable that

この抗菌・消臭性塗膜形成用塗布液は、全固形分濃度が0.01〜20重量%の範囲にあり、前記抗菌・消臭剤の固形分としての濃度が0.005〜19.9重量%の範囲にあり、前記水溶性金属キレート化合物のTiO2としての濃度が0.0001〜10.0重量%の範囲にあり、抗菌・消臭剤の重量(Wa)と水溶性金属キレート化合物のTiO2としての重量(Wb)の重量比(Wb)/(Wa)が0.005〜1.0の範囲にあることが好ましい。 This coating solution for forming an antibacterial / deodorant coating film has a total solid content of 0.01 to 20% by weight, and the concentration of the antibacterial / deodorant as a solid content is 0.005 to 19. The concentration of the water-soluble metal chelate compound as TiO 2 is in the range of 0.0001 to 10.0% by weight, the weight of the antibacterial / deodorant (W a ) and the water-soluble metal. The weight ratio (W b ) / (W a ) of the weight (W b ) of the chelate compound as TiO 2 is preferably in the range of 0.005 to 1.0.

本発明の抗菌・消臭性塗膜付基材は、基材と、基材上に形成された抗菌・消臭性塗膜とからなり、該抗菌・消臭性塗膜が前記いずれかに記載の抗菌・消臭性塗膜形成用塗布液を用いて形成された抗菌・消臭性塗膜であることを特徴とする。
前記抗菌・消臭性塗膜中の抗菌・消臭剤の固形分としての含有量が50〜99.5重量%の範囲にあり、水溶性金属キレート化合物のTiO2としての含有量が0.5〜50重量%の範囲にあることが好ましい。
The substrate with an antibacterial / deodorant coating film of the present invention comprises a substrate and an antibacterial / deodorant coating film formed on the substrate, and the antibacterial / deodorant coating film is any of the above. It is an antibacterial / deodorant coating film formed using the coating solution for forming an antibacterial / deodorant coating film described above.
The content of the antibacterial / deodorant as a solid content in the antibacterial / deodorant coating is in the range of 50 to 99.5% by weight, and the content of the water-soluble metal chelate compound as TiO 2 is 0.00. It is preferably in the range of 5 to 50% by weight.

本発明によれば、酸化チタン系微粒子が小粒径であるために抗菌・消臭成分を多く担持することができ、微細であっても安定で凝集することがない酸化チタン系微粒子を製造することができる。また、該酸化チタン系微粒子を収率よく製造することができる。更に、該酸化チタン系微粒子を用いた抗菌・消臭剤は、抗菌性能、消臭性能に優れると共に、変色性の抗菌・消臭成分についても変色抑制効果がある。本発明の抗菌・消臭剤は、抗菌・消臭性塗膜形成用塗布液、および抗菌・消臭性塗膜付基材として好適である。
According to the present invention, since the titanium oxide fine particles have a small particle size, a large amount of antibacterial / deodorant components can be supported, and even if fine, titanium oxide fine particles that are stable and do not aggregate are produced. be able to. Further, the titanium oxide-based fine particles can be produced with high yield. Furthermore, the antibacterial / deodorant using the titanium oxide-based fine particles is excellent in antibacterial performance and deodorization performance, and also has a discoloration-inhibiting effect with respect to discolorable antibacterial / deodorant components. The antibacterial / deodorant of the present invention is suitable as a coating liquid for forming an antibacterial / deodorant coating film and a substrate with an antibacterial / deodorant coating film.

[酸化チタン系微粒子の製造方法]
以下に、まず、本発明に係る酸化チタン系微粒子の製造方法について説明する。
本発明に係る酸化チタン系微粒子の製造方法は、下記の工程(a)〜(e)からなることを特徴としている。
(a)TiO2としての濃度が0.5〜20重量%のチタニウム化合物水溶液を調製する工程。
(b)チタニウム化合物水溶液の温度を0〜30℃の範囲に維持しながら、チタニウム化合物のTiO2としてのモル数(MTiO2)を1としたとき、添加するアンモニア水溶液のアンモニアのモル数(MNH3)が1〜10の範囲となり、1〜10時間/1モル(MNH3)の速度でアンモニア水溶液を添加して酸化チタン水和物を調製する工程。
(c)酸化チタン水和物を洗浄する工程。
(d)TiO2としての濃度が0.1〜10重量%の酸化チタン水和物分散液に、過酸化水素水を、酸化チタン水和物のTiO2としてのモル数(MTiO2)と過酸化水素のモル数(MH2O2)とのモル比(MH2O2)/(MTiO2)が2〜10の範囲となるように添加し、温度10〜100℃で溶解する工程。
(e)温度30〜100℃で撹拌しながら過酸化水素を除去し、熟成する工程。
[Production method of titanium oxide-based fine particles]
Below, the manufacturing method of the titanium oxide type microparticles | fine-particles based on this invention is demonstrated first.
The method for producing titanium oxide-based fine particles according to the present invention is characterized by comprising the following steps (a) to (e).
(A) A step of preparing an aqueous titanium compound solution having a concentration of 0.5 to 20% by weight as TiO 2 .
(B) When the number of moles of titanium compound as TiO 2 (M TiO2 ) is 1, while maintaining the temperature of the aqueous titanium compound solution in the range of 0 to 30 ° C., the number of moles of ammonia in the aqueous ammonia solution (M NH3 ) is in the range of 1 to 10, and an aqueous ammonia solution is added at a rate of 1 to 10 hours / 1 mole (M NH3 ) to prepare titanium oxide hydrate.
(C) A step of washing titanium oxide hydrate.
(D) To a titanium oxide hydrate dispersion having a concentration of 0.1 to 10% by weight as TiO 2 , hydrogen peroxide water is added to the number of moles (M TiO2 ) of titanium oxide hydrate as TiO 2. A step of adding at a molar ratio (M H2O2 ) / (M TiO2 ) with a mole number of hydrogen oxide (M H2O2 ) in the range of 2 to 10 and dissolving at a temperature of 10 to 100 ° C.
(E) A step of removing hydrogen peroxide while stirring at a temperature of 30 to 100 ° C. and aging.

以下、各工程を順に説明する。
工程(a)
TiO2としての濃度が0.5〜20重量%のチタニウム化合物水溶液を調製する。
チタニウム化合物としては、従来公知のチタニウム化合物を用いることができ、例えば、塩化チタン、硫酸チタン、硫酸チタニル、有機酸チタン等のチタニウム化合物を用いることができる。
チタニウム化合物水溶液の濃度はTiO2としての濃度が0.5〜20重量%、さらには1〜15重量%の範囲にあることが好ましい。
チタニウム化合物水溶液の濃度がTiO2として0.5重量%未満の場合は、収率が低下したり生産性、経済性が低下する場合がある。
チタニウム化合物水溶液の濃度がTiO2としての濃度が20重量%を越えると、工程(b)で生成する酸化チタン水和物(ゲル)が塊となり、最終的に得られる酸化チタン系微粒子の粒子径が大きくなり過ぎたり、粒子径分布が不均一となる場合がある。
Hereinafter, each process is demonstrated in order.
Step (a)
An aqueous titanium compound solution having a concentration of 0.5 to 20% by weight as TiO 2 is prepared.
As the titanium compound, a conventionally known titanium compound can be used, and for example, a titanium compound such as titanium chloride, titanium sulfate, titanyl sulfate, and organic acid titanium can be used.
The concentration of the titanium compound aqueous solution is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight as TiO 2 .
When the concentration of the titanium compound aqueous solution is less than 0.5% by weight as TiO 2 , the yield may be lowered, and the productivity and economy may be lowered.
When the concentration of the titanium compound aqueous solution exceeds 20% by weight as TiO 2 , the titanium oxide hydrate (gel) produced in the step (b) becomes a lump, and the particle diameter of the finally obtained titanium oxide fine particles May become too large, or the particle size distribution may be non-uniform.

工程(b)
チタニウム化合物水溶液の温度を0〜30℃の範囲に維持しながら、チタニウム化合物のTiO2としてのモル数(MTiO2)を1としたとき、添加するアンモニア水溶液のアンモニアのモル数(MNH3)が1〜10の範囲となり、1〜10時間/1モル(MNH3)の速度でアンモニア水溶液を添加して酸化チタン水和物を調製する。
まず、チタニウム化合物水溶液の温度を0〜30℃、さらには0〜20℃の範囲に調整して維持することが好ましい。
チタニウム化合物水溶液の温度が30℃を越えると、生成する酸化チタン水和物(ゲル)の一次粒子が大きくなり、最終的に得られる酸化チタン系微粒子の粒子径が大きくなるとともに粒子径分布が不均一となる場合がある。
チタニウム化合物水溶液の温度が0℃未満の場合は、生成する酸化チタン水和物(ゲル)の一次粒子がさらに小さくなることもなく、また、最終的に得られる酸化チタン系微粒子の粒子径分布がさらに均一となることもない。
Step (b)
While maintaining the temperature of the titanium compound aqueous solution in the range of 0 to 30 ° C., when the number of moles of titanium compound as TiO 2 (M TiO2 ) is 1, the number of moles of ammonia in the aqueous ammonia solution (M NH3 ) is An aqueous ammonia solution is added at a rate of 1 to 10 hours / 1 mole (M NH3 ) to prepare titanium oxide hydrate.
First, it is preferable to adjust and maintain the temperature of the titanium compound aqueous solution in the range of 0 to 30 ° C., more preferably 0 to 20 ° C.
When the temperature of the titanium compound aqueous solution exceeds 30 ° C., the primary particles of the titanium oxide hydrate (gel) to be produced increase, and the particle size of the finally obtained titanium oxide-based fine particles increases and the particle size distribution is not good. It may be uniform.
When the temperature of the titanium compound aqueous solution is less than 0 ° C., the primary particles of the titanium oxide hydrate (gel) to be produced are not further reduced, and the particle size distribution of the finally obtained titanium oxide fine particles is Furthermore, it does not become uniform.

ついで、チタニウム化合物水溶液にアンモニア水溶液を添加して、加水分解(中和)するが、チタニウム化合物をTiO2としてのモル数(MTiO2)を1としたとき、添加するアンモニア水溶液のアンモニアのモル数(MNH3)が1〜10、さらには2〜5の範囲にあることが好ましい。
アンモニアのモル数(MNH3)が1未満の場合は、チタニウム化合物の加水分解が不充分となる場合があり、生成する酸化チタン水和物(ゲル)の一次粒子が大きくなり、最終的に得られる酸化チタン系微粒子の平均粒子径が10nmを越えて大きくなる場合があり、しかも粒子径分布が不均一となり、収率も低下する問題がある。
アンモニアのモル数(MNH3)が10を越えても、さらに、生成する酸化チタン水和物(ゲル)の一次粒子がさらに小さくなることもなく、最終的に得られる酸化チタン系微粒子の平均粒子径がさらに小さくなることもなく、最終的に得られる酸化チタン系微粒子の粒子径分布がさらに均一になることもない。
Then, an aqueous ammonia solution is added to the titanium compound aqueous solution for hydrolysis (neutralization). When the number of moles of titanium compound as TiO 2 (M TiO2 ) is 1, the number of moles of ammonia in the aqueous ammonia solution to be added. (M NH3 ) is preferably in the range of 1 to 10, more preferably 2 to 5.
When the number of moles of ammonia (M NH3 ) is less than 1, the titanium compound may be insufficiently hydrolyzed, and the primary particles of the titanium oxide hydrate (gel) to be produced become larger and finally obtained. In some cases, the average particle size of the titanium oxide-based fine particles is larger than 10 nm, and the particle size distribution is not uniform, resulting in a decrease in yield.
Even if the number of moles of ammonia (M NH3 ) exceeds 10, the primary particles of titanium oxide-based fine particles that are finally obtained are not further reduced in the primary particles of titanium oxide hydrate (gel). The diameter is not further reduced, and the particle size distribution of the finally obtained titanium oxide fine particles is not further uniformed.

また、チタニウム化合物を、TiO2として1モル加水分解するとしたときに、アンモニアの添加速度は1〜10時間/1モル(MNH3)、さらには2〜8時間/1モル(MNH3)の範囲にあることが好ましい。
アンモニアの添加速度が1時間/1モル(MNH3)未満の場合は、生成する酸化チタン水和物(ゲル)の一次粒子が大きくなり、工程(d)での過酸化水素溶解性が低下し、酸化チタン系微粒子の収率が低下する場合があり、また、最終的に得られる酸化チタン系微粒子の粒子径が大きくなるとともに粒子径分布が不均一となる場合がある。
アンモニアの添加速度が10時間/1モル(MNH3)を越えると、生成する酸化チタン水和物(ゲル)の一次粒子は小さいものの、大きな二次粒子が生成するためか、最終的に得られる酸化チタン系微粒子の粒子径分布が不均一になる場合がある。
Further, when the titanium compound is hydrolyzed to 1 mole as TiO 2 , the addition rate of ammonia is in the range of 1 to 10 hours / 1 mole (M NH3 ), and further 2 to 8 hours / 1 mole (M NH3 ). It is preferable that it exists in.
When the addition rate of ammonia is less than 1 hour / 1 mole (M NH3 ), the primary particles of titanium oxide hydrate (gel) to be produced become large and the hydrogen peroxide solubility in step (d) decreases. In some cases, the yield of the titanium oxide-based fine particles may decrease, and the particle diameter distribution of the finally obtained titanium oxide-based fine particles may increase and the particle size distribution may become non-uniform.
When the rate of addition of ammonia exceeds 10 hours / mole (M NH3 ), the primary particles of titanium oxide hydrate (gel) that are produced are small, but large secondary particles are produced. The particle size distribution of the titanium oxide-based fine particles may be non-uniform.

なお、本発明では、アンモニアに代えて水酸化ナトリウム水溶液、炭酸ナトリウム等の他の塩基性化合物を用いることもできるが、アンモニアは最終的に得られる酸化チタン系微粒子中に残存しても、必用に応じて除去することが容易であり、また、抗菌・消臭性能を阻害することもないので好適に用いることができる。   In the present invention, other basic compounds such as aqueous sodium hydroxide and sodium carbonate can be used in place of ammonia, but ammonia may be used even if it remains in the finally obtained titanium oxide-based fine particles. Can be easily removed, and the antibacterial / deodorant performance is not hindered.

工程(c)
ついで、酸化チタン水和物(ゲル)を洗浄する。
洗浄する方法としては、酸化チタン水和物(ゲル)中のチタニウム化合物に由来するアニオン等を除去できれば特に制限はなく、従来公知の方法を採用することができる。例えば、充分な純水を掛け水する方法、希アンモニア水を掛け水する方法等が挙げられる。
洗浄後の酸化チタン水和物(ゲル)中の不純物(アニオン等)が固形分(TiO2)中に1重量%以下、さらには0.1重量%以下であることが好ましい。このような不純物が多いと過酸化水素での未溶解物が増加し、収率が低下する場合があり、また、最終的に得られる酸化チタン系微粒子に凝集粒子が発生する場合がある。
Step (c)
Next, the titanium oxide hydrate (gel) is washed.
The washing method is not particularly limited as long as anions derived from the titanium compound in the titanium oxide hydrate (gel) can be removed, and conventionally known methods can be employed. For example, a method of pouring sufficient pure water, a method of pouring dilute ammonia water, and the like can be mentioned.
It is preferable that impurities (anions, etc.) in the titanium oxide hydrate (gel) after washing is 1% by weight or less, more preferably 0.1% by weight or less in the solid content (TiO 2 ). When there are many such impurities, the amount of undissolved substances in hydrogen peroxide increases and the yield may decrease, and aggregated particles may be generated in the finally obtained titanium oxide-based fine particles.

工程(d)
ついで、TiO2としての濃度が0.1〜10重量%、好ましくは0.2〜5重量%の範囲にある洗浄した酸化チタン水和物分散液を調製する。
酸化チタン水和物分散液の濃度が固形分(TiO2)として0.1重量%未満の場合は、生産効率、収率、経済性が低下する問題がある。
酸化チタン水和物分散液の濃度が固形分(TiO2)として10重量%を越えると、後述する過酸化水素と酸化チタンとのモル比、溶解温度にもよるが、溶解に長時間を要したり、溶解が不充分になることがあり、このため酸化チタン系微粒子の収率が低下する問題が生じる。さらに、得られる酸化チタン系微粒子の粒子径分布が不均一になる場合がある。
Step (d)
Next, a washed titanium oxide hydrate dispersion having a concentration of TiO 2 in the range of 0.1 to 10% by weight, preferably 0.2 to 5% by weight is prepared.
When the concentration of the titanium oxide hydrate dispersion is less than 0.1% by weight as the solid content (TiO 2 ), there is a problem that production efficiency, yield, and economy are lowered.
When the concentration of the titanium oxide hydrate dispersion exceeds 10% by weight as the solid content (TiO 2 ), it takes a long time to dissolve, depending on the molar ratio of hydrogen peroxide to titanium oxide and the melting temperature described later. Or the dissolution may be insufficient, which causes a problem that the yield of the titanium oxide fine particles is lowered. Furthermore, the particle size distribution of the obtained titanium oxide-based fine particles may be non-uniform.

濃度調整した酸化チタン水和物分散液に、酸化チタン水和物のTiO2としてのモル数(MTiO2)と過酸化水素のモル数(MH2O2)とのモル比(MH2O2)/(MTiO2)が2〜10、さらには好ましくは3〜8の範囲となるように過酸化水素水を添加する。
モル比(MH2O2)/(MTiO2)が2未満の場合は、溶解温度にもよるが、時間を要したり、未溶解の酸化チタン水和物が残存する場合がある。
Titanium oxide hydrate dispersion liquid density adjustment, the molar ratio of the moles of the TiO 2 of the titanium oxide hydrate (M TiO2) the moles of hydrogen peroxide (M H2O2) (M H2O2) / (M Hydrogen peroxide water is added so that TiO2 ) is in the range of 2 to 10, more preferably 3 to 8.
When the molar ratio (M H2O2 ) / (M TiO2 ) is less than 2, although depending on the dissolution temperature, it may take time or undissolved titanium oxide hydrate may remain.

モル比(MH2O2)/(MTiO2)が10を越えても、さらに、溶解が進むこともなく、未溶解の酸化チタン水和物が減少して酸化チタン系微粒子粒子の収率が向上することもなく、過酸化水素が過剰となり、後述する工程(e)で除去する過酸化水素が増大し、経済性の点からも望ましくない。 Even when the molar ratio (M H2O2 ) / (M TiO2 ) exceeds 10, further dissolution does not proceed, undissolved titanium oxide hydrate is reduced, and the yield of titanium oxide fine particles is improved. In addition, the amount of hydrogen peroxide becomes excessive, and the amount of hydrogen peroxide to be removed in the step (e) described later increases, which is not desirable from the viewpoint of economy.

溶解する際の温度は10〜100℃、さらには30〜80℃の範囲にあることが好ましい。
溶解温度が10℃未満の場合は、溶解に時間を要したり、未反応酸化チタン水和物が残存する場合があり、酸化チタン系微粒子粒子の収率が不充分となる場合がある。
溶解温度が100℃を越えると、得られる酸化チタン系微粒子粒子の粒子径が大きくなり過ぎたり、粒子径分布が不均一になる場合がある。
溶解時間は、温度によっても異なるが、溶解を開始して一度黄色を呈した後に生成するペルオキソチタン酸水溶液が透明になった時点をいい、通常0.5〜12時間である。
It is preferable that the temperature at the time of melt | dissolution exists in the range of 10-100 degreeC, Furthermore, 30-80 degreeC.
When the dissolution temperature is less than 10 ° C., it may take time for dissolution or unreacted titanium oxide hydrate may remain, and the yield of titanium oxide-based fine particles may be insufficient.
If the melting temperature exceeds 100 ° C., the resulting titanium oxide fine particles may have an excessively large particle size or a non-uniform particle size distribution.
The dissolution time varies depending on the temperature, but refers to the time when the aqueous peroxotitanic acid solution formed after starting dissolution and once yellowing becomes transparent, usually 0.5 to 12 hours.

工程(e)
前記分散液を温度30〜100℃、さらには40〜80℃で撹拌しながら過酸化水素を除去し、熟成する。
この時の温度が30℃未満の場合は、過酸化水素の除去に時間を要したり、熟成効果が不充分となり、得られる酸化チタン系微粒子の粒子径分布が不均一になる場合がある。
この時の温度が100℃を越えると、得られる酸化チタン系微粒子が凝集する場合があり、超微細で単分散した酸化チタン系微粒子、粒子径分布が均一な粒子が得られない場合がある。また、無定型から結晶化が進み、アナタース型酸化チタンが増加し、用途によっては耐光性、耐候性が不充分となる場合がある。
なお、工程(e)の熟成時間は、前記工程(d)の溶解を開始して一度黄色を呈した後に生成するペルオキソチタン酸水溶液が透明になった時点、以降の時間である。
この時の処理時間は、通常0.5〜12時間である。
Step (e)
The dispersion is aged by removing hydrogen peroxide while stirring at a temperature of 30 to 100 ° C., further 40 to 80 ° C.
If the temperature at this time is less than 30 ° C., it may take time to remove hydrogen peroxide, the aging effect may be insufficient, and the particle size distribution of the resulting titanium oxide-based fine particles may be uneven.
If the temperature at this time exceeds 100 ° C., the resulting titanium oxide-based fine particles may aggregate, and ultrafine, monodispersed titanium oxide-based fine particles or particles having a uniform particle size distribution may not be obtained. In addition, crystallization proceeds from amorphous, anatase-type titanium oxide increases, and light resistance and weather resistance may be insufficient depending on applications.
The aging time in the step (e) is a time after the time when the aqueous peroxotitanic acid solution generated after the dissolution in the step (d) starts to turn yellow once becomes transparent.
The processing time at this time is usually 0.5 to 12 hours.

上記のようにして本発明に係る酸化チタン系微粒子(第1の酸化チタン系微粒子)が得られるが、本発明では、さらに、前記工程(e)についで、下記の工程(f)、必用に応じて工程(g)を行うことによって酸化チタン系微粒子(第2の酸化チタン系微粒子)が得られる。   As described above, the titanium oxide-based fine particles (first titanium oxide-based fine particles) according to the present invention can be obtained. In the present invention, following the step (e), the following step (f) is necessary. Accordingly, by performing the step (g), titanium oxide-based fine particles (second titanium oxide-based fine particles) are obtained.

工程(f)
シリカゾルおよび/またはジルコニアゾルを第1の酸化チタン系微粒子のTiO2に対して0.1〜15重量%、好ましくは0.2〜10重量%となるように添加する。
シリカゾル、ジルコニアゾルとしては、従来公知のシリカゾル、ジルコニアゾルを用いることができるが、平均粒子径は1〜100nmの範囲にあることが好ましい。
平均粒子径が1nm未満の場合は、得られる酸化チタン系微粒子が凝集することがあり、100nmを越えると、後述するシリカ成分、ジルコニア成分を添加する効果が不充分となる場合がある。
Step (f)
Silica sol and / or zirconia sol is added in an amount of 0.1 to 15% by weight, preferably 0.2 to 10% by weight, based on TiO 2 of the first titanium oxide fine particles.
Conventionally known silica sol and zirconia sol can be used as the silica sol and zirconia sol, but the average particle diameter is preferably in the range of 1 to 100 nm.
When the average particle diameter is less than 1 nm, the resulting titanium oxide-based fine particles may agglomerate. When the average particle diameter exceeds 100 nm, the effect of adding a silica component and a zirconia component described below may be insufficient.

シリカゾルおよび/またはジルコニアゾルの添加量がTiO2に対して0.1重量%未満の場合で、シリカゾルを用いる場合、酸化チタン系微粒子分散液の安定性の向上効果が不充分となり、また耐光性、耐候性の向上効果が充分得られない場合があり、ジルコニアゾルを用いた場合は、酸化チタン系微粒子分散液の安定性の向上効果が不充分となり、また耐光性、耐候性の向上効果が充分得られない場合があり、抗菌成分の種類によっては変色を抑制する効果が得られない場合がある。
シリカゾルおよび/またはジルコニアゾルの添加量がTiO2に対して15重量%を越えると、安定性向上効果、耐光性、耐候性の向上効果が不充分となり、これに抗菌・消臭成分を担持して抗菌・消臭剤と用いた場合、抗菌・消臭性能が不充分となる場合がある。
When the addition amount of silica sol and / or zirconia sol is less than 0.1% by weight with respect to TiO 2 , when silica sol is used, the effect of improving the stability of the titanium oxide-based fine particle dispersion becomes insufficient, and light resistance In some cases, the effect of improving weather resistance may not be sufficiently obtained. When zirconia sol is used, the effect of improving the stability of the titanium oxide fine particle dispersion is insufficient, and the effect of improving light resistance and weather resistance is also insufficient. In some cases, it cannot be obtained sufficiently, and depending on the type of antibacterial component, the effect of suppressing discoloration may not be obtained.
If the added amount of silica sol and / or zirconia sol exceeds 15% by weight with respect to TiO 2 , the stability improvement effect, light resistance and weather resistance improvement effect will be insufficient, and this will carry antibacterial and deodorant components. When used with antibacterial / deodorant, the antibacterial / deodorant performance may be insufficient.

工程(g)
ついで、温度30〜80℃、好ましくは40〜60℃で熟成する。
熟成温度が30℃未満の場合は、粒子の分散性の向上、安定性の向上、粒子径の均一化等の熟成効果が充分得られない場合がある。
熟成温度が80℃を越えると、粒子成長がおこり、粒子径が大きくなり過ぎる場合があり、温度、時間によってはアナターゼ結晶化して充分な耐候性が得られない場合がある。
この時、熟成時間は温度によっても異なるが、概ね1〜24時間である。
Step (g)
Then, aging is performed at a temperature of 30 to 80 ° C, preferably 40 to 60 ° C.
When the aging temperature is less than 30 ° C., the aging effects such as improvement in particle dispersibility, improvement in stability, and uniform particle diameter may not be obtained sufficiently.
When the ripening temperature exceeds 80 ° C., particle growth may occur and the particle diameter may become too large, and depending on the temperature and time, anatase crystallization may not be obtained and sufficient weather resistance may not be obtained.
At this time, the aging time varies depending on the temperature, but is generally 1 to 24 hours.

このようにして得られる酸化チタン系微粒子(第1および第2の酸化チタン系微粒子)は、平均粒子径(D)が3〜10nmの範囲にあり、平均粒子径(D)±2nmの粒子径を有する酸化チタン系微粒子の個数割合が70%以上であることが好ましく、酸化チタン系微粒子は無定型であることが好ましい。 The titanium oxide-based fine particles (first and second titanium oxide-based fine particles) thus obtained have an average particle diameter (D) in the range of 3 to 10 nm and an average particle diameter (D) of ± 2 nm. It is preferable that the number ratio of the titanium oxide-based fine particles having 70 is 70% or more, and the titanium oxide-based fine particles are preferably amorphous.

平均粒子径(D)は3〜10nm、さらには5〜8nmの範囲にあることが好ましい。
平均粒子径(D)が3nm未満の場合は、分散液の安定性が不充分となる場合があり、後述する塗布液に用いた場合に、凝集する場合があり、得られる塗膜の強度、透明性、抗菌・消臭性能が不充分となる場合がある。
平均粒子径(D)が10nmを越えると、粒子の外部表面積が小さくなるためか、均一に高分散した状態の抗菌・消臭成分の単位重量当たりの含有量を向上させる効果が得られず、充分な抗菌・消臭性能が得られない場合がある。
The average particle diameter (D) is preferably in the range of 3 to 10 nm, more preferably 5 to 8 nm.
When the average particle diameter (D) is less than 3 nm, the dispersion may have insufficient stability, and may be agglomerated when used in a coating solution described below, and the strength of the resulting coating film, Transparency, antibacterial / deodorant performance may be insufficient.
If the average particle diameter (D) exceeds 10 nm, the effect of improving the content per unit weight of the antibacterial and deodorant components in a state of being uniformly highly dispersed may not be obtained, because the external surface area of the particles becomes small, Sufficient antibacterial / deodorant performance may not be obtained.

また、粒子径分布については、平均粒子径(D)±2nmの粒子径を有する酸化チタン系微粒子の個数割合が70%以上、さらには80%以上であることが好ましい。
平均粒子径(D)±2nmの粒子径を有する酸化チタン系微粒子の個数割合が70%未満の場合は、分散液、塗布液の安定性が不充分となる傾向があり、用途、用法によっては得られる塗膜の強度、透明性、抗菌・消臭性能が不充分となる場合がある。
Regarding the particle size distribution, the number ratio of the titanium oxide-based fine particles having an average particle size (D) ± 2 nm is preferably 70% or more, and more preferably 80% or more.
When the number ratio of the titanium oxide fine particles having an average particle diameter (D) of ± 2 nm is less than 70%, the dispersion and the coating liquid tend to be insufficiently stable, depending on the application and usage. The strength, transparency, antibacterial and deodorizing performance of the resulting coating film may be insufficient.

本発明では、平均粒子径は、酸化チタン系微粒子の透過型電子顕微鏡(日立H−800、日立ハイテク(株)製)を撮影し、100個の粒子について粒子径を測定し、その平均値として求めることができる。
また、粒子径分布は、上記粒子径の分布曲線を求め、平均粒子径(D)±2nmの粒子の個数割合を求める。
In the present invention, the average particle size is obtained by photographing a transmission electron microscope (Hitachi H-800, manufactured by Hitachi High-Tech Co., Ltd.) of titanium oxide-based fine particles, measuring the particle size of 100 particles, and calculating the average value. Can be sought.
In addition, the particle size distribution is obtained by obtaining a distribution curve of the particle size and determining the number ratio of particles having an average particle size (D) ± 2 nm.

また、酸化チタン系微粒子は無定型であることが好ましい。酸化チタン系微粒子は結晶性であっても使用することができるが、耐光性、耐候性の観点から無定型であることが好ましい。さらに詳しくは、結晶性酸化チタン系微粒子は抗菌・消臭性能は高いが、耐光性に問題があり、一方、無定型酸化チタン系微粒子の場合、本願では均一で粒子径の小さい粒子であるため抗菌・消臭剤の含有量を多くすることができ、このため、耐光性、耐候性に問題が無く、抗菌・消臭性能に優れた酸化チタン系微粒子が得られる。   The titanium oxide-based fine particles are preferably amorphous. The titanium oxide-based fine particles can be used even if they are crystalline, but are preferably amorphous from the viewpoint of light resistance and weather resistance. More specifically, crystalline titanium oxide-based fine particles have high antibacterial and deodorant performance, but have problems with light resistance. On the other hand, amorphous titanium oxide-based fine particles are uniform and have a small particle size in the present application. The content of the antibacterial / deodorant can be increased, and for this reason, there are no problems in light resistance and weather resistance, and titanium oxide fine particles having excellent antibacterial / deodorant performance can be obtained.

[抗菌・消臭剤]
次に、抗菌・消臭剤について説明する。
本発明に係る第1の抗菌・消臭剤は、抗菌・消臭性成分を酸化物換算で0.1〜25重量%の範囲で含む酸化チタン系微粒子であって、平均粒子径(D)が3〜10nmの範囲にあり、平均粒子径(D)±2nmの粒子径を有する酸化チタン微粒子の個数割合が70%以上であることを特徴としている。
酸化チタン系微粒子としては、前記酸化チタン系微粒子が用いられる。
[Antimicrobial / deodorant]
Next, the antibacterial / deodorant will be described.
The first antibacterial / deodorant according to the present invention is titanium oxide-based fine particles containing an antibacterial / deodorant component in the range of 0.1 to 25% by weight in terms of oxide, and has an average particle diameter (D). Is in the range of 3 to 10 nm, and the number ratio of titanium oxide fine particles having an average particle diameter (D) ± 2 nm is 70% or more.
The titanium oxide fine particles are used as the titanium oxide fine particles.

第1の抗菌・消臭剤中の抗菌・消臭性成分の含有量は酸化チタン系微粒子に対して、酸化物換算で0.1〜25重量%、さらには1〜20重量%の範囲にあることが好ましい。
抗菌・消臭性成分の含有量が0.1重量%よりも少ない場合には充分な抗菌・消臭性能が得られにくい。
抗菌・消臭性成分の含有量が25重量%よりも多い場合には、さらに消臭性能および抗菌性能が向上することもなく、むしろ抗菌・消臭性成分が凝集するためか性能が低下する場合がある。
The content of the antibacterial / deodorant component in the first antibacterial / deodorant is in the range of 0.1 to 25% by weight, more preferably 1 to 20% by weight, in terms of oxide, with respect to the titanium oxide fine particles. Preferably there is.
When the content of the antibacterial / deodorant component is less than 0.1% by weight, it is difficult to obtain sufficient antibacterial / deodorant performance.
If the content of the antibacterial / deodorant component is more than 25% by weight, the deodorant performance and antibacterial performance will not be further improved, but rather the performance will decrease due to aggregation of the antibacterial / deodorant component. There is a case.

抗菌・消臭性成分としては、銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上の金属成分であることが好ましい。なかでも銀または亜鉛は抗菌性能と消臭性能のいずれも優れているので好ましい。特に亜鉛の場合は全く変色することもないので好適に採用することができる。
このような抗菌・消臭性成分はイオン、酸化物、水酸化物等の化合物またはこれらの混合物のいずれの形態で存在していてもよい。抗菌性の観点からはイオンの形態が好ましく、酸化物であれば消臭性にも優れた抗菌・消臭剤が得られる。
また、抗菌・消臭成分は酸化チタン系微粒子の表層に存在するか、酸化チタン系微粒子の内部まで比較的均一に分布していることが好ましい。
The antibacterial / deodorant component is preferably one or more metal components selected from silver, copper, zinc, tin, cobalt, nickel, and manganese. Among these, silver or zinc is preferable because both antibacterial performance and deodorization performance are excellent. In particular, in the case of zinc, since it does not change color at all, it can be preferably used.
Such antibacterial and deodorant components may be present in any form of compounds such as ions, oxides, hydroxides or mixtures thereof. From the viewpoint of antibacterial properties, ionic form is preferable, and if it is an oxide, an antibacterial / deodorant excellent in deodorizing properties can be obtained.
In addition, the antibacterial / deodorant component is preferably present on the surface layer of the titanium oxide-based fine particles or is relatively uniformly distributed to the inside of the titanium oxide-based fine particles.

本発明の抗菌・消臭剤において前記酸化チタン系微粒子は、前記したように、シリカおよび/またはジルコニアをTiO2に対して0.1〜15重量%の範囲で含有することが好ましい。
また、前記酸化チタン系微粒子は無定型であることが好ましい。
In the antibacterial / deodorant of the present invention, the titanium oxide fine particles preferably contain silica and / or zirconia in the range of 0.1 to 15% by weight with respect to TiO 2 as described above.
The titanium oxide fine particles are preferably amorphous.

本発明に係る第2の抗菌・消臭剤は、前記抗菌・消臭剤が香料化合物を含有する水系分散媒中に分散していることを特徴としている。
水系分散媒としては、抗菌・消臭剤を均一に、且つ安定に分散させすることができれば特に制限はなく、通常、水、水とアルコール類の混合分散媒が好ましい。
アルコール類としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、ブタノール等の他、高級アルコール、多価アルコール、芳香族アルコール等が用いられる。また、必用に応じて、アルコール以外の添加剤を添加してもよい。
水系分散媒中の抗菌・消臭剤の濃度は、用途によっても異なるが、固形分として0.01〜10重量%、好ましくは0.1〜5重量%の範囲である。
The second antibacterial / deodorant according to the present invention is characterized in that the antibacterial / deodorant is dispersed in an aqueous dispersion medium containing a fragrance compound.
The aqueous dispersion medium is not particularly limited as long as the antibacterial / deodorant can be uniformly and stably dispersed, and usually water, a mixed dispersion medium of water and alcohols is preferable.
As alcohols, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, butanol, etc., higher alcohols, polyhydric alcohols, aromatic alcohols and the like are used. Moreover, you may add additives other than alcohol as needed.
The concentration of the antibacterial / deodorant in the aqueous dispersion medium varies depending on the application, but is in the range of 0.01 to 10% by weight, preferably 0.1 to 5% by weight as the solid content.

香料化合物としては、特開2004−180979号公報に開示された香料化合物を好適に用いることができる。具体的には、2,4,6−トリメチル−2−フェニル−1,3−ジオキサン、2−エチル−4−(2,2,3−トリメチル−3−シクロペンテン−1−イル)−2−ブテン−1−オール、メチルノニルアセトアルデヒド、ベンジルアルコール、3−メチル−5−フェニルペンタン−1−オール等が好適に用いることができる。   As the fragrance compound, the fragrance compound disclosed in JP-A No. 2004-180979 can be suitably used. Specifically, 2,4,6-trimethyl-2-phenyl-1,3-dioxane, 2-ethyl-4- (2,2,3-trimethyl-3-cyclopenten-1-yl) -2-butene -1-ol, methylnonylacetaldehyde, benzyl alcohol, 3-methyl-5-phenylpentan-1-ol and the like can be suitably used.

このような香料化合物の配合量は、香料化合物の種類、用途、用法によっても異なるが、通常0.001〜2重量%、さらには0.01〜1重量%の範囲にあることが好ましい。
このような範囲で香料化合物を含んでいると、時間の経過によって香りが変化することもなく、異臭に対するマスキング力を有し、長期にわたって安定な芳香性を有するとともに、持続的な抗菌・消臭性能を有する抗菌・消臭剤が得られる。
The blending amount of such a fragrance compound varies depending on the type, use, and usage of the fragrance compound, but is usually in the range of 0.001 to 2% by weight, more preferably 0.01 to 1% by weight.
When a fragrance compound is included in such a range, the fragrance does not change over time, has a masking power against off-flavors, has a stable fragrance over a long period of time, and has a continuous antibacterial / deodorant. An antibacterial / deodorant having performance is obtained.

上記した第1の抗菌・消臭剤における抗菌・消臭成分を酸化チタン系微粒子に担持する方法としては、例えば前記特開2005−318999号公報(特許文献4)に開示した方法を採用することができる。
具体的には、例えば、負の電荷を有する酸化チタン微粒子が分散した分散液に、抗菌・消臭性成分の金属塩水溶液を添加する方法が挙げられる。
As a method of supporting the antibacterial / deodorant component in the above-mentioned first antibacterial / deodorant on the titanium oxide-based fine particles, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2005-318999 (Patent Document 4) is adopted. Can do.
Specifically, for example, a method of adding an aqueous metal salt solution of an antibacterial / deodorant component to a dispersion in which titanium oxide fine particles having a negative charge are dispersed may be mentioned.

前記金属塩水溶液はアンミン錯塩水溶液が好ましい。アンミン錯塩水溶液を用いると酸化チタン系微粒子分散液の安定性を低下させたり、ゲル化させることなく長期にわたって安定な抗菌・消臭性能を有する抗菌・消臭性塗膜を製造することができる。安定性が低下した抗菌消臭剤、ゲル化した抗菌消臭剤は用途が制限されたり、抗菌性能、消臭性能が不充分となることがある。
好適なアンミン錯塩水溶液は、例えば、酸化亜鉛、酸化銀あるいは酸化銅などをアンモニア水に溶解することによって、亜鉛、銀あるいは銅等のアンミン錯塩水溶液を調製することができる。
The metal salt aqueous solution is preferably an ammine complex salt aqueous solution. When an aqueous solution of an ammine complex salt is used, an antibacterial / deodorant coating film having stable antibacterial / deodorant performance over a long period of time can be produced without reducing the stability of the titanium oxide-based fine particle dispersion or gelling. The antibacterial deodorant with reduced stability and the gelled antibacterial deodorant may have limited applications or may have insufficient antibacterial and deodorant performance.
As a suitable aqueous solution of ammine complex salt, for example, an aqueous solution of ammine complex salt such as zinc, silver or copper can be prepared by dissolving zinc oxide, silver oxide or copper oxide in ammonia water.

なお、前記した方法での抗菌消臭剤の調製に際し、水を分散媒とする酸化チタン系微粒子分散液の濃度は酸化物として5重量%以下、好ましくは、0.5重量%〜3重量%の範囲にあることが好ましい。
抗菌・消臭成分の金属塩水溶液の添加量は、抗菌・消臭成分の含有量が酸化チタン微粒子に対して、酸化物として0.1〜25重量%、好ましくは1〜20重量%の範囲となるように添加する。
前述の方法で得られた水を分散媒とする抗菌・消臭成分を担持した酸化チタン微粒子分散液は、公知の方法、例えば限外濾過膜を用いて、所望の濃度に調整される。
In the preparation of the antibacterial deodorant by the above-described method, the concentration of the titanium oxide-based fine particle dispersion using water as a dispersion medium is 5% by weight or less, preferably 0.5% by weight to 3% by weight as an oxide. It is preferable that it exists in the range.
The addition amount of the metal salt aqueous solution of the antibacterial / deodorant component is such that the content of the antibacterial / deodorant component is 0.1 to 25% by weight, preferably 1 to 20% by weight as an oxide with respect to the titanium oxide fine particles. Add to be.
The titanium oxide fine particle dispersion liquid carrying the antibacterial / deodorant component using water as a dispersion medium obtained by the above-described method is adjusted to a desired concentration using a known method, for example, an ultrafiltration membrane.

[抗菌・消臭性塗膜形成用塗布液]
次に、抗菌・消臭性塗膜形成用塗布液について具体的に説明する。
本発明に係る抗菌・消臭性塗膜形成用塗布液は、前記抗菌・消臭剤を含むものであり、特に、前記抗菌・消臭剤が水溶性金属キレート化合物を含有する水系分散媒中に分散してなることを特徴としている。
[Coating liquid for forming antibacterial and deodorant coating films]
Next, the coating solution for forming an antibacterial / deodorant coating film will be specifically described.
The coating solution for forming an antibacterial / deodorant coating film according to the present invention contains the antibacterial / deodorant, and particularly in an aqueous dispersion medium in which the antibacterial / deodorant contains a water-soluble metal chelate compound. It is characterized by being dispersed.

抗菌・消臭剤
抗菌・消臭剤としては、前記した抗菌・消臭剤が用いられる。
水系分散媒
本発明に用いる水系分散媒としては、水、水とアルコールの混合分散媒が好ましい。
アルコールとしては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、ブタノール、等が挙げられる。
混合分散媒の場合、混合比率は特に制限はないが、概ね水の割合が10重量%以上であることが好ましい。
Antibacterial / deodorant The above-mentioned antibacterial / deodorant is used as the antibacterial / deodorant.
Aqueous Dispersion Medium As the aqueous dispersion medium used in the present invention, water and a mixed dispersion medium of water and alcohol are preferable.
Examples of the alcohol include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, butanol and the like.
In the case of a mixed dispersion medium, the mixing ratio is not particularly limited, but it is generally preferable that the ratio of water is 10% by weight or more.

抗菌・消臭性塗膜形成用塗布液の全固形分濃度は0.01〜20重量%、さらには0.1〜10重量%の範囲にあることが好ましい。
全固形分濃度が0.01重量%未満の場合は、塗布して得られる抗菌・消臭性塗膜の膜厚が薄くなり、抗菌・消臭性能が不充分となるほか、膜の強度が不充分、基材表面に凹凸がある場合は表面の平坦性が不充分となる場合がある。
The total solid concentration of the coating solution for forming an antibacterial / deodorant coating film is preferably 0.01 to 20% by weight, more preferably 0.1 to 10% by weight.
When the total solid content concentration is less than 0.01% by weight, the antibacterial / deodorant coating film obtained by coating becomes thinner, resulting in insufficient antibacterial / deodorant performance and increased film strength. If the surface of the base material is insufficient, the surface flatness may be insufficient.

全固形分濃度が20重量%を超えると、塗布液の安定性が不充分となったり、塗工性が低下し、得られる抗菌・消臭性塗膜の基材との密着性、表面平坦性、透明性、耐久性、クラック抑制等が低下するとともに抗菌性能、消臭性能が不充分となる場合がある。
抗菌・消臭性塗膜形成用塗布液中の抗菌・消臭剤の濃度は固形分として0.005〜19.9重量%、さらには0.1〜10重量%の範囲にあることが好ましい。
抗菌・消臭性塗膜形成用塗布液中の抗菌・消臭剤の濃度が固形分として0.005重量%未満の場合は、抗菌・消臭性能が不充分となる場合がある。
抗菌・消臭性塗膜形成用塗布液中の抗菌・消臭剤の濃度が固形分として19.9重量%を超えると、水溶性金属キレート化合物が制限されるが、この場合、塗布液の安定性、基材との密着性、透明性等が低下し膜強度が不充分となる場合がある。
If the total solid content exceeds 20% by weight, the stability of the coating solution becomes insufficient, the coating property is lowered, the adhesion of the resulting antibacterial / deodorant coating film to the substrate, and the surface is flat. In addition, the antibacterial performance and deodorizing performance may be insufficient while the properties, transparency, durability, crack suppression, etc. are reduced.
The concentration of the antibacterial / deodorant in the coating solution for forming the antibacterial / deodorant coating film is preferably in the range of 0.005 to 19.9% by weight, more preferably 0.1 to 10% by weight as the solid content. .
If the concentration of the antibacterial / deodorant in the coating solution for forming the antibacterial / deodorant coating is less than 0.005% by weight as the solid content, the antibacterial / deodorant performance may be insufficient.
When the concentration of the antibacterial / deodorant in the coating liquid for forming the antibacterial / deodorant coating exceeds 19.9% by weight as a solid content, the water-soluble metal chelate compound is limited. In some cases, stability, adhesion to a substrate, transparency, and the like are lowered, resulting in insufficient film strength.

水溶性金属キレート化合物
本発明に用いる水溶性金属キレート化合物としては、金属がTi、Al、Zr、Si等である水溶性金属キレート化合物が挙げられる。なかでも、金属がTiである水溶性チタンキレート化合物は抗菌・消臭性能を低下させることがないので好適に使用することができる。
水溶性チタンキレート化合物としては、水溶性チタンラクテートアンモニウム塩、チタンジイソプロポキシビス(トリエタノールアミン)、チタンラクテート等が挙げられる。
これらの水溶性チタンキレート化合物は、溶液自体も安定であるが、抗菌・消臭性塗膜形成用塗布液に用いた場合も、安定で、これを塗布して得られる抗菌・消臭性塗膜は基材との密着性、透明性、塗膜表面の平坦性に優れ、且つ、抗菌・消臭性能に優れている。
Water-soluble metal chelate compound Examples of the water-soluble metal chelate compound used in the present invention include water-soluble metal chelate compounds in which the metal is Ti, Al, Zr, Si or the like. Among these, a water-soluble titanium chelate compound in which the metal is Ti does not deteriorate the antibacterial / deodorant performance and can be preferably used.
Examples of the water-soluble titanium chelate compound include water-soluble titanium lactate ammonium salt, titanium diisopropoxybis (triethanolamine), titanium lactate and the like.
These water-soluble titanium chelate compounds are stable in the solution itself, but are also stable when used in an antibacterial / deodorant coating film-forming coating solution. The film is excellent in adhesion to the substrate, transparency, flatness of the coating film surface, and excellent in antibacterial and deodorizing performance.

抗菌・消臭性塗膜形成用塗布液中の水溶性金属キレート化合物のTiO2としての濃度は0.0001〜10重量%、さらには0.0005〜8重量%の範囲にあることが好ましい。
抗菌・消臭性塗膜形成用塗布液中の水溶性金属キレート化合物のTiO2としての濃度が0.0001重量%未満の場合は、塗布液の安定性、基材との密着性、透明性等が不充分となる場合がある。
抗菌・消臭性塗膜形成用塗布液中の水溶性金属キレート化合物のTiO2としての濃度が10重量%を超えると、塗布液の安定性がさらに向上することもなく、得られる抗菌・消臭性塗膜中の酸化チタン系微粒子の含有量が低下するために、抗菌・消臭性能が不充分となる場合がある。
The concentration of the water-soluble metal chelate compound in the coating solution for forming the antibacterial / deodorant coating film as TiO 2 is preferably in the range of 0.0001 to 10% by weight, more preferably 0.0005 to 8% by weight.
If the concentration of the TiO 2 antibacterial and deodorant coating the coating liquid for forming a water-soluble metal chelate compound in is less than 0.0001 wt%, stability of the coating solution, adhesion to a substrate, transparent May be insufficient.
When the concentration of the TiO 2 antibacterial and deodorant coating the coating liquid for forming a water-soluble metal chelate compound in more than 10% by weight, without the stability of the coating liquid is further improved, resulting Antibacterial and anti Since the content of titanium oxide-based fine particles in the odorous coating film decreases, the antibacterial / deodorant performance may be insufficient.

抗菌・消臭性塗膜形成用塗布液中の抗菌・消臭剤(抗菌・消臭成分を含む酸化チタン系微粒子)の固形分としての重量(Wa)と水溶性金属キレート化合物のTiO2としての重量(Wb)の重量比(Wb)/(Wa)が0.005〜1.0、さらには0.01〜0.5の範囲にあることが好ましい。
前記重量比(Wb)/(Wa)が0.005未満の場合は、水溶性金属キレート化合物が少なくなり、塗布液の安定性、基材との密着性、透明性、表面平坦性等が低下したり、膜強度が不充分となる場合がある。
前記重量比(Wb)/(Wa)が1.0を超えると、塗布液の安定性がさらに向上することもなく、得られる抗菌・消臭性塗膜中の抗菌・消臭剤の含有量が低下するために、抗菌・消臭性能が不充分となる場合がある。
Weight (W a ) as solid content of antibacterial / deodorant (titanium oxide fine particles containing antibacterial / deodorant components) in coating liquid for forming antibacterial / deodorant coating film and TiO 2 of water-soluble metal chelate compound The weight ratio (W b ) / (W a ) of the weight (W b ) is preferably in the range of 0.005 to 1.0, more preferably 0.01 to 0.5.
When the weight ratio (W b ) / (W a ) is less than 0.005, the amount of the water-soluble metal chelate compound decreases, the stability of the coating solution, the adhesion to the substrate, the transparency, the surface flatness, etc. May decrease or the film strength may be insufficient.
When the weight ratio (W b ) / (W a ) exceeds 1.0, the stability of the coating solution is not further improved, and the antibacterial / deodorant agent in the resulting antibacterial / deodorant coating is not improved. Since content falls, antibacterial and deodorizing performance may become inadequate.

さらに、本発明の抗菌・消臭性塗膜形成用塗布液には他の成分が含まれていてもよい。他の成分としては、顔料、分散材、界面活性剤等の他、通常塗料やインキに配合剤として用いられる成分が挙げられる。   Furthermore, the antibacterial and deodorant coating film-forming coating liquid of the present invention may contain other components. Examples of other components include pigments, dispersants, surfactants, and the like, as well as components that are usually used as a compounding agent in paints and inks.

[抗菌・消臭性塗膜付基材]
次に、本発明に係る抗菌・消臭性塗膜付基材について説明する。
本発明に係る抗菌・消臭性塗膜付基材は、基材と、基材上に形成された抗菌・消臭性塗膜とからなり、該抗菌・消臭性塗膜が前記抗菌・消臭性塗膜形成用塗布液を用いて形成された抗菌・消臭性塗膜であることを特徴としている。
[Base material with antibacterial and deodorant coating]
Next, the substrate with an antibacterial / deodorant coating film according to the present invention will be described.
The substrate with antibacterial / deodorant coating film according to the present invention comprises a substrate and an antibacterial / deodorant coating film formed on the substrate, and the antibacterial / deodorant coating film comprises the antibacterial / deodorant coating film. It is characterized by being an antibacterial / deodorant coating film formed using a coating liquid for forming a deodorant coating film.

基材
基材としては、ガラス、金属、樹脂、セラミック、木、各種繊維、無機酸化物等の基材が挙げられる。
また、接着性樹脂フィルム等の一方の表面に抗菌・消臭性塗膜を形成した後、他の基材を張付けて使用することもできる。
Examples of the base material include base materials such as glass, metal, resin, ceramic, wood, various fibers, and inorganic oxides.
Moreover, after forming an antibacterial and deodorant coating film on one surface of an adhesive resin film or the like, another substrate can be attached and used.

抗菌・消臭性塗膜中の抗菌・消臭剤の固形分としての含有量は50〜99.5重量%、さらには60〜96重量%の範囲にあることが好ましい。
抗菌・消臭性塗膜中の抗菌・消臭剤の固形分としての含有量が50重量%未満の場合は、抗菌・消臭性能が不充分となる場合がある。
抗菌・消臭性塗膜中の抗菌・消臭剤の固形分としての含有量が99.5重量%を超えてもさらに抗菌消臭性能が向上することもなく、基材との密着性、透明性、表面平坦性、膜強度等が不充分となる場合がある。
The content of the antibacterial / deodorant as a solid content in the antibacterial / deodorant coating is preferably in the range of 50 to 99.5% by weight, more preferably 60 to 96% by weight.
If the content of the antibacterial / deodorant as a solid content in the antibacterial / deodorant coating is less than 50% by weight, the antibacterial / deodorant performance may be insufficient.
The antibacterial / deodorant coating content in the solid content of the antibacterial / deodorant exceeds 99.5% by weight, and the antibacterial / deodorant performance is not further improved. Transparency, surface flatness, film strength, etc. may be insufficient.

抗菌・消臭性塗膜中の水溶性金属キレート化合物のTiO2としての含有量は0.5〜50重量%、さらには4〜40重量%の範囲にあることが好ましい。
抗菌・消臭性塗膜中の水溶性金属キレート化合物のTiO2としての含有量が0.5重量%未満の場合は、基材との密着性、透明性、表面平坦性、膜強度等が不充分となる場合がある。
抗菌・消臭性塗膜中の水溶性金属キレート化合物のTiO2としての含有量が50重量%を超えると、抗菌・消臭剤の含有量が少ないために抗菌・消臭性能が不充分となる場合がある。
The content of the water-soluble metal chelate compound in the antibacterial / deodorant coating film as TiO 2 is preferably 0.5 to 50% by weight, more preferably 4 to 40% by weight.
When the content of water-soluble metal chelate compound in the antibacterial / deodorant coating as TiO 2 is less than 0.5% by weight, adhesion to the substrate, transparency, surface flatness, film strength, etc. It may be insufficient.
If the content of water-soluble metal chelate compound in the antibacterial / deodorant coating as TiO 2 exceeds 50% by weight, the antibacterial / deodorant performance is insufficient due to the low content of antibacterial / deodorant. There is a case.

抗菌・消臭性塗膜の膜厚は0.1〜50μm、さらには0.1〜20μmの範囲にあることが好ましい。
抗菌・消臭性塗膜の膜厚が0.1μm未満の場合は、抗菌・消臭性能が不充分となる場合があり、長期に亘って高い抗菌・消臭性能を維持することができない場合がある。
抗菌・消臭性塗膜の膜厚が50μmを超えても、抗菌・消臭性能がさらに向上することもなく、塗膜にクラックが生じたり、透明性が低下するため用途が制限される場合がある。
The film thickness of the antibacterial / deodorant coating film is preferably in the range of 0.1 to 50 μm, more preferably 0.1 to 20 μm.
When the film thickness of the antibacterial / deodorant coating film is less than 0.1 μm, the antibacterial / deodorant performance may be insufficient, and the high antibacterial / deodorant performance cannot be maintained over a long period of time. There is.
Even if the film thickness of the antibacterial / deodorant coating film exceeds 50 μm, the antibacterial / deodorant performance will not be further improved, cracks will be generated in the coating film, or the use will be limited due to a decrease in transparency. There is.

このような抗菌・消臭性塗膜付基材は、前記抗菌・消臭性塗膜形成用塗布液を、ディップ法、スプレー法、スピナー法、ロールコート法、バーコーター法等の周知の方法で前記した基材に塗布し、乾燥し、さらに必要に応じて加熱処理して硬化させることによって製造することができる。   Such a substrate with an antibacterial / deodorant coating film is a known method such as a dipping method, a spray method, a spinner method, a roll coat method, a bar coater method, etc. It can be manufactured by applying to the above-mentioned substrate, drying, and further heat-treating as necessary.

本発明の抗菌・消臭剤、抗菌・消臭性塗膜において抗菌の対象となる菌類としては、黄色ブドウ球菌、連鎖球菌、大腸菌、緑膿菌、プロテウス菌、肺炎桿菌、枯草菌等、真菌としては黒かび、黒麹かび、白かび等、ウイルスとしてはインフルエンザウイルス、アデノウイルス、ノロウイルス等、藻類としてはクロレラ等が挙げられる。
また、消臭の対象となる臭気成分としては、法定悪臭8物質(硫化水素、メチルメルカプタン、硫化メチル、二硫化ジメチル、アンモニア、トリメチルアミン、アセトアルデヒド、スチレン)、炭化水素、ケトン、アルデヒド、アルコール類、エステル類、窒素化合物、硫黄化合物、低級脂肪酸等が挙げられる。
Antibacterials and deodorants of the present invention, fungi to be antibacterial in the antibacterial and deodorant coatings include fungi such as Staphylococcus aureus, Streptococcus, Escherichia coli, Pseudomonas aeruginosa, Proteus, Neisseria pneumoniae, Bacillus subtilis, etc. Examples include black mold, black mold, and white mold, viruses include influenza virus, adenovirus, and norovirus, and algae include chlorella.
The odor components that are subject to deodorization include eight legal malodorous substances (hydrogen sulfide, methyl mercaptan, methyl sulfide, dimethyl disulfide, ammonia, trimethylamine, acetaldehyde, styrene), hydrocarbons, ketones, aldehydes, alcohols, Examples include esters, nitrogen compounds, sulfur compounds, and lower fatty acids.

本発明の抗菌・消臭性塗膜は、居住空間、公共施設、医療施設、養護施設、自動車内装等において、抗菌性能とともに消臭性能が求められる箇所において特に有用である。
The antibacterial / deodorant coating film of the present invention is particularly useful in places where antibacterial performance and deodorization performance are required in residential spaces, public facilities, medical facilities, nursing homes, automobile interiors, and the like.

[実施例1]
酸化チタン系微粒子(1)分散液の調製
TiO2として濃度5.0重量%の硫酸チタニル水溶液1600gを調製し、温度15℃に調整した。(工程(a))
ついで、温度を15℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
[Example 1]
Preparation of Titanium Oxide Fine Particle (1) Dispersion A 1600 g aqueous solution of titanyl sulfate having a concentration of 5.0% by weight was prepared as TiO 2 and adjusted to a temperature of 15 ° C. (Process (a))
Subsequently, while maintaining the temperature at 15 ° C., 360 g of ammonia water having a concentration of 15% by weight was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mole (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))

ついで、洗浄した酸化チタン水和物ゲルスラリーを用い、TiO2として濃度1重量%、2000gの水和酸化チタン水和物分散液を調製し、これに濃度35重量%の過酸化水素水140gを添加し、50℃、1時間で溶解した。
この時、モル比(MH2O2)/(MTiO2)=5.8であった。(工程(d))
ついで、温度80℃で撹拌しながら過酸化水素を除去しながら1時間熟成した。(工程(e))
Next, using the washed titanium oxide hydrate gel slurry, a hydrated titanium oxide hydrate dispersion having a concentration of 1% by weight and 2000 g as TiO 2 was prepared, and 140 g of hydrogen peroxide solution having a concentration of 35% by weight was added thereto. And dissolved at 50 ° C. for 1 hour.
At this time, the molar ratio (M H2O2 ) / (M TiO2 ) = 5.8. (Process (d))
Subsequently, the mixture was aged for 1 hour while removing hydrogen peroxide while stirring at a temperature of 80 ° C. (Process (e))

ついで、純水を用い、限外濾過膜法で洗浄して、TiO2として濃度1重量%の酸化チタン系微粒子(1)分散液を得た。酸化チタン系微粒子(1)の平均粒子径、粒子径分布、結晶性、収率を測定し、結果を表に示した。
ここで、収率は、得られた酸化チタン系微粒子(1)の固形分(TiO2)重量を使用酸化チタン(TiO2)重量で除して求めた。
Subsequently, using pure water, it was washed by an ultrafiltration membrane method to obtain a dispersion of titanium oxide fine particles (1) having a concentration of 1% by weight as TiO 2 . The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (1) were measured, and the results are shown in the table.
Here, the yield, the solid content of the resulting titanium oxide-based fine particles (1) (TiO 2) weight the use of titanium oxide (TiO 2) was determined by dividing the weight.

なお、結晶性はX線解析スペクトルよって測定し、以下の基準で評価した。
X線解析ピークが高い :S(結晶性が高い)
X線解析ピークが中程度:M(結晶性が中程度)
X線解析ピークが低い :W(結晶性が低い)
X線解析ピークが殆ど認められない :Am(無定型)
The crystallinity was measured by an X-ray analysis spectrum and evaluated according to the following criteria.
High X-ray analysis peak: S (High crystallinity)
Medium X-ray analysis peak: M (medium crystallinity)
X-ray analysis peak is low: W (low crystallinity)
X-ray analysis peak is hardly recognized: Am (Amorphous)

抗菌・消臭性酸化チタン系微粒子(1)分散液の調製
TiO2として濃度1重量%の酸化チタン系微粒子(1)分散液1910gに抗菌・消臭成分として銀アンモニウム溶液(酸化銀、0.9gに純水89.1gを加え、15%アンモニア溶液、13.5gを1時間で添加して調製した溶液)を酸化チタン系微粒子(1)分散液に添加し、95℃で4時間熟成、限外濾過膜法により、5000gの純水で洗浄し、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(1)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(1)の平均粒子径、粒子径分布、結晶性を測定し、結果を表に示した。
Preparation of Antibacterial / Deodorant Titanium Oxide Fine Particles (1) Dispersion A titanium ammonium fine particle (1) dispersion having a concentration of 1% by weight as TiO 2 was added to a silver ammonium solution (silver oxide, 0. 9 g of pure water was added to 89.1 g, and a solution prepared by adding 15% ammonia solution and 13.5 g in 1 hour) was added to the titanium oxide fine particle (1) dispersion, and aged at 95 ° C. for 4 hours. By washing with 5000 g of pure water by an ultrafiltration membrane method, an antibacterial / deodorant titanium oxide fine particle (1) dispersion having a solid content concentration of 1.5% by weight was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (1) were measured, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(1-1)の調製
イオン交換水89.5重量部に固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(1)10重量部を配合し、充分に分散させた後、これに水溶性金属キレート化合物としてチタンラクテートアンモニウム塩溶液(マツモトファインケミカル(株)製:オルガチックスTC-300、チタンラクテートアンモニウム塩42重量%、水20重量%、イソプロピルアルコール38重量%、TiO2としての濃度10.0重量%)0.5重量部を添加して、固形分濃度0.2重量%の抗菌・消臭性塗膜形成用塗布液(1)を調製した。
Preparation of coating solution (1-1) for antibacterial / deodorant coating film formation Antibacterial / deodorant titanium oxide fine particles (1) 10% by weight in 89.5 parts by weight of ion-exchanged water with a solid concentration of 1.5% by weight After mixing and fully dispersing, a titanium lactate ammonium salt solution (manufactured by Matsumoto Fine Chemical Co., Ltd .: Olga Tix TC-300, 42% by weight of titanium lactate ammonium salt, 20% by weight of water as a water-soluble metal chelate compound. 0.5% by weight, isopropyl alcohol 38% by weight, TiO 2 concentration 10.0% by weight), and a solid content concentration 0.2% by weight antibacterial / deodorant coating forming liquid ( 1) was prepared.

抗菌・消臭性塗膜形成用塗布液(1)の安定性を下記の方法で評価した。
安定性評価
ガラスの密閉容器にて、50℃で1週間放置後、目視にて確認した。
ゲル化なし :◎
ゲル化、薄く白濁:○
ゲル化、白濁分離:△
ゲル化、白濁沈殿:×
The stability of the antibacterial / deodorant coating solution (1) was evaluated by the following method.
Stability evaluation In a closed glass container, the sample was allowed to stand at 50 ° C. for 1 week and then visually confirmed.
No gelation: ◎
Gelation, thin cloudiness: ○
Gelation, cloudiness separation: △
Gelation, cloudy precipitation: ×

抗菌・消臭性塗膜形成用塗布液(1-2)の調製
イオン交換水90重量部に固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(1)10重量部を配合し、充分に分散させて、固形分濃度0.15重量%の抗菌・消臭性塗膜形成用塗布液(1-2)を調製した。
抗菌・消臭性塗膜形成用塗布液(1-2)の安定性は表に示した。
Preparation of antibacterial / deodorant coating liquid (1-2) coating solution 90 parts by weight of ion-exchanged water 10 parts by weight of antibacterial / deodorant titanium oxide fine particles (1) having a solid content of 1.5% by weight Blended and sufficiently dispersed, a coating solution (1-2) for forming an antibacterial / deodorant coating film having a solid content concentration of 0.15% by weight was prepared.
The stability of the antibacterial / deodorant coating solution (1-2) is shown in the table.

抗菌・消臭性塗膜付基材(1-1)の作成
厚さ0.105mmの工業用純アルミニウム板を脱脂し、苛性処理し、充分に水で洗浄して乾燥したアルミニウム基材表面に抗菌・消臭性塗膜形成用塗布液(1-1)をバーコーター法で膜厚が約10μmになるように塗布し、120℃で2分間乾燥した。次いで200℃で2分間加熱処理して抗菌・消臭性塗膜付基材(1-1)を作成した。
得られた抗菌・消臭性塗膜付基材(1-1)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。なお、評価方法、評価基準は以下に示す。
Preparation of base material with antibacterial / deodorant coating film (1-1) 0.105mm thick industrial pure aluminum plate is degreased, causticized, thoroughly washed with water and dried on the surface of aluminum base The coating solution (1-1) for forming an antibacterial / deodorant coating film was applied by a bar coater method so as to have a film thickness of about 10 μm, and dried at 120 ° C. for 2 minutes. Subsequently, it was heat-treated at 200 ° C. for 2 minutes to prepare an antibacterial / deodorant-coated substrate (1-1).
For the obtained substrate (1-1) with antibacterial / deodorant coating film, the film thickness, adhesion, surface flatness, antibacterial performance and deodorization performance were evaluated, and the results are shown in the table. Evaluation methods and evaluation criteria are shown below.

抗菌・消臭性塗膜付基材(1-2)の作成
厚さ0.105mmの工業用純アルミニウム板を脱脂し、苛性処理し、充分に水で洗浄して乾燥したアルミニウム基材表面に抗菌・消臭性塗膜形成用塗布液(1-2)をバーコーター法で膜厚が約10μmになるように塗布し、120℃で2分間乾燥した。次いで200℃で2分間加熱処理して抗菌・消臭性塗膜付基材(1-2)を作成した。
得られた抗菌・消臭性塗膜付基材(1-2)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (1-2) Degreased 0.105mm thick industrial aluminum plate, caustic treatment, thoroughly washed with water and dried on aluminum substrate surface The antibacterial / deodorant coating film forming liquid (1-2) was applied by a bar coater method so as to have a film thickness of about 10 μm, and dried at 120 ° C. for 2 minutes. Subsequently, it heat-processed at 200 degreeC for 2 minute (s), and produced the base material (1-2) with an antibacterial and deodorant coating film.
The obtained substrate (1-2) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

膜厚
垂直に切断した膜の断面を走査型電子顕微鏡観察により観察して測定した。
The cross section of the film cut perpendicular to the film thickness was observed and measured by observation with a scanning electron microscope.

密着性
JIS K 5400に基づく基盤目試験に準拠し、抗菌・消臭性塗膜付基材(1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロハンテープ(登録商標)を接着し、ついで、セロハンテープ(登録商標)を剥離したときに被膜が剥離せず残存している升目の数を、以下の4段階に分類することによって密着性を評価した。
残存升目の数100個 :◎
残存升目の数93〜99個:○
残存升目の数85〜92個:△
残存升目の数84個以下 :×
Adhesion
In accordance with the basic eye test based on JIS K 5400, the surface of the substrate with antibacterial and deodorant coating film (1) is made with 11 parallel scratches with a knife at intervals of 1 mm in length and width, and 100 squares are made. Adhering cellophane tape (registered trademark) to this, and then separating the cellophane tape (registered trademark), the film does not peel off, and the number of cells remaining is classified into the following four stages Evaluated.
Number of remaining squares: ◎
93-99 remaining squares: ○
Number of remaining squares: 85-92:
Number of remaining squares: 84 or less: ×

平坦性
触針式表面荒さ計(東京精密(株)製:サーフコム)で表面の平均荒さを評価した。
The average roughness of the surface was evaluated with a flat stylus type surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd .: Surfcom).

抗菌性能
JIS Z2801に準拠し、抗菌・消臭性塗膜付基材(1)に菌懸濁液、0.4mlを接種し、その上に被覆フィルムを被せて蓋をした後、35±1℃、RH90以上で24時間放置後、菌懸濁液を回収して生菌数を測定し、次式(1)の殺菌活性値により抗菌性能を評価した。結果を表に示す。
試験菌には、黄色ぶどう球菌、大腸菌、およびMRSAを用い、菌懸濁液の栄養として、肉エキス(3g/L)+ペプトン(10g/L)+塩化ナトリウム(5g/L)を100倍に薄めたものを使用した。
殺菌活性値=Log(植菌数)−Log(試験片生菌数) ・・・(1)
Antibacterial performance
In accordance with JIS Z2801, after inoculating bacterial suspension, 0.4 ml on the antibacterial and deodorant coated substrate (1), covering it with a covering film, and covering, 35 ± 1 ° C, After standing at RH90 or more for 24 hours, the bacterial suspension was recovered, the number of viable bacteria was measured, and the antibacterial performance was evaluated by the bactericidal activity value of the following formula (1). The results are shown in the table.
Staphylococcus aureus, Escherichia coli, and MRSA are used as test bacteria. Meat extract (3 g / L) + peptone (10 g / L) + sodium chloride (5 g / L) is multiplied by 100 as nutrients for the bacterial suspension. A diluted one was used.
Bactericidal activity value = Log (number of inoculated bacteria)-Log (number of viable test pieces) (1)

消臭性能
試験臭(1):アセトアルデヒド(初期濃度:60ppm)
試験方法:1Lテドラーバッグに検体(10cm×10cm)を入れ、臭気1Lを添加後、室温にて、紫外線照射下(1.0mW/cm2)で放置。24時間後、検知管にて臭気残存濃度(消臭率)及び二酸化炭素濃度(ppm)を測定した。
Deodorant performance
Test odor (1) : Acetaldehyde (initial concentration: 60 ppm)
Test method: A specimen (10 cm × 10 cm) is placed in a 1 L tedlar bag, 1 L of odor is added, and then left at room temperature under ultraviolet irradiation (1.0 mW / cm 2 ). After 24 hours, residual odor concentration (deodorization rate) and carbon dioxide concentration (ppm) were measured with a detector tube.

試験臭(2,3):硫化水素(初期濃度:4ppm)、アンモニア(初期濃度:100ppm)
試験方法:5Lテドラーバッグに検体(10cm×10cm)を入れ、臭気3Lを添加後、室温にて、蛍光灯照射下で放置。2時間後検知管にて臭気残存濃度(消臭率)を測定した。
Test odor (2,3) : Hydrogen sulfide (initial concentration: 4 ppm), ammonia (initial concentration: 100 ppm)
Test method: Put a sample (10 cm × 10 cm) in a 5 L Tedlar bag, add 3 L of odor, and leave it at room temperature under fluorescent light irradiation. After 2 hours, the residual odor concentration (deodorization rate) was measured with a detector tube.

[実施例2]
酸化チタン系微粒子(2)分散液の調製
実施例1と同様にして、固形分(TiO2)濃度1重量%、1626gの酸化チタン系微粒子(1)分散液を調製し、これにシリカゾル(日揮触媒化成(株)製:SN-350、平均粒子径7nm、SiO2濃度16.7重量%)17gを混合、80℃で1時間熟成して、固形分濃度1重量%の酸化チタン系微粒子(2)分散液を調製した。
酸化チタン系微粒子(2)の平均粒子径、粒子径分布、結晶性、収率を表に示した。酸化チタン系微粒子(2)の組成は、TiO2濃度が85.2重量%、SiO2濃度が14.8重量%であった。
[Example 2]
Preparation of Titanium Oxide Fine Particle (2) Dispersion A titanium oxide fine particle (1) dispersion having a solid content (TiO 2 ) concentration of 1% by weight and 1626 g was prepared in the same manner as in Example 1, and silica sol (JGC) Catalyst Chemical Co., Ltd. product: SN-350, average particle diameter 7 nm, SiO 2 concentration 16.7 wt%) was mixed and aged at 80 ° C. for 1 hour to obtain titanium oxide fine particles having a solid content concentration of 1 wt% ( 2) A dispersion was prepared.
The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (2) are shown in the table. The composition of the titanium oxide fine particles (2) had a TiO 2 concentration of 85.2% by weight and a SiO 2 concentration of 14.8% by weight.

抗菌・消臭性酸化チタン系微粒子(2)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(2)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(2)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(2)の平均粒子径、粒子径分布、結晶性を測定し、結果を表に示した。抗菌・消臭性酸化チタン系微粒子(2)の組成は、TiO2濃度が81.4重量%、SiO2濃度が14.1重量%、Ag2O濃度が4.5重量%であった。
Preparation of antibacterial and deodorant titanium oxide fine particles (2) dispersion A solid content concentration of 1.5 was obtained in the same manner as in Example 1 except that a titanium oxide fine particle (2) dispersion having a solid concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (2) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (2) were measured, and the results are shown in the table. The composition of the antibacterial and deodorant titanium oxide fine particles (2) had a TiO 2 concentration of 81.4% by weight, a SiO 2 concentration of 14.1% by weight, and an Ag 2 O concentration of 4.5% by weight.

抗菌・消臭性塗膜形成用塗布液(2)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(2)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(2)を調製した。
抗菌・消臭性塗膜形成用塗布液(2)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (2) In preparation of the antibacterial / deodorant coating film-forming coating solution (1-1) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (2) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particle (2) dispersion was used.
The stability of the antibacterial / deodorant coating solution (2) was evaluated, and the results are shown in the table.

抗菌・消臭性塗膜付基材(2)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(2)を用いた以外は同様にして抗菌・消臭性塗膜付基材(2)を作成した。
得られた抗菌・消臭性塗膜付基材(2)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (2) In preparation of base material with antibacterial / deodorant coating film (1-1) of Example 1, an antibacterial / deodorant coating film coating solution ( A substrate (2) with an antibacterial / deodorant coating was prepared in the same manner except that 2) was used.
The obtained substrate (2) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例3]
酸化チタン系微粒子(3)分散液の調製
TiO2として濃度5.0重量%の硫酸チタニル水溶液1600gを調製し、温度5℃に調整した。(工程(a))
ついで、温度を5℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
以下、実施例1と同様にして、TiO2として濃度1重量%の酸化チタン系微粒子(3)分散液を得た。酸化チタン系微粒子(3)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
[Example 3]
Preparation of Titanium Oxide Fine Particle (3) Dispersion 1600 g of a titanyl sulfate aqueous solution having a concentration of 5.0% by weight was prepared as TiO 2 and adjusted to a temperature of 5 ° C. (Process (a))
Subsequently, while maintaining the temperature at 5 ° C., 360 g of ammonia water having a concentration of 15% by weight was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mole (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))
Thereafter, in the same manner as in Example 1, a dispersion of titanium oxide fine particles (3) having a concentration of 1% by weight as TiO 2 was obtained. The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (3) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(3)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(3)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(3)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(3)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of antibacterial and deodorant titanium oxide fine particles (3) dispersion A solid content concentration of 1.5 was obtained in the same manner as in Example 1 except that a titanium oxide fine particle (3) dispersion having a solid concentration of 1% by weight was used. A weight percent antibacterial and deodorant titanium oxide fine particle (3) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (3) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(3)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(3)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(3)を調製した。
抗菌・消臭性塗膜形成用塗布液(3)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (3) In the preparation of antibacterial / deodorant coating film-forming coating solution (1-1) in Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (3) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particle (3) dispersion was used.
The stability of the antibacterial / deodorant coating solution (3) was evaluated, and the results are shown in the table.

抗菌・消臭性塗膜付基材(3)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(3)を用いた以外は同様にして抗菌・消臭性塗膜付基材(3)を作成した。
得られた抗菌・消臭性塗膜付基材(3)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of substrate with antibacterial / deodorant coating film (3) In preparation of substrate (1-1) with antibacterial / deodorant coating film of Example 1, coating liquid for forming antibacterial / deodorant coating film (1-1) A substrate (3) with an antibacterial / deodorant coating film was prepared in the same manner except that 3) was used.
The obtained substrate (3) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例4]
酸化チタン系微粒子(4)分散液の調製
TiO2として濃度5.0重量%の硫酸チタニル水溶液1600gを調製し、温度25℃に調整した。(工程(a))
ついで、温度を25℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
以下、実施例1と同様にして、TiO2として濃度1重量%の酸化チタン系微粒子(4)分散液を得た。酸化チタン系微粒子(4)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
[Example 4]
Preparation of Titanium Oxide Fine Particle (4) Dispersion 1600 g of a titanyl sulfate aqueous solution having a concentration of 5.0% by weight was prepared as TiO 2 and adjusted to a temperature of 25 ° C. (Process (a))
Subsequently, while maintaining the temperature at 25 ° C., 360 g of ammonia water having a concentration of 15% by weight was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mole (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))
Thereafter, in the same manner as in Example 1, a dispersion of titanium oxide fine particles (4) having a concentration of 1% by weight as TiO 2 was obtained. The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (4) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(4)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(4)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(4)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(4)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of antibacterial and deodorant titanium oxide fine particles (4) dispersion The solid content concentration of 1.5 was the same as in Example 1 except that the titanium oxide fine particle (4) dispersion having a solid concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (4) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (4) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(4)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(4)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(4)を調製した。
抗菌・消臭性塗膜形成用塗布液(4)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (4) In preparation of the antibacterial / deodorant coating film-forming coating solution (1-1) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (4) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particle (4) dispersion was used.
The stability of the antibacterial / deodorant coating solution (4) was evaluated and the results are shown in the table.

抗菌・消臭性塗膜付基材(4)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(4)を用いた以外は同様にして抗菌・消臭性塗膜付基材(4)を作成した。
得られた抗菌・消臭性塗膜付基材(4)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (4) In preparation of base material with antibacterial / deodorant coating film (1-1) of Example 1, coating liquid for forming antibacterial / deodorant coating film (1-1) A substrate (4) with an antibacterial / deodorant coating was prepared in the same manner except that 4) was used.
The obtained substrate (4) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例5]
酸化チタン系微粒子(5)分散液の調製
TiO2として濃度1.0重量%の硫酸チタニル水溶液8000gを調製し、温度10℃に調整した。(工程(a))
ついで、温度を10℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
以下、実施例1と同様にして、TiO2として濃度1重量%の酸化チタン系微粒子(5)分散液を得た。酸化チタン系微粒子(5)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
[Example 5]
Preparation of Titanium Oxide Fine Particle (5) Dispersion A 8000 g aqueous solution of titanyl sulfate having a concentration of 1.0% by weight was prepared as TiO 2 and adjusted to a temperature of 10 ° C. (Process (a))
Next, while maintaining the temperature at 10 ° C., 360 g of 15% by weight ammonia water was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mole (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))
Thereafter, in the same manner as in Example 1, a dispersion of titanium oxide fine particles (5) having a concentration of 1% by weight as TiO 2 was obtained. The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (5) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(5)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(5)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(5)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(5)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of antibacterial and deodorant titanium oxide fine particles (5) dispersion The solid content concentration of 1.5 was the same as in Example 1 except that the titanium oxide fine particle (5) dispersion having a solid concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (5) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (5) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(5)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(5)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(5)を調製した。
抗菌・消臭性塗膜形成用塗布液(5)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (5) In preparation of the antibacterial / deodorant coating film-forming coating solution (1-1) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (5) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particles (5) dispersion was used.
The stability of the antibacterial / deodorant coating solution (5) was evaluated, and the results are shown in the table.

抗菌・消臭性塗膜付基材(5)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(5)を用いた以外は同様にして抗菌・消臭性塗膜付基材(5)を作成した。
得られた抗菌・消臭性塗膜付基材(5)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (5) In preparation of the base material with antibacterial / deodorant coating film (1-1) of Example 1, an antibacterial / deodorant coating film forming liquid ( A substrate (5) with an antibacterial / deodorant coating film was prepared in the same manner except that 5) was used.
The obtained substrate (5) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例6]
酸化チタン系微粒子(6)分散液の調製
TiO2として濃度15重量%の硫酸チタニル水溶液530gを調製し、温度10℃に調整した。(工程(a))
ついで、温度を10℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
以下、実施例1と同様にして、TiO2として濃度1重量%の酸化チタン系微粒子(6)分散液を得た。酸化チタン系微粒子(6)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
[Example 6]
Preparation of Titanium Oxide Fine Particle (6) Dispersion A 530 g titanyl sulfate aqueous solution having a concentration of 15% by weight was prepared as TiO 2 and adjusted to a temperature of 10 ° C. (Process (a))
Next, while maintaining the temperature at 10 ° C., 360 g of 15% by weight ammonia water was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mole (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))
Thereafter, in the same manner as in Example 1, a dispersion of titanium oxide fine particles (6) having a concentration of 1% by weight as TiO 2 was obtained. The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (6) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(6)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(6)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(6)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(6)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of antibacterial and deodorant titanium oxide fine particle (6) dispersion The solid content concentration was 1.5 in the same manner as in Example 1 except that the titanium oxide fine particle (6) dispersion having a solid concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (6) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (6) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(6)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(6)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(6)を調製した。
抗菌・消臭性塗膜形成用塗布液(6)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (6) In preparation of the antibacterial / deodorant coating film-forming coating solution (1-1) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (6) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particle (6) dispersion was used.
The stability of the antibacterial / deodorant coating solution (6) was evaluated, and the results are shown in the table.

抗菌・消臭性塗膜付基材(6)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(6)を用いた以外は同様にして抗菌・消臭性塗膜付基材(6)を作成した。
得られた抗菌・消臭性塗膜付基材(6)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (6) In preparation of base material with antibacterial / deodorant coating film (1-1) of Example 1, coating liquid for forming antibacterial / deodorant coating film (1-1) A substrate (6) with an antibacterial / deodorant coating film was prepared in the same manner except that 6) was used.
The obtained substrate (6) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例7]
酸化チタン系微粒子(7)分散液の調製
TiO2として濃度5.0重量%の硫酸チタニル水溶液1600gを調製し、温度15℃に調整した。(工程(a))
ついで、温度を15℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は 3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
[Example 7]
Preparation of Titanium Oxide Fine Particle (7) Dispersion 1600 g of a titanyl sulfate aqueous solution having a concentration of 5.0% by weight was prepared as TiO 2 and adjusted to a temperature of 15 ° C. (Process (a))
Subsequently, while maintaining the temperature at 15 ° C., 360 g of ammonia water having a concentration of 15% by weight was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mol (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))

ついで、洗浄した酸化チタン水和物ゲルスラリーを用い、TiO2として濃度1重量%、2000gの水和酸化チタン水和物分散液を調製し、これに濃度35重量%の過酸化水素水48.5gを添加し、50℃、1時間で溶解した。
この時、モル比(MH2O2)/(MTiO2)=2.0であった。(工程(d))
ついで、温度80℃で撹拌しながら過酸化水素を除去しながら1時間熟成した。(工程(e))
ついで、純水を用い、限外濾過膜法で洗浄して、TiO2として濃度1重量%の酸化チタン系微粒子(7)分散液を得た。酸化チタン系微粒子(7)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
Then, using the washed titanium oxide hydrate gel slurry, a hydrated titanium oxide hydrate dispersion having a concentration of 1% by weight and 2,000 g as TiO 2 was prepared, and 48.5 g of hydrogen peroxide water having a concentration of 35% by weight was prepared. And dissolved at 50 ° C. for 1 hour.
At this time, the molar ratio (M H2O2 ) / (M TiO2 ) = 2.0. (Process (d))
Subsequently, the mixture was aged for 1 hour while removing hydrogen peroxide while stirring at a temperature of 80 ° C. (Process (e))
Subsequently, using pure water, it was washed by an ultrafiltration membrane method to obtain a dispersion of titanium oxide fine particles (7) having a concentration of 1% by weight as TiO 2 . The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (7) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(7)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(7)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(7)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(7)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of Antibacterial and Deodorant Titanium Oxide Fine Particles (7) Dispersion A solid content concentration of 1.5 was the same as in Example 1 except that a titanium oxide fine particle (7) dispersion having a solid content concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (7) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (7) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(7)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(7)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(7)を調製した。
抗菌・消臭性塗膜形成用塗布液(7)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (7) In preparation of the antibacterial / deodorant coating film-forming coating solution (1-1) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (7) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particle (7) dispersion was used.
The stability of the antibacterial / deodorant coating solution (7) was evaluated, and the results are shown in the table.

抗菌・消臭性塗膜付基材(7)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(7)を用いた以外は同様にして抗菌・消臭性塗膜付基材(7)を作成した。
得られた抗菌・消臭性塗膜付基材(7)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (7) In preparation of base material with antibacterial / deodorant coating film (1-1) of Example 1, an antibacterial / deodorant coating film forming liquid ( A substrate (7) with an antibacterial / deodorant coating was prepared in the same manner except that 7) was used.
The obtained substrate (7) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例8]
酸化チタン系微粒子(8)分散液の調製
TiO2として濃度5.0重量%の硫酸チタニル水溶液1600gを調製し、温度15℃に調整した。(工程(a))
ついで、温度を15℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は 3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
[Example 8]
Preparation of Titanium Oxide Fine Particle (8) Dispersion 1600 g of a titanyl sulfate aqueous solution having a concentration of 5.0% by weight was prepared as TiO 2 and adjusted to a temperature of 15 ° C. (Process (a))
Subsequently, while maintaining the temperature at 15 ° C., 360 g of ammonia water having a concentration of 15% by weight was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mol (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))

ついで、洗浄した酸化チタン水和物ゲルスラリーを用い、TiO2として濃度1重量%、2000gの水和酸化チタン水和物分散液を調製し、これに濃度35重量%の過酸化水素水220gを添加し、50℃、1時間で溶解した。
この時、モル比(MH2O2)/(MTiO2)=9.0であった。(工程(d))
ついで、温度80℃で撹拌しながら過酸化水素を除去しながら1時間熟成した。(工程(e))
ついで、純水を用い、限外濾過膜法で洗浄して、TiO2として濃度1重量%の酸化チタン系微粒子(8)分散液を得た。酸化チタン系微粒子(8)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
Next, using the washed titanium oxide hydrate gel slurry, a hydrated titanium oxide hydrate dispersion having a concentration of 1% by weight and 2,000 g as TiO 2 was prepared, and 220 g of hydrogen peroxide solution having a concentration of 35% by weight was added thereto. And dissolved at 50 ° C. for 1 hour.
At this time, the molar ratio (M H2O2 ) / (M TiO2 ) = 9.0. (Process (d))
Subsequently, the mixture was aged for 1 hour while removing hydrogen peroxide while stirring at a temperature of 80 ° C. (Process (e))
Subsequently, using pure water, it was washed by an ultrafiltration membrane method to obtain a dispersion of titanium oxide fine particles (8) having a concentration of 1% by weight as TiO 2 . The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (8) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(8)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(8)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(8)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(8)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of Antibacterial and Deodorant Titanium Oxide Fine Particles (8) Dispersion A solid content concentration of 1.5 was the same as in Example 1 except that a titanium oxide fine particle (8) dispersion having a solid content concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (8) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (8) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(8)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(8)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(8)を調製した。
抗菌・消臭性塗膜形成用塗布液(8)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (8) In preparation of the antibacterial / deodorant coating film-forming coating solution (1-1) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (8) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particle (8) dispersion was used.
The stability of the antibacterial / deodorant coating solution (8) was evaluated, and the results are shown in the table.

抗菌・消臭性塗膜付基材(8)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(8)を用いた以外は同様にして抗菌・消臭性塗膜付基材(8)を作成した。
得られた抗菌・消臭性塗膜付基材(8)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (8) In preparation of the base material with antibacterial / deodorant coating film (1-1) of Example 1, an antibacterial / deodorant coating film forming liquid ( A substrate (8) with an antibacterial / deodorant coating film was prepared in the same manner except that 8) was used.
The obtained substrate (8) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例9]
酸化チタン系微粒子(9)分散液の調製
実施例1において、工程(e)の温度を50℃で実施した以外は同様にしてTiO2として濃度1重量%の酸化チタン系微粒子(9)分散液を得た。酸化チタン系微粒子(9)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
[Example 9]
Preparation of Titanium Oxide Fine Particles (9) Dispersion Titanium oxide fine particles (9) dispersion having a concentration of 1% by weight as TiO 2 in the same manner as in Example 1 except that the temperature of step (e) was 50 ° C. Got. The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (9) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(9)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(9)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(9)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(9)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of antibacterial and deodorant titanium oxide fine particle (9) dispersion The solid content concentration of 1.5 was the same as in Example 1 except that the titanium oxide fine particle (9) dispersion having a solid content concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (9) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (9) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(9)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(9)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(9)を調製した。
抗菌・消臭性塗膜形成用塗布液(9)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating liquid (9) In preparation of the antibacterial / deodorant coating film-forming coating liquid (1-1) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (9) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particle (9) dispersion was used.
The stability of the antibacterial / deodorant coating solution (9) was evaluated, and the results are shown in the table.

抗菌・消臭性塗膜付基材(9)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(9)を用いた以外は同様にして抗菌・消臭性塗膜付基材(9)を作成した。
得られた抗菌・消臭性塗膜付基材(9)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (9) In preparation of base material with antibacterial / deodorant coating film (1-1) of Example 1, an antibacterial / deodorant coating film forming liquid ( A substrate (9) with an antibacterial / deodorant coating was prepared in the same manner except that 9) was used.
The obtained substrate (9) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例10]
酸化チタン系微粒子(10)分散液の調製
TiO2として濃度5.0重量%の四塩化チタン水溶液1600gを用いた以外は実施例1と同様にしてTiO2として濃度1重量%の酸化チタン系微粒子(10)分散液を得た。酸化チタン系微粒子(10)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
[Example 10]
Titanium oxide-based particles (10) concentration of 5.0% by weight of the four except for using titanium chloride aqueous solution 1600g in the same manner as in Example 1 concentration of 1% by weight of titanium oxide fine particles as TiO 2 Preparation of TiO 2 dispersion (10) A dispersion was obtained. The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (10) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(10)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(10)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(10)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(10)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of antibacterial and deodorant titanium oxide fine particle (10) dispersion The solid content concentration was 1.5 in the same manner as in Example 1 except that the titanium oxide fine particle (10) dispersion having a solid content concentration of 1% by weight was used. A weight% antibacterial / deodorant titanium oxide fine particle (10) dispersion was prepared.
The average particle size, particle size distribution and crystallinity of the antibacterial / deodorant titanium oxide fine particles (10) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(10)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(10)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(10)を調製した。
抗菌・消臭性塗膜形成用塗布液(10)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (10) In preparation of the antibacterial / deodorant coating film-forming coating solution (1-1) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (10) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particle (10) dispersion was used.
The stability of the antibacterial / deodorant coating solution (10) was evaluated and the results are shown in the table.

抗菌・消臭性塗膜付基材(10)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(10)を用いた以外は同様にして抗菌・消臭性塗膜付基材(10)を作成した。
得られた抗菌・消臭性塗膜付基材(10)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (10) In preparation of the base material with antibacterial / deodorant coating film (1-1) in Example 1, an antibacterial / deodorant coating film forming liquid ( A substrate (10) with an antibacterial / deodorant coating film was prepared in the same manner except that 10) was used.
The obtained substrate (10) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例11]
抗菌・消臭性酸化チタン系微粒子(11)分散液の調製
実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(1)分散液を調製し、分散液100gに香料化合物として2,4,6−トリメチル−2−フェニル−1,3−ジオキサンを0.02g添加して固形分濃度1.52重量%の抗菌・消臭性酸化チタン系微粒子(11)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(11)分散液は、芳香を発した。
[Example 11]
Preparation of Antibacterial / Deodorant Titanium Oxide Fine Particle (11) Dispersion As in Example 1, an antibacterial / deodorant titanium oxide fine particle (1) dispersion having a solid content concentration of 1.5% by weight was prepared. 0.02 g of 2,4,6-trimethyl-2-phenyl-1,3-dioxane as a fragrance compound was added to 100 g of the dispersion, and antibacterial / deodorant titanium oxide fine particles having a solid content concentration of 1.52% by weight ( 11) A dispersion was prepared.
The antibacterial / deodorant titanium oxide fine particle (11) dispersion gave off a fragrance.

抗菌・消臭性塗膜形成用塗布液(11)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-1)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(11)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(11)を調製した。
抗菌・消臭性塗膜形成用塗布液(11)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (11) In preparation of the antibacterial / deodorant coating film-forming coating solution (1-1) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. A coating solution (11) for forming an antibacterial / deodorant coating film was prepared in the same manner except that the deodorant titanium oxide fine particle (11) dispersion was used.
The stability of the antibacterial / deodorant coating solution (11) was evaluated and the results are shown in the table.

抗菌・消臭性塗膜付基材(11)の作成
実施例1の抗菌・消臭性塗膜付基材(1-1)の作成において、抗菌・消臭性塗膜形成用塗布液(11)を用いた以外は同様にして抗菌・消臭性塗膜付基材(11)を作成した。
得られた抗菌・消臭性塗膜付基材(11)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (11) In preparation of the base material with antibacterial / deodorant coating film (1-1) of Example 1, an antibacterial / deodorant coating film forming liquid ( A substrate (11) with an antibacterial / deodorant coating was prepared in the same manner except that 11) was used.
The obtained substrate (11) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[比較例1]
酸化チタン系微粒子(R1)分散液の調製
TiO2として濃度5.0重量%の硫酸チタニル水溶液1600gを調製し、温度35℃に調整した。(工程(a))
ついで、温度を35℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
[Comparative Example 1]
Preparation of Titanium Oxide Fine Particle (R1) Dispersion 1600 g of a titanyl sulfate aqueous solution having a concentration of 5.0% by weight was prepared as TiO 2 and adjusted to a temperature of 35 ° C. (Process (a))
Next, while maintaining the temperature at 35 ° C., 360 g of ammonia water having a concentration of 15% by weight was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mole (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))

ついで、洗浄した酸化チタン水和物ゲルスラリーを用い、TiO2として濃度1重量%、2000gの水和酸化チタン水和物分散液を調製し、これに濃度35重量%の過酸化水素水140gを添加し、50℃、1時間で溶解した。
この時、モル比(MH2O2)/(MTiO2)=5.8であった。(工程(d))
ついで、温度80℃で撹拌しながら過酸化水素を除去しながら1時間熟成した。(工程(e))
ついで、純水を用い、限外濾過膜法で洗浄して、TiO2として濃度1重量%の酸化チタン系微粒子(R1)分散液を得た。酸化チタン系微粒子(R1)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
Next, using the washed titanium oxide hydrate gel slurry, a hydrated titanium oxide hydrate dispersion having a concentration of 1% by weight and 2000 g as TiO 2 was prepared, and 140 g of hydrogen peroxide solution having a concentration of 35% by weight was added thereto. And dissolved at 50 ° C. for 1 hour.
At this time, the molar ratio (M H2O2 ) / (M TiO2 ) = 5.8. (Process (d))
Subsequently, the mixture was aged for 1 hour while removing hydrogen peroxide while stirring at a temperature of 80 ° C. (Process (e))
Subsequently, using pure water, it was washed by an ultrafiltration membrane method to obtain a dispersion of titanium oxide fine particles (R1) having a concentration of 1% by weight as TiO 2 . The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (R1) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(R1)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(R1)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(R1)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(R1)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of antibacterial and deodorant titanium oxide fine particle (R1) dispersion The solid content concentration was 1.5 in the same manner as in Example 1 except that a titanium oxide fine particle (R1) dispersion having a solid content concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (R1) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (R1) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(R1)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-2)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(R1)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(R1)を調製した。
抗菌・消臭性塗膜形成用塗布液(R1)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating solution (R1) In preparation of the antibacterial / deodorant coating film-forming coating solution (1-2) of Example 1, an antibacterial agent having a solid content of 1.5% by weight was prepared. An antibacterial / deodorant coating solution (R1) was prepared in the same manner except that the deodorant titanium oxide fine particle (R1) dispersion was used.
The stability of the antibacterial / deodorant coating solution (R1) was evaluated, and the results are shown in the table.

抗菌・消臭性塗膜付基材(R1)の作成
実施例1の抗菌・消臭性塗膜付基材(1-2)の作成において、抗菌・消臭性塗膜形成用塗布液(R1)を用いた以外は同様にして抗菌・消臭性塗膜付基材(R1)を作成した。
得られた抗菌・消臭性塗膜付基材(R1)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (R1) In preparation of the base material with antibacterial / deodorant coating film (1-2) in Example 1, an antibacterial / deodorant coating film forming liquid ( A substrate (R1) with an antibacterial / deodorant coating film was prepared in the same manner except that R1) was used.
The obtained substrate (R1) with antibacterial / deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[比較例2]
酸化チタン系微粒子(R2)分散液の調製
TiO2として濃度0.2重量%の硫酸チタニル水溶液40000gを調製し、温度15℃に調整した。(工程(a))
ついで、温度を15℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
[Comparative Example 2]
Preparation of Titanium Oxide Fine Particle (R2) Dispersion A titanyl sulfate aqueous solution having a concentration of 0.2% by weight was prepared as TiO 2 and adjusted to a temperature of 15 ° C. (Process (a))
Subsequently, while maintaining the temperature at 15 ° C., 360 g of ammonia water having a concentration of 15% by weight was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mole (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))

ついで、洗浄した酸化チタン水和物ゲルスラリーを用い、TiO2として濃度1重量%、2000gの水和酸化チタン水和物分散液を調製し、これに濃度35重量%の過酸化水素水140gを添加し、50℃、1時間で溶解した。
この時、モル比(MH2O2)/(MTiO2)=5.8であった。(工程(d))
ついで、温度80℃で撹拌しながら過酸化水素を除去しながら1時間熟成した。(工程(e))
ついで、純水を用い、限外濾過膜法で洗浄して、TiO2として濃度1重量%の酸化チタン系微粒子(R2)分散液を得た。酸化チタン系微粒子(R2)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
Next, using the washed titanium oxide hydrate gel slurry, a hydrated titanium oxide hydrate dispersion having a concentration of 1% by weight and 2000 g as TiO 2 was prepared, and 140 g of hydrogen peroxide solution having a concentration of 35% by weight was added thereto. And dissolved at 50 ° C. for 1 hour.
At this time, the molar ratio (M H2O2 ) / (M TiO2 ) = 5.8. (Process (d))
Subsequently, the mixture was aged for 1 hour while removing hydrogen peroxide while stirring at a temperature of 80 ° C. (Process (e))
Subsequently, using pure water, it was washed by an ultrafiltration membrane method to obtain a titanium oxide fine particle (R2) dispersion having a concentration of 1% by weight as TiO 2 . The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (R2) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(R2)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(R2)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(R2)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(R2)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of antibacterial and deodorant titanium oxide fine particle (R2) dispersion A solid content concentration of 1.5 was obtained in the same manner as in Example 1 except that a titanium oxide fine particle (R2) dispersion having a solid content concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (R2) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (R2) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(R2)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-2)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(R2)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(R2)を調製した。
抗菌・消臭性塗膜形成用塗布液(R2)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating liquid (R2) In the preparation of antibacterial / deodorant coating film-forming coating liquid (1-2) in Example 1, the solid content concentration was 1.5. A coating solution (R2) for forming an antibacterial / deodorant coating film was prepared in the same manner, except that a weight percent antibacterial / deodorant titanium oxide fine particle (R2) dispersion was used.
The stability of the antibacterial / deodorant coating solution (R2) was evaluated and the results are shown in the table.

抗菌・消臭性塗膜付基材(R2)の作成
実施例1の抗菌・消臭性塗膜付基材(1-2)の作成において、抗菌・消臭性塗膜形成用塗布液(R2)を用いた以外は同様にして抗菌・消臭性塗膜付基材(R2)を作成した。
得られた抗菌・消臭性塗膜付基材(R2)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (R2) In preparation of the base material with antibacterial / deodorant coating film (1-2) in Example 1, an antibacterial / deodorant coating film forming liquid ( A substrate (R2) with an antibacterial / deodorant coating film was prepared in the same manner except that R2) was used.
The obtained base material with antibacterial / deodorant coating film (R2) was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[比較例3]
酸化チタン系微粒子(R3)分散液の調製
TiO2として濃度25重量%の硫酸チタニル水溶液320gを調製し、温度15℃に調整した。(工程(a))
ついで、温度を15℃に維持しながら、濃度15重量%のアンモニア水360gを1時間で添加して酸化チタン水和物ゲルスラリーを調製した。この時、モル比(MNH3)/(MTiO2)=3.2、添加時間は3.2時間/モル(MNH3)であった。(工程(b))
ついで、酸化チタン水和物ゲルスラリーを濾過し、60℃の温水8000gを掛けて洗浄した。(工程(c))
[Comparative Example 3]
Preparation of Titanium Oxide Fine Particles (R3) Dispersion 320 g of an aqueous titanyl sulfate solution having a concentration of 25% by weight was prepared as TiO 2 and adjusted to a temperature of 15 ° C. (Process (a))
Subsequently, while maintaining the temperature at 15 ° C., 360 g of ammonia water having a concentration of 15% by weight was added over 1 hour to prepare a titanium oxide hydrate gel slurry. At this time, the molar ratio (M NH3 ) / (M TiO2 ) = 3.2, and the addition time was 3.2 hours / mole (M NH3 ). (Process (b))
Next, the titanium oxide hydrate gel slurry was filtered and washed with 8000 g of hot water at 60 ° C. (Process (c))

ついで、洗浄した酸化チタン水和物ゲルスラリーを用い、TiO2として濃度1重量%、2000gの水和酸化チタン水和物分散液を調製し、これに濃度35重量%の過酸化水素水140gを添加し、50℃、1時間で溶解した。
この時、モル比(MH2O2)/(MTiO2)=5.8であった。(工程(d))
ついで、温度80℃で撹拌しながら過酸化水素を除去しながら1時間熟成した。(工程(e))
ついで、純水を用い、限外濾過膜法で洗浄して、TiO2として濃度1重量%の酸化チタン系微粒子(R3)分散液を得た。酸化チタン系微粒子(R3)の平均粒子径、粒子径分布、結晶性、収率を表に示した。
Next, using the washed titanium oxide hydrate gel slurry, a hydrated titanium oxide hydrate dispersion having a concentration of 1% by weight and 2000 g as TiO 2 was prepared, and 140 g of hydrogen peroxide solution having a concentration of 35% by weight was added thereto. And dissolved at 50 ° C. for 1 hour.
At this time, the molar ratio (M H2O2 ) / (M TiO2 ) = 5.8. (Process (d))
Subsequently, the mixture was aged for 1 hour while removing hydrogen peroxide while stirring at a temperature of 80 ° C. (Process (e))
Subsequently, using pure water, it was washed by an ultrafiltration membrane method to obtain a dispersion of titanium oxide fine particles (R3) having a concentration of 1% by weight as TiO 2 . The average particle size, particle size distribution, crystallinity, and yield of the titanium oxide fine particles (R3) are shown in the table.

抗菌・消臭性酸化チタン系微粒子(R3)分散液の調製
固形分濃度1重量%の酸化チタン系微粒子(R3)分散液を用いた以外は実施例1と同様にして固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(R3)分散液を調製した。
抗菌・消臭性酸化チタン系微粒子(R3)の平均粒子径、粒子径分布、結晶性を分析し、結果を表に示した。
Preparation of antibacterial and deodorant titanium oxide fine particle (R3) dispersion A solid content concentration of 1.5 was obtained in the same manner as in Example 1 except that a titanium oxide fine particle (R3) dispersion having a solid content concentration of 1% by weight was used. A weight percent antibacterial / deodorant titanium oxide fine particle (R3) dispersion was prepared.
The average particle size, particle size distribution, and crystallinity of the antibacterial / deodorant titanium oxide fine particles (R3) were analyzed, and the results are shown in the table.

抗菌・消臭性塗膜形成用塗布液(R3)の調製
実施例1の抗菌・消臭性塗膜形成用塗布液(1-2)の調製において、固形分濃度1.5重量%の抗菌・消臭性酸化チタン系微粒子(R3)分散液を用いた以外は同様にして抗菌・消臭性塗膜形成用塗布液(R3)を調製した。
抗菌・消臭性塗膜形成用塗布液(R3)の安定性を評価し、結果を表に示した。
Preparation of antibacterial / deodorant coating film-forming coating liquid (R3) In the preparation of antibacterial / deodorant coating film-forming coating liquid (1-2) in Example 1, the solid content concentration was 1.5. A coating solution (R3) for forming an antibacterial / deodorant coating film was prepared in the same manner except that a weight percent antibacterial / deodorant titanium oxide fine particle (R3) dispersion was used.
The stability of the antibacterial / deodorant coating solution (R3) was evaluated, and the results are shown in the table.

抗菌・消臭性塗膜付基材(R3)の作成
実施例1の抗菌・消臭性塗膜付基材(1-2)の作成において、抗菌・消臭性塗膜形成用塗布液(R3)を用いた以外は同様にして抗菌・消臭性塗膜付基材(R3)を作成した。
得られた抗菌・消臭性塗膜付基材(R3)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with antibacterial / deodorant coating film (R3) In preparation of the base material with antibacterial / deodorant coating film (1-2) in Example 1, an antibacterial / deodorant coating film forming liquid ( A substrate (R3) with an antibacterial / deodorant coating was prepared in the same manner except that R3) was used.
The obtained base material with antibacterial / deodorant coating film (R3) was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

Figure 0005574813
Figure 0005574813

Figure 0005574813
Figure 0005574813

Claims (16)

下記の工程(a)〜(e)からなることを特徴とする酸化チタン系微粒子の製造方法。
(a)TiOとしての濃度が0.5〜20重量%のチタニウム化合物水溶液を調製する工程。
(b)チタニウム化合物水溶液の温度を0〜30℃の範囲に維持しながら、チタニウム化合物のTiOとしてのモル数(MTiO2)を1としたとき、添加するアンモニア水溶液のアンモニアのモル数(MNH3)が1〜10の範囲となり、1〜10時間/1モル(MNH3)の速度でアンモニア水溶液を添加して酸化チタン水和物を調製する工程。
(c)酸化チタン水和物を洗浄する工程。
(d)TiOとしての濃度が0.1〜10重量%の酸化チタン水和物分散液に、過酸化水素水を、酸化チタン水和物のTiOとしてのモル数(MTiO2)と過酸化水素のモル数(MH2O2)とのモル比(MH2O2)/(MTiO2)が1〜10の範囲となるように添加し、温度10〜100℃で溶解する工程。
(e)温度30〜100℃で撹拌しながら過酸化水素を除去し、熟成する工程。
The manufacturing method of the titanium oxide type microparticles | fine-particles characterized by including the following process (a)-(e).
(A) step of concentration as TiO 2 to prepare a 0.5 to 20 wt% of the titanium compound aqueous solution.
(B) While maintaining the temperature of the titanium compound aqueous solution in the range of 0 to 30 ° C., when the number of moles of titanium compound as TiO 2 (M TiO2 ) is 1, the number of moles of ammonia in the aqueous ammonia solution to be added (M NH3 ) is in the range of 1 to 10, and an aqueous ammonia solution is added at a rate of 1 to 10 hours / 1 mole (M NH3 ) to prepare titanium oxide hydrate.
(C) A step of washing titanium oxide hydrate.
(D) To a titanium oxide hydrate dispersion having a concentration of 0.1 to 10% by weight as TiO 2 , hydrogen peroxide water is added to the number of moles (M TiO 2 ) of titanium oxide hydrate as TiO 2. A step of adding at a molar ratio (M H2O2 ) / (M TiO2 ) with a mole number of hydrogen oxide (M H2O2 ) in the range of 1 to 10 and dissolving at a temperature of 10 to 100 ° C.
(E) A step of removing hydrogen peroxide while stirring at a temperature of 30 to 100 ° C. and aging.
前記工程(e)についで、下記の工程(f)を行うことを特徴とする請求項1に記載の酸化チタン系微粒子の製造方法。
(f)シリカゾルおよび/またはジルコニアゾルをTiOに対して0.1〜15重量%となるように添加する工程。
2. The method for producing titanium oxide-based fine particles according to claim 1, wherein the following step (f) is performed after the step (e).
(F) A step of adding silica sol and / or zirconia sol to 0.1 to 15% by weight with respect to TiO 2 .
前記工程(f)についで、下記の工程(g)を行うことを特徴とする請求項1または2に記載の酸化チタン系微粒子の製造方法。
(g)温度30〜80℃で熟成する工程。
The method for producing titanium oxide-based fine particles according to claim 1 or 2, wherein the following step (g) is performed after the step (f).
(G) A step of aging at a temperature of 30 to 80 ° C.
前記酸化チタン系微粒子が無定型であることを特徴とする請求項1〜3のいずれかに記載の酸化チタン系微粒子の製造方法。   The method for producing titanium oxide-based fine particles according to any one of claims 1 to 3, wherein the titanium oxide-based fine particles are amorphous. 抗菌・消臭性成分を酸化物換算で0.1〜25重量%の範囲で含む酸化チタン系微粒子であって、平均粒子径(D)が3〜10nmの範囲にあり、平均粒子径(D)±2nmの粒子径を有する酸化チタン微粒子の個数割合が70%以上であることを特徴とする抗菌・消臭剤。   Titanium oxide fine particles containing an antibacterial / deodorant component in the range of 0.1 to 25% by weight in terms of oxide, the average particle size (D) is in the range of 3 to 10 nm, and the average particle size (D ) An antibacterial / deodorant characterized in that the number ratio of titanium oxide fine particles having a particle diameter of ± 2 nm is 70% or more. 前記抗菌・消臭性成分が銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上の成分であることを特徴とする請求項に記載の抗菌・消臭剤。 The antibacterial / deodorant component according to claim 5 , wherein the antibacterial / deodorant component is one or more components selected from silver, copper, zinc, tin, cobalt, nickel, and manganese. . 前記酸化チタン系微粒子がシリカおよび/またはジルコニアをTiOに対して0.1〜15重量%の範囲で含有することを特徴とする請求項5または6に記載の抗菌・消臭剤。 Antibacterial deodorant according to claim 5 or 6, wherein the titanium oxide-based fine particles containing silica and / or zirconia in the range of 0.1 to 15% by weight with respect to TiO 2. 前記酸化チタン系微粒子が無定型であることを特徴とする請求項5〜7のいずれかに記載の抗菌・消臭剤。 The antibacterial / deodorant according to any one of claims 5 to 7 , wherein the titanium oxide fine particles are amorphous. 請求項5〜8のいずれかに記載の抗菌・消臭剤が香料化合物を含有する水系分散媒中に分散してなることを特徴とする抗菌・消臭剤。 An antibacterial / deodorant obtained by dispersing the antibacterial / deodorant according to any one of claims 5 to 8 in an aqueous dispersion medium containing a fragrance compound. 請求項5〜9のいずれかに記載の抗菌・消臭剤を含んでなることを特徴とする抗菌・消臭性塗膜形成用塗布液。 A coating solution for forming an antibacterial / deodorant coating film, comprising the antibacterial / deodorant agent according to any one of claims 5 to 9 . 水溶性金属キレート化合物を含んでなることを特徴とする請求項10に記載の抗菌・消臭性塗膜形成用塗布液。 The coating liquid for forming an antibacterial / deodorant coating film according to claim 10 , comprising a water-soluble metal chelate compound. 前記水溶性金属キレート化合物がチタンキレート化合物であることを特徴とする請求項11に記載の抗菌・消臭性塗膜形成用塗布液。 The coating solution for forming an antibacterial / deodorant coating film according to claim 11 , wherein the water-soluble metal chelate compound is a titanium chelate compound. 前記チタンキレート化合物がチタンラクテートアンモニウム塩であることを特徴とする請求項12に記載の抗菌・消臭性塗膜形成用塗布液。 The coating liquid for forming an antibacterial / deodorant coating film according to claim 12 , wherein the titanium chelate compound is a titanium lactate ammonium salt. 全固形分濃度が0.01〜20重量%の範囲にあり、前記抗菌・消臭剤の固形分としての濃度が0.005〜19.9重量%の範囲にあり、前記水溶性金属キレート化合物のTiOとしての濃度が0.0001〜10.0重量%の範囲にあり、抗菌・消臭剤の重量(W)と水溶性金属キレート化合物のTiOとしての重量(W)の重量比(W)/(W)が0.005〜1.0の範囲にあることを特徴とする請求項11〜13のいずれかに記載の抗菌・消臭性塗膜形成用塗布液。 The total solid content concentration is in the range of 0.01 to 20% by weight, the concentration of the antibacterial / deodorant as a solid content is in the range of 0.005 to 19.9% by weight, and the water-soluble metal chelate compound The concentration of TiO 2 in the range of 0.0001 to 10.0% by weight, the weight of the antibacterial / deodorant (W a ) and the weight of the water-soluble metal chelate compound as TiO 2 (W b ) the ratio (W b) / (W a ) antibacterial and deodorant coating film-forming coating liquid according to any one of claims 11 to 13, characterized in that in the range of 0.005 to 1.0. 基材と、基材上に形成された抗菌・消臭性塗膜とからなり、該抗菌・消臭性塗膜が請求項10〜14のいずれかに記載の抗菌・消臭性塗膜形成用塗布液を用いて形成された抗菌・消臭性塗膜であることを特徴とする抗菌・消臭性塗膜付基材。 It consists of a base material and the antibacterial and deodorant coating film formed on the base material, The antibacterial and deodorant coating film formation in any one of Claims 10-14 A base material with an antibacterial / deodorant coating film, characterized by being an antibacterial / deodorant coating film formed using a coating liquid for use. 前記抗菌・消臭性塗膜中の抗菌・消臭剤の固形分としての含有量が50〜99.5重量%の範囲にあり、水溶性金属キレート化合物のTiOとしての含有量が0.5〜50重量%の範囲にあることを特徴とする請求項15に記載の抗菌・消臭性塗膜付基材。 The content of the antibacterial / deodorant as a solid content in the antibacterial / deodorant coating is in the range of 50 to 99.5% by weight, and the content of the water-soluble metal chelate compound as TiO 2 is 0.00. The substrate with an antibacterial / deodorant coating film according to claim 15 , which is in the range of 5 to 50% by weight.
JP2010111489A 2010-05-13 2010-05-13 Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating Active JP5574813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111489A JP5574813B2 (en) 2010-05-13 2010-05-13 Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111489A JP5574813B2 (en) 2010-05-13 2010-05-13 Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating

Publications (2)

Publication Number Publication Date
JP2011236106A JP2011236106A (en) 2011-11-24
JP5574813B2 true JP5574813B2 (en) 2014-08-20

Family

ID=45324511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111489A Active JP5574813B2 (en) 2010-05-13 2010-05-13 Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating

Country Status (1)

Country Link
JP (1) JP5574813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856971B1 (en) 2016-12-20 2018-05-15 (주) 클레어 Method for preparing Sickhouse Syndrome Remover by combining with Photocatalyst and Fermented Acid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925081B2 (en) * 2012-08-08 2016-05-25 日揮触媒化成株式会社 Titanium oxide antibacterial deodorant, dispersion thereof, and product provided with titanium oxide antibacterial deodorant
JP6844016B2 (en) * 2017-09-29 2021-03-17 富士フイルム株式会社 Deodorant composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200422260A (en) * 2002-11-07 2004-11-01 Sustainable Titania Technology Titania-metal complex and method for preparation thereof, and film forming method using dispersion comprising the complex
JP2004180979A (en) * 2002-12-04 2004-07-02 Ogawa & Co Ltd Antibacterial deodorant composite
JP4849778B2 (en) * 2004-05-07 2012-01-11 日揮触媒化成株式会社 Antibacterial deodorant and method for producing the same
JP2008518873A (en) * 2004-11-02 2008-06-05 ナノゲート エージー Synthesis of titanium dioxide nanoparticles
JP4746032B2 (en) * 2005-02-15 2011-08-10 日本曹達株式会社 Dispersion of titanium oxide particles, titanium oxide thin film, organic functional film forming solution, organic functional film forming substrate, and method for producing the same
JP4765074B2 (en) * 2006-08-18 2011-09-07 国立大学法人神戸大学 Nanoparticles and method for producing nanoparticles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856971B1 (en) 2016-12-20 2018-05-15 (주) 클레어 Method for preparing Sickhouse Syndrome Remover by combining with Photocatalyst and Fermented Acid

Also Published As

Publication number Publication date
JP2011236106A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
KR101233570B1 (en) Antibacterial deodorant and method for producing the same
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JP6040021B2 (en) Antibacterial antiviral composition and method for producing the same
JP6605473B2 (en) Surface coating
JP6283922B1 (en) Photocatalyst material and photocatalyst coating composition
KR20090108590A (en) Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained by the same
JP5574813B2 (en) Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating
JP2012096133A (en) Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP5317432B2 (en) Deodorant antibacterial composition and method for producing dispersion thereof
KR101028797B1 (en) The functional coating agent and manufacturing mtehod the same
JP4849778B2 (en) Antibacterial deodorant and method for producing the same
JP5925081B2 (en) Titanium oxide antibacterial deodorant, dispersion thereof, and product provided with titanium oxide antibacterial deodorant
JP2012095699A (en) Antibacterial and deodorization treating agent, and antibacterial and deodorization treating article
KR20030043536A (en) Synthesis of highly active photocatalytic TiO2-sol by hydrothermal method
JP5147176B2 (en) Antibacterial agent
JP4964331B2 (en) Method for producing antibacterial deodorant
JP2011126941A (en) Coating liquid forming antimicrobial and deodorizing coating film and substrate with antimicrobial and deodorizing coating film
WO2009123135A1 (en) Photocatalyst coating composition
JP2013123591A (en) Titanium oxide-based antibacterial deodorant, dispersion liquid of the titanium oxide-based antibacterial deodorant, and fiber or cloth with titanium oxide-based antibacterial deodorant
JP2009209089A (en) Antibacterial deodorant
JP5255552B2 (en) Hydrophilic coating composition, method for preparing hydrophilic coating composition, hydrophilic coating layer and building material
JP3311966B2 (en) Antibacterial antifungal powder and method for producing the same
JP4034885B2 (en) Photocatalytic coating composition
JP5483853B2 (en) Deodorant antibacterial agent for human or animal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5574813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250