JP2012096133A - Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film - Google Patents

Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film Download PDF

Info

Publication number
JP2012096133A
JP2012096133A JP2010243613A JP2010243613A JP2012096133A JP 2012096133 A JP2012096133 A JP 2012096133A JP 2010243613 A JP2010243613 A JP 2010243613A JP 2010243613 A JP2010243613 A JP 2010243613A JP 2012096133 A JP2012096133 A JP 2012096133A
Authority
JP
Japan
Prior art keywords
deodorant
coating film
weight
titanium oxide
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010243613A
Other languages
Japanese (ja)
Inventor
Atsushi Tanaka
田中  敦
Yoko Yamaguchi
陽子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2010243613A priority Critical patent/JP2012096133A/en
Publication of JP2012096133A publication Critical patent/JP2012096133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide deodorizing rutile type titanium oxide fine particles which can decompose odor components, such as VOC and ammonia, under visible light irradiation.SOLUTION: The deodorizing rutile type titanium oxide fine particles have an average particle width (W) within a range of 2-50 nm, an average length (L) within a range of 2-500 nm, and an aspect ratio (L)/(W) within a range of 1-10. The particle contains iron as a deodorizing component within a range of 0.01-2 wt.%, calculated as FeO. The titanium oxide fine particle further contains antimicrobial deodorizing metal components, such as silver, copper, and zinc, within a range of 0.1-20 wt.%, calculated as an oxide.

Description

本発明は可視光照射下で揮発性有機化合物(VOC)、アンモニア等の臭気成分を分解することのできる消臭性ルチル型酸化チタン微粒子、該微粒子を含む消臭性塗膜形成用塗布液および該塗布液を用いて形成された消臭性塗膜付基材に関する。   The present invention relates to deodorant rutile titanium oxide fine particles capable of decomposing odorous components such as volatile organic compounds (VOC) and ammonia under visible light irradiation, a coating solution for forming a deodorant coating film containing the fine particles, and The present invention relates to a substrate with a deodorant coating film formed using the coating solution.

近年、清潔志向、衛生志向、安全志向、快適志向等、生活環境の向上が求められている。
従来、シリカゲル、複合酸化物、酸化チタン等の粉末、あるいはコロイド粒子に抗菌性を有する銀、銅、亜鉛等の金属成分を担持した抗菌性組成物が知られている。
In recent years, there has been a demand for improvement in living environment such as cleanliness, hygiene, safety, and comfort.
Conventionally, an antibacterial composition in which a metal component such as silver, copper, or zinc having antibacterial properties is supported on a powder of silica gel, composite oxide, titanium oxide, or colloidal particles is known.

例えば、本願の出願人は無機酸化物コロイド粒子に抗菌性金属成分を付着せしめた抗菌剤(特許文献1:特開平6−80527号公報)あるいはメタ珪酸アルミン酸マグネシウムに抗菌性を有する金属イオンをイオン交換した抗菌剤(特許文献2:特開平3−275627号公報)を開示している。
抗菌効果の持続性および抗菌物質の安定性を改善する目的で、抗菌性の金属イオンをゼオライトあるいはアルミノ珪酸塩に担持した抗菌性組成物も知られている(特許文献3:特開平1−283204号公報)。
For example, the applicant of the present application has applied an antibacterial agent in which an antibacterial metal component is adhered to inorganic oxide colloidal particles (Patent Document 1: Japanese Patent Laid-Open No. 6-80527) or a metal ion having antibacterial properties to magnesium aluminate metasilicate. An antibacterial agent subjected to ion exchange (Patent Document 2: JP-A-3-275627) is disclosed.
For the purpose of improving the durability of the antibacterial effect and the stability of the antibacterial substance, an antibacterial composition in which an antibacterial metal ion is supported on zeolite or aluminosilicate is also known (Patent Document 3: JP-A-1-283204). Issue gazette).

また、本願の出願人は、金属成分と該金属成分以外の無機酸化物とから構成される無機酸化物微粒子であって、前記無機酸化物が酸化チタンとシリカおよび/またはジルコニアとを含んでなり、該酸化チタンが結晶性酸化チタンである抗菌性消臭剤を開示している(特許文献4:特開2005−318999号公報)。この抗菌性消臭剤は抗菌性能の他、揮発性有機化合物(VOC)の分解による消臭性能を有することを開示している。   The applicant of the present application is an inorganic oxide fine particle composed of a metal component and an inorganic oxide other than the metal component, and the inorganic oxide includes titanium oxide and silica and / or zirconia. An antibacterial deodorant in which the titanium oxide is crystalline titanium oxide is disclosed (Patent Document 4: Japanese Patent Application Laid-Open No. 2005-318999). It is disclosed that this antibacterial deodorant has a deodorizing performance due to decomposition of a volatile organic compound (VOC) in addition to the antibacterial performance.

本願の出願人は、導電性、光触媒性能、可視光吸収能、耐薬品性等に優れたNドープ管状酸化チタン粒子、および、酸化チタン粒子の水分散液をアルカリ金属水酸化物の存在下で水熱処理した後、アンモニア、アミン等の存在下で還元処理するNドープ管状酸化チタン粒子の製造方法を開示している(特許文献5:特開2004−35362号公報)。
しかしながら、このNドープ管状酸化チタン粒子は必ずしも可視光吸収(遮蔽)性能が充分でなく、光触媒活性や耐久性等に問題があった。
The applicant of the present application is that N-doped tubular titanium oxide particles having excellent conductivity, photocatalytic performance, visible light absorption ability, chemical resistance, and the like, and an aqueous dispersion of titanium oxide particles in the presence of an alkali metal hydroxide. A method for producing N-doped tubular titanium oxide particles that are subjected to a reduction treatment in the presence of ammonia, amine, etc. after hydrothermal treatment is disclosed (Patent Document 5: JP-A-2004-35362).
However, the N-doped tubular titanium oxide particles do not necessarily have sufficient visible light absorption (shielding) performance, and have problems in photocatalytic activity and durability.

特許文献6(特開2001−205103号公報)には、酸化チタン結晶の格子間に窒素原子またはイオウ原子をドーピングしてなるチタン化合物であり、その表面に電荷分離物質が担持されている光触媒体が開示されている。
この光触媒体はスパッタリング法で製造することが例示されており、窒素ドーピングではTiO2ターゲットを真空チャンバー内にセットし、N2ガスおよびArガスを導入し、N2およびArプラズマ中でスパッタリングし、窒素雰囲気中で加熱処理(アニール)することによってNドープ酸化チタン膜を得ている。また、硫黄ドーピングではTi、TiO2あるいはTiS(硫化チタン)をターゲットとし、SO2+O2+Arガス中でスパッタリングし、加熱処理する方法が記載されている。しかしながらいずれの場合もドーピングと同時に酸素欠陥が多量に生成し、この欠陥が再結合中心となるためにドーピング濃度を上げると、触媒活性が大きく低下すると云う問題があった。
Patent Document 6 (Japanese Patent Application Laid-Open No. 2001-205103) discloses a photocatalyst that is a titanium compound doped with nitrogen atoms or sulfur atoms between lattices of a titanium oxide crystal, and a charge separation material is supported on the surface thereof. Is disclosed.
This photocatalyst is exemplified by a sputtering method. In nitrogen doping, a TiO 2 target is set in a vacuum chamber, N 2 gas and Ar gas are introduced, and sputtering is performed in N 2 and Ar plasma. An N-doped titanium oxide film is obtained by heat treatment (annealing) in a nitrogen atmosphere. In addition, in sulfur doping, a method is described in which Ti, TiO 2 or TiS (titanium sulfide) is used as a target, sputtering is performed in SO 2 + O 2 + Ar gas, and heat treatment is performed. However, in any case, a large amount of oxygen defects are generated simultaneously with doping, and this defect becomes a recombination center. Therefore, there is a problem that when the doping concentration is increased, the catalytic activity is greatly reduced.

また、光酸化触媒として有用な硫黄含有金属酸化物およびその製造方法も開示されている(特許文献7:特開2004−143032号公報)。しかしながら、この光酸化触媒も金属酸化物が無定型であり、必ずしも光触媒活性が充分とはいえなかった。   In addition, a sulfur-containing metal oxide useful as a photooxidation catalyst and a method for producing the same are also disclosed (Patent Document 7: Japanese Patent Application Laid-Open No. 2004-143032). However, this photo-oxidation catalyst also has an amorphous metal oxide, and the photocatalytic activity is not always sufficient.

さらに、本願の出願人は、特許文献8(特開平08−230950号公報)に、Nおよび/またはSをドープした管状酸化チタン粒子、特にNおよび/またはSをドープした管状酸化チタン粒子にさらに酸化鉄を担持したアナターゼ型管状酸化チタン粒子が可視光照射下で高い光酸化触媒活性を発現することを開示している。
しかしながら、Nおよび/またはSドープ管状酸化チタン粒子、酸化鉄を含むNおよび/またはSドープ管状酸化チタン粒子は、管状酸化チタン粒子の製造工程が長く経済性に劣り、加えて硫黄化合物、窒素化合物は臭気性が強く、安全性に注意が必要で、これらの処理設備を必用とし、経済性に問題があった。また、酸化チタンがアナターゼ型である場合は光触媒活性が高く用途によっては耐光性が問題となる場合があった。
Further, the applicant of the present application disclosed in Patent Document 8 (Japanese Patent Application Laid-Open No. 08-230950) that tubular titanium oxide particles doped with N and / or S, particularly tubular titanium oxide particles doped with N and / or S are further added. It is disclosed that anatase-type tubular titanium oxide particles carrying iron oxide exhibit high photooxidation catalytic activity under visible light irradiation.
However, N and / or S-doped tubular titanium oxide particles and N and / or S-doped tubular titanium oxide particles containing iron oxide have a long production process of tubular titanium oxide particles and are not economical, and in addition, sulfur compounds and nitrogen compounds. Has a strong odor and needs attention to safety, requires these treatment facilities, and has an economic problem. Further, when the titanium oxide is anatase type, the photocatalytic activity is high and the light resistance may be a problem depending on the application.

近年、居住空間、公共施設、医療施設、養護施設、自動車内装等において、建材等に含まれるホルムアルデヒド、煙草喫煙時に発生するアセトアルデヒド等の有害物質の除去、便所等で発生するアンモニア等に対する消臭性能の他、抗菌、防かび、防藻、坑ウイルス、抗アレルゲン、害虫忌避等の抗菌性能が求められており、しかも、可視光を含む自然光もしくは人工光源の照射下で高い消臭性能、抗菌性能が求まられている。   In recent years, in residential spaces, public facilities, medical facilities, nursing homes, car interiors, etc., removal of harmful substances such as formaldehyde contained in building materials, acetaldehyde generated during tobacco smoking, and ammonia deodorizing performance in toilets, etc. In addition, antibacterial performance such as antibacterial, antifungal, antialgae, anti-well virus, antiallergen, pest repellent is required, and high deodorizing performance and antibacterial performance under irradiation of natural light including visible light or artificial light source Is required.

本発明者等は鋭意検討した結果、平均粒子径が特定範囲にあり、少量の酸化鉄を担持したルチル型酸化チタン微粒子は消臭性能に優れ、しかも耐候性に優れることを見出して本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the average particle size is in a specific range, the rutile-type titanium oxide fine particles supporting a small amount of iron oxide are excellent in deodorizing performance, and excellent in weather resistance. It came to be completed.

特開平6−80527号公報JP-A-6-80527 特開平3−275627号公報JP-A-3-275627 特開平1−283204号公報Japanese Patent Laid-Open No. 1-283204 特開2005−318999号公報JP 2005-318999 A 特開2004−35362号公報JP 2004-35362 A 特開2001−205103号公報JP 2001-205103 A 特開2004−143032号公報JP 2004-143032 A 特開平08−230950号公報Japanese Patent Laid-Open No. 08-230950

本発明は可視光照射下で揮発性有機化合物(VOC)、アンモニア等の臭気成分を分解することのできる消臭性ルチル型酸化チタン微粒子、該微粒子を含む消臭性塗膜形成用塗布液および該塗布液を用いて形成された耐候性に優れる消臭性塗膜付基材を提供することを目的としている。   The present invention relates to deodorant rutile titanium oxide fine particles capable of decomposing odorous components such as volatile organic compounds (VOC) and ammonia under visible light irradiation, a coating solution for forming a deodorant coating film containing the fine particles, and It aims at providing the base material with a deodorizing coating film excellent in the weather resistance formed using this coating liquid.

本発明に係る消臭性ルチル型酸化チタン微粒子は、平均粒子幅(W)が2〜50nmの範囲にあり、平均長さ(L)が2〜500nmの範囲にあり、アスペクト比(L)/(W)が1〜10の範囲にあり、消臭成分として鉄をFe23換算で0.01〜2重量%の範囲で含有することを特徴としている。
さらに、抗菌・消臭性金属成分を酸化物換算で0.1〜20重量%の範囲で含むことが好ましい。
前記抗菌・消臭性金属成分が銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上の金属成分であることが好ましい。
The deodorant rutile-type titanium oxide fine particles according to the present invention have an average particle width (W) in the range of 2 to 50 nm, an average length (L) in the range of 2 to 500 nm, and an aspect ratio (L) / (W) is in the range of 1 to 10, and iron is contained as a deodorizing component in a range of 0.01 to 2 % by weight in terms of Fe 2 O 3 .
Furthermore, it is preferable to contain an antibacterial / deodorant metal component in the range of 0.1 to 20% by weight in terms of oxide.
The antibacterial / deodorant metal component is preferably one or more metal components selected from silver, copper, zinc, tin, cobalt, nickel, and manganese.

本発明に係る消臭性塗膜形成用塗布液は、前記いずれかに記載の消臭性ルチル型酸化チタン微粒子が分散媒中に分散してなることを特徴としている。
前記分散媒が水溶性金属キレート化合物を含有する水系分散媒であることが好ましい。
前記水溶性金属キレート化合物がチタンキレート化合物であることが好ましい。
前記チタンキレート化合物がチタンラクテートアンモニウム塩であることが好ましい。
The coating solution for forming a deodorant coating film according to the present invention is characterized in that the deodorant rutile type titanium oxide fine particles described above are dispersed in a dispersion medium.
The dispersion medium is preferably an aqueous dispersion medium containing a water-soluble metal chelate compound.
The water-soluble metal chelate compound is preferably a titanium chelate compound.
The titanium chelate compound is preferably a titanium lactate ammonium salt.

全固形分濃度が0.01〜20重量%の範囲にあり、前記消臭性ルチル型酸化チタン微粒子の固形分としての濃度が0.005〜19.9重量%の範囲にあり、前記水溶性金属キレート化合物のTiO2としての濃度が0.0001〜10.0 重量%の範囲にあり、消臭性ルチル型酸化チタン微粒子の重量(Wa)と水溶性金属キレート化合物のTiO2としての重量(Wb)の重量比(Wb)/(Wa)が0.005〜1.0の範囲にあることが好ましい。 The total solid content concentration is in the range of 0.01 to 20% by weight, and the concentration of the deodorant rutile-type titanium oxide fine particles as the solid content is in the range of 0.005 to 19.9% by weight. The concentration of the metal chelate compound as TiO 2 is in the range of 0.0001 to 10.0% by weight, the weight (W a ) of the deodorant rutile titanium oxide fine particles and the weight of the water-soluble metal chelate compound as TiO 2. the weight ratio of (W b) (W b) / (W a) is preferably in the range of 0.005 to 1.0.

本発明に係る消臭性塗膜付基材は、基材と、基材上に形成された消臭性塗膜とからなり、該消臭性塗膜が前記いずれかに記載の消臭性塗膜形成用塗布液を用いて形成された消臭性塗膜であることを特徴としている。
前記消臭性塗膜中の消臭性ルチル型酸化チタン微粒子の固形分としての含有量が50〜100重量%の範囲にあり、水溶性金属キレート化合物のTiO2としての含有量が0〜50重量%の範囲にあることが好ましい。
The substrate with a deodorizing coating film according to the present invention comprises a substrate and a deodorizing coating film formed on the substrate, and the deodorizing coating film according to any one of the above It is a deodorant coating film formed using a coating liquid for forming a coating film.
The content of the deodorant rutile-type titanium oxide fine particles in the deodorant coating film as a solid content is in the range of 50 to 100% by weight, and the content of the water-soluble metal chelate compound as TiO 2 is 0 to 50. It is preferably in the range of wt%.

本発明の消臭性ルチル型酸化チタン微粒子を用いることにより、可視光照射下で揮発性有機化合物(VOC)およびアンモニア等の臭気成分を効率よく分解することができる消臭性塗膜形成用塗布液を得ることができる。
本発明の消臭性塗膜形成用塗布液を各種の基材に適用することによって、耐候性に優れた消臭性塗膜付基材を得ることができる。
By using the deodorant rutile-type titanium oxide fine particles of the present invention, a coating for forming a deodorant coating that can efficiently decompose odorous components such as volatile organic compounds (VOC) and ammonia under irradiation with visible light. A liquid can be obtained.
By applying the coating solution for forming a deodorant coating film of the present invention to various substrates, a substrate with a deodorant coating film having excellent weather resistance can be obtained.

[消臭性ルチル型酸化チタン微粒子]
本発明に係る消臭性ルチル型酸化チタン微粒子は、平均粒子幅(W)が2〜50nmの範囲にあり、平均長さ(L)が2〜500nmの範囲にあり、アスペクト比(L)/(W)が1〜10の範囲にあり、消臭成分として鉄をFe23換算で0.01〜2重量%の範囲で含有することを特徴としている。
[Deodorant rutile type titanium oxide fine particles]
The deodorant rutile-type titanium oxide fine particles according to the present invention have an average particle width (W) in the range of 2 to 50 nm, an average length (L) in the range of 2 to 500 nm, and an aspect ratio (L) / (W) is in the range of 1 to 10, and iron is contained as a deodorizing component in a range of 0.01 to 2 % by weight in terms of Fe 2 O 3 .

ルチル型酸化チタン微粒子
本発明には消臭成分の担体としてルチル型酸化チタン微粒子を用いる。
ルチル型酸化チタン微粒子は、アナターゼ型酸化チタン微粒子、アナターゼ型管状酸化チタン微粒子に比べて担体自体の光触媒活性が低く、耐候性に優れている。また、アナターゼ型管状酸化チタン微粒子に比べて極めて安価である。
Rutile type titanium oxide fine particles In the present invention, rutile type titanium oxide fine particles are used as a carrier for a deodorant component.
Rutile-type titanium oxide fine particles have lower photocatalytic activity of the carrier itself and superior weather resistance than anatase-type titanium oxide fine particles and anatase-type tubular titanium oxide fine particles. Moreover, it is extremely cheap compared with anatase type tubular titanium oxide fine particles.

本発明に用いるルチル型酸化チタン微粒子は、本願の出願人による特開平2−255532号公報に開示した、水和酸化チタンのゲルまたはゾルを過酸化水素にて溶解し、スズ酸カリウム水溶液を陽イオン交換樹脂で脱アルカリしたスズ化合物であるスズ酸水溶液の共存下で水熱処理することによって得ることができる。   The rutile-type titanium oxide fine particles used in the present invention are prepared by dissolving a hydrated titanium oxide gel or sol disclosed in JP-A-2-255532 filed by the applicant of the present application with hydrogen peroxide. It can be obtained by hydrothermal treatment in the presence of an aqueous stannic acid solution that is a tin compound dealkalized with an ion exchange resin.

他の方法としては、本願の出願人による特開2009−179521号公報に開示した、チタンアルコキシドと過酸化水素とを、過酸化水素のH22としてのモル数(MHP)とチタンアルコキシドのTiO2としてのモル数(MTi)とのモル比(MHP)/(MTi)が2〜50の範囲で反応させた後、100〜350℃で水熱処理する方法によって得ることができる。さらには本願の出願人による特開2009−227519号公報に開示した、チタン化合物とスズ化合物との混合水溶液を調製し、NH4OH水溶液を加えて加水分解し、ゲルを洗浄し、過酸化水素を、過酸化水素のH22としてのモル数(MHP)とチタン化合物とスズ化合物の合計のモル数((MTi)+(MS))とのモル比(MHP)/((MTi)+(MS))が2〜50の範囲となるように加えて溶解し、ついで、100〜350℃で水熱処理する方法によって得ることができる。 As another method, titanium alkoxide and hydrogen peroxide disclosed in Japanese Patent Application Laid-Open No. 2009-179521 by the applicant of the present application are converted into the number of moles (M HP ) of hydrogen peroxide as H 2 O 2 and titanium alkoxide. after the number of moles of the TiO 2 (M Ti) molar ratio of (M HP) / (M Ti ) is reacted in the range of 2 to 50 can be obtained by a method of hydrothermal treatment at 100 to 350 ° C. . Furthermore, a mixed aqueous solution of a titanium compound and a tin compound disclosed in Japanese Patent Application Laid-Open No. 2009-227519 by the applicant of the present application is prepared, hydrolyzed by adding an NH 4 OH aqueous solution, the gel is washed, hydrogen peroxide Of hydrogen peroxide as H 2 O 2 (M HP ) and the molar ratio of the total number of moles of titanium compound and tin compound ((M Ti ) + (M S )) (M HP ) / ( (M Ti ) + (M S )) is added and dissolved so as to be in the range of 2 to 50, and then hydrothermally treated at 100 to 350 ° C.

上記方法はいずれも高温で焼成することなくルチル型酸化チタン微粒子が得られる。
得られるルチル型酸化チタン微粒子は、後述する消臭性ルチル型酸化チタン微粒子と概ね同じで、平均粒子幅(W)が2〜50nmの範囲にあり、平均長さ(L)が2〜500nmの範囲にあり、アスペクト比(L)/(W)が1〜10の範囲にある。
In any of the above methods, rutile-type titanium oxide fine particles can be obtained without firing at a high temperature.
The obtained rutile-type titanium oxide fine particles are substantially the same as the deodorant rutile-type titanium oxide fine particles described later, the average particle width (W) is in the range of 2 to 50 nm, and the average length (L) is 2 to 500 nm. The aspect ratio (L) / (W) is in the range of 1 to 10.

消臭成分
消臭成分としては、酸化鉄が担持されている。酸化鉄の含有量は担持方法によっても異なるが、Fe23換算で0.01〜2重量%、さらには0.02〜1.5重量%の範囲にあることが好ましい。
酸化鉄の含有量がFe23換算で0.01重量%未満の場合は、発生した電子のトラップが不十分で逆反応が発生し、光活性が不十分となり、消臭性能が不充分となる場合がある。
酸化鉄の含有量がFe23換算で2重量%を越えると、発生した電子がトラップされすぎて、ホールを呼び込み、酸化鉄が担持されてない場合よりも消臭性能が低くなる場合がある。
As the deodorant component , iron oxide is supported. Although the content of iron oxide varies depending on the loading method, it is preferably in the range of 0.01 to 2 % by weight, more preferably 0.02 to 1.5% by weight in terms of Fe 2 O 3 .
When the content of iron oxide is less than 0.01% by weight in terms of Fe 2 O 3 , trapping of generated electrons is insufficient and reverse reaction occurs, resulting in insufficient photoactivity and insufficient deodorization performance. It may become.
If the iron oxide content exceeds 2% by weight in terms of Fe 2 O 3 , the generated electrons are trapped too much, attracting holes, and the deodorizing performance may be lower than when no iron oxide is supported. is there.

消臭性ルチル型酸化チタン微粒子の製造方法
消臭性ルチル型酸化チタン微粒子の製造方法としては、充分な消臭性能、耐候性を有する消臭性ルチル型酸化チタン微粒子が得られれば特に制限はないが、例えば特許文献8(特開平08−230950号公報)に開示した方法に準じて製造することができる。
具体的には、消臭性ルチル型酸化チタン微粒子の第1の製造方法は、上記のように高温で焼成することなく得られたルチル型酸化チタン微粒子の分散液にイオン交換樹脂の存在下、硝酸第2鉄水溶液を混合し、ついで、必用に応じて加熱処理することが好ましい。
Method for producing deodorant rutile type titanium oxide fine particles As a method for producing deodorant rutile type titanium oxide fine particles, there are no particular restrictions as long as deodorant rutile type titanium oxide fine particles having sufficient deodorizing performance and weather resistance are obtained. However, it can be produced according to the method disclosed in, for example, Patent Document 8 (Japanese Patent Laid-Open No. 08-230950).
Specifically, the first method for producing deodorant rutile type titanium oxide fine particles is a dispersion of rutile type titanium oxide fine particles obtained without firing at a high temperature as described above, in the presence of an ion exchange resin. It is preferable to mix a ferric nitrate aqueous solution and then heat-treat as necessary.

ルチル型酸化チタン微粒子分散液の濃度は後述するイオン交換樹脂を分散でき、分散液が均一に撹拌できれば特に制限はないが、固形分として1〜30重量%、さらには2〜20重量%の範囲にあることが好ましい。
ルチル型酸化チタン微粒子分散液の濃度が固形分として1重量%未満の場合は生産性が低下し、30重量%を越えると酸化鉄の担持が不均一になるためか、前記酸化鉄担持効果が低減し消臭性能の向上効果が充分得られない場合がある。
The concentration of the rutile-type titanium oxide fine particle dispersion is not particularly limited as long as the ion exchange resin described later can be dispersed and the dispersion can be uniformly stirred, but the solid content ranges from 1 to 30% by weight, and more preferably from 2 to 20% by weight. It is preferable that it exists in.
If the concentration of the rutile-type titanium oxide fine particle dispersion is less than 1% by weight as the solid content, the productivity is lowered, and if it exceeds 30% by weight, the iron oxide is not uniformly supported. The effect of reducing and improving the deodorant performance may not be obtained sufficiently.

イオン交換樹脂としては、硝酸第2鉄の硝酸根を除去するために従来公知の陰イオン交換樹脂を用いることができる。
イオン交換樹脂の使用量はイオン交換樹脂のイオン交換容量および硝酸第2鉄の使用量によって変えることができるが、硝酸根を実質的に全量除去できる量とすることが好ましい。
硝酸第2鉄を用いるが、硝酸第1鉄も使用することができ、さらに硫酸第2鉄、塩化第2鉄も使用することができる。しかしながら、理由は明らかではないが硝酸第2鉄は消臭性能向上効果に最も優れていることから好適に用いることができる。さらに、硝酸第2鉄と他の前記塩を混合して用いることもできる。
As the ion exchange resin, a conventionally known anion exchange resin can be used to remove the nitrate radical of ferric nitrate.
The amount of the ion exchange resin used can be varied depending on the ion exchange capacity of the ion exchange resin and the amount of ferric nitrate used, but it is preferable that the amount of nitrate radicals be removed substantially.
Although ferric nitrate is used, ferrous nitrate can also be used, and ferric sulfate and ferric chloride can also be used. However, although the reason is not clear, ferric nitrate can be suitably used because it is most excellent in deodorizing performance improvement effect. Further, ferric nitrate and other salts may be used in combination.

硝酸第2鉄の使用量は最終的に得られる酸化鉄を担持したルチル型酸化チタン微粒子中の酸化鉄の含有量がFe23として0.01〜2重量%、さらには0.02〜1.5重量%の範囲となるように使用する。
ついで、硝酸第2鉄水溶液を添加後、必要に応じて撹拌を継続した後、イオン交換樹脂を分離することによって酸化鉄を担持したルチル型酸化チタン粒子の分散液を得ることができる。得られた酸化鉄担持ルチル型酸化チタン微粒子分散液はそのまま使用することができるが、必要に応じて濃縮、あるいは希釈して用いることができる。さらに乾燥し、さらに必要に応じて加熱処理し、粉体として、さらには粉体を成型して、成型体として用いることもできる。
The amount of ferric nitrate used is such that the iron oxide content in the rutile-type titanium oxide fine particles carrying iron oxide finally obtained is 0.01 to 2 % by weight as Fe 2 O 3 , and further 0.02 to It is used so as to be in the range of 1.5% by weight.
Next, after adding the ferric nitrate aqueous solution, stirring is continued if necessary, and then a dispersion of rutile-type titanium oxide particles carrying iron oxide can be obtained by separating the ion exchange resin. The obtained iron oxide-supported rutile-type titanium oxide fine particle dispersion can be used as it is, but it can be concentrated or diluted as necessary. It can be further dried and further heat-treated as necessary to form a powder, and further, the powder can be used as a molded body.

この時、乾燥温度は水分を実質的に除去できれば特に制限はないが、80〜250℃、さらには95〜200℃の範囲にあることが好ましい。
必用に応じて加熱処理する際の加熱温度は概ね200〜650℃、さらには300〜600℃の範囲である。加熱温度が200℃未満では硝酸根の分解、脱離が不充分で充分な消臭性能の向上効果が得られないことがある。加熱温度が650℃を超えると消臭性金属成分である酸化鉄が粒子成長したり、ルチル型酸化チタン微粒子が強く凝集し、粉砕を必要としたり、充分な消臭性能が得られない場合がある。
At this time, the drying temperature is not particularly limited as long as moisture can be substantially removed, but is preferably in the range of 80 to 250 ° C, more preferably 95 to 200 ° C.
The heating temperature at the time of heat treatment according to necessity is generally in the range of 200 to 650 ° C, and further 300 to 600 ° C. When the heating temperature is less than 200 ° C., decomposition and desorption of nitrate radicals are insufficient, and a sufficient deodorizing performance improvement effect may not be obtained. When the heating temperature exceeds 650 ° C., iron oxide, which is a deodorant metal component, grows, the rutile titanium oxide fine particles agglomerate strongly, and pulverization is required, or sufficient deodorization performance may not be obtained. is there.

消臭性ルチル型酸化チタン微粒子の第2の製造方法は、上記のように高温で焼成することなく得られたルチル型酸化チタン微粒子分散液を乾燥して得たルチル型酸化チタン微粒子粉末に前記鉄化合物水溶液、好ましくは硝酸第2鉄水溶液を吸収させ、ついで、乾燥し、必用に応じて加熱処理することが好ましい。
粉末であるルチル型酸化チタン微粒子に硝酸第2鉄水溶液を吸収させる際の硝酸第2鉄水溶液の量はルチル型酸化チタン微粒子の平均粒子径によっても異なるが、ルチル型酸化チタン微粒子が全体的に均一に硝酸第2鉄水溶液を吸収し、ペースト状となる程度が好ましい。この時、ペースト状混合物中のルチル型酸化チタン微粒子の濃度は固形分として概ね25〜60重量%程度である。
The second method for producing deodorant rutile-type titanium oxide fine particles includes the above-described rutile-type titanium oxide fine particle powder obtained by drying the rutile-type titanium oxide fine particle dispersion obtained without firing at a high temperature as described above. It is preferable to absorb an aqueous iron compound solution, preferably an aqueous ferric nitrate solution, then dry and heat-treat as necessary.
The amount of the ferric nitrate aqueous solution when the rutile type titanium oxide fine particles, which are powders, are absorbed depends on the average particle size of the rutile type titanium oxide fine particles. It is preferable that the aqueous solution of ferric nitrate is uniformly absorbed and becomes a paste. At this time, the concentration of the rutile-type titanium oxide fine particles in the paste-like mixture is about 25 to 60% by weight as a solid content.

ペースト状混合物中のルチル型酸化チタン微粒子の濃度が固形分として25重量%未満の場合は酸化鉄の全量を担持することができない場合があり、60重量%を越えるとルチル型酸化チタン微粒子に均一に酸化鉄を担持できない場合があり、消臭性能が不充分となる場合がある。
硝酸第2鉄の使用量は最終的に得られる酸化鉄を担持したルチル型酸化チタン微粒子中の酸化鉄の含有量がFe23として0.01〜2重量%、さらには0.02〜1.5重量%の範囲となるように使用する。
If the concentration of the rutile type titanium oxide fine particles in the paste-like mixture is less than 25% by weight as a solid content, the total amount of iron oxide may not be supported, and if it exceeds 60% by weight, it is uniform to the rutile type titanium oxide fine particles. In some cases, iron oxide may not be supported, and the deodorizing performance may be insufficient.
The amount of ferric nitrate used is such that the iron oxide content in the rutile-type titanium oxide fine particles carrying iron oxide finally obtained is 0.01 to 2 % by weight as Fe 2 O 3 , and further 0.02 to It is used so as to be in the range of 1.5% by weight.

ついで、ペースト状の混合物を乾燥する。乾燥方法は特に制限はなく従来公知の方法を採用することができる。乾燥温度は水分を実質的に除去できれば特に制限はないが、80〜250℃、さらには95〜200℃の範囲にあることが好ましい。
ついで、必用に応じて加熱処理するが、加熱温度は概ね200〜650℃、さらには300〜600℃の範囲である。加熱温度が200℃未満では硝酸根の分解、脱離が不充分で充分な消臭性能の向上効果が得られないことがある。加熱温度が650℃を超えると消臭性金属成分である酸化鉄が粒子成長したり、ルチル型酸化チタン微粒子が強く凝集し、粉砕を必要としたり、充分な消臭性能が得られない場合がある。
Next, the paste-like mixture is dried. There is no restriction | limiting in particular in the drying method, A conventionally well-known method is employable. Although there will be no restriction | limiting in particular if a drying temperature can remove a water | moisture content substantially, It is preferable that it exists in the range of 80-250 degreeC, Furthermore, 95-200 degreeC.
Next, heat treatment is performed as necessary, but the heating temperature is generally in the range of 200 to 650 ° C., more preferably 300 to 600 ° C. When the heating temperature is less than 200 ° C., decomposition and desorption of nitrate radicals are insufficient, and a sufficient deodorizing performance improvement effect may not be obtained. When the heating temperature exceeds 650 ° C., iron oxide, which is a deodorant metal component, grows, the rutile titanium oxide fine particles agglomerate strongly, and pulverization is required, or sufficient deodorization performance may not be obtained. is there.

抗菌・消臭性金属成分
本発明では、さらに、抗菌・消臭性金属成分として銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上を含むことが好ましい。なかでも銀または亜鉛は抗菌性能と消臭性能のいずれも優れているので好ましい。特に亜鉛の場合は全く変色することもないので好適に採用することができる。
このような抗菌・消臭成分はイオン、酸化物、水酸化物等の化合物またはこれらの混合物のいずれの形態で存在していてもよい。抗菌性の観点からはイオンの形態が好ましく、酸化物であれば消臭性にも優れた抗菌・消臭性塗膜が得られる。
Antibacterial / deodorant metal component In the present invention, the antibacterial / deodorant metal component preferably further contains one or more selected from silver, copper, zinc, tin, cobalt, nickel, and manganese as the antibacterial / deodorant metal component. Among these, silver or zinc is preferable because both antibacterial performance and deodorization performance are excellent. In particular, in the case of zinc, since it does not change color at all, it can be preferably used.
Such antibacterial / deodorant components may be present in any form of compounds such as ions, oxides, hydroxides or mixtures thereof. From the viewpoint of antibacterial properties, the ion form is preferable, and if it is an oxide, an antibacterial / deodorant coating film having excellent deodorizing properties can be obtained.

また、抗菌・消臭金属成分は消臭性ルチル型酸化チタン微粒子の表層に存在するか、消臭性ルチル型酸化チタン微粒子の内部まで比較的均一に分布していることが好ましい。
抗菌・消臭金属成分を消臭性ルチル型酸化チタン微粒子に担持する方法としては、例えば前記特許文献4(特開2005−318999号公報)に開示した方法に準じて担持することができる。
具体的には、例えば、負の電荷を有する消臭性ルチル型酸化チタン微粒子が分散した分散液に、抗菌・消臭性金属成分の金属塩水溶液を添加する方法が挙げられる。
In addition, the antibacterial / deodorant metal component is preferably present in the surface layer of the deodorant rutile type titanium oxide fine particles or distributed relatively uniformly to the inside of the deodorant rutile type titanium oxide fine particles.
As a method for supporting the antibacterial / deodorant metal component on the deodorant rutile-type titanium oxide fine particles, for example, it can be supported according to the method disclosed in Patent Document 4 (Japanese Patent Laid-Open No. 2005-318999).
Specifically, for example, a method of adding an aqueous metal salt solution of an antibacterial / deodorant metal component to a dispersion in which deodorant rutile-type titanium oxide fine particles having a negative charge are dispersed may be mentioned.

前記金属塩水溶液はアンミン錯塩水溶液が好ましい。アンミン錯塩水溶液を用いると消臭性ルチル型酸化チタン微粒子分散液の安定性を低下させたり、ゲル化させることなく長期にわたって安定な消臭性塗膜形成用塗布液、さらには抗菌・消臭性能に優れた消臭性塗膜付基材を得ることができる。
安定性が低下したり、ゲル化した消臭性塗膜形成用塗布液は用途が制限されたり、抗菌性能、消臭性能が不充分となることがある。
好適なアンミン錯塩水溶液は、例えば、酸化亜鉛、酸化銀あるいは酸化銅などをアンモニア水に溶解することによって、亜鉛、銀あるいは銅等のアンミン錯塩水溶液を調製することができる。
The metal salt aqueous solution is preferably an ammine complex salt aqueous solution. Use of an ammine complex salt aqueous solution reduces the stability of the deodorant rutile-type titanium oxide fine particle dispersion and prevents it from gelling and is stable for a long period of time, as well as antibacterial and deodorant performance. A substrate with a deodorant coating film excellent in the above can be obtained.
The application of the coating solution for forming a deodorant coating film with reduced stability or gelation may be limited, and the antibacterial performance and deodorization performance may be insufficient.
As a suitable aqueous solution of ammine complex salt, for example, an aqueous solution of ammine complex salt such as zinc, silver or copper can be prepared by dissolving zinc oxide, silver oxide or copper oxide in ammonia water.

なお、前記した方法以外にも、用途、用法によっては従来公知の含浸法等を採用することもできる。
抗菌・消臭性金属成分の含有量は酸化物換算で0.1〜20重量%、さらには0.2〜15重量%の範囲にあることが好ましい。
抗菌・消臭性金属成分の含有量が酸化物換算で0.1重量%よりも少ない場合には充分な抗菌・消臭性能が得られにくい。
抗菌・消臭性金属成分の含有量が酸化物換算で20重量%よりも多い場合には、さらに消臭性能および抗菌性能が向上することもなく、むしろ抗菌・消臭性金属成分が凝集するためかこれら性能が低下する場合がある。
In addition to the above-described method, a conventionally known impregnation method or the like may be employed depending on the application and usage.
The content of the antibacterial / deodorant metal component is preferably 0.1 to 20% by weight, more preferably 0.2 to 15% by weight in terms of oxide.
When the content of the antibacterial / deodorant metal component is less than 0.1% by weight in terms of oxide, it is difficult to obtain sufficient antibacterial / deodorant performance.
When the content of the antibacterial / deodorant metal component is more than 20% by weight in terms of oxide, the deodorant performance and antibacterial performance are not further improved, but the antibacterial / deodorant metal component aggregates rather. Therefore, these performances may be reduced.

消臭性ルチル型酸化チタン微粒子は平均粒子幅(W)が2〜50nmの範囲にあり、平均長さ(L)が2〜500nmの範囲にあり、アスペクト比(L)/(W)が1〜10の範囲にあることが好ましい。
平均粒子幅(W)が2nm未満のものは得ることが困難であり、平均粒子幅(W)が50nmを越えると、後述する平均長さ(L)も長くなり、分散液、塗布液等に用いる場合に容易に沈降するため用途に制限がある。さらに好ましい平均粒子幅(W)は5〜30nmの範囲である。
Deodorant rutile titanium oxide fine particles have an average particle width (W) in the range of 2 to 50 nm, an average length (L) in the range of 2 to 500 nm, and an aspect ratio (L) / (W) of 1. It is preferable that it exists in the range of -10.
It is difficult to obtain particles having an average particle width (W) of less than 2 nm. When the average particle width (W) exceeds 50 nm, the average length (L) described later also becomes long, and the dispersion, coating solution, etc. Since it settles easily when using it, there is a limitation in use. A more preferable average particle width (W) is in the range of 5 to 30 nm.

平均長さ(L)が2nm未満のものも得ることが困難であり、平均長さ(L)が500nmを越えると分散液、塗布液等に用いる場合容易に沈降するため用途に制限がある。さらに好ましい平均長さ(L)は5〜300nmの範囲である。
また、アスペクト比(L)/(W)は1未満になることはなく、アスペクト比(L)/(W)が10を越えものは得ることが困難である。
本発明での、平均粒子幅(W)、平均粒子長(L)の測定は、透過型電子顕微鏡写真を撮影し50個の粒子について粒子幅、粒子長を求め、その平均値として示した。
上記した消臭性ルチル型酸化チタン微粒子は、必用に応じてシランカップリング剤等により表面処理して用いることもできる。
It is difficult to obtain a product having an average length (L) of less than 2 nm. If the average length (L) exceeds 500 nm, it tends to settle down when used in a dispersion, a coating solution or the like, so that its use is limited. A more preferable average length (L) is in the range of 5 to 300 nm.
Further, the aspect ratio (L) / (W) never becomes less than 1, and it is difficult to obtain an aspect ratio (L) / (W) exceeding 10.
In the present invention, the average particle width (W) and average particle length (L) were measured by taking transmission electron micrographs, obtaining the particle width and particle length of 50 particles, and showing the average values.
The deodorant rutile type titanium oxide fine particles described above can be used after being surface-treated with a silane coupling agent or the like, if necessary.

[消臭性塗膜形成用塗布液]
ついで、本発明に係る消臭性塗膜形成用塗布液について説明する。
本発明に係る消臭性塗膜形成用塗布液は、前記いずれかに記載の消臭性ルチル型酸化チタン微粒子が分散媒中に分散してなることを特徴としている。
[Coating solution for forming deodorant coating film]
Next, the coating liquid for forming a deodorant coating film according to the present invention will be described.
The coating solution for forming a deodorant coating film according to the present invention is characterized in that the deodorant rutile type titanium oxide fine particles described above are dispersed in a dispersion medium.

消臭性ルチル型酸化チタン微粒子
消臭性ルチル型酸化チタン微粒子としては、前記した消臭性ルチル型酸化チタン微粒子を用いる。
Deodorant rutile type titanium oxide fine particles As the deodorant rutile type titanium oxide fine particles, the aforementioned deodorant rutile type titanium oxide fine particles are used.

水溶性金属キレート化合物
本発明の消臭性塗膜形成用塗布液は、水系分散媒に溶解した水溶性金属キレート化合物を含有していることが好ましい。
本発明に用いる水溶性金属キレート化合物としては、金属がTi、Al、Zr、Si等である水溶性金属キレート化合物が挙げられる。なかでも、金属がTiである水溶性チタンキレート化合物は抗菌・消臭性能を低下させることがないので好適に使用することができる。
Water-soluble metal chelate compound The coating solution for forming a deodorant coating film of the present invention preferably contains a water-soluble metal chelate compound dissolved in an aqueous dispersion medium.
Examples of the water-soluble metal chelate compound used in the present invention include water-soluble metal chelate compounds whose metal is Ti, Al, Zr, Si or the like. Among these, a water-soluble titanium chelate compound in which the metal is Ti does not deteriorate the antibacterial / deodorant performance and can be preferably used.

水溶性チタンキレート化合物としては、水溶性チタンラクテートアンモニウム塩、チタンジイソプロポキシビス(トリエタノールアミン)、チタンラクテート等が挙げられる。
これらの水溶性チタンキレート化合物は、溶液自体も安定であるが、消臭性塗膜形成用塗布液に用いた場合も、安定で、これを塗布して得られる消臭性塗膜は基材との密着性、透明性、塗膜表面の平坦性に優れ、且つ、抗菌・消臭性能に優れている。
Examples of the water-soluble titanium chelate compound include water-soluble titanium lactate ammonium salt, titanium diisopropoxybis (triethanolamine), titanium lactate and the like.
These water-soluble titanium chelate compounds are stable in the solution itself, but are stable even when used in a coating solution for forming a deodorant coating, and the deodorant coating obtained by applying this is a substrate. It has excellent adhesion, transparency, flatness of the coating film surface, and excellent antibacterial / deodorant performance.

水系分散媒
本発明に用いる水系分散媒としては、水、または水とアルコールの混合分散媒が好ましい。
アルコールとしては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、ブタノール、等が挙げられる。
混合分散媒の場合、混合比率は特に制限はないが、概ね水の割合が10重量%以上であることが好ましい。
Aqueous dispersion medium The aqueous dispersion medium used in the present invention is preferably water or a mixed dispersion medium of water and alcohol.
Examples of the alcohol include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, butanol and the like.
In the case of a mixed dispersion medium, the mixing ratio is not particularly limited, but it is generally preferable that the ratio of water is 10% by weight or more.

消臭性塗膜形成用塗布液中の水溶性金属キレート化合物のTiO2としての濃度は0.0001〜10重量%、さらには0.0005〜8重量%の範囲にあることが好ましい。
消臭性塗膜形成用塗布液中の水溶性金属キレート化合物のTiO2としての濃度が0.0001重量%未満の場合は、塗布液の安定性、基材との密着性、透明性等が不充分となる場合がある。
消臭性塗膜形成用塗布液中の水溶性金属キレート化合物のTiO2としての濃度が10重量%を超えると、塗布液の安定性がさらに向上することもなく、得られる消臭性塗膜中の消臭性ルチル型酸化チタン微粒子の含有量が低下するために、抗菌・消臭性能が不充分となる場合がある。
The concentration of the water-soluble metal chelate compound in the deodorant coating film-forming coating solution as TiO 2 is preferably in the range of 0.0001 to 10% by weight, more preferably 0.0005 to 8% by weight.
If the concentration of the TiO 2 in water-soluble metal chelate compound of the deodorizing coating film-forming coating liquid is less than 0.0001 wt%, stability of the coating solution, adhesion to a substrate, transparency and the like is It may be insufficient.
When the concentration of the TiO 2 in water-soluble metal chelate compound of the deodorizing coating film-forming coating liquid is more than 10% by weight, without the stability of the coating liquid is further improved, resulting deodorant coating Since the content of the deodorant rutile type titanium oxide fine particles in the inside is lowered, the antibacterial / deodorant performance may be insufficient.

消臭性塗膜形成用塗布液中の消臭性ルチル型酸化チタン微粒子の固形分としての重量(Wa)と水溶性金属キレート化合物のTiO2としての重量(Wb)の重量比(Wb)/(Wa)が0.005〜1.0、さらには0.01〜0.5の範囲にあることが好ましい。
前記重量比(Wb)/(Wa)が0.005未満の場合は、水溶性金属キレート化合物が少なくなり、塗布液の安定性、基材との密着性、透明性、表面平坦性等が低下したり、膜強度が不充分となる場合がある。
Weight ratio of weight (W a ) as solid content of deodorant rutile-type titanium oxide fine particles in coating liquid for forming deodorant coating film to weight (W b ) as TiO 2 of water-soluble metal chelate compound (W b ) / (W a ) is preferably in the range of 0.005 to 1.0, more preferably 0.01 to 0.5.
When the weight ratio (W b ) / (W a ) is less than 0.005, the amount of the water-soluble metal chelate compound decreases, the stability of the coating solution, the adhesion to the substrate, the transparency, the surface flatness, etc. May decrease or the film strength may be insufficient.

前記重量比(Wb)/(Wa)が1.0を超えると、塗布液の安定性がさらに向上することもなく、得られる消臭性塗膜中の消臭性ルチル型酸化チタン微粒子の含有量が低下するために、抗菌・消臭性能が不充分となる場合がある。
さらに、本発明の消臭性塗膜形成用塗布液には他の成分が含まれていてもよい。他の成分としては、顔料、分散材、界面活性剤等の他、通常塗料やインキに配合剤として用いられる成分が挙げられる。
When the weight ratio (W b ) / (W a ) exceeds 1.0, the stability of the coating liquid is not further improved, and the deodorant rutile type titanium oxide fine particles in the obtained deodorant coating film. In some cases, the antibacterial / deodorizing performance may be insufficient due to a decrease in the content of.
Furthermore, the coating liquid for forming a deodorant coating film of the present invention may contain other components. Examples of other components include pigments, dispersants, surfactants, and the like, as well as components that are usually used as a compounding agent in paints and inks.

消臭性塗膜形成用塗布液の全固形分濃度は0.01〜20重量%、さらには0.1〜10重量%の範囲にあることが好ましい。
全固形分濃度が0.01重量%未満の場合は、塗布して得られる消臭性塗膜の膜厚が薄くなり、抗菌・消臭性能が不充分となるほか、膜の強度が不充分、基材表面に凹凸がある場合は表面の平坦性が不充分となる場合がある。
全固形分濃度が20重量%を超えると、塗布液の安定性が不充分となったり、塗工性が低下し、得られる消臭性塗膜の基材との密着性、表面平坦性、透明性、耐久性、クラック抑制等が低下するとともに抗菌性能、消臭性能が不充分となる場合がある。
The total solid concentration of the coating solution for forming a deodorant coating film is preferably 0.01 to 20% by weight, more preferably 0.1 to 10% by weight.
When the total solid content is less than 0.01% by weight, the film thickness of the deodorant coating film obtained by coating becomes thin, the antibacterial / deodorant performance becomes insufficient, and the film strength is insufficient. When the substrate surface has irregularities, the surface flatness may be insufficient.
When the total solid content exceeds 20% by weight, the stability of the coating solution becomes insufficient, the coating property is lowered, the adhesion of the resulting deodorant coating film to the substrate, the surface flatness, Transparency, durability, crack suppression, etc. may be reduced, and antibacterial performance and deodorization performance may be insufficient.

消臭性塗膜形成用塗布液中の消臭性ルチル型酸化チタン微粒子の濃度は固形分として0.005〜19.9重量%、さらには0.1〜10重量%の範囲にあることが好ましい。
消臭性塗膜形成用塗布液中の消臭性ルチル型酸化チタン微粒子の濃度が形分として0.005重量%未満の場合は、抗菌・消臭性能が不充分となる場合がある。
消臭性塗膜形成用塗布液中の消臭性ルチル型酸化チタン微粒子の濃度が固形分として19.9重量%を超えると、水溶性金属キレート化合物が制限されるが、この場合、塗布液の安定性、基材との密着性、透明性等が低下し膜強度が不充分となる場合がある。
The concentration of the deodorant rutile-type titanium oxide fine particles in the coating liquid for forming the deodorant coating film may be in the range of 0.005 to 19.9% by weight, further 0.1 to 10% by weight as the solid content. preferable.
When the concentration of the deodorant rutile-type titanium oxide fine particles in the coating liquid for forming a deodorant coating film is less than 0.005% by weight, antibacterial / deodorant performance may be insufficient.
When the concentration of the deodorant rutile-type titanium oxide fine particles in the coating liquid for forming a deodorant coating exceeds 19.9% by weight as a solid content, the water-soluble metal chelate compound is limited. In some cases, the stability, adhesion to the substrate, transparency, and the like are lowered, resulting in insufficient film strength.

[消臭性塗膜付基材]
つぎに、本発明に係る消臭性塗膜付基材について説明する。
本発明に係る消臭性塗膜付基材は、基材と、基材上に形成された消臭性塗膜とからなり、該消臭性塗膜が前記いずれかに記載の消臭性塗膜形成用塗布液を用いて形成された消臭性塗膜であることを特徴としている。
[Substrate with deodorant coating]
Below, the base material with a deodorizing coating film which concerns on this invention is demonstrated.
The substrate with a deodorizing coating film according to the present invention comprises a substrate and a deodorizing coating film formed on the substrate, and the deodorizing coating film according to any one of the above It is a deodorant coating film formed using a coating liquid for forming a coating film.

基材
基材としては、ガラス、金属、樹脂、セラミック、木、無機酸化物等の基材が挙げられる。
前記消臭性塗膜中の消臭性ルチル型酸化チタン微粒子の固形分としての含有量が50〜100重量%の範囲にあり、水溶性金属キレート化合物のTiO2としての含有量が0〜50重量%の範囲にあることが好ましい。
Examples of the base material include base materials such as glass, metal, resin, ceramic, wood, and inorganic oxide.
The content of the deodorant rutile-type titanium oxide fine particles in the deodorant coating film as a solid content is in the range of 50 to 100% by weight, and the content of the water-soluble metal chelate compound as TiO 2 is 0 to 50. It is preferably in the range of wt%.

消臭性塗膜中の消臭性ルチル型酸化チタン微粒子の固形分としての含有量は50〜100重量%、さらには60〜96重量%の範囲にあることが好ましい。
消臭性塗膜中の消臭性ルチル型酸化チタン微粒子の固形分としての含有量が50重量%未満の場合は、抗菌・消臭性能が不充分となる場合がある。
The content of the deodorant rutile-type titanium oxide fine particles in the deodorant coating film as a solid content is preferably in the range of 50 to 100% by weight, more preferably 60 to 96% by weight.
If the content of the deodorant rutile-type titanium oxide fine particles in the deodorant coating film is less than 50% by weight, the antibacterial / deodorant performance may be insufficient.

消臭性塗膜に水溶性金属キレート化合物を含む場合、消臭性塗膜中の水溶性金属キレート化合物のTiO2としての含有量は50重量%以下、さらには4〜40重量%の範囲にあることが好ましい。
消臭性塗膜中の水溶性金属キレート化合物のTiO2としての含有量が少ない場合は基材との密着性、透明性、表面平坦性、膜強度等が不充分となる場合がある。
消臭性塗膜中の水溶性金属キレート化合物のTiO2としての含有量が50重量%を超えると、消臭性ルチル型酸化チタン微粒子の含有量が少ないために抗菌・消臭性能が不充分となる場合がある。
When the deodorant coating film contains a water-soluble metal chelate compound, the content of the water-soluble metal chelate compound in the deodorant coating film as TiO 2 is 50% by weight or less, more preferably in the range of 4 to 40% by weight. Preferably there is.
When the content of the water-soluble metal chelate compound in the deodorant coating film as TiO 2 is small, adhesion to the substrate, transparency, surface flatness, film strength, etc. may be insufficient.
If the content of water-soluble metal chelate compound in the deodorant coating as TiO 2 exceeds 50% by weight, antibacterial and deodorant performance is insufficient due to the low content of deodorant rutile titanium oxide fine particles. It may become.

消臭性塗膜の膜厚は50μm以下、さらには20μm以下の範囲にあることが好ましい。
消臭性塗膜の膜厚が50μmを超えても、抗菌・消臭性能がさらに向上することもなく、塗膜にクラックが生じたり、透明性が低下するため用途が制限される場合がある。
なお、消臭性塗膜の膜厚の下限値としては、消臭性能が得られれば特に限定するものではなく、基材上に消臭性ルチル型酸化チタン微粒子が点在していてもよい。
消臭性塗膜形成用塗布液に水溶性金属キレート化合物を含む場合、消臭性塗膜の膜厚は0.1μm以上であることが好ましい。この場合、消臭性塗膜の膜厚が0.1μm未満の場合は、抗菌・消臭性能が不充分となる場合があり、長期に亘って高い抗菌・消臭性能を維持できない場合がある。
The film thickness of the deodorant coating is preferably 50 μm or less, more preferably 20 μm or less.
Even if the film thickness of the deodorant coating film exceeds 50 μm, the antibacterial / deodorant performance is not further improved, and the use may be limited because the coating film is cracked or the transparency is lowered. .
The lower limit of the film thickness of the deodorant coating film is not particularly limited as long as the deodorant performance is obtained, and the deodorant rutile type titanium oxide fine particles may be scattered on the substrate. .
When the coating liquid for forming a deodorant coating film contains a water-soluble metal chelate compound, the film thickness of the deodorant coating film is preferably 0.1 μm or more. In this case, when the film thickness of the deodorant coating is less than 0.1 μm, the antibacterial / deodorant performance may be insufficient, and the high antibacterial / deodorant performance may not be maintained over a long period of time. .

このような抗菌・消臭性塗膜付基材は、前記抗菌・消臭性塗膜形成用塗布液を、ディップ法、スプレー法、スピナー法、ロールコート法、バーコーター法等の周知の方法で前記した基材に塗布し、乾燥し、さらに必要に応じて加熱処理によって硬化させることによって製造することができる。   Such a substrate with an antibacterial / deodorant coating film is a known method such as a dipping method, a spray method, a spinner method, a roll coat method, a bar coater method, etc. It can be produced by applying to the above-mentioned substrate, drying, and further curing by heat treatment if necessary.

本発明の消臭性塗膜において消臭の対象となる臭気成分としては、法定悪臭8物質(硫化水素、メチルメルカプタン、硫化メチル、二硫化ジメチル、アンモニア、トリメチルアミン、アセトアルデヒド、スチレン)、炭化水素、ケトン、アルデヒド、アルコール類、エステル類、窒素化合物、硫黄化合物、低級脂肪酸等が挙げられる。
抗菌の対象となる菌類としては、黄色ブドウ球菌、連鎖球菌、大腸菌、緑膿菌、プロテウス菌、肺炎桿菌、枯草菌等、真菌としては黒かび、黒麹かび、白かび等、ウイルスとしてはインフルエンザウイルス、アデノウイルス、ノロウイルス等、藻類としてはクロレラ等が挙げられる。
本発明の消臭性塗膜は、居住空間、公共施設、医療施設、養護施設、自動車内装等において、消臭性能、抗菌性能が求められる箇所において、特に可視光を含む自然光もしくは人工光源の照射下で有用である。
As odor components to be deodorized in the deodorant coating film of the present invention, eight legal malodorous substances (hydrogen sulfide, methyl mercaptan, methyl sulfide, dimethyl disulfide, ammonia, trimethylamine, acetaldehyde, styrene), hydrocarbons, Examples include ketones, aldehydes, alcohols, esters, nitrogen compounds, sulfur compounds, and lower fatty acids.
Antibacterial fungi include Staphylococcus aureus, Streptococcus, Escherichia coli, Pseudomonas aeruginosa, Proteus, Neisseria pneumoniae, Bacillus subtilis, etc. As fungi, black mold, black mold, white mold, etc. Examples of algae such as viruses, adenoviruses and noroviruses include chlorella.
The deodorant coating film of the present invention is irradiated with natural light or artificial light source including visible light, particularly in places where deodorant performance and antibacterial performance are required in living spaces, public facilities, medical facilities, nursing homes, automobile interiors, etc. Useful below.

[実施例1]
消臭性ルチル型酸化チタン微粒子(1)の調製
濃度35重量%の過酸化水素水1425gを純水7122gで希釈した過酸化水素水溶液に濃度63重量%の硝酸6.3gを加え、これにテトライソプロピルチタネート143gを添加し黄褐色のペルオキソチタン酸水溶液を得た。
ついで、ペルオキソチタン酸水溶液を90℃で2時間、95℃で12時間熟成した。溶液は、最初黄褐色であったが、熟成後には乳白色の透明性液体(コロイド液)となった。
ついで、透明性液体(コロイド液)に濃度63重量%の硝酸3.2g添加し、180℃で16時間水熱処理(加熱)してルチル型酸化チタン微粒子(1)分散液を調製した。
得られたルチル型酸化チタン微粒子(1)分散液を限外濾過膜法により、洗浄し、ついで濃縮し、消臭性ルチル型酸化チタン微粒子(1)分散ゾルを得た。
[Example 1]
Preparation of deodorant rutile-type titanium oxide fine particles (1) 6.3 g of 63 wt% nitric acid was added to an aqueous hydrogen peroxide solution obtained by diluting 1425 g of 35 wt% hydrogen peroxide water with 7122 g of pure water. To this, 143 g of tetraisopropyl titanate was added to obtain a yellowish brown peroxotitanic acid aqueous solution.
Then, the peroxotitanic acid aqueous solution was aged at 90 ° C. for 2 hours and at 95 ° C. for 12 hours. The solution was initially yellowish brown, but became a milky white transparent liquid (colloidal liquid) after aging.
Subsequently, 3.2 g of nitric acid having a concentration of 63 wt% was added to the transparent liquid (colloidal liquid), and hydrothermal treatment (heating) was performed at 180 ° C. for 16 hours to prepare a rutile type titanium oxide fine particle (1) dispersion.
The obtained rutile type titanium oxide fine particle (1) dispersion was washed by an ultrafiltration membrane method and then concentrated to obtain a deodorant rutile type titanium oxide fine particle (1) dispersion sol.

乾燥したルチル型酸化チタン微粒子(1)について、平均粒子幅(W)、平均粒子長(L)を測定し、BET法により比表面積を測定し、X線回折法(理学電機製:LAD−IIC型、Cu管球、35kV、12.5mA)により結晶形を測定し結果を表に示した。   For the dried rutile-type titanium oxide fine particles (1), the average particle width (W) and average particle length (L) were measured, the specific surface area was measured by the BET method, and the X-ray diffraction method (manufactured by Rigaku Corporation: LAD-IIC) The crystal form was measured with a mold, Cu tube, 35 kV, 12.5 mA), and the results are shown in the table.

ついで、ルチル型酸化チタン微粒子(1)分散ゾル(固形分10重量%)80gを水720gに分散し、充分撹拌した後、陰イオン交換樹脂(三菱化学(株)製:SA20A)5gを混合し、ついで、温度を50℃に調整した後、Fe23としての濃度0.1重量%の硝酸第2鉄水溶液8gを添加し、2時間撹拌した後、95℃で1時間熟成し、ついで、イオン交換樹脂を分離し、限外濾過膜法により、固形分濃度10重量%の酸化鉄を担持した消臭性ルチル型酸化チタン微粒子(1)分散液を得た。酸化鉄の担持量を表に示した。 Next, 80 g of rutile-type titanium oxide fine particles (1) dispersion sol (solid content 10 wt%) was dispersed in 720 g of water and stirred sufficiently, and then mixed with 5 g of anion exchange resin (Mitsubishi Chemical Corporation: SA20A). Then, after adjusting the temperature to 50 ° C., 8 g of ferric nitrate aqueous solution having a concentration of 0.1% by weight as Fe 2 O 3 was added, stirred for 2 hours, and then aged at 95 ° C. for 1 hour. The ion exchange resin was separated, and a deodorant rutile-type titanium oxide fine particle (1) dispersion carrying iron oxide having a solid content concentration of 10% by weight was obtained by an ultrafiltration membrane method. The amount of iron oxide supported is shown in the table.

消臭性塗膜形成用塗布液(1)の調製
イオン交換水85重量部に、固形分濃度10重量%の酸化鉄を担持した消臭性ルチル型酸化チタン微粒子(1)分散液10重量部を配合し、充分に分散させた後、これに水溶性金属キレート化合物としてチタンラクテートアンモニウム塩溶液(マツモトファインケミカル(株)製:オルガチックスTC-300、チタンラクテートアンモニウム塩42重量%、水20重量%、イソプロピルアルコール38重量%、TiO2としての濃度10.0重量%)5重量部を添加して、固形分濃度1.5重量%の消臭性塗膜形成用塗布液(1)を調製した。
Preparation of coating liquid (1) for forming deodorant coating film Deodorant rutile type titanium oxide fine particles (10) 10 parts by weight of dispersion containing iron oxide having a solid content of 10% by weight in 85 parts by weight of ion exchange water Was mixed and sufficiently dispersed, and then a titanium lactate ammonium salt solution (manufactured by Matsumoto Fine Chemical Co., Ltd .: Olga Tix TC-300, titanium lactate ammonium salt 42% by weight, water 20% by weight as a water-soluble metal chelate compound. 5 parts by weight of isopropyl alcohol, 38% by weight of isopropyl alcohol and 10.0% by weight of TiO 2 ) was added to prepare a coating solution (1) for forming a deodorant coating film having a solid content of 1.5% by weight. .

消臭性塗膜付基材(1)の作成
厚さ0.105mmの工業用純アルミニウム板を脱脂し、苛性処理し、充分に水で洗浄して乾燥したアルミニウム基材表面に抗菌・消臭性塗膜形成用塗布液(1)をバーコーター法で膜厚が約10μmになるように塗布し、120℃で2分間乾燥した。次いで200℃で2分間加熱処理して消臭性塗膜付基材(1)を作成した。
得られた消臭性塗膜付基材(1)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。なお、評価方法、評価基準は以下に示す。
Preparation of base material with deodorant coating (1) Anti-bacterial / deodorant surface of 0.15mm thick industrial aluminum plate, degreased, causticized, thoroughly washed with water and dried The coating solution (1) for forming a conductive coating film was applied by a bar coater method so as to have a film thickness of about 10 μm, and dried at 120 ° C. for 2 minutes. Subsequently, the base material (1) with a deodorizing coating film was created by heat-processing at 200 degreeC for 2 minute (s).
About the obtained base material (1) with a deodorant coating film, film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorization performance were evaluated, and the results are shown in the table. Evaluation methods and evaluation criteria are shown below.

膜厚
垂直に切断した膜の断面を走査型電子顕微鏡観察により観察して測定した。
The cross section of the film cut perpendicular to the film thickness was observed and measured by observation with a scanning electron microscope.

密着性
JIS K 5400に基づく基盤目試験に準拠し、塗膜付基材(1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロハンテープ(登録商標)を接着し、ついで、セロハンテープ(登録商標)を剥離したときに塗膜が剥離せず残存している升目の数を、以下の4段階に分類することによって密着性を評価した。結果を表1に示す。
残存升目の数98個以上 :◎
残存升目の数93〜97個:○
残存升目の数85〜92個:△
残存升目の数84個以下 :×
Adhesion
In accordance with the basic eye test based on JIS K 5400, the surface of the coated substrate (1) is made with a knife with 11 parallel scratches at 1 mm vertical and horizontal intervals to make 100 squares, and cellophane tape ( Adhesion was evaluated by classifying the number of squares remaining after the cellophane tape (registered trademark) was peeled off, after the cellophane tape (registered trademark) was peeled off. The results are shown in Table 1.
98 or more remaining cells: ◎
93-97 remaining squares: ○
Number of remaining squares: 85-92:
Number of remaining squares: 84 or less: ×

表面平坦性
触針式表面荒さ計(東京精密(株)製:サーフコム)で表面の平均荒さ(μm)を評価した。
Surface flatness An average surface roughness (μm) was evaluated with a stylus type surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd .: Surfcom).

消臭性能
試験臭(1):アセトアルデヒド(初期濃度:60ppm)
試験方法:1Lテドラーバッグに検体(10cm×10cm)を入れ、臭気1Lを添加後、室温にて、蛍光灯照射下(照度:4klux)で放置した。24時間後、検知管にて測定した臭気残存濃度から消臭率を求め、また二酸化炭素発生量(ppm)を測定した。
Deodorant performance
Test odor (1) : Acetaldehyde (initial concentration: 60 ppm)
Test method: A specimen (10 cm × 10 cm) was placed in a 1 L Tedlar bag, and after adding 1 L of odor, it was left at room temperature under fluorescent light irradiation (illuminance: 4 klux). After 24 hours, the deodorization rate was determined from the residual odor concentration measured with the detector tube, and the carbon dioxide generation amount (ppm) was measured.

試験臭(2,3):硫化水素(初期濃度:4ppm)、アンモニア(初期濃度:100ppm)
試験方法:5Lテドラーバッグに検体(10cm×10cm)を入れ、臭気3Lを添加後、室温にて、蛍光灯照射下(照度:400lux)で放置した。2時間後検知管にて測定した臭気残存濃度から消臭率を求めた。
Test odor (2,3) : Hydrogen sulfide (initial concentration: 4 ppm), ammonia (initial concentration: 100 ppm)
Test method: A specimen (10 cm × 10 cm) was placed in a 5 L Tedlar bag, and after adding 3 L of odor, it was allowed to stand at room temperature under fluorescent light irradiation (illuminance: 400 lux). The deodorization rate was determined from the residual odor concentration measured with the detector tube after 2 hours.

抗菌性能
JIS Z2801に準拠し、抗菌・消臭性塗膜付基材(1)に菌懸濁液、0.4mlを接種し、その上に被覆フイルムを被せて蓋をした後、35±1℃、RH90以上で24時間放置後、菌懸濁液を回収して生菌数を測定し、次式(1)の殺菌活性値により抗菌性能を評価した。
結果を表2に示す。
試験菌には、黄色ぶどう球菌、大腸菌、およびMRSAを用い、菌懸濁液の栄養として、肉エキス(3g/L)+ペプトン(10g/L)+塩化ナトリウム(5g/L)を100倍に薄めたものを使用した。
殺菌活性値=Log(植菌数)−Log(試験片生菌数) ・・・(1)
Antibacterial performance
In accordance with JIS Z2801, after inoculating bacterial suspension, 0.4 ml on the antibacterial / deodorant coated substrate (1), covering it with a covering film and covering it, 35 ± 1 ° C, After standing at RH90 or more for 24 hours, the bacterial suspension was recovered, the number of viable bacteria was measured, and the antibacterial performance was evaluated by the bactericidal activity value of the following formula (1).
The results are shown in Table 2.
Staphylococcus aureus, Escherichia coli, and MRSA are used as test bacteria. Meat extract (3 g / L) + peptone (10 g / L) + sodium chloride (5 g / L) is multiplied by 100 as nutrients for the bacterial suspension. A diluted one was used.
Bactericidal activity value = Log (number of inoculated bacteria)-Log (number of viable test pieces) (1)

[実施例2]
消臭性ルチル型酸化チタン微粒子(2)の調製
実施例1において、Fe23としての濃度0.1重量%の硝酸第2鉄水溶液4gを添加した以外は同様にして消臭性ルチル型酸化チタン微粒子(2)分散液を得た。
消臭性塗膜形成用塗布液(2)の調製
実施例1において、消臭性ルチル型酸化チタン微粒子(2)分散液を用いた以外は同様にして固形分濃度1.5重量%の消臭性塗膜形成用塗布液(2)を調製した。
[Example 2]
Preparation of Deodorant Rutile Type Titanium Oxide Fine Particles (2) Deodorant rutile type in the same manner as in Example 1 except that 4 g of ferric nitrate aqueous solution having a concentration of 0.1% by weight as Fe 2 O 3 was added. A titanium oxide fine particle (2) dispersion was obtained.
Preparation of coating solution (2) for forming a deodorant coating film In Example 1, an anti-deodorant rutile type titanium oxide fine particle (2) dispersion was used, except that a solid content concentration of 1.5% by weight was used. A coating liquid (2) for forming an odorous coating film was prepared.

消臭性塗膜付基材(2)の作成
実施例1において、消臭性塗膜形成用塗布液(2)を用いた以外は同様にして消臭性塗膜付基材(2)を作成した。
得られた消臭性塗膜付基材(2)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (2) In Example 1, the base material with deodorant coating film (2) was prepared in the same manner except that the coating liquid for forming a deodorant coating film (2) was used. Created.
The obtained substrate (2) with a deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例3]
消臭性ルチル型酸化チタン微粒子(3)の調製
実施例1において、Fe23としての濃度0.1重量%の硝酸第2鉄水溶液40gを添加した以外は同様にして消臭性ルチル型酸化チタン微粒子(3)分散液を得た。
消臭性塗膜形成用塗布液(3)の調製
実施例1において、消臭性ルチル型酸化チタン微粒子(3)分散液を用いた以外は同様にして固形分濃度1.5重量%の消臭性塗膜形成用塗布液(3)を調製した。
[Example 3]
Preparation of deodorant rutile type titanium oxide fine particles (3) In Example 1, deodorant rutile type was the same except that 40 g of ferric nitrate aqueous solution having a concentration of 0.1 wt% as Fe 2 O 3 was added. A titanium oxide fine particle (3) dispersion was obtained.
Preparation of coating liquid (3) for deodorant coating film formation In Example 1, a deodorant rutile type titanium oxide fine particle (3) dispersion was used except that a solid content concentration of 1.5% by weight was used. A coating liquid (3) for forming an odorous coating film was prepared.

消臭性塗膜付基材(3)の作成
実施例1において、消臭性塗膜形成用塗布液(3)を用いた以外は同様にして消臭性塗膜付基材(3)を作成した。
得られた消臭性塗膜付基材(3)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (3) In Example 1, the base material with deodorant coating film (3) was prepared in the same manner as in Example 1, except that the coating liquid for forming a deodorant coating film (3) was used. Created.
The obtained substrate (3) with a deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例4]
消臭性ルチル型酸化チタン微粒子(4)の調製
実施例1と同様にして調製したルチル型酸化チタン微粒子(1)分散ゾル(固形分10重量%)80gを水720gに分散する。一方、酸化銀、0.4gに水39.6gを入れ、15%アンモニアを6g添加して攪拌し、溶解後、ルチル型酸化チタン微粒子(1)分散ゾルに添加して、95℃で4時間熟成し、限外濾過膜法により固形分の100倍量の水で洗浄、濃縮後、Ag2O担持されたルチル型酸化チタン微粒子(4)分散ゾルを得た。
[Example 4]
Preparation of Deodorant Rutile Type Titanium Oxide Fine Particles (4 ) 80 g of rutile type titanium oxide fine particle (1) dispersion sol (solid content 10 wt%) prepared in the same manner as in Example 1 is dispersed in 720 g of water. On the other hand, 39.6 g of water was added to 0.4 g of silver oxide, 6 g of 15% ammonia was added and stirred, dissolved, and then added to the rutile-type titanium oxide fine particle (1) dispersed sol at 95 ° C. for 4 hours. After aging, washing with 100 times the solid content of water by the ultrafiltration membrane method, and concentrating, a rutile-type titanium oxide fine particle (4) -dispersed sol carrying Ag 2 O was obtained.

ついで、ルチル型酸化チタン微粒子(4)分散ゾル(固形分10重量%)80gを水720gに分散し、充分撹拌した後、陰イオン交換樹脂(三菱化学(株)製:SA20A)5gを混合し、ついで、温度を50℃に調整した後、Fe23としての濃度0.1重量%の硝酸第2鉄水溶液8gを添加し、2時間撹拌した後、95℃で1時間熟成し、ついで、イオン交換樹脂を分離し、限外濾過膜法により、固形分濃度10重量%の酸化鉄を担持した消臭性ルチル型酸化チタン微粒子(4)分散液を得た。 Next, 80 g of rutile-type titanium oxide fine particles (4) dispersion sol (solid content 10% by weight) was dispersed in 720 g of water and stirred sufficiently, and then mixed with 5 g of an anion exchange resin (Mitsubishi Chemical Corporation: SA20A). Then, after adjusting the temperature to 50 ° C., 8 g of ferric nitrate aqueous solution having a concentration of 0.1% by weight as Fe 2 O 3 was added, stirred for 2 hours, and then aged at 95 ° C. for 1 hour. Then, the ion exchange resin was separated, and a deodorant rutile type titanium oxide fine particle (4) dispersion carrying iron oxide having a solid concentration of 10% by weight was obtained by an ultrafiltration membrane method.

消臭性塗膜形成用塗布液(4)の調製
実施例1において、消臭性ルチル型酸化チタン微粒子(4)分散液を用いた以外は同様にして固形分濃度1.5重量%の消臭性塗膜形成用塗布液(4)を調製した。
Preparation of coating solution (4) for forming a deodorant coating film In Example 1, an odor eliminating solution having a solid content of 1.5% by weight was used except that the deodorant rutile type titanium oxide fine particle (4) dispersion was used. A coating liquid (4) for forming an odorous coating film was prepared.

消臭性塗膜付基材(4)の作成
実施例1において、消臭性塗膜形成用塗布液(4)を用いた以外は同様にして消臭性塗膜付基材(4)を作成した。
得られた消臭性塗膜付基材(4)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (4) In Example 1, the base material with deodorant coating film (4) was prepared in the same manner except that the coating liquid for forming a deodorant coating film (4) was used. Created.
About the obtained base material (4) with a deodorant coating film, a film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorizing performance were evaluated, and a result is shown to a table | surface.

[実施例5]
消臭性ルチル型酸化チタン微粒子(5)の調製
濃度35重量%の過酸化水素水1425gを純水7122gで希釈した過酸化水素水溶液に濃度63重量%の硝酸6.3gを加え、これにテトライソプロピルチタネート143gを添加し黄褐色のペルオキソチタン酸水溶液を得た。
ペルオキソチタン酸水溶液(固形分1%)800gを50℃に加温し、15%アンモニアでpHを9.0に調整した。一方、硝酸亜鉛2.92gに水79.2gを加え攪拌溶解する。硝酸亜鉛溶液を1時間かけて、ペルオキソチタン酸水溶液(固形分1%)に添加し、同時に陰イオン交換樹脂(三菱化学(株)製ダイヤイオンSA20A)をpHが9.0を切らないように添加する。添加終了後、イオン交換樹脂を分離した。
[Example 5]
Preparation of deodorant rutile type titanium oxide fine particles (5) 6.3 g of 63 wt% nitric acid was added to hydrogen peroxide aqueous solution obtained by diluting 1425 g of hydrogen peroxide water of 35 wt% with pure water 7122 g. 143 g of isopropyl titanate was added to obtain a yellowish brown peroxotitanic acid aqueous solution.
800 g of a peroxotitanic acid aqueous solution (solid content: 1%) was heated to 50 ° C., and the pH was adjusted to 9.0 with 15% ammonia. Meanwhile, 79.2 g of water is added to 2.92 g of zinc nitrate and dissolved by stirring. Zinc nitrate solution is added to peroxotitanic acid aqueous solution (solid content 1%) over 1 hour, and at the same time, anion exchange resin (Diaion SA20A manufactured by Mitsubishi Chemical Corporation) is kept at a pH of 9.0. Added. After completion of the addition, the ion exchange resin was separated.

ついで、ペルオキソチタン酸水溶液を90℃で2時間、95℃で12時間熟成した。溶液は、最初黄褐色であったが、熟成後には乳白色の透明性液体(コロイド液)となった。
ついで、透明性液体(コロイド液)に濃度63重量%の硝酸3.2g添加し、180℃で16時間水熱処理(加熱)してルチル型酸化チタン微粒子(5)分散液を調製した。
得られた亜鉛担持ルチル型酸化チタン微粒子(5)分散液を限外濾過膜法により、洗浄し、ついで濃縮し、亜鉛担持ルチル型酸化チタン微粒子(5)分散ゾルを得た。
Then, the peroxotitanic acid aqueous solution was aged at 90 ° C. for 2 hours and at 95 ° C. for 12 hours. The solution was initially yellowish brown, but became a milky white transparent liquid (colloidal liquid) after aging.
Subsequently, 3.2 g of nitric acid having a concentration of 63 wt% was added to the transparent liquid (colloid liquid), and hydrothermal treatment (heating) was performed at 180 ° C. for 16 hours to prepare a rutile type titanium oxide fine particle (5) dispersion.
The obtained zinc-supported rutile type titanium oxide fine particle (5) dispersion was washed by an ultrafiltration membrane method and then concentrated to obtain a zinc-supported rutile type titanium oxide fine particle (5) dispersion sol.

ついで、ルチル型酸化チタン微粒子(5)分散ゾル(固形分10重量%)80gを水720gに分散し、充分撹拌した後、陰イオン交換樹脂(三菱化学(株)製:SA20A)5gを混合し、ついで、温度を50℃に調整した後、Fe23としての濃度0.1重量%の硝酸第2鉄水溶液8gを添加し、2時間撹拌した後、95℃で1時間熟成し、ついで、イオン交換樹脂を分離し、限外濾過膜法により、固形分濃度10重量%の酸化鉄を担持した消臭性ルチル型酸化チタン微粒子(5)分散液を得た。 Next, 80 g of rutile-type titanium oxide fine particles (5) dispersion sol (solid content 10 wt%) was dispersed in 720 g of water and stirred sufficiently, and then mixed with 5 g of an anion exchange resin (Mitsubishi Chemical Corporation: SA20A). Then, after adjusting the temperature to 50 ° C., 8 g of ferric nitrate aqueous solution having a concentration of 0.1% by weight as Fe 2 O 3 was added, stirred for 2 hours, and then aged at 95 ° C. for 1 hour. Then, the ion exchange resin was separated, and a deodorant rutile type titanium oxide fine particle (5) dispersion carrying iron oxide having a solid concentration of 10% by weight was obtained by an ultrafiltration membrane method.

消臭性塗膜形成用塗布液(5)の調製
実施例1において、消臭性ルチル型酸化チタン微粒子(5)分散液を用いた以外は同様にして固形分濃度1.5重量%の消臭性塗膜形成用塗布液(5)を調製した。
Preparation of coating liquid (5) for forming deodorant coating film In Example 1, a liquid with a solid content concentration of 1.5% by weight was obtained in the same manner except that the deodorant rutile type titanium oxide fine particle (5) dispersion was used. A coating liquid (5) for forming an odorous coating film was prepared.

消臭性塗膜付基材(5)の作成
実施例1において、消臭性塗膜形成用塗布液(5)を用いた以外は同様にして消臭性塗膜付基材(5)を作成した。
得られた消臭性塗膜付基材(5)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (5) In Example 1, the base material with deodorant coating film (5) was prepared in the same manner except that the coating liquid for deodorant coating film formation (5) was used. Created.
The obtained substrate (5) with a deodorant coating film was evaluated for film thickness, adhesion, surface flatness, antibacterial performance, and deodorization performance, and the results are shown in the table.

[実施例6]
消臭性塗膜形成用塗布液(6)の調製
実施例1において、チタンラクテートアンモニウム塩溶液(マツモトファインケミカル(株)製:オルガチックスTC-300、チタンラクテートアンモニウム塩42重量%、水20重量%、イソプロピルアルコール38重量%、TiO2としての濃度10.0重量%)2.5重量部を添加して、固形分濃度1.25重量%の消臭性塗膜形成用塗布液(6)を調製した。
[Example 6]
Preparation of coating solution (6) for forming deodorant coating film In Example 1, titanium lactate ammonium salt solution (manufactured by Matsumoto Fine Chemical Co., Ltd .: ORGATICS TC-300, titanium lactate ammonium salt 42 wt%, water 20 wt% 2.5 parts by weight of isopropyl alcohol 38% by weight, TiO 2 concentration 10.0% by weight) to obtain a coating solution (6) for forming a deodorant coating film having a solid content concentration of 1.25% by weight. Prepared.

消臭性塗膜付基材(6)の作成
実施例1において、消臭性塗膜形成用塗布液(6)を用いた以外は同様にして消臭性塗膜付基材(6)を作成した。
得られた消臭性塗膜付基材(6)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (6) In Example 1, the base material with deodorant coating film (6) was prepared in the same manner except that the coating liquid for forming a deodorant coating film (6) was used. Created.
About the obtained base material (6) with a deodorant coating film, a film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorizing performance were evaluated, and a result is shown to a table | surface.

[実施例7]
消臭性塗膜形成用塗布液(7)の調製
実施例1において、チタンラクテートアンモニウム塩溶液(マツモトファインケミカル(株)製:オルガチックスTC-300、チタンラクテートアンモニウム塩42重量%、水20重量%、イソプロピルアルコール38重量%、TiO2としての濃度10.0重量%)1.25重量部を添加して、固形分濃度1.125重量%の消臭性塗膜形成用塗布液(7)を調製した。
[Example 7]
Preparation of coating solution (7) for forming deodorant coating film In Example 1, titanium lactate ammonium salt solution (manufactured by Matsumoto Fine Chemical Co., Ltd .: ORGATICS TC-300, titanium lactate ammonium salt 42% by weight, water 20% by weight , Isopropyl alcohol 38% by weight, TiO 2 concentration 10.0% by weight) 1.25 parts by weight, and a solid content concentration 1.125% by weight of deodorant coating film forming coating solution (7) Prepared.

消臭性塗膜付基材(7)の作成
実施例1において、消臭性塗膜形成用塗布液(7)を用いた以外は同様にして消臭性塗膜付基材(7)を作成した。
得られた消臭性塗膜付基材(7)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (7) In Example 1, the base material with deodorant coating film (7) was prepared in the same manner except that the coating liquid for deodorant coating film formation (7) was used. Created.
About the obtained base material (7) with a deodorant coating film, a film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorizing performance were evaluated, and a result is shown to a table | surface.

[実施例8]
消臭性塗膜形成用塗布液(8)の調製
イオン交換水90重量部に、固形分濃度10重量%の酸化鉄を担持した消臭性ルチル型酸化チタン微粒子(1)分散液10重量部を配合し、固形分濃度1.0重量%の消臭性塗膜形成用塗布液(8)を調製した。
[Example 8]
Preparation of coating solution (8) for forming deodorant coating film 90 parts by weight of ion-exchange water and 10 parts by weight of deodorant rutile type titanium oxide fine particles (1) dispersion supporting iron oxide having a solid content of 10% by weight And a coating solution (8) for forming a deodorant coating film having a solid content concentration of 1.0% by weight was prepared.

消臭性塗膜付基材(8)の作成
実施例1において、消臭性塗膜形成用塗布液(8)を用いた以外は同様にして消臭性塗膜付基材(8)を作成した。
得られた消臭性塗膜付基材(8)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of substrate with deodorant coating film (8) In Example 1, the substrate with deodorant coating film (8) was prepared in the same manner except that the coating liquid for deodorant coating film formation (8) was used. Created.
About the obtained base material (8) with a deodorant coating film, a film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorizing performance were evaluated, and a result is shown in a table | surface.

[比較例1]
消臭性アナターゼ型酸化チタン微粒子(R1)の調製
酸化チタン系微粒子分散液(日揮触媒化成(株)製:ATOMYBALL-(TZ-R)、平均粒子径10nm、固形分濃度10.0重量%、固形分中の抗菌消臭成分(ZnO)含有量8.0重量%、アナターゼ型)80gを水720gに分散し、充分撹拌した、
ついで、陰イオン交換樹脂(三菱化学(株)製:SA20A)5gを混合し、ついで、温度を50℃に調整した後、Fe23としての濃度0.1重量%の硝酸第2鉄水溶液8gを添加し、2時間撹拌した後、95℃で1時間熟成し、ついで、イオン交換樹脂を分離し、限外濾過膜法により、固形分濃度10重量%の酸化鉄を担持した消臭性アナターゼ型酸化チタン微粒子(R1)分散液を得た。
[Comparative Example 1]
Preparation of deodorant anatase type titanium oxide fine particles (R1) Titanium oxide fine particle dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd .: ATOMYBALL- (TZ-R), average particle size 10 nm, solid content concentration 10.0% by weight, 80 g of antibacterial deodorant component (ZnO) content in solid content, 80% by weight, anatase type) was dispersed in 720 g of water and sufficiently stirred.
Next, 5 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SA20A) was mixed, and the temperature was adjusted to 50 ° C., and then a ferric nitrate aqueous solution having a concentration of 0.1 wt% as Fe 2 O 3. 8 g was added and stirred for 2 hours, then aged at 95 ° C. for 1 hour, then the ion exchange resin was separated, and deodorant carrying iron oxide with a solid content concentration of 10% by weight by the ultrafiltration membrane method An anatase type titanium oxide fine particle (R1) dispersion was obtained.

消臭性塗膜形成用塗布液(R1)の調製
イオン交換水85重量部に、固形分濃度10重量%の酸化鉄を担持した消臭性アナターゼ型酸化チタン微粒子(R1)分散液10重量部を配合し、充分に分散させた後、これに水溶性金属キレート化合物としてチタンラクテートアンモニウム塩溶液(マツモトファインケミカル(株)製:オルガチックスTC-300、チタンラクテートアンモニウム塩42重量%、水20重量%、イソプロピルアルコール38重量%、TiO2としての濃度10.0重量%)5重量部を添加して、固形分濃度1.5重量%の消臭性塗膜形成用塗布液(R1)を調製した。
Preparation of coating liquid (R1) for forming a deodorant coating film 10 parts by weight of a deodorant anatase type titanium oxide fine particle (R1) dispersion in which iron oxide having a solid content of 10% by weight is supported in 85 parts by weight of ion exchange water. Was mixed and sufficiently dispersed, and then a titanium lactate ammonium salt solution (manufactured by Matsumoto Fine Chemical Co., Ltd .: Olga Tix TC-300, titanium lactate ammonium salt 42% by weight, water 20% by weight as a water-soluble metal chelate compound. 5 parts by weight of isopropyl alcohol (38 wt%, TiO 2 concentration: 10.0 wt%) was added to prepare a deodorant coating film forming liquid (R1) having a solid content concentration of 1.5 wt%. .

消臭性塗膜付基材(R1)の作成
実施例1において、消臭性塗膜形成用塗布液(R1)を用いた以外は同様にして消臭性塗膜付基材(R1)を作成した。
得られた消臭性塗膜付基材(R1)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (R1) In Example 1, the base material with deodorant coating film (R1) was prepared in the same manner except that the coating liquid (R1) for forming a deodorant coating film was used. Created.
About the obtained base material (R1) with a deodorant coating film, a film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorizing performance were evaluated, and a result is shown in a table | surface.

[比較例2]
消臭性塗膜形成用塗布液(R2)の調製
イオン交換水90重量部に、比較例1と同様にして調製した固形分濃度10重量%の酸化鉄を担持した消臭性アナターゼ型酸化チタン微粒子(R1)分散液10重量部を配合し、固形分濃度1.0重量%の消臭性塗膜形成用塗布液(R2)を調製した。
[Comparative Example 2]
Preparation of coating solution (R2) for forming a deodorant coating film Deodorizing anatase-type titanium oxide carrying 90% by weight of ion-exchanged water and iron oxide having a solid content concentration of 10% by weight prepared in the same manner as in Comparative Example 1. A coating solution (R2) for forming a deodorant coating film having a solid content concentration of 1.0% by weight was prepared by blending 10 parts by weight of the fine particle (R1) dispersion.

消臭性塗膜付基材(R2)の作成
実施例1において、消臭性塗膜形成用塗布液(R2)を用いた以外は同様にして消臭性塗膜付基材(R2)を作成した。
得られた消臭性塗膜付基材(R2)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (R2) In Example 1, the base material with deodorant coating film (R2) was prepared in the same manner except that the coating liquid for forming a deodorant coating film (R2) was used. Created.
About the obtained base material (R2) with a deodorant coating film, a film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorization performance were evaluated, and a result is shown in a table | surface.

[比較例3]
消臭性ルチル型酸化チタン微粒子(R3)の調製
実施例1において、硝酸第2鉄水溶液を添加することなく固形分濃度10重量%のルチル型酸化チタン微粒子(R3)分散液を得た。
[Comparative Example 3]
Preparation of deodorant rutile type titanium oxide fine particles (R3) In Example 1, a rutile type titanium oxide fine particle (R3) dispersion having a solid content concentration of 10% by weight was added without adding a ferric nitrate aqueous solution. Obtained.

消臭性塗膜形成用塗布液(R3)の調製
イオン交換水85重量部に、固形分濃度10重量%のルチル型酸化チタン微粒子(R3)分散液10重量部を配合し、充分に分散させた後、これに水溶性金属キレート化合物としてチタンラクテートアンモニウム塩溶液(マツモトファインケミカル(株)製:オルガチックスTC-300、チタンラクテートアンモニウム塩42重量%、水20重量%、イソプロピルアルコール38重量%、TiO2としての濃度10.0重量%)5重量部を添加して、固形分濃度1.5重量%の消臭性塗膜形成用塗布液(R3)を調製した。
Preparation of coating liquid (R3) for forming deodorant coating film In 85 parts by weight of ion-exchanged water, 10 parts by weight of a rutile-type titanium oxide fine particle (R3) dispersion having a solid content concentration of 10% by weight is blended and sufficiently dispersed. After that, titanium lactate ammonium salt solution (manufactured by Matsumoto Fine Chemical Co., Ltd .: Orgatics TC-300, titanium lactate ammonium salt 42% by weight, water 20% by weight, isopropyl alcohol 38% by weight, TiO 2 as a water-soluble metal chelate compound. 2 parts by weight) was added to prepare a deodorant coating film forming solution (R3) having a solid content of 1.5% by weight.

消臭性塗膜付基材(R3)の作成
実施例1において、消臭性塗膜形成用塗布液(R3)を用いた以外は同様にして消臭性塗膜付基材(R3)を作成した。
得られた消臭性塗膜付基材(R3)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (R3) In Example 1, the base material with deodorant coating film (R3) was prepared in the same manner except that the coating liquid for forming a deodorant coating film (R3) was used. Created.
About the obtained base material (R3) with a deodorant coating film, a film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorizing performance were evaluated, and a result is shown to a table | surface.

[比較例4]
抗菌性ルチル型酸化チタン微粒子(R4)の調製
濃度35重量%の過酸化水素水1425gを純水7122gで希釈した過酸化水素水溶液に濃度63重量%の硝酸6.3gを加え、これにテトライソプロピルチタネート143gを添加し黄褐色のペルオキソチタン酸水溶液を得た。
ペルオキソチタン酸水溶液(固形分1%)800gを50℃に加温し、15%アンモニアでpHを9.0に調整した。一方、硝酸亜鉛2.92gに水79.2gを加え攪拌溶解する。硝酸亜鉛溶液を1時間かけて、ペルオキソチタン酸水溶液(固形分1%)に添加し、同時に陰イオン交換樹脂(三菱化学(株)製ダイヤイオンSA20A)をpHが9.0を切らないように添加する。添加終了後、イオン交換樹脂を分離した。
[Comparative Example 4]
Preparation of antibacterial rutile-type titanium oxide fine particles (R4) 6.3 g of 63% by weight nitric acid was added to hydrogen peroxide aqueous solution obtained by diluting 1425 g of 35% by weight hydrogen peroxide water with 7122 g of pure water, and tetraisopropyl was added thereto. 143 g of titanate was added to obtain a yellowish brown peroxotitanic acid aqueous solution.
800 g of a peroxotitanic acid aqueous solution (solid content: 1%) was heated to 50 ° C., and the pH was adjusted to 9.0 with 15% ammonia. Meanwhile, 79.2 g of water is added to 2.92 g of zinc nitrate and dissolved by stirring. Zinc nitrate solution is added to peroxotitanic acid aqueous solution (solid content 1%) over 1 hour, and at the same time, anion exchange resin (Diaion SA20A manufactured by Mitsubishi Chemical Corporation) is kept at a pH of 9.0. Added. After completion of the addition, the ion exchange resin was separated.

ついで、ペルオキソチタン酸水溶液を90℃で2時間、95℃で12時間熟成した。溶液は、最初黄褐色であったが、熟成後には乳白色の透明性液体(コロイド液)となった。
ついで、透明性液体(コロイド液)に濃度63重量%の硝酸3.2g添加し、180℃で16時間水熱処理(加熱)してルチル型酸化チタン微粒子(R4)分散液を調製した。
得られた亜鉛担持ルチル型酸化チタン微粒子(R4)分散液を限外濾過膜法により、洗浄し、ついで濃縮して、固形分濃度10重量%の抗菌性ルチル型酸化チタン微粒子(R4)分散液を得た。
Then, the peroxotitanic acid aqueous solution was aged at 90 ° C. for 2 hours and at 95 ° C. for 12 hours. The solution was initially yellowish brown, but became a milky white transparent liquid (colloidal liquid) after aging.
Subsequently, 3.2 g of nitric acid having a concentration of 63 wt% was added to the transparent liquid (colloid liquid), and hydrothermal treatment (heating) was performed at 180 ° C. for 16 hours to prepare a rutile-type titanium oxide fine particle (R4) dispersion.
The obtained zinc-supported rutile-type titanium oxide fine particle (R4) dispersion is washed by an ultrafiltration membrane method and then concentrated to obtain an antibacterial rutile-type titanium oxide fine particle (R4) dispersion having a solid content of 10% by weight. Got.

消臭性塗膜形成用塗布液(R4)の調製
イオン交換水85重量部に、固形分濃度10重量%抗菌性のルチル型酸化チタン微粒子(R4)分散液10重量部を配合し、充分に分散させた後、これに水溶性金属キレート化合物としてチタンラクテートアンモニウム塩溶液(マツモトファインケミカル(株)製:オルガチックスTC-300、チタンラクテートアンモニウム塩42重量%、水20重量%、イソプロピルアルコール38重量%、TiO2としての濃度10.0重量%)5重量部を添加して、固形分濃度1.5重量%の消臭性塗膜形成用塗布液(R4)を調製した。
Preparation of coating liquid (R4) for forming deodorant coating film Into 85 parts by weight of ion-exchanged water, 10 parts by weight of antibacterial rutile titanium oxide fine particle (R4) dispersion with a solid content concentration of 10% by weight is mixed sufficiently. After being dispersed, a titanium lactate ammonium salt solution (manufactured by Matsumoto Fine Chemical Co., Ltd .: Olga Tix TC-300, titanium lactate ammonium salt 42% by weight, water 20% by weight, isopropyl alcohol 38% by weight as a water-soluble metal chelate compound. 5 parts by weight of TiO 2 as a concentration of 10.0% by weight) was added to prepare a coating solution (R4) for forming a deodorant coating film having a solid content of 1.5% by weight.

消臭性塗膜付基材(R4)の作成
実施例1において、消臭性塗膜形成用塗布液(R4)を用いた以外は同様にして消臭性塗膜付基材(R4)を作成した。
得られた消臭性塗膜付基材(R4)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (R4) In Example 1, the base material with deodorant coating film (R4) was prepared in the same manner except that the coating liquid for forming a deodorant coating film (R4) was used. Created.
About the obtained base material (R4) with a deodorant coating film, a film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorizing performance were evaluated, and a result is shown to a table | surface.

[比較例5]
消臭性ルチル型酸化チタン微粒子(R5)の調製
実施例1において、Fe23としての濃度1重量%の硝酸第2鉄水溶液50gを添加した以外は同様にして固形分濃度10重量%の消臭性ルチル型酸化チタン微粒子(R5)分散液を得た。酸化鉄の担持量を表に示した。
[Comparative Example 5]
Preparation of Deodorant Rutile Type Titanium Oxide Fine Particles (R5) In Example 1, a solid content concentration of 10% by weight was the same except that 50 g of ferric nitrate aqueous solution having a concentration of 1% by weight as Fe 2 O 3 was added. A deodorant rutile-type titanium oxide fine particle (R5) dispersion was obtained. The amount of iron oxide supported is shown in the table.

消臭性塗膜形成用塗布液(R5)の調製
イオン交換水85重量部に、固形分濃度10重量%抗菌性のルチル型酸化チタン微粒子(R5)分散液10重量部を配合し、充分に分散させた後、これに水溶性金属キレート化合物としてチタンラクテートアンモニウム塩溶液(マツモトファインケミカル(株)製:オルガチックスTC-300、チタンラクテートアンモニウム塩42重量%、水20重量%、イソプロピルアルコール38重量%、TiO2としての濃度10.0重量%)5重量部を添加して、固形分濃度1.5重量%の消臭性塗膜形成用塗布液(R5)を調製した。
Preparation of coating liquid (R5) for forming deodorant coating film In 85 parts by weight of ion-exchanged water, 10 parts by weight of an antibacterial rutile titanium oxide fine particle (R5) dispersion having a solid content concentration of 10% by weight is mixed sufficiently. After being dispersed, a titanium lactate ammonium salt solution (manufactured by Matsumoto Fine Chemical Co., Ltd .: Olga Tix TC-300, titanium lactate ammonium salt 42% by weight, water 20% by weight, isopropyl alcohol 38% by weight as a water-soluble metal chelate compound. 5 parts by weight of TiO 2 as a concentration of 10.0% by weight) was added to prepare a coating solution (R5) for forming a deodorant coating film having a solid content of 1.5% by weight.

消臭性塗膜付基材(R5)の作成
実施例1において、消臭性塗膜形成用塗布液(R5)を用いた以外は同様にして消臭性塗膜付基材(R5)を作成した。
得られた消臭性塗膜付基材(R5)について、膜厚、密着性、表面平坦性および抗菌性能、消臭性能を評価し、結果を表に示す。
Preparation of base material with deodorant coating film (R5) In Example 1, the base material with deodorant coating film (R5) was prepared in the same manner except that the coating liquid for forming a deodorant coating film (R5) was used. Created.
About the obtained base material (R5) with a deodorant coating film, a film thickness, adhesiveness, surface flatness, antibacterial performance, and deodorizing performance were evaluated, and a result is shown to a table | surface.

Figure 2012096133
Figure 2012096133

Figure 2012096133
Figure 2012096133

Claims (10)

平均粒子幅(W)が2〜50nmの範囲にあり、平均長さ(L)が2〜500nmの範囲にあり、アスペクト比(L)/(W)が1〜10の範囲にあり、消臭成分として鉄をFe23換算で0.01〜2重量%の範囲で含有することを特徴とする消臭性ルチル型酸化チタン微粒子。 The average particle width (W) is in the range of 2 to 50 nm, the average length (L) is in the range of 2 to 500 nm, the aspect ratio (L) / (W) is in the range of 1 to 10, Deodorant rutile type titanium oxide fine particles containing iron as a component in a range of 0.01 to 2 % by weight in terms of Fe 2 O 3 . さらに、抗菌・消臭性金属成分を酸化物換算で0.1〜20重量%の範囲で含むことを特徴とする請求項1に記載の消臭性ルチル型酸化チタン微粒子。   The deodorant rutile type titanium oxide fine particle according to claim 1, further comprising an antibacterial / deodorant metal component in an amount of 0.1 to 20% by weight in terms of oxide. 前記抗菌・消臭性金属成分が銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上の金属成分であることを特徴とする請求項1または2に記載の消臭性ルチル型酸化チタン微粒子。   The antibacterial / deodorant metal component is one or more metal components selected from silver, copper, zinc, tin, cobalt, nickel, and manganese. Odorable rutile type titanium oxide fine particles. 請求項1〜3のいずれかに記載の消臭性ルチル型酸化チタン微粒子が分散媒中に分散してなることを特徴とする消臭性塗膜形成用塗布液。   A coating solution for forming a deodorant coating film, wherein the deodorant rutile type titanium oxide fine particles according to any one of claims 1 to 3 are dispersed in a dispersion medium. 前記分散媒が水溶性金属キレート化合物を含有する水系分散媒であることを特徴とする請求項4に記載の消臭性塗膜形成用塗布液。   The coating liquid for forming a deodorant coating film according to claim 4, wherein the dispersion medium is an aqueous dispersion medium containing a water-soluble metal chelate compound. 前記水溶性金属キレート化合物がチタンキレート化合物であることを特徴とする請求項4または5に記載の消臭性塗膜形成用塗布液。   The coating solution for forming a deodorant coating film according to claim 4 or 5, wherein the water-soluble metal chelate compound is a titanium chelate compound. 前記チタンキレート化合物がチタンラクテートアンモニウム塩であることを特徴とする請求項4〜6のいずれかに記載の抗菌・消臭性塗膜形成用塗布液。   The coating solution for forming an antibacterial / deodorant coating film according to any one of claims 4 to 6, wherein the titanium chelate compound is a titanium lactate ammonium salt. 全固形分濃度が0.01〜20重量%の範囲にあり、前記消臭性ルチル型酸化チタン微粒子の固形分としての濃度が0.005〜19.9重量%の範囲にあり、前記水溶性金属キレート化合物のTiO2としての濃度が0.0001〜10.0重量%の範囲にあり、消臭性ルチル型酸化チタン微粒子の重量(Wa)と水溶性金属キレート化合物のTiO2としての重量(Wb)の重量比(Wb)/(Wa)が0.005〜1.0の範囲にあることを特徴とする請求項5〜7のいずれかに記載の消臭性塗膜形成用塗布液。 The total solid content concentration is in the range of 0.01 to 20% by weight, and the concentration of the deodorant rutile-type titanium oxide fine particles as the solid content is in the range of 0.005 to 19.9% by weight. The concentration of the metal chelate compound as TiO 2 is in the range of 0.0001 to 10.0% by weight, and the weight (W a ) of the deodorant rutile titanium oxide fine particles and the weight of the water-soluble metal chelate compound as TiO 2. (W b) weight ratio of (W b) / (W a ) deodorant coating film formed of any one of claims 5-7, characterized in that in the range of 0.005 to 1.0 Coating liquid. 基材と、基材上に形成された消臭性塗膜とからなり、該消臭性塗膜が請求項4〜8のいずれかに記載の消臭性塗膜形成用塗布液を用いて形成された消臭性塗膜であることを特徴とする消臭性塗膜付基材。   It consists of a base material and the deodorizing coating film formed on the base material, and this deodorizing coating film uses the coating liquid for deodorizing coating film formation in any one of Claims 4-8. A substrate with a deodorant coating film, which is a formed deodorant coating film. 前記消臭性塗膜中の消臭性ルチル型酸化チタン微粒子の固形分としての含有量が50〜100重量%の範囲にあり、水溶性金属キレート化合物のTiO2としての含有量が0〜50重量%の範囲にあることを特徴とする請求項9に記載の消臭性塗膜付基材。 The content of the deodorant rutile-type titanium oxide fine particles in the deodorant coating film as a solid content is in the range of 50 to 100% by weight, and the content of the water-soluble metal chelate compound as TiO 2 is 0 to 50. It exists in the range of weight%, The base material with a deodorizing coating film of Claim 9 characterized by the above-mentioned.
JP2010243613A 2010-10-29 2010-10-29 Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film Pending JP2012096133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243613A JP2012096133A (en) 2010-10-29 2010-10-29 Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243613A JP2012096133A (en) 2010-10-29 2010-10-29 Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film

Publications (1)

Publication Number Publication Date
JP2012096133A true JP2012096133A (en) 2012-05-24

Family

ID=46388697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243613A Pending JP2012096133A (en) 2010-10-29 2010-10-29 Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film

Country Status (1)

Country Link
JP (1) JP2012096133A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254922A (en) * 2011-05-18 2012-12-27 Daicel Corp Method for producing transition metal compound supporting titanium oxide
WO2014046020A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide
JP2014105150A (en) * 2012-11-29 2014-06-09 Taki Chem Co Ltd Method for manufacturing transition metal-supported alkaline rutile-type titanium oxide sol
KR20150054781A (en) * 2012-09-19 2015-05-20 주식회사 다이셀 Transition metal compound-loaded titanium oxide suspension
JP2016108267A (en) * 2014-12-05 2016-06-20 株式会社ダイセル Antimicrobial agent
JP2018150278A (en) * 2017-03-14 2018-09-27 日本曹達株式会社 Alga-proof test method
JP7536866B2 (en) 2019-11-04 2024-08-20 ライオンデル ケミカル テクノロジー、エル.ピー. Titanation catalyst, method for preparing the same, and epoxidation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254922A (en) * 2011-05-18 2012-12-27 Daicel Corp Method for producing transition metal compound supporting titanium oxide
WO2014046020A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide
KR20150054781A (en) * 2012-09-19 2015-05-20 주식회사 다이셀 Transition metal compound-loaded titanium oxide suspension
KR20150054782A (en) * 2012-09-19 2015-05-20 주식회사 다이셀 Transition metal compound-loaded titanium oxide
JPWO2014046020A1 (en) * 2012-09-19 2016-08-18 株式会社ダイセル Transition metal compound-supported titanium oxide
KR102185603B1 (en) 2012-09-19 2020-12-02 주식회사 다이셀 Transition metal compound-loaded titanium oxide suspension
KR102207479B1 (en) 2012-09-19 2021-01-26 주식회사 다이셀 Transition metal compound-loaded titanium oxide
JP2014105150A (en) * 2012-11-29 2014-06-09 Taki Chem Co Ltd Method for manufacturing transition metal-supported alkaline rutile-type titanium oxide sol
JP2016108267A (en) * 2014-12-05 2016-06-20 株式会社ダイセル Antimicrobial agent
JP2018150278A (en) * 2017-03-14 2018-09-27 日本曹達株式会社 Alga-proof test method
JP7536866B2 (en) 2019-11-04 2024-08-20 ライオンデル ケミカル テクノロジー、エル.ピー. Titanation catalyst, method for preparing the same, and epoxidation method

Similar Documents

Publication Publication Date Title
KR101233570B1 (en) Antibacterial deodorant and method for producing the same
JP2012096133A (en) Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film
JP5904524B2 (en) Virus inactivating agent
TWI533806B (en) Virus deactivator
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
EP2908646B1 (en) A surface coating
JP5507787B2 (en) Aqueous composition containing metal composition, and deodorant, antibacterial agent and antifungal agent comprising the aqueous composition
US20050126428A1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
KR101265781B1 (en) Titanium dioxide photocatalyst having crystalline titanium dioxide core-amorphous titanium dioxide shell structure, preparation method thereof and hydrophilic coating material comprising said titanium dioxide photocatalyst
WO2010028016A2 (en) Titania dispersion and method for making
KR102162532B1 (en) Photocatalysis composite and method for preparing the same
JP6283922B1 (en) Photocatalyst material and photocatalyst coating composition
JP5127134B2 (en) Deodorant comprising tubular titanium oxide particles
CN110628246A (en) Composite photocatalyst wall coating
WO2008056744A1 (en) Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained by the same
KR101028797B1 (en) The functional coating agent and manufacturing mtehod the same
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
JP5854590B2 (en) Antibacterial / deodorant treatment agent and antibacterial / deodorant treatment article
JP5574813B2 (en) Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating
JP2011126941A (en) Coating liquid forming antimicrobial and deodorizing coating film and substrate with antimicrobial and deodorizing coating film
JP2013123591A (en) Titanium oxide-based antibacterial deodorant, dispersion liquid of the titanium oxide-based antibacterial deodorant, and fiber or cloth with titanium oxide-based antibacterial deodorant
JP4629700B2 (en) Set of photocatalyst and coating composition for forming the same
JP2008044850A (en) Antibacterial and deodorant spraying liquid comprising photocatalyst coated with silicon oxide film
KR100453446B1 (en) Process of preparing a dispersed solution of photocatalyst
JP4034885B2 (en) Photocatalytic coating composition