KR102185603B1 - Transition metal compound-loaded titanium oxide suspension - Google Patents

Transition metal compound-loaded titanium oxide suspension Download PDF

Info

Publication number
KR102185603B1
KR102185603B1 KR1020157005417A KR20157005417A KR102185603B1 KR 102185603 B1 KR102185603 B1 KR 102185603B1 KR 1020157005417 A KR1020157005417 A KR 1020157005417A KR 20157005417 A KR20157005417 A KR 20157005417A KR 102185603 B1 KR102185603 B1 KR 102185603B1
Authority
KR
South Korea
Prior art keywords
titanium oxide
transition metal
metal compound
supported titanium
supported
Prior art date
Application number
KR1020157005417A
Other languages
Korean (ko)
Other versions
KR20150054781A (en
Inventor
히토시 와타나베
Original Assignee
주식회사 다이셀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 다이셀 filed Critical 주식회사 다이셀
Publication of KR20150054781A publication Critical patent/KR20150054781A/en
Application granted granted Critical
Publication of KR102185603B1 publication Critical patent/KR102185603B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • B01J35/004
    • B01J35/006
    • B01J35/1014
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

본 발명의 목적은, 전이 금속 화합물 담지 산화티타늄 결정을 포함하고, 이온성 불순물의 함유량이 매우 낮고, 가시광에 대한 응답성이 우수하여, 우수한 광촉매능을 발휘하는 전이 금속 화합물 담지 산화티타늄 현탁액을 제공하는 것이다.
본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은, 결정성 산화티타늄에 전이 금속 화합물이 담지되어 이루어지는, 평균 종횡비(장경/단경)가 1.5 이상인 전이 금속 화합물 담지 산화티타늄의 현탁액이며, 상기 전이 금속 화합물 담지 산화티타늄을 4중량% 이상 함유할 경우, 그 현탁액의 상청액의 전기 전도도는 300μS/cm 이하인 것을 특징으로 한다. 상기 결정성 산화티타늄으로서는, 결정면 (110) 및 결정면 (111)을 갖는 루틸형 산화티타늄 및/또는 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 루틸형 산화티타늄이 바람직하다.
An object of the present invention is to provide a transition metal compound-supported titanium oxide suspension that includes a transition metal compound-supported titanium oxide crystal, has a very low content of ionic impurities, has excellent responsiveness to visible light, and exhibits excellent photocatalytic performance. Is to do.
The transition metal compound-supported titanium oxide suspension of the present invention is a suspension of transition metal compound-supported titanium oxide having an average aspect ratio (long/short axis) of 1.5 or more, obtained by supporting a transition metal compound on crystalline titanium oxide, wherein the transition metal compound is supported. When titanium oxide is contained in an amount of 4% by weight or more, the electrical conductivity of the supernatant of the suspension is not more than 300 μS/cm. As the crystalline titanium oxide, a rutile type titanium oxide having a crystal face 110 and a crystal face 111 and/or a rutile type titanium oxide having a crystal face 110, a crystal face 111 and a crystal face (001) is preferable.

Description

전이 금속 화합물 담지 산화티타늄 현탁액{TRANSITION METAL COMPOUND-LOADED TITANIUM OXIDE SUSPENSION}Titanium oxide suspension supported by a transition metal compound {TRANSITION METAL COMPOUND-LOADED TITANIUM OXIDE SUSPENSION}

본 발명은, 전이 금속 화합물 담지 산화티타늄을 포함하는 현탁액에 관한 것이다. 상기 전이 금속 화합물 담지 산화티타늄 현탁액은 가시광에 대한 응답성이 우수하여, 우수한 광촉매능을 발휘할 수 있다.The present invention relates to a suspension containing a transition metal compound-supported titanium oxide. The transition metal compound-supported titanium oxide suspension has excellent response to visible light and can exhibit excellent photocatalytic performance.

전이 금속 화합물 담지 산화티타늄은 광촉매능을 가져, 가시광 등의 광을 조사함으로써 강한 산화력을 발휘하여, 유해 화학 물질을 물이나 이산화탄소로까지 분해하는 것이 가능하고, 전이 금속 화합물 담지 산화티타늄 현탁액을 도포 또는 혼합함으로써, 피도포체 또는 피혼합물에 항균, 살진균, 탈취, 대기 정화, 수질 정화 및 방오 효과 등을 부여할 수 있다. 그리고, 전이 금속 화합물 담지 산화티타늄 현탁액에 할로겐 이온 등의 이온성 불순물이 포함되는 경우에는 자외선 및 가시광에 대한 응답성이 저하되는 것이 알려져 있다.Transition metal compound-supported titanium oxide has a photocatalytic ability, and by irradiating light such as visible light, it exhibits strong oxidizing power, and it is possible to decompose harmful chemical substances into water or carbon dioxide, and apply a transition metal compound-supported titanium oxide suspension or By mixing, antibacterial, fungicidal, deodorizing, air purification, water purification, antifouling effects, and the like can be imparted to the object to be coated or the mixture to be coated. Further, it is known that responsiveness to ultraviolet rays and visible light decreases when ionic impurities such as halogen ions are contained in the transition metal compound-supported titanium oxide suspension.

이온성 불순물의 제거 방법으로서는, 산화티타늄 현탁액을 전량 여과 방식을 사용한 가압 또는 감압 여과나, 원심 분리 등의 처리에 첨가함으로써 고액 분리하여 이온성 불순물을 제거하는 방법이 알려져 있다(특허문헌 1, 2 등 참조). 그러나, 상기 방법에서는, 이온성 불순물의 함유량을 충분히 저감시키는 것이 곤란하였다. 게다가, 전이 금속 화합물 담지 산화티타늄을 상기 원심 분리 등의 처리에 첨가함으로써 고액 분리하면, 전이 금속 화합물 담지 산화티타늄이 압밀화되어 고활성면의 노출량이 저하되므로, 충분한 광촉매능을 얻을 수 없는 것이 문제였다. 또한, 일단 압밀화된 전이 금속 화합물 담지 산화티타늄은, 그 후, 분쇄 처리 등을 실시하여 재분산되어도 역시 만족할 수 있는 광촉매능은 얻을 수 없었다.As a method for removing ionic impurities, a method of removing ionic impurities by solid-liquid separation by adding a titanium oxide suspension to a treatment such as pressurized or reduced pressure filtration or centrifugation using a total filtration method is known (Patent Documents 1 and 2). Etc.). However, in the above method, it has been difficult to sufficiently reduce the content of ionic impurities. In addition, when solid-liquid separation by adding the transition metal compound-supported titanium oxide to the above treatment such as centrifugation, the transition metal compound-supported titanium oxide is condensed and the exposure amount of the highly active surface is reduced, so that sufficient photocatalytic performance cannot be obtained. Was. Further, even if the titanium oxide carrying the transition metal compound once condensed was then subjected to a pulverization treatment or the like and redispersed, a satisfactory photocatalytic activity could not be obtained.

일본 특허 공개 평10-158015호 공보Japanese Patent Application Publication No. Hei 10-158015 일본 특허 공개 소62-235215호 공보Japanese Patent Application Publication No. 62-235215

따라서, 본 발명의 목적은, 전이 금속 화합물 담지 산화티타늄 결정을 포함하고, 이온성 불순물의 함유량이 매우 낮고, 가시광에 대한 응답성이 우수하여, 우수한 광촉매능을 발휘하는 전이 금속 화합물 담지 산화티타늄 현탁액을 제공하는 데 있다.Accordingly, an object of the present invention is a transition metal compound-supported titanium oxide suspension that includes a transition metal compound-supported titanium oxide crystal, has a very low content of ionic impurities, has excellent responsiveness to visible light, and exhibits excellent photocatalytic performance. To provide.

본 발명의 다른 목적은, 상기 전이 금속 화합물 담지 산화티타늄 현탁액을 건조하여 얻어지는 전이 금속 화합물 담지 산화티타늄을 제공하는 데 있다.Another object of the present invention is to provide a transition metal compound-supported titanium oxide obtained by drying the transition metal compound-supported titanium oxide suspension.

본 발명자는 상기 과제를 해결하기 위하여 예의 검토한 결과, 평균 종횡비가 1.5 이상(이후, 「로드상」이라고 칭하는 경우가 있음)의 전이 금속 화합물 담지 산화티타늄 결정은 우수한 광촉매능을 갖지만, 원심 분리 등의 고액 분리 처리에 첨가됨으로써 일단 압밀화되면, 그 후, 분쇄에 의해 재분산되어도 로드상의 결정 구조가 절단되고, 하기 1, 2 등의 이유에 의해 가시광 영역에서의 광촉매능이 현저하게 저하되는 점을 찾아냈다.In order to solve the above problems, the present inventors intensively studied and found that the transition metal compound-supported titanium oxide crystal having an average aspect ratio of 1.5 or more (hereinafter, sometimes referred to as ``rod phase'') has excellent photocatalytic activity, but centrifugation, etc. Once consolidated by being added to the solid-liquid separation treatment of, the rod-like crystal structure is cut even if it is re-dispersed by pulverization after that, and the photocatalytic activity in the visible light region is remarkably decreased due to the following reasons 1 and 2. Worked.

1. 전이 금속 화합물 담지 산화티타늄의 평균 종횡비가 작아져서, 구상에 보다 가까운 형상이 되므로, 산화 반응장과 환원 반응장의 분리성이 저하되어 역반응이나 부반응의 진행을 피할 수 없게 된다.1. Since the average aspect ratio of the transition metal compound-supported titanium oxide becomes smaller and becomes a shape closer to the spherical shape, the separability between the oxidation reaction field and the reduction reaction field decreases, and the progress of the reverse reaction or side reaction cannot be avoided.

2. 로드상의 결정 구조가 절단됨으로써 전이 금속 화합물이 담지되어 있지 않은 산화티타늄편이 발생하고, 그 산화티타늄편은 가시광 응답성을 발휘할 수 없게 된다.2. When the rod-shaped crystal structure is cut, titanium oxide fragments not carrying a transition metal compound are generated, and the titanium oxide fragments cannot exhibit visible light responsiveness.

그리고, 이온성 불순물의 제거 방법으로서 원심 분리 등의 고액 분리 처리 대신에 크로스 플로우 여과 방식에 의한 막 여과 처리를 채용하면, 전이 금속 화합물 담지 산화티타늄 결정을 압밀화하지 않고, 로드상의 결정 구조를 유지한 상태에서 이온성 불순물을 효율적으로 제거할 수 있어, 이온성 불순물의 함유량이 매우 낮고, 또한 로드상의 전이 금속 화합물 담지 산화티타늄 결정을 포함하는 현탁액을 얻을 수 있는 점을 찾아냈다. 그리고, 그렇게 하여 얻어진 현탁액은 가시광에 대한 응답성이 우수하여, 우수한 광촉매능을 발휘할 수 있는 점을 찾아냈다. 본 발명은 이들 지견에 기초하여 완성시킨 것이다.And, by adopting a membrane filtration treatment using a cross-flow filtration method instead of a solid-liquid separation treatment such as centrifugal separation as a method for removing ionic impurities, the transition metal compound-carrying titanium oxide crystal is not condensed and the rod-like crystal structure is maintained. It was found that ionic impurities can be efficiently removed in one state, the content of ionic impurities is very low, and a suspension containing a rod-shaped transition metal compound-supported titanium oxide crystal can be obtained. And the suspension thus obtained was excellent in responsiveness to visible light, and it was found that it can exhibit excellent photocatalytic performance. The present invention was completed based on these findings.

즉, 본 발명은, 결정성 산화티타늄에 전이 금속 화합물이 담지되어 이루어지는, 평균 종횡비(장경/단경)가 1.5 이상인 전이 금속 화합물 담지 산화티타늄의 현탁액이며, 상기 전이 금속 화합물 담지 산화티타늄을 4중량% 이상 함유할 경우, 그 현탁액의 상청액의 전기 전도도는 300μS/cm 이하인 것을 특징으로 하는 전이 금속 화합물 담지 산화티타늄 현탁액을 제공한다.That is, the present invention is a suspension of a transition metal compound-supported titanium oxide having an average aspect ratio (long/short axis) of 1.5 or more, obtained by supporting a transition metal compound on crystalline titanium oxide, and contains 4% by weight of the transition metal compound-supported titanium oxide. When contained above, the electrical conductivity of the supernatant of the suspension is 300 μS/cm or less, to provide a transition metal compound-supported titanium oxide suspension.

상기 결정성 산화티타늄으로서는, 결정면 (110) 및 결정면 (111)을 갖는 루틸형 산화티타늄 및/또는 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 루틸형 산화티타늄이 바람직하다.As the crystalline titanium oxide, a rutile type titanium oxide having a crystal face 110 and a crystal face 111 and/or a rutile type titanium oxide having a crystal face 110, a crystal face 111 and a crystal face (001) is preferable.

상기 전이 금속 화합물 담지 산화티타늄은 비표면적이 10m2/g 이상인 것이 바람직하다.The transition metal compound-supported titanium oxide preferably has a specific surface area of 10 m 2 /g or more.

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은, 상청액의 pH가 3 이상인 것이 바람직하다.In the transition metal compound-supported titanium oxide suspension of the present invention, it is preferable that the pH of the supernatant is 3 or more.

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은, 전이 금속 화합물 담지 산화티타늄 농도를 10중량%로 조정한 경우, 그의 점도(22.5℃에서의)가 5 내지 25mPa·s인 것이 바람직하다.The transition metal compound-supported titanium oxide suspension of the present invention preferably has a viscosity (at 22.5°C) of 5 to 25 mPa·s when the transition metal compound-supported titanium oxide concentration is adjusted to 10% by weight.

상기 전이 금속 화합물 담지 산화티타늄은 평균 입자 직경이 20㎛ 이하인 것이 바람직하다.It is preferable that the transition metal compound-supported titanium oxide has an average particle diameter of 20 μm or less.

본 발명은, 또한, 상기 전이 금속 화합물 담지 산화티타늄 현탁액을 건조하여 얻어지는 전이 금속 화합물 담지 산화티타늄을 제공한다.The present invention also provides a transition metal compound-supported titanium oxide obtained by drying the transition metal compound-supported titanium oxide suspension.

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은 평균 종횡비가 1.5 이상인 전이 금속 화합물 담지 산화티타늄 결정을 포함하고, 또한 이온성 불순물의 함유량이 매우 낮다. 그로 인해, 가시광에 대한 응답성이 우수하여, 태양광이나 백열등, 형광등, LED 조명등의 통상의 생활 공간에서의 광을 흡수하고, 유해 화학 물질을 물이나 이산화탄소로까지 분해할 수 있다. 즉, 본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은 LED 조명 아래용 광촉매로서 적절하게 사용할 수 있다. 그리고, 항균, 살진균, 탈취, 대기 정화, 물 정화, 방오 등의 다양한 용도로 사용할 수 있고, 실내의 벽지나 가구를 비롯해 가정 내나 병원, 학교 등의 공공 시설 내에서의 환경 정화, 가전 제품의 고기능화 등, 광범위로의 응용이 가능하다.The transition metal compound-supported titanium oxide suspension of the present invention contains a transition metal compound-supported titanium oxide crystal having an average aspect ratio of 1.5 or more, and has an extremely low content of ionic impurities. Therefore, it has excellent responsiveness to visible light, absorbs sunlight, light in a normal living space such as incandescent lamps, fluorescent lamps, and LED lights, and decomposes harmful chemical substances into water or carbon dioxide. That is, the transition metal compound-supported titanium oxide suspension of the present invention can be suitably used as a photocatalyst for under LED lighting. In addition, it can be used for various purposes such as antibacterial, fungicidal, deodorization, air purification, water purification, and antifouling. In addition to indoor wallpaper and furniture, environmental purification in public facilities such as homes, hospitals, schools, etc. It can be applied to a wide range such as high functionality.

도 1은, 크로스 플로우 방식에 의한 막 여과의 일례를 도시하는 개략도이다.
도 2는, 크로스 플로우 방식에 의한 막 여과에서의 역세정의 일례를 도시하는 개략도이다.
도 3은, 결정면 (110), (111)을 갖는 로드상 루틸형 산화티타늄, 및 결정면 (110), (111), (001)을 갖는 로드상 루틸형 산화티타늄의 사시도이다.
1 is a schematic diagram showing an example of membrane filtration by a cross flow method.
Fig. 2 is a schematic diagram showing an example of backwashing in membrane filtration by a cross-flow method.
3 is a perspective view of a rod-shaped rutile type titanium oxide having crystal faces 110 and 111, and a rod-shaped rutile type titanium oxide having crystal faces 110, 111, and 001.

[전이 금속 화합물 담지 산화티타늄 현탁액][Transition metal compound supported titanium oxide suspension]

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은, 결정성 산화티타늄에 전이 금속 화합물이 담지되어 이루어지는, 평균 종횡비(장경/단경)가 1.5 이상인 전이 금속 화합물 담지 산화티타늄의 현탁액이며, 상기 전이 금속 화합물 담지 산화티타늄을 4중량% 이상 함유할 경우, 그 현탁액의 상청액의 전기 전도도는 300μS/cm 이하인 것을 특징으로 한다.The transition metal compound-supported titanium oxide suspension of the present invention is a suspension of transition metal compound-supported titanium oxide having an average aspect ratio (long/short axis) of 1.5 or more, obtained by supporting a transition metal compound on crystalline titanium oxide, wherein the transition metal compound is supported. When titanium oxide is contained in an amount of 4% by weight or more, the electrical conductivity of the supernatant of the suspension is not more than 300 μS/cm.

전이 금속 화합물 담지 산화티타늄을 현탁하는 용매로서는, 예를 들어, 물, 알코올(예를 들어, 메탄올, 에탄올, 이소프로필알코올 등), 케톤(예를 들어, 아세톤, 메틸에틸케톤 등) 및 이들의 혼합물 등의 친수성 용매를 들 수 있다. 본 발명에 있어서는, 그 중에서도, 안전성이 우수하고 취급이 용이한 점에서 물을 사용하는 것이 바람직하다.As a solvent for suspending the transition metal compound-supported titanium oxide, for example, water, alcohol (eg, methanol, ethanol, isopropyl alcohol, etc.), ketones (eg, acetone, methyl ethyl ketone, etc.), and these Hydrophilic solvents, such as a mixture, are mentioned. In the present invention, it is preferable to use water, especially from the viewpoint of excellent safety and ease of handling.

또한, 전이 금속 화합물 담지 산화티타늄의 평균 종횡비(장경/단경)는 1.5 이상이며, 바람직하게는 1.5 내지 100, 보다 바람직하게는 1.5 내지 50, 특히 바람직하게는 1.5 내지 20, 가장 바람직하게는 2 내지 15이다. 평균 종횡비가 상기 범위를 하회하면, 산화 반응장과 환원 반응장의 분리성이 저하되고, 역반응이나 부반응의 진행을 피할 수 없게 되어, 광촉매능이 저하되므로 바람직하지 않다.In addition, the average aspect ratio (long/short axis) of the transition metal compound-supported titanium oxide is 1.5 or more, preferably 1.5 to 100, more preferably 1.5 to 50, particularly preferably 1.5 to 20, most preferably 2 to 15. If the average aspect ratio is less than the above range, the separability between the oxidation reaction field and the reduction reaction field is lowered, the reverse reaction or side reaction cannot be avoided, and the photocatalytic performance is lowered, which is not preferable.

본 발명에서 평균 종횡비는, 하기 방법으로 제조한 샘플에 대해서, 전계 방출형 주사 전자 현미경(상품명 「FE-SEM JSM-6700F」, 니혼덴시(주)제, 가속 전압: 15kV, WD: 약 3mm, 배율: 20만배)을 사용하여 결정 입자를 랜덤하게 관찰하여 대표적인 3군데를 추출하고, 추출된 SEM 사진 전체 중에서 외견상 극단적으로 크거나 또는 작지 않고, 평균적인 크기의 입자를 중심으로 윤곽이 명확한 입자 30개를 추출하여 OHP 시트를 찍고, 그들 입자에 대해서, 화상 해석 소프트웨어(상품명 「WinROOF Version 5.6」, 미타니쇼지(주)제)를 사용하여 장경(최대 장경) 및 단경(최대 단경에 직교하는 폭)을 구하여, 그것들의 비를 평균한 값이다.In the present invention, the average aspect ratio is a field emission scanning electron microscope (trade name "FE-SEM JSM-6700F", manufactured by Nihon Denshi Co., Ltd., acceleration voltage: 15 kV, WD: about 3 mm, for samples prepared by the following method. , Magnification: 200,000 times) to randomly observe the crystal particles and extract three representative locations, and out of the entire extracted SEM images, they are not extremely large or small in appearance, and have a clear outline around the average sized particles. 30 particles are extracted, an OHP sheet is taken, and the long diameter (maximum long diameter) and short diameter (orthogonal to the maximum short diameter) using image analysis software (trade name ``WinROOF Version 5.6'', manufactured by Mitani Shoji Co., Ltd.) Width) and averaged their ratios.

<샘플 제조 방법><Sample manufacturing method>

1. 전이 금속 화합물 담지 산화티타늄 현탁액 20g을 상압 하, 105℃에서 1시간 건조하여, 전이 금속 화합물 담지 산화티타늄(분체)을 얻는다.1. 20 g of a transition metal compound-supported titanium oxide suspension was dried at 105°C for 1 hour under normal pressure to obtain a transition metal compound-supported titanium oxide (powder).

2. 얻어진 분체의 소량(나무로 만든 귀후비개 사이즈의 스파튤러로 절반 정도의 양)을 9mL의 유리제 샘플병에 넣고, 에탄올을 7mL 넣고, 초음파 세정기로 초음파를 5분간 걸어, 분체를 에탄올 중에 분산시킨 에탄올 분산액을 얻는다.2. Put a small amount of the obtained powder (about half of the amount with a wooden scaffold size spatula) into a 9 mL glass sample bottle, add 7 mL of ethanol, apply ultrasonic waves with an ultrasonic cleaner for 5 minutes, and disperse the powder in ethanol. The resulting ethanol dispersion is obtained.

3. 얻어진 에탄올 분산액을 유리제 스포이드로 1 방울 취하고, SEM용 시료대 상에 떨어뜨려서 자연 건조시킨 후, 30초간 백금 증착을 행한다.3. Take 1 drop of the obtained ethanol dispersion with a glass dropper, drop it on a sample stand for SEM, dry naturally, and then perform platinum evaporation for 30 seconds.

상기 결정성 산화티타늄으로서는, 예를 들어, 루틸형, 아나타제형, 브루카이트형 산화티타늄 등을 제시할 수 있다. 본 발명에 있어서는, 그 중에서도, 안정적인 결정면이 노출되어 있는 점에서 루틸형 또는 아나타제형 산화티타늄(보다 우수한 광촉매능을 발휘할 수 있는 점에서 루틸형 산화티타늄이 더욱 바람직하고, 특히 바람직하게는 결정면 (110) 및 결정면 (111)을 갖는 루틸형 산화티타늄 및/또는 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 루틸형 산화티타늄)이 바람직하다.As the crystalline titanium oxide, for example, a rutile type, an anatase type, a brookite type titanium oxide, and the like can be suggested. In the present invention, among others, rutile-type or anatase-type titanium oxide (from the viewpoint of exhibiting a more excellent photocatalytic ability, a rutile-type titanium oxide is more preferred, and particularly preferably, a crystal plane (110)) because a stable crystal plane is exposed. ) And a rutile type titanium oxide having a crystal face 111 and/or a rutile type titanium oxide having a crystal face 110, a crystal face 111 and a crystal face (001) are preferred.

전이 금속 화합물은, 예를 들어, 전이 금속 이온, 전이 금속 단체, 전이 금속염, 전이 금속 산화물, 전이 금속 수산화물 또는 전이 금속 착체의 상태로 담지된다. 전이 금속 화합물의 담지량으로서는, 예를 들어 50ppm 이상, 바람직하게는 100ppm 이상, 더욱 바람직하게는 200ppm 이상, 특히 바람직하게는 300ppm 이상, 가장 바람직하게는 500ppm 이상이다. 전이 금속 화합물의 담지량의 상한은, 예를 들어 5000ppm 정도, 바람직하게는 3000ppm, 특히 바람직하게는 2000ppm이다. 전이 금속 화합물의 담지량이 상기 범위를 하회하면, 가시광 응답성이 저하되는 경향이 있다. 한편, 전이 금속 화합물의 담지량이 상기 범위를 상회하면, 주입 전자의 역 전자 이동 등에 의해 여기 전자가 유효하게 작용하지 않아, 광촉매능이 저하되는 경향이 있다.The transition metal compound is supported in the state of, for example, a transition metal ion, a transition metal simple substance, a transition metal salt, a transition metal oxide, a transition metal hydroxide, or a transition metal complex. The supported amount of the transition metal compound is, for example, 50 ppm or more, preferably 100 ppm or more, more preferably 200 ppm or more, particularly preferably 300 ppm or more, and most preferably 500 ppm or more. The upper limit of the supported amount of the transition metal compound is, for example, about 5000 ppm, preferably 3000 ppm, and particularly preferably 2000 ppm. When the amount of the transition metal compound supported is less than the above range, the visible light responsiveness tends to decrease. On the other hand, when the supported amount of the transition metal compound exceeds the above range, the excitation electrons do not act effectively due to reverse electron transfer of the injected electrons or the like, and the photocatalytic performance tends to decrease.

상기 전이 금속 화합물은, 결정성 산화티타늄의 표면에 면 선택적으로 담지되는 것이, 산화 반응과 환원 반응의 반응장의 분리성을 보다 높일 수 있고, 그것에 의해 여기 전자와 홀의 재결합을 억제하여 역반응의 진행을 억제할 수 있고, 광촉매 활성을 비약적으로 향상시킬 수 있는 점에서 바람직하고, 특히, 산화 반응면에 선택적으로 전이 금속 화합물이 담지되어 있는 것이 바람직하다.When the transition metal compound is surface-selectively supported on the surface of crystalline titanium oxide, the separation of the reaction field between the oxidation and reduction reactions can be further improved, thereby inhibiting the recombination of the excitation electrons and the holes, thereby preventing the progress of the reverse reaction. It is preferable in that it can be suppressed and the photocatalytic activity can be dramatically improved, and in particular, it is preferable that a transition metal compound is selectively supported on the oxidation reaction surface.

또한, 본 발명에서 전이 금속 화합물이 「면 선택적으로」 담지란, 전이 금속 화합물의 50%를 초과하는 양(바람직하게는 70% 이상, 특히 바람직하게는 80% 이상)이 결정성 산화티타늄의 2면 이상의 결정면 중, 모든 면이 아니고 특정한 면(예를 들어, 특정한 1면 또는 2면 등)에 담지되어 있는 것을 말한다. 또한, 면 선택율의 상한은 100%이다. 면 선택성은, 투과형 전자 현미경(TEM)이나 에너지 분산형 형광 X선 분석 장치(EDX)를 사용하여, 각 결정면 상의 전이 금속 화합물 유래의 시그널을 확인함으로써 판정할 수 있다.In the present invention, "surface selectively" supported by the transition metal compound means that the amount of the transition metal compound exceeding 50% (preferably 70% or more, particularly preferably 80% or more) is 2 of the crystalline titanium oxide. Among the crystal faces of more than one face, it is not all faces but is supported on a specific face (for example, a specific face or two faces). In addition, the upper limit of the cotton selectivity is 100%. Surface selectivity can be determined by confirming a signal derived from a transition metal compound on each crystal surface using a transmission electron microscope (TEM) or an energy dispersive fluorescence X-ray analyzer (EDX).

전이 금속 화합물로서는, 가시광 영역에 흡수 스펙트럼을 갖고, 여기 상태에서 전도띠에 전자를 주입할 수 있는 것이면 되지만, 본 발명에 있어서는, 주기율표 제3 내지 제11족의 원소 화합물이 바람직하고, 그 중에서도 주기율표 제8 내지 제11족의 원소 화합물, 특히 바람직하게는 철 화합물 또는 백금 화합물, 가장 바람직하게는 3가의 철 화합물(Fe3+)이다. 3가의 철 화합물(Fe3 +)은 산화티타늄에 흡착되기 쉽고, 2가의 철 화합물(Fe2 +)은 흡착되기 어려운 특성을 가지므로, 그 특성을 이용함으로써 용이하게 면 선택적으로 담지할 수 있기 때문이다.As the transition metal compound, any compound having an absorption spectrum in the visible region and capable of injecting electrons into the conduction band in an excited state is preferable. In the present invention, element compounds of groups 3 to 11 of the periodic table are preferable, and among them Elemental compounds of groups 8 to 11, particularly preferably an iron compound or a platinum compound, and most preferably a trivalent iron compound (Fe 3+ ). Since the trivalent iron compound (Fe 3 + ) is easily adsorbed on titanium oxide, and the divalent iron compound (Fe 2 + ) has a property that is difficult to be adsorbed, it can be easily supported selectively by using the property. to be.

상기 전이 금속 화합물 담지 산화티타늄의 비표면적은 예를 들어 10m2/g 이상이다. 비표면적의 하한은 바람직하게는 30m2/g, 보다 바람직하게는 50m2/g, 특히 바람직하게는 60m2/g, 가장 바람직하게는 70m2/g이다. 비표면적의 상한은 예를 들어 200m2/g, 바람직하게는 150m2/g, 특히 바람직하게는 100m2/g이다.The specific surface area of the transition metal compound-supported titanium oxide is, for example, 10 m 2 /g or more. The lower limit of the specific surface area is preferably 30 m 2 /g, more preferably 50 m 2 /g, particularly preferably 60 m 2 /g, most preferably 70 m 2 /g. The upper limit of the specific surface area is, for example, 200 m 2 /g, preferably 150 m 2 /g, particularly preferably 100 m 2 /g.

상기 전이 금속 화합물 담지 산화티타늄의 비표면적은 예를 들어 10 내지 200m2/g, 바람직하게는 10 내지 150m2/g, 보다 바람직하게는 30 내지 150m2/g, 더욱 바람직하게는 50 내지 100m2/g, 특히 바람직하게는 60 내지 100m2/g, 가장 바람직하게는 70 내지 100m2/g이다. 비표면적이 상기 범위인 전이 금속 화합물 담지 산화티타늄은 고활성면의 노출량이 많아지므로, 우수한 광촉매능을 발휘할 수 있다.The specific surface area of the transition metal compound-supported titanium oxide is, for example, 10 to 200 m 2 /g, preferably 10 to 150 m 2 /g, more preferably 30 to 150 m 2 /g, even more preferably 50 to 100 m 2 /g, particularly preferably 60 to 100 m 2 /g, most preferably 70 to 100 m 2 /g. The transition metal compound-supported titanium oxide having a specific surface area in the above range increases the exposure amount of the highly active surface, and thus can exhibit excellent photocatalytic performance.

상기 비표면적은, 전이 금속 화합물 담지 산화티타늄 현탁액 20g을 상압 하, 105℃에서 1시간 건조하여, 전이 금속 화합물 담지 산화티타늄(분체)을 얻고, 얻어진 분체를 측정 셀에 넣고, 100℃(진공 하)에서 60분간 탈기하여 얻어지는 샘플에 대해서, 고속 비표면적·세공 직경 분포 측정 장치(상품명 「NOVA-1200」, Quantachtome.Co제)를 사용하여 하기 조건 하에서 샘플을 바꾸어서 2회 측정하여 얻어진 값의 평균이다.The specific surface area was obtained by drying 20 g of a transition metal compound-supported titanium oxide suspension under normal pressure at 105° C. for 1 hour to obtain a transition metal compound-supporting titanium oxide (powder), and placing the obtained powder in a measurement cell, and at 100° C. (under vacuum). ) For the sample obtained by degassing for 60 minutes, using a high-speed specific surface area/pore diameter distribution measuring device (trade name “NOVA-1200”, manufactured by Quantachtome.Co), changing the sample under the following conditions and measuring the obtained value twice. to be.

<비표면적 측정 조건><Specific surface area measurement conditions>

측정 원리: 정용(定容)법(블랭크 보정형)Measuring principle: static method (blank correction type)

검출법: 상대 압력(압력 변환기에 의한 샘플 셀 내의 흡착 평형 압력(P)과 포화 증기압(P0)의 비)과 흡착 가스량(압력 변환기에 의한 압력 검출과 서미스터에 의한 매니폴드 온도 검출로부터 이상 기체에서의 주입 가스량을 계산)Detection method: Relative pressure (ratio of the adsorption equilibrium pressure (P) and saturated vapor pressure (P 0 ) in the sample cell by a pressure converter) and the amount of adsorbed gas (from the pressure detection by the pressure converter and the detection of the manifold temperature by the thermistor) Calculate the amount of gas injected)

흡착 가스: 질소 가스Adsorption gas: nitrogen gas

셀 사이즈: 스몰 펠릿 셀(셀 용량: 1.8cm3, 스템 외경: 9mm)Cell Size: Small pellet cell (Cell capacity: 1.8cm 3 , Stem outer diameter: 9mm)

측정 항목: P/P0=0.1, 0.2, 0.3의 흡착측 3점Measurement items: 3 points on the adsorption side of P/P 0 =0.1, 0.2, 0.3

해석 항목: BET 다점법에 의한 비표면적Analysis item: specific surface area by BET multipoint method

또한, 본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은 고분산된 전이 금속 화합물 담지 산화티타늄을 함유한다. 전이 금속 화합물 담지 산화티타늄의 평균 입자 직경은 예를 들어 20㎛ 이하 정도(예를 들어, 1 내지 20000nm)가 바람직하고, 더욱 바람직하게는 20 내지 20000nm, 특히 바람직하게는 50 내지 5000nm, 가장 바람직하게는 100 내지 1500nm이다. 평균 입자 직경이 상기 범위인 전이 금속 화합물 담지 산화티타늄은 고활성면의 노출량이 많아지므로, 우수한 광촉매능을 발휘할 수 있다.Further, the transition metal compound-supported titanium oxide suspension of the present invention contains highly dispersed transition metal compound-supported titanium oxide. The average particle diameter of the transition metal compound-supported titanium oxide is preferably, for example, about 20 μm or less (for example, 1 to 20000 nm), more preferably 20 to 20000 nm, particularly preferably 50 to 5000 nm, and most preferably Is from 100 to 1500 nm. The transition metal compound-supported titanium oxide having an average particle diameter in the above range increases the amount of exposure on the highly active surface, and thus can exhibit excellent photocatalytic performance.

상기 평균 입자 직경은, 하기 방법에 의해 조정된 샘플에 대해서, 레이저 회절식 입도 분포 측정 장치(상품명 「SALD-2000J」, 시마즈세이사쿠쇼제)를 사용하여 얻어진 값이다. 또한, 본 발명에서의 평균 입자 직경이란, 존재하는 최소의 입자(1차 입자 직경)의 사이즈의 평균값이 아니고, 응집·회합 등에 의해 발생한 2차 입자를 포함하는 전체 입자의 사이즈의 평균값이다.The average particle diameter is a value obtained using a laser diffraction particle size distribution measuring apparatus (trade name "SALD-2000J", manufactured by Shimadzu Corporation) for a sample adjusted by the following method. In addition, the average particle diameter in the present invention is not an average value of the size of the smallest particles (primary particle diameter) present, but is an average value of the size of all particles including secondary particles generated by aggregation or association.

<샘플의 제조 방법><Sample Manufacturing Method>

1. 전이 금속 화합물 담지 산화티타늄 현탁액을 고속 원심 분리기(상품명 「HP-301」, 베크만·코울터사제)로 처리(40000G로 1시간)하여 상청액을 채취하고, 이것을 샘플의 희석용으로 사용한다.1. The transition metal compound-supported titanium oxide suspension is treated with a high-speed centrifugal separator (trade name "HP-301", manufactured by Beckman Coulter) (400,000 G for 1 hour) to collect a supernatant, which is used for dilution of the sample.

2. 전이 금속 화합물 담지 산화티타늄 현탁액을 상기 상청액으로 흡광도가 0.05 내지 0.08인 범위로 되는 농도까지 희석하고, 이것을 측정 셀에 넣어서 입도 분포를 측정한다. 상대 굴절률은 루틸형 산화티타늄 2.750으로 설정한다.2. A transition metal compound-supported titanium oxide suspension is diluted with the supernatant to a concentration in the range of 0.05 to 0.08 absorbance, and put in a measuring cell to measure the particle size distribution. The relative refractive index is set to 2.750 rutile type titanium oxide.

또한, 상기 2에서의 희석에는, 상기 1에 기재된 상청액 대신에 크로스 플로우 방식으로 막 여과했을 때에 얻어지는 투과액(전기 전도도 300㎛ 이하의 것)을 사용해도 된다.In addition, for the dilution in the above 2, instead of the supernatant liquid described in the above 1, a permeate (electric conductivity of 300 μm or less) obtained by membrane filtration by a cross flow method may be used.

또한, 본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은, 상기 전이 금속 화합물 담지 산화티타늄을 4중량% 이상 함유하도록 조정한 경우, 그의 상청액의 전기 전도도는 300μS/cm 이하(예를 들어 0.5 내지 300μS/cm, 바람직하게는 0.5 내지 250μS/cm, 특히 바람직하게는 1 내지 200μS/cm)이다.In addition, when the transition metal compound-supported titanium oxide suspension of the present invention is adjusted to contain 4% by weight or more of the transition metal compound-supported titanium oxide, the electrical conductivity of the supernatant liquid is 300 μS/cm or less (for example, 0.5 to 300 μS/ cm, preferably 0.5 to 250 μS/cm, particularly preferably 1 to 200 μS/cm).

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은 상청액의 전기 전도도가 상기 범위이므로, 이온성 불순물의 함유량이 매우 낮아(이온성 불순물의 함유량은 예를 들어 0.01 내지 5000ppm 정도, 바람직하게는 1 내지 3000ppm), 우수한 광 응답성을 갖는다.The transition metal compound-supported titanium oxide suspension of the present invention has a very low content of ionic impurities since the supernatant has an electrical conductivity in the above range (the content of ionic impurities is, for example, about 0.01 to 5000 ppm, preferably 1 to 3000 ppm). , Has excellent light response.

또한, 본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액의 상청액의 pH는 3 이상인 것이 바람직하고, 더욱 바람직하게는 3 내지 7, 특히 바람직하게는 3 내지 6, 가장 바람직하게는 3 내지 5.5이다. 상청액의 pH가 상기 범위를 하회하면, 담지되어 있는 전이 금속 화합물이 용출되기 쉬워져서 가시광 응답성이 저하되는 경향이 있다. 상청액의 pH는, 예를 들어 암모니아 등에 의한 중화나, 크로스 플로우 방식에 의한 막 여과의 세정 정도를 조정함으로써 조정할 수 있다.In addition, the pH of the supernatant of the transition metal compound-supported titanium oxide suspension of the present invention is preferably 3 or more, more preferably 3 to 7, particularly preferably 3 to 6, and most preferably 3 to 5.5. When the pH of the supernatant is less than the above range, the supported transition metal compound is liable to elute, and the visible light responsiveness tends to decrease. The pH of the supernatant can be adjusted, for example, by neutralization with ammonia or the like, or by adjusting the degree of washing of the membrane filtration by a cross flow method.

또한, 본 발명에서 전이 금속 화합물 담지 산화티타늄 현탁액의 상청액이란, 전이 금속 화합물 담지 산화티타늄 현탁액을 고속 원심 분리기(원심 효과: 40000G로 60분)에 의해 분리하여 얻어지는 상청액이다.In the present invention, the supernatant of the transition metal compound-supported titanium oxide suspension is a supernatant obtained by separating the transition metal compound-supported titanium oxide suspension by a high-speed centrifugal separator (centrifugal effect: 40,000 G for 60 minutes).

또한, 본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은, 상기의 평균 입자 직경을 갖는 전이 금속 화합물 담지 산화티타늄을 함유하므로 점도가 높고, 예를 들어, 전이 금속 화합물 담지 산화티타늄 농도를 10중량%로 조정한 경우, 그의 점도(22.5℃에서의)는 예를 들어 5 내지 25mPa·s, 바람직하게는 5 내지 15mPa·s, 특히 바람직하게는 5 내지 10mPa·s, 가장 바람직하게는 6 내지 10mPa·s이다. 전이 금속 화합물 담지 산화티타늄 현탁액의 농도의 조정은 용매로 희석 또는 농축[용매를 감압 증류 제거하는 방법, 막 농축하는 방법(예를 들어, 중공사형 여과막이나 튜블러막을 사용한 한외 여과법) 등]에 의해 행할 수 있다.In addition, since the transition metal compound-supported titanium oxide suspension of the present invention contains the transition metal compound-supported titanium oxide having the above average particle diameter, the viscosity is high. For example, the transition metal compound-supported titanium oxide concentration is 10% by weight. When adjusted, its viscosity (at 22.5°C) is, for example, 5 to 25 mPa·s, preferably 5 to 15 mPa·s, particularly preferably 5 to 10 mPa·s, most preferably 6 to 10 mPa·s. to be. Adjustment of the concentration of the transition metal compound-supported titanium oxide suspension is accomplished by dilution or concentration with a solvent [a method of distilling off the solvent under reduced pressure, a method of concentrating a membrane (for example, an ultrafiltration method using a hollow fiber type filtration membrane or a tubular membrane)]. Can be done.

또한, 본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액의 점도는, 회전 점도계(B형 점도계, TOKIMEC BM형, 도쿄계키(주)제)를 사용하여, 110mL의 유리제 샘플병에 22.5℃로 조정한 현탁액 100mL(액 높이: 90mm)를 넣고, 로터 No.1(60rpm)로 측정한 값이다.In addition, the viscosity of the transition metal compound-supported titanium oxide suspension of the present invention was adjusted to 22.5°C in a 110 mL glass sample bottle using a rotational viscometer (B type viscometer, TOKIMEC BM type, manufactured by Tokyo Keiki Co., Ltd.) 100 mL (liquid height: 90 mm) was added, and the value was measured with rotor No. 1 (60 rpm).

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은, 상기의 평균 입자 직경을 갖는 전이 금속 화합물 담지 산화티타늄을 함유하고, 상기의 점도를 가지므로, 매우 우수한 분산 안정성을 갖고, 조정 후 1주일 정치(25℃, 60% RH 조건 하)해도 침강하지 않고 고분산성을 유지할 수 있다.The transition metal compound-supported titanium oxide suspension of the present invention contains the transition metal compound-supported titanium oxide having the above average particle diameter and has the above viscosity, so it has very excellent dispersion stability, and is allowed to stand for one week after adjustment (25 Even under conditions of C and 60% RH), high dispersibility can be maintained without sedimentation.

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은 상기 특성을 가지므로, 매우 우수한 광 응답성을 발휘할 수 있다. 즉, 자외선 영역부터 가시광선 영역까지의 넓은 파장 범위의 광에 대한 응답성을 갖는다. 그로 인해, 태양광이나 백열등, 형광등, LED 등의 통상의 생활 공간에서의 광을 흡수하여, 높은 촉매 활성을 발휘하여 유해 화학 물질을 물이나 이산화탄소로까지 분해할 수 있고, 항균(세균, 방선균, 균류, 해초류 등의 살균·살조), 살진균, 탈취(예를 들어, 암모니아, 아민류, 메틸머캅탄, 황화수소 등의 황 함유 물질, 아세트산, 알데히드류, 에틸렌 등의 악취 가스의 탈취), 대기 정화, 수질 정화, 방오 등 다양한 효과를 발휘할 수 있다. 또한, 본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은, 필요에 따라 결합제, 용제, 분산제, 증점제, 계면 활성제 등을 혼합한 상태로 도포 또는 혼합함으로써, 피도포체 또는 피혼합물에 상기 효과를 부여할 수 있다.Since the transition metal compound-supported titanium oxide suspension of the present invention has the above characteristics, it can exhibit very excellent light responsiveness. That is, it has responsiveness to light in a wide wavelength range from the ultraviolet region to the visible region. Therefore, it absorbs sunlight, incandescent lamps, fluorescent lamps, and light in ordinary living spaces such as LEDs, exhibits high catalytic activity, and can decompose harmful chemicals into water or carbon dioxide, and is antibacterial (bacteria, actinomycetes, Sterilization and algae such as fungi and seaweed), fungicide, deodorization (e.g., deodorization of sulfur-containing substances such as ammonia, amines, methylmercaptan, hydrogen sulfide, odor gases such as acetic acid, aldehydes, and ethylene), air purification It can exert various effects such as water purification and antifouling. In addition, the transition metal compound-supported titanium oxide suspension of the present invention is applied or mixed in a mixed state of a binder, a solvent, a dispersant, a thickener, a surfactant, etc., as necessary, to impart the above effect to the object to be coated or the mixture to be coated. I can.

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액의 피도포체 및 피혼합물로서는, 예를 들어, 건축재, 건물 외장, 건물 내장, 건축용 도료, 벽, 벽지, 바닥, 창틀, 창 유리, 결정화 유리, 유리, 방충망, 빗물받이, 일사 열반사 시트, 우체통 상자, 구조 부재, 포장 재료, 표시판, 교통 표지, 도로 표식 반사판, 디스플레이 패널, 디스플레이 필터, 노면 표시재, 도로용 화장판, 펜스, 대문, 터널용·도로용 조명 장치, 차음벽, 가드레일, 터널 내장, 도로용 미러, 비닐하우스 천장 내면, 교량, 교량의 추락 방지 펜스, 자동차·열차·배의 내외장 및 도장, 차량용 휠, 철도 차량의 구체, 차량용 부품, 기계 장치나 물품의 외장·방진 커버·도장, 각종 표시 장치, 광고 탑, 애자, 태양광 패널, 태양 전지 커버, 태양열 온수기 집열 커버, 연료 전지, 광섬유, 차량용 조명등의 커버, 어망, 로프, 호스, 선저 부재, 방조재, 구두, 가방, 블라인드, 커튼, 벽천, 간막이, 미닫이, 플라스틱 미닫이, 맹장지, 합성 피혁, 식탁보, 의류, 레인코트, 문구, 책, 노트, 종이, 골판지, 탈것이나 가전 등의 각종 플라스틱 보디, 완구, 스포츠 용구, 악기, 낚시 도구, 차내 악세서리, 플라스틱 용기, 카드류, 텐트, 재목·기둥·천장판·판벽 등의 건축용재, 가구, 프린트 합판, 내장용 보드, 조화, 관엽 식물, 인공 식물, 수영장·목욕탕·하천·바다·공장배수·생활배수·지하수·연못·인공 하천 등의 물 처리용 충전제, 거울, 세면용 볼, 타일, 타일의 줄눈, 욕조, 욕실 부재, 화장실용 바닥 마감재, 원내 감염 방지용 병원 내부재, 요업계 다기능재, 유약, 냉장고 내외벽, 받침, 키친 패널, 설거지대, 레인지, 가열 조리 용기, 환기 장치, 공조, 열교환기, 각종 필터, 변기, 섬유, 부직포, 마스크, 의류, 침구, 모자, 헬멧, 현관 매트, 융단, 의료 기구, 식품, 포크, 나이프, 스푼, 식기, 포장재, 식품용 랩, 식품 보존 용기, 식기 세정 장치, 정수기, 생활 쓰레기 처리 장치, 멜라민 화장판, 카펫, 조명 장치, 조명 기구, 조명등, 조명 우산, 블랙 라이트, 방오 도료, 필터, 농업용 비닐 필름 등 각종 필름·시트, 초친수성 필름, 방초 시트, 전자 부품, 전기 제품, 전기기기, 코로나 대전기, 플라즈마 발생 장치, 오존 발생 장치, 노광 장치, 가습기, 핸드드라이, 두피 케어 장치, 전기 청소기, 전화기, 휴대 단말기, 휴대 기기, 터치 패널 표시기, 유기 EL 디바이스·디스플레이 패널, 잉크젯 기록 장치, 공기 청정기, 냉동 기기, 집진기, 장식품, 기계 부품, 자기 디스크, 쇼케이스, 계기용 커버 유리, 카메라, 안경, 카메라의 렌즈, 안경의 렌즈, 콘텍트 렌즈, 화이트닝제, 치과·구강용 재료, 치아 표백재, 임플란트, 구강용 기구, 화장품, 샴푸 등을 들 수 있다.Examples of the object to be coated and the mixture of the transition metal compound-supported titanium oxide suspension of the present invention include, for example, building materials, building exteriors, building interiors, building paints, walls, wallpaper, floors, window frames, window glass, crystallized glass, glass, Insect screens, rain gutters, solar radiation sheets, mailbox boxes, structural members, packaging materials, display boards, traffic signs, road sign reflectors, display panels, display filters, road marking materials, road veneers, fences, gates, tunnels Road lighting devices, sound insulation walls, guard rails, tunnel interiors, road mirrors, vinyl house ceilings, bridges, bridges, fall prevention fences, automobiles, trains, ships, interior and exterior coatings, vehicle wheels, rolling stock spheres, vehicles Exterior/dustproof cover/painting of parts, machinery and articles, various display devices, advertisement towers, insulators, solar panels, solar cell covers, solar water heater heat collection covers, fuel cells, optical fibers, covers for vehicle lighting, fishing nets, ropes, Hose, ship bottom material, insulation, shoes, bags, blinds, curtains, water curtains, screens, sliding doors, plastic sliding doors, inserts, synthetic leather, tablecloths, clothes, raincoats, stationery, books, notebooks, paper, cardboard, vehicles and appliances Various plastic bodies such as, toys, sports equipment, musical instruments, fishing tools, in-vehicle accessories, plastic containers, cards, tents, timber, pillars, ceiling boards, and other building materials, furniture, printed plywood, interior boards, artificial flowers, Houseplants, artificial plants, swimming pools, baths, rivers, seas, factory drains, living drains, groundwater, ponds, artificial rivers, fillers for water treatment, mirrors, wash bowls, tiles, tile joints, bathtubs, bathroom members, Floor finishing materials for toilets, hospital interior materials for preventing infection in the hospital, multifunctional materials for ceramic industry, glazing, interior and exterior walls of refrigerators, bases, kitchen panels, dishwashers, ranges, heated cooking containers, ventilation devices, air conditioning, heat exchangers, various filters, toilets, Fiber, nonwoven fabric, mask, clothing, bedding, hat, helmet, doormat, carpet, medical equipment, food, fork, knife, spoon, tableware, packaging material, food wrap, food preservation container, dish washing device, water purifier, daily use Legging equipment, melamine veneer, carpet, lighting equipment, lighting equipment, lighting lamps, lighting umbrellas, black lights, antifouling paints, filters, various films and sheets such as agricultural vinyl films, super-hydrophilic films, grass sheets, electronic parts, electrical products , Electric equipment, corona charger, plasma generator, ozone generator, exposure device, humidifier, hand dryer, scalp care device, electric vacuum cleaner, telephone, portable terminal, portable device, touch panel display, organic EL device and display panel, Inkjet recording device, air cleaner, refrigeration device, dust collector, ornaments, mechanical parts, magnetic disk, showcase, instrument cover glass, camera, eyeglasses, camera lens, eyeglass lens, contact lens, whitening agent, dental/oral material , Tooth bleaching material, implants, oral instruments, cosmetics, and shampoos.

(전이 금속 화합물 담지 산화티타늄 현탁액의 제조 방법)(Method for producing a transition metal compound-supported titanium oxide suspension)

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은, 예를 들어, 결정성 산화티타늄 현탁액에 전이 금속 화합물을 함침시켜서 얻어진 거친 전이 금속 화합물 담지 산화티타늄 현탁액을 크로스 플로우 방식에 의한 막 여과에 첨가함으로써 제조할 수 있다. 크로스 플로우 방식에 의한 막 여과에 첨가한 후에는 희석, 농축 등의 처리를 실시해도 된다.The transition metal compound-supported titanium oxide suspension of the present invention can be prepared, for example, by adding a coarse transition metal compound-supported titanium oxide suspension obtained by impregnating a transition metal compound into a crystalline titanium oxide suspension to membrane filtration by a cross flow method. I can. After addition to the cross-flow membrane filtration, treatments such as dilution and concentration may be performed.

(크로스 플로우 방식에 의한 막 여과)(Membrane filtration by cross flow method)

상기 크로스 플로우 방식에 의한 막 여과란, 여과막면에 평행하게 피처리수를 흘리고, 여과 찌꺼기의 침착에 의한 여과막 오염을 방지하면서 피처리수의 일부를, 피처리수의 흐름의 측방에서 여과하는 방법이다. 상기 거친 전이 금속 화합물 담지 산화티타늄 현탁액을 크로스 플로우 방식에 의한 막 여과에 첨가함으로써, 여과막 표면에 압밀화된 여과 찌꺼기를 형성하지 않고 이온성 불순물을 효율적으로 제거할 수 있고, 전이 금속 화합물 담지 산화티타늄의 결정 구조를 유지하면서, 이온성 불순물의 함유량을 매우 낮게 저감시킬 수 있다.The cross-flow membrane filtration is a method in which water to be treated is flowed parallel to the surface of the filtration membrane, and a part of the water to be treated is filtered from the side of the flow of the water to be treated while preventing contamination of the filtration membrane due to the deposition of filtration residue. to be. By adding the coarse transition metal compound-supported titanium oxide suspension to the membrane filtration by a cross-flow method, ionic impurities can be efficiently removed without forming compacted filtration residue on the surface of the filtration membrane, and the transition metal compound-supported titanium oxide While maintaining the crystal structure of, the content of ionic impurities can be reduced to a very low level.

크로스 플로우 방식에 의한 막 여과에 첨가하는 거친 전이 금속 화합물 담지 산화티타늄 현탁액의 농도는 예를 들어 0.1 내지 40중량% 정도(바람직하게는 0.1 내지 30중량%)이다. 거친 전이 금속 화합물 담지 산화티타늄 현탁액의 농도가 상기 범위를 벗어나면, 이온성 불순물의 제거 효율이 저하되는 경향이 있다. 또한, 거친 전이 금속 화합물 담지 산화티타늄 현탁액의 농도가 상기 범위를 상회할 경우에는, 점도가 너무 높아져서 파울링(눈막힘)되기 쉬워진다.The concentration of the coarse transition metal compound-supported titanium oxide suspension added to the cross-flow membrane filtration is, for example, about 0.1 to 40% by weight (preferably 0.1 to 30% by weight). When the concentration of the coarse transition metal compound-supported titanium oxide suspension is outside the above range, the removal efficiency of ionic impurities tends to decrease. In addition, when the concentration of the coarse transition metal compound-supported titanium oxide suspension exceeds the above range, the viscosity becomes too high and fouling (clogging) is liable.

거친 전이 금속 화합물 담지 산화티타늄 현탁액을 크로스 플로우 방식에 의한 막 여과에 첨가하면, 이온성 불순물이 투과액과 함께 분리 제거되고, 농축된 전이 금속 화합물 담지 산화티타늄 현탁액이 얻어진다.When a coarse transition metal compound-supported titanium oxide suspension is added to the membrane filtration by a cross-flow method, ionic impurities are separated and removed together with the permeate, and a concentrated transition metal compound-supported titanium oxide suspension is obtained.

농축 배율은 1 내지 400배 정도(그 중에서도 1 내지 20배, 특히 1 내지 10배)로 조정하는 것이 바람직하다. 농축 배율이 상기 범위를 상회하면, 막면에의 부착 물질의 퇴적 억제가 곤란해져서, 전이 금속 화합물 담지 산화티타늄의 압밀화를 방지하는 것이 곤란해지는 경향이 있다. 또한, 막면에의 부착 물질의 퇴적에 의해 여과막에 파울링(눈막힘)이 발생함으로써, 막 수명이 저하되기 쉬워져, 역세정을 빈번히 행할 필요가 발생하거나, 여과 처리가 운전 불가능해지는 경우가 발생하는 등, 여과 속도가 저하되기 쉬워지는 경향도 있다. 한편, 농축 배율이 상기 범위를 하회하면, 이온성 불순물의 분리 효율이 저하되어, 세정수의 사용량이 증가하는 경향이 있다.The concentration ratio is preferably adjusted to about 1 to 400 times (in particular, 1 to 20 times, particularly 1 to 10 times). When the concentration ratio exceeds the above range, it becomes difficult to suppress the deposition of substances adhered to the film surface, and thus it tends to become difficult to prevent consolidation of the transition metal compound-supported titanium oxide. In addition, fouling (clogging) occurs in the filtration membrane due to deposition of adherent substances on the membrane surface, so that the membrane life is liable to decrease, and it is necessary to frequently perform backwashing, or filtration treatment may become impossible to operate. There is also a tendency that the filtration rate is liable to decrease, for example. On the other hand, when the concentration ratio is less than the above range, the separation efficiency of ionic impurities decreases, and the amount of washing water used tends to increase.

상기 농축 배율은, 예를 들어, 여과 압력, 거친 전이 금속 화합물 담지 산화티타늄 현탁액의 막면 선 속도(크로스 플로우 속도) 등을 컨트롤함으로써 조정할 수 있다. 여과 압력은 예를 들어 0.001 내지 5.0MPa 정도, 바람직하게는 0.005 내지 3MPa, 특히 바람직하게는 0.01 내지 2.0MPa이다.The concentration ratio can be adjusted, for example, by controlling the filtration pressure, the film surface linear velocity (cross flow velocity) of the coarse transition metal compound-supported titanium oxide suspension, and the like. The filtration pressure is, for example, about 0.001 to 5.0 MPa, preferably 0.005 to 3 MPa, particularly preferably 0.01 to 2.0 MPa.

또한, 거친 전이 금속 화합물 담지 산화티타늄 현탁액을 포함하는 공급액의 막면 선 속도가 클수록 막면에의 부착 물질의 퇴적이 억제되어, 높은 여과 유속(플럭스)이 얻어진다. 막면 선 속도(크로스 플로우 속도)는 예를 들어 0.02m/s 이상 3m/s 미만, 바람직하게는 0.05m/s 이상 1.5m/s 미만이다.In addition, as the film surface linear velocity of the feed liquid containing the coarse transition metal compound-supported titanium oxide suspension increases, deposition of adherent substances to the film surface is suppressed, and a high filtration flow rate (flux) is obtained. The film surface linear velocity (cross flow velocity) is, for example, 0.02 m/s or more and less than 3 m/s, and preferably 0.05 m/s or more and less than 1.5 m/s.

크로스 플로우 방식에 의한 막 여과를 거쳐서 농축된 전이 금속 화합물 담지 산화티타늄 현탁액은, 물을 첨가하여 전이 금속 화합물 담지 산화티타늄 현탁액의 농도가 상기 범위가 되도록 희석하고, 다시 크로스 플로우 방식에 의해 막 여과하는 조작을 반복하는 것이 바람직하다. 그에 의해, 파울링(눈막힘) 등에 의한 여과막의 부하를 경감시켜, 여과막의 수명을 향상시키면서 이온성 불순물의 함유량을 매우 낮게 저감시킬 수 있다.The transition metal compound-supported titanium oxide suspension concentrated through membrane filtration by a cross-flow method is diluted with water so that the concentration of the transition metal compound-supported titanium oxide suspension is within the above range, and then membrane filtered by a cross-flow method. It is desirable to repeat the operation. Thereby, the load on the filtration membrane due to fouling (clogging) or the like can be reduced, and the content of ionic impurities can be very low while improving the life of the filtration membrane.

도 1은, 거친 전이 금속 화합물 담지 산화티타늄 현탁액의 크로스 플로우 방식에 의한 막 여과의 일례(순환형 막 여과 방식)를 도시하는 개략도이다. 투입 탱크에 투입된 거친 전이 금속 화합물 담지 산화티타늄 현탁액을 포함하는 공급액은 크로스 플로우 여과 방식으로 막 여과되어, 농축된 전이 금속 화합물 담지 산화티타늄 현탁액(농축액)이 얻어진다. 농축된 전이 금속 화합물 담지 산화티타늄 현탁액은 다시 투입 탱크로 순환하고, 희석용의 물(희석용수)로 희석되고, 크로스 플로우 여과 방식으로 막 여과된다.1 is a schematic diagram showing an example of membrane filtration by a cross-flow method (circulating membrane filtration method) of a coarse transition metal compound-supported titanium oxide suspension. The feed solution containing the coarse transition metal compound-supported titanium oxide suspension introduced into the input tank is membrane-filtered by a cross-flow filtration method to obtain a concentrated transition metal compound-supported titanium oxide suspension (concentrate). The concentrated transition metal compound-supported titanium oxide suspension is circulated to the input tank again, diluted with water for dilution (water for dilution), and filtered through a cross flow filtration method.

크로스 플로우 방식에 의한 막 여과에 사용하는 여과막으로서는, 예를 들어, 한외 여과막, 정밀 여과막, 나노 필터, 역침투막 등을 들 수 있다. 본 발명에 있어서는, 그 중에서도, 분리 성능이 우수한 점에서 한외 여과막을 사용하는 것이 바람직하다.As a filtration membrane used for membrane filtration by a cross-flow method, an ultrafiltration membrane, a microfiltration membrane, a nano filter, a reverse osmosis membrane, etc. are mentioned, for example. In the present invention, it is preferable to use an ultrafiltration membrane from the viewpoint of excellent separation performance, among others.

한외 여과막으로서는, 평균 세공 직경이 1 내지 20nm 정도(바람직하게는 1 내지 10nm)이며, 분자량 1000 내지 300000 정도(바람직하게는 1000 내지 50000), 평균 입자 직경이 1 내지 10nm 정도의 물질을 분리할 수 있는 것을 사용하는 것이 바람직하다.As an ultrafiltration membrane, substances having an average pore diameter of about 1 to 20 nm (preferably 1 to 10 nm), a molecular weight of about 1000 to 300000 (preferably 1000 to 50000), and an average particle diameter of about 1 to 10 nm can be separated. It is desirable to use what is available.

한외 여과막의 막 형상으로서는, 예를 들어, 중공사형 여과막, 튜블러막, 스파이럴막, 평막 등의 어느 것이어도 되지만, 역세정을 비교적 용이하게 행할 수 있는 점에서, 중공사형 여과막 또는 튜블러막을 사용하는 것이 바람직하다.As the membrane shape of the ultrafiltration membrane, for example, any of a hollow fiber type filtration membrane, a tubular membrane, a spiral membrane, a flat membrane, etc. may be used, but since backwashing can be performed relatively easily, a hollow fiber type filtration membrane or a tubular membrane is used. It is desirable to do.

중공사형 여과막에서의 중공사막의 내경은, 오염 물질의 폐색 방지, 막 모듈에의 중공사 충전율의 향상이라는 관점에서, 0.1 내지 2.0mm 정도(바람직하게는 0.5 내지 1.5mm)이다.The inner diameter of the hollow fiber membrane in the hollow fiber type filtration membrane is about 0.1 to 2.0 mm (preferably 0.5 to 1.5 mm) from the viewpoint of preventing clogging of contaminants and improving the filling rate of the hollow fiber to the membrane module.

여과막의 재질로서는, 예를 들어, 아세트산셀룰로오스, 폴리아크릴로니트릴, 폴리술폰, 폴리에테르술폰(PES), 폴리아크릴로니트릴, 방향족 폴리아미드, 폴리불화비닐리덴, 폴리염화비닐, 폴리에틸렌, 폴리프로필렌, 폴리이미드, 세라믹 등의 일반적인 재질을 들 수 있다. 본 발명에 있어서는, 그 중에서도, 아세트산셀룰로오스, 폴리술폰, 폴리에테르술폰(PES), 폴리아크릴로니트릴, 방향족 폴리아미드가 바람직하다.As the material of the filtration membrane, for example, cellulose acetate, polyacrylonitrile, polysulfone, polyethersulfone (PES), polyacrylonitrile, aromatic polyamide, polyvinylidene fluoride, polyvinyl chloride, polyethylene, polypropylene, General materials, such as polyimide and ceramic, are mentioned. In the present invention, cellulose acetate, polysulfone, polyethersulfone (PES), polyacrylonitrile, and aromatic polyamide are particularly preferred.

중공사형 여과막을 사용할 경우, 거친 전이 금속 화합물 담지 산화티타늄 현탁액을 흘리는 방법(여과 방식)으로서는, 내측(중공사막의 내측)에 거친 전이 금속 화합물 담지 산화티타늄 현탁액을 포함하는 공급액을 흘리고, 외측(중공사막의 외측)을 향하여 투과수가 흐르는 방식(내압 여과 방식)과, 그 반대로 외측에 거친 전이 금속 화합물 담지 산화티타늄 현탁액을 포함하는 공급액을 흘리고, 내측을 향하여 투과수가 흐르는 방식(외압 여과 방식)을 들 수 있다. 본 발명에 있어서는, 그 중에서도, 막면 유속을 빠르게 유지할 수 있는 점에서 내압 여과 방식이 바람직하다.In the case of using a hollow fiber type filtration membrane, as a method of flowing a coarse transition metal compound-supported titanium oxide suspension (filtration method), a supply liquid containing a rough transition metal compound-supported titanium oxide suspension is flowed into the inner side (the inner side of the hollow fiber membrane), and the outer side (the hollow fiber The permeated water flows toward the outside of the desert) (internal pressure filtration method), and vice versa, a supply solution containing a coarse transition metal compound-supported titanium oxide suspension flows to the outside and the permeated water flows toward the inside (external pressure filtration method). I can. In the present invention, among others, an internal pressure filtration method is preferred from the viewpoint of being able to rapidly maintain the flow velocity on the membrane surface.

크로스 플로우 방식에 의한 막 여과에 있어서는, 여과막면에의 부착 물질의 퇴적을 방지하여 여과막에의 부담을 경감시키고, 장기간 막 여과 운전을 행하기 위해서, 여과막에 대하여 세정수에 의해 간헐적인 역세정을 실시하는 것이 바람직하다. 역세정은 압력 및 유속을 제어하면서 미리 정해진 주기로 행하는 것이 바람직하다.In membrane filtration by the cross flow method, intermittent backwashing with washing water is performed on the filtration membrane in order to reduce the burden on the filtration membrane by preventing deposition of adherent substances on the surface of the filtration membrane, and to perform a long-term membrane filtration operation. It is desirable to carry out. It is preferable to perform backwashing at a predetermined cycle while controlling the pressure and flow rate.

역세정의 압력으로서는 예를 들어 0.01 내지 3.0MPa 정도이고, 바람직하게는 0.01 내지 2.0MPa, 특히 바람직하게는 0.01 내지 1.0MPa, 가장 바람직하게는 0.01 내지 0.5MPa, 더욱 바람직하게는 0.05 내지 0.5MPa이다. 또한, 역세정의 유속으로서는 예를 들어 0.01 내지 10kg/mim 정도, 바람직하게는 0.05 내지 5kg/mim, 특히 바람직하게는 0.1 내지 5kg/mim[또는, 예를 들어 1×10-7 내지 2×10-4m/sec 정도, 바람직하게는 8×10-7 내지 9×10-5m/sec, 특히 바람직하게는 1×10-6 내지 9×10-5m/sec]이다. 역세정의 빈도로서는 예를 들어 0.5 내지 3시간에 1회 정도 행하는 것이 바람직하다. 역세정의 시간은 0.5 내지 10분 정도가 바람직하다.The backwashing pressure is, for example, about 0.01 to 3.0 MPa, preferably 0.01 to 2.0 MPa, particularly preferably 0.01 to 1.0 MPa, most preferably 0.01 to 0.5 MPa, and more preferably 0.05 to 0.5 MPa. Further, as defined backwash flow rate, for example from 0.01 to 10kg / mim, preferably from 0.05 to 5kg / mim, in particular preferably from 0.1 to 5kg / mim [or, for example, a 1 × 10 -7 to 2 × 10 - It is about 4 m/sec, preferably 8×10 -7 to 9×10 -5 m/sec, particularly preferably 1×10 -6 to 9×10 -5 m/sec]. The frequency of backwashing is preferably performed about once every 0.5 to 3 hours, for example. The time for backwashing is preferably about 0.5 to 10 minutes.

또한, 역세정에 사용하는 세정수로서는, 물(예를 들어, 정제수, 증류수, 순수, 이온 교환수 등)을 사용하는 것이 바람직하다. 또한, 역세정에 의해 막 통과한 세정수는 농축된 전이 금속 화합물 담지 산화티타늄 현탁액의 희석용 물로서 재이용하는 것이 바람직하다(도 2 참조).In addition, it is preferable to use water (eg, purified water, distilled water, pure water, ion-exchanged water, etc.) as the washing water used for backwashing. In addition, it is preferable to reuse the washing water that has just passed through backwashing as water for dilution of the concentrated transition metal compound-supported titanium oxide suspension (see FIG. 2).

크로스 플로우 방식에 의한 막 여과는, 투과액의 전기 전도도가 300μS/cm 이하(예를 들어 0.5 내지 300μS/cm, 바람직하게는 0.5 내지 250μS/cm, 특히 바람직하게는 1 내지 200μS/cm)가 될 때까지 반복적으로 행하는 것이 바람직하다. 크로스 플로우 방식에 의한 막 여과를 투과액의 전기 전도도가 상기 범위가 되기 전에 종료하면, 이온성 불순물(특히, 철 이온, 염소 이온)의 제거가 불충분해지는 경우가 있다.In the membrane filtration by the cross-flow method, the electrical conductivity of the permeate will be 300 μS/cm or less (e.g. 0.5 to 300 μS/cm, preferably 0.5 to 250 μS/cm, particularly preferably 1 to 200 μS/cm). It is preferable to perform repeatedly until. When membrane filtration by the cross flow method is terminated before the electrical conductivity of the permeate reaches the above range, removal of ionic impurities (especially iron ions and chlorine ions) may become insufficient.

(거친 전이 금속 화합물 담지 산화티타늄 현탁액의 제조 방법)(Method for producing a tough transition metal compound-supported titanium oxide suspension)

여기서, 크로스 플로우 방식에 의한 막 여과에 첨가하는 거친 전이 금속 화합물 담지 산화티타늄 현탁액은, 예를 들어 결정성 산화티타늄 현탁액에 전이 금속 화합물을 포함하는 용액을 첨가하여 함침시킴으로써 얻어진다.Here, the coarse transition metal compound-supported titanium oxide suspension added to the cross-flow membrane filtration is obtained, for example, by adding and impregnating a solution containing the transition metal compound to the crystalline titanium oxide suspension.

상기 결정성 산화티타늄 현탁액은 특별히 제한되지 않고 주지 관용의 방법으로 제조할 수 있고, 예를 들어 로드상 루틸형 산화티타늄 현탁액은, 티타늄 화합물을 수성 매체(예를 들어 물, 또는 물과 수용성 유기 용매의 혼합액) 중에서 수열 처리[예를 들어 100 내지 220℃, 2 내지 48시간(바람직하게는 2 내지 15시간, 특히 바람직하게는 5 내지 15시간)]함으로써 합성할 수 있다. 또한, 수열 처리 시에 할로겐화물을 첨가 및/또는 교반(예를 들어, 교반 소요 동력(Pv값): 0.1 내지 1500W/m3 정도)하면, 얻어지는 입자의 사이즈 및 표면적을 조정할 수 있으므로 바람직하다.The crystalline titanium oxide suspension is not particularly limited and can be prepared by a known and common method. For example, the rod-shaped rutile type titanium oxide suspension is prepared by using a titanium compound in an aqueous medium (for example, water or water and a water-soluble organic solvent. (A mixed solution of)) by hydrothermal treatment [for example, 100 to 220°C, 2 to 48 hours (preferably 2 to 15 hours, particularly preferably 5 to 15 hours)]. In addition, adding and/or stirring a halide during hydrothermal treatment (eg, stirring required power (Pv value): about 0.1 to 1500 W/m 3 ) is preferable because the size and surface area of the obtained particles can be adjusted.

상기 티타늄 화합물로서는, 3가의 티타늄 화합물, 4가의 티타늄 화합물을 들 수 있다. 3가의 티타늄 화합물로서는, 예를 들어 삼염화티타늄이나 삼브롬화티타늄 등의 트리할로겐화 티타늄 등을 들 수 있다. 본 발명에서의 3가의 티타늄 화합물로서는, 저렴하면서 입수가 용이한 점에서 삼염화티타늄(TiCl3)이 바람직하다.Examples of the titanium compound include a trivalent titanium compound and a tetravalent titanium compound. Examples of the trivalent titanium compound include titanium trihalide such as titanium trichloride and titanium tribromide. As the trivalent titanium compound in the present invention, titanium trichloride (TiCl 3 ) is preferable from the viewpoint of being inexpensive and easy to obtain.

또한, 본 발명에서의 4가의 티타늄 화합물은 예를 들어, 하기 식 (1)로 표시되는 화합물 등을 들 수 있다.In addition, the tetravalent titanium compound in the present invention includes, for example, a compound represented by the following formula (1).

Ti(OR)tX4 - t (1)Ti(OR) t X 4 - t (1)

(식 중, R은 탄화수소기를 나타내고, X는 할로겐 원자를 나타낸다. t는 0 내지 3의 정수를 나타냄)(In the formula, R represents a hydrocarbon group, X represents a halogen atom. t represents an integer of 0 to 3)

식 (1) 중의 R에서의 탄화수소기로서는, 예를 들어, 메틸, 에틸, 프로필, 이소프로필, n-부틸, sec-부틸, tert-부틸 등의 C1-4 지방족 탄화수소기 등을 들 수 있다.Examples of the hydrocarbon group in R in formula (1) include C 1-4 aliphatic hydrocarbon groups such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, and tert-butyl. .

식 (1) 중의 X에서의 할로겐 원자로서는, 염소, 브롬, 요오드 등을 들 수 있다.Examples of the halogen atom in X in formula (1) include chlorine, bromine, and iodine.

이러한 4가의 티타늄 화합물로서는, 예를 들어, TiCl4, TiBr4, TiI4 등의 테트라할로겐화 티타늄; Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC4H9)Cl3, Ti(OC2H5)Br3, Ti(OC4H9)Br3 등의 트리할로겐화 알콕시티타늄; Ti(OCH3)2Cl2, Ti(OC2H5)2Cl2, Ti(OC4H9)2Cl2, Ti(OC2H5)2Br2 등의 디할로겐화 디알콕시티타늄; Ti(OCH3)3Cl, Ti(OC2H5)3Cl, Ti(OC4H9)3Cl, Ti(OC2H5)3Br 등의 모노할로겐화 트리알콕시티타늄 등을 들 수 있다. 본 발명에서의 4가의 티타늄 화합물로서는, 저렴하면서 입수가 용이한 점에서, 테트라할로겐화 티타늄이 바람직하고, 특히 사염화티타늄(TiCl4)이 바람직하다.Examples of such a tetravalent titanium compound include tetrahalogenated titanium such as TiCl 4 , TiBr 4 , and TiI 4 ; Tree of Ti(OCH 3 )Cl 3 , Ti(OC 2 H 5 )Cl 3 , Ti(OC 4 H 9 )Cl 3 , Ti(OC 2 H 5 )Br 3 , Ti(OC 4 H 9 )Br 3 Halogenated alkoxy titanium; Dihalogenated dialkoxy titanium, such as Ti(OCH 3 ) 2 Cl 2 , Ti(OC 2 H 5 ) 2 Cl 2 , Ti(OC 4 H 9 ) 2 Cl 2 , Ti(OC 2 H 5 ) 2 Br 2 ; Monohalogenated trialkoxy titanium, such as Ti(OCH 3 ) 3 Cl, Ti(OC 2 H 5 ) 3 Cl, Ti(OC 4 H 9 ) 3 Cl, and Ti(OC 2 H 5 ) 3 Br, etc. are mentioned. As the tetravalent titanium compound in the present invention, since it is inexpensive and easy to obtain, titanium tetrahalide is preferable, and titanium tetrachloride (TiCl 4 ) is particularly preferable.

수열 처리에 의해 얻어진 로드상 루틸형 산화티타늄은, 주지 관용의 방법, 예를 들어, 여과, 농축, 증류, 추출, 정석, 재결정, 칼럼 크로마토그래피나, 이들을 조합한 방법에 의해 정제할 수 있다. 본 발명에 있어서는, 그 중에서도, 크로스 플로우 방식으로 막 여과하는 것이, 산화티타늄의 결정 구조를 유지하면서 이온성 불순물의 함유량을 저감시킬 수 있고, 분쇄 처리 등을 실시할 필요가 없어 그대로 전이 금속 화합물 담지 공정에 제공할 수 있어, 전이 금속 화합물을 고담지할 수 있는 산화티타늄을 얻을 수 있는 점에서 바람직하다.The rod-like rutile type titanium oxide obtained by hydrothermal treatment can be purified by well-known and common methods, such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination of these. In the present invention, inter alia, cross-flow membrane filtration can reduce the content of ionic impurities while maintaining the crystal structure of titanium oxide, and there is no need to perform pulverization treatment, so that the transition metal compound is supported as it is. It is preferable because it can provide for a process and can obtain titanium oxide which can support a transition metal compound highly.

상기 크로스 플로우 방식에 의한 막 여과는, 상기 거친 전이 금속 화합물 담지 산화티타늄 현탁액의 크로스 플로우 방식에 의한 막 여과와 동일한 방법으로 행할 수 있고, 투과액의 pH가 1 이상(바람직하게는 1 내지 7, 특히 바람직하게는 2 내지 6, 가장 바람직하게는 2 내지 5.5)이 될 때까지 반복적으로 행하는 것이 바람직하다. 크로스 플로우 방식에 의한 막 여과를, 투과액의 pH가 상기 범위가 되기 전에 종료하면, 이온성 불순물(특히, 수소 이온, 염소 이온, 티타늄 이온)의 제거가 불충분해져서, 전이 금속 화합물의 담지가 곤란해지는 경우가 있다.The membrane filtration by the cross flow method can be performed in the same manner as the membrane filtration by the cross flow method of the coarse transition metal compound-supported titanium oxide suspension, and the permeate has a pH of 1 or more (preferably 1 to 7, Particularly preferably 2 to 6, most preferably 2 to 5.5). If membrane filtration by the cross flow method is terminated before the pH of the permeate reaches the above range, removal of ionic impurities (especially, hydrogen ions, chlorine ions, and titanium ions) becomes insufficient, making it difficult to support transition metal compounds. There is a case of loss.

상기 방법으로 얻어진 결정성 산화티타늄 현탁액에 전이 금속 화합물을 함침함으로써 거친 전이 금속 화합물 담지 산화티타늄 현탁액을 얻을 수 있다. 예를 들어, 전이 금속 화합물로서 3가의 철 화합물(Fe3 +)을 담지한 거친 전이 금속 화합물 담지 산화티타늄 현탁액은, 결정성 산화티타늄 현탁액에 질산철(III), 황산철(III), 염화철(III) 등을 포함하는 용액을 첨가하여 함침시킴으로써 얻어진다.By impregnating the transition metal compound into the crystalline titanium oxide suspension obtained by the above method, a rough transition metal compound-supported titanium oxide suspension can be obtained. For example, a coarse transition metal compound-supported titanium oxide suspension carrying a trivalent iron compound (Fe 3 + ) as a transition metal compound is prepared in a crystalline titanium oxide suspension with iron (III) nitrate, iron (III) sulfate, and iron chloride ( III) It is obtained by adding and impregnating a solution containing the like.

전이 금속 화합물을 포함하는 용액의 농도는 예를 들어 0.1 내지 40중량% 정도, 바람직하게는 1 내지 40중량%이다. 또한, 함침 시간으로서는, 예를 들어 1분에서 24시간 정도, 바람직하게는 5분에서 10시간이다.The concentration of the solution containing the transition metal compound is, for example, about 0.1 to 40% by weight, preferably 1 to 40% by weight. In addition, the impregnation time is, for example, about 1 minute to 24 hours, preferably 5 minutes to 10 hours.

그리고, 본 발명에 있어서는, 전이 금속 화합물을 함침할 때에 여기광을 조사하는 것이, 대규모의 설비 등을 요하지 않고 용이하면서, 또한 효율적으로, 결정성 산화티타늄의 특정면에 선택적으로 전이 금속 화합물을 담지할 수 있는 점에서 바람직하다. 여기광을 조사하면, 결정성 산화티타늄의 원자가띠의 전자가 전도띠에 여기되고, 원자가띠에 홀, 전도띠에 여기 전자가 생성되고, 이들은 입자 표면에 확산되고, 각 결정면의 특성을 따라서 여기 전자와 홀이 분리되어 산화 반응면과 환원 반응면을 형성한다. 이 상태에서 전이 금속 화합물로서, 예를 들어 3가의 철 화합물의 함침을 행하면, 3가의 철 화합물(Fe3 +)은 산화 반응면에는 흡착되지만, 환원 반응면에서는 3가의 철 화합물(Fe3 +)은 2가의 철 화합물(Fe2 +)로 환원되고, 2가의 철 화합물(Fe2 +)은 흡착되기 어려운 특성을 가지므로, 용액 내에 용출되고, 결과적으로 산화 반응면에 선택적으로 철 화합물(Fe3 +)이 담지된 철 화합물 담지 산화티타늄을 얻을 수 있다.And, in the present invention, irradiation of excitation light when impregnating the transition metal compound does not require large-scale facilities, etc., is easily and efficiently, and selectively supports the transition metal compound on a specific surface of crystalline titanium oxide. It is preferable in that it can be done. When excitation light is irradiated, electrons in the valence band of crystalline titanium oxide are excited in the conduction band, holes in the valence band, and excitation electrons in the conduction band are generated, and these are diffused on the surface of the particle, and excitation electrons and holes according to the characteristics of each crystal plane This is separated to form an oxidation reaction surface and a reduction reaction surface. In this state, as a transition metal compound, for example, when impregnating with a trivalent iron compound, the trivalent iron compound (Fe 3 + ) is adsorbed on the oxidation reaction surface, but in the reduction reaction surface, the trivalent iron compound (Fe 3 + ) Silver is reduced to a divalent iron compound (Fe 2 + ), and the divalent iron compound (Fe 2 + ) has a property that is difficult to be adsorbed, so it is eluted in the solution, and as a result, an iron compound (Fe 3 + ) It is possible to obtain a supported iron compound-supported titanium oxide.

여기광이란, 밴드 갭 에너지 이상의 에너지를 갖는 광(예를 들어, 자외선)이다. 여기광 조사 수단으로서는, 예를 들어, 중·고압 수은등, UV 레이저, UV- LED, 블랙 라이트 등의 자외선을 효율적으로 발생시키는 광원을 갖는 자외선 노광 장치 등을 사용할 수 있다. 여기광의 조사량으로서는, 예를 들어 0.1 내지 300mW/cm2 정도, 바람직하게는 0.5 내지 100mW/cm2이다.The excitation light is light having an energy equal to or greater than the band gap energy (for example, ultraviolet rays). As the excitation light irradiation means, for example, a medium-high pressure mercury lamp, a UV laser, a UV-LED, an ultraviolet exposure apparatus having a light source that efficiently generates ultraviolet rays, such as a black light, can be used. The irradiation amount of excitation light is, for example, about 0.1 to 300 mW/cm 2 , and preferably 0.5 to 100 mW/cm 2 .

또한, 본 발명에 있어서는, 함침 시에 희생제를 첨가하는 것이 바람직하다. 희생제를 첨가함으로써, 결정성 산화티타늄의 특정한 결정면에 높은 선택율로 전이 금속 화합물을 담지할 수 있다. 희생제로서는, 그 자체가 전자를 방출하기 쉬운 유기 화합물을 사용하는 것이 바람직하며, 예를 들어, 메탄올, 에탄올 등의 알코올; 아세트산 등의 카르복실산; 에틸렌디아민 4아세트산(EDTA), 트리에탄올아민(TEA) 등의 아민 등을 들 수 있다.Moreover, in this invention, it is preferable to add a sacrificial agent at the time of impregnation. By adding a sacrificial agent, a transition metal compound can be supported on a specific crystal plane of crystalline titanium oxide with a high selectivity. As the sacrificial agent, it is preferable to use an organic compound that itself easily emits electrons, and examples thereof include alcohols such as methanol and ethanol; Carboxylic acids such as acetic acid; And amines such as ethylenediamine tetraacetic acid (EDTA) and triethanolamine (TEA).

희생제의 첨가량은 적절히 조정할 수 있으며, 예를 들어, 결정성 산화티타늄의 현탁액의 0.5 내지 20.0중량% 정도, 바람직하게는 1.0 내지 5.0중량% 정도이다. 희생제는 과잉량을 사용해도 된다.The addition amount of the sacrificial agent can be appropriately adjusted, and is, for example, about 0.5 to 20.0% by weight, preferably about 1.0 to 5.0% by weight, of the suspension of crystalline titanium oxide. The sacrificial agent may be used in excess.

[전이 금속 화합물 담지 산화티타늄][Transition metal compound supported titanium oxide]

본 발명의 전이 금속 화합물 담지 산화티타늄은, 상기 전이 금속 화합물 담지 산화티타늄 현탁액을 건조[예를 들어, F.V. 하(1.3kPa [A] 이하) 60℃에서 15시간 정도, 또는 상압(대기압) 하 105℃에서 1시간 정도]하여 얻어진다.As for the transition metal compound-supported titanium oxide of the present invention, the transition metal compound-supported titanium oxide suspension is dried [for example, F.V. It is obtained under (1.3kPa [A] or less) about 15 hours at 60°C, or about 1 hour at 105°C under normal pressure (atmospheric pressure).

본 발명의 전이 금속 화합물 담지 산화티타늄은 가시광 응답성이 우수하여, 광 조사에 의해 우수한 광촉매능을 발휘하여 유해 화학 물질을 물이나 이산화탄소로까지 분해함으로써, 항균, 살진균, 탈취, 대기 정화, 수질 정화, 방오 등 다양한 효과를 발휘할 수 있다.The transition metal compound-supported titanium oxide of the present invention has excellent visible light responsiveness, and exhibits excellent photocatalytic activity by light irradiation to decompose harmful chemicals into water or carbon dioxide, thereby antibacterial, fungicidal, deodorizing, air purification, water quality. It can exert various effects such as purification and antifouling.

예를 들어, 상기 전이 금속 화합물 담지 산화티타늄(200mg)을 사용하여 톨루엔을 산화했을 때에 생성되는 CO2 양은 예를 들어 300ppm 이상이다. 또한, 메탄올을 산화했을 때에 생성되는 CO2 양은 예를 들어 500ppm 이상, 바람직하게는 600ppm 이상, 더욱 바람직하게는 700ppm 이상, 특히 바람직하게는 750ppm 이상이다.For example, the amount of CO 2 generated when toluene is oxidized using the transition metal compound-supported titanium oxide (200 mg) is, for example, 300 ppm or more. Further, the amount of CO 2 generated when methanol is oxidized is, for example, 500 ppm or more, preferably 600 ppm or more, more preferably 700 ppm or more, and particularly preferably 750 ppm or more.

또한, 상기 톨루엔을 산화했을 때에 생성되는 CO2 양의 측정 방법은 하기와 같다.In addition, a method of measuring the amount of CO 2 generated when the toluene is oxidized is as follows.

전이 금속 화합물 담지 산화티타늄 200mg을 유리제 접시에 펼쳐서 반응 용기(테드라백, 재질: 불화 비닐 수지) 안에 넣고, 100ppm의 톨루엔 가스 125mL를 반응 용기 내에 불어 넣는다. 톨루엔 가스의 전이 금속 화합물 담지 산화티타늄에의 흡착이 평형에 달한 후, 실온(25℃)에서 광 조사(LED, 광 강도: 2.5W/cm2, 광의 파장: 455nm)를 행하고, 광 조사 개시부터 24시간 후의 CO2의 생성량을 측정한다.200 mg of titanium oxide carrying a transition metal compound was spread out on a glass plate and placed in a reaction vessel (Tedrabag, material: vinyl fluoride resin), and 125 mL of 100 ppm of toluene gas was blown into the reaction vessel. After the adsorption of toluene gas to the transition metal compound-supported titanium oxide reached equilibrium, light irradiation (LED, light intensity: 2.5 W/cm 2 , light wavelength: 455 nm) was performed at room temperature (25° C.), and from the start of light irradiation The amount of CO 2 produced after 24 hours is measured.

또한, 상기 메탄올을 산화했을 때에 생성되는 CO2 양의 측정 방법은 하기와 같다.In addition, the method of measuring the amount of CO 2 generated when methanol is oxidized is as follows.

전이 금속 화합물 담지 산화티타늄 200mg을 유리제 접시에 펼쳐서 반응 용기(테드라백, 재질: 불화 비닐 수지) 안에 넣고, 800ppm의 메탄올 가스 125mL를 반응 용기 내에 불어 넣는다. 메탄올 가스의 전이 금속 화합물 담지 산화티타늄에의 흡착이 평형에 달한 후, 실온(25℃)에서 광 조사(LED, 광 강도: 2.5W/m2, 광의 파장: 455nm)를 행하고, 광 조사 개시부터 24시간 후의 CO2의 생성량을 측정한다.200 mg of titanium oxide supported by a transition metal compound was spread on a glass plate and placed in a reaction vessel (Tedrabag, material: vinyl fluoride resin), and 125 mL of 800 ppm methanol gas was blown into the reaction vessel. After the adsorption of methanol gas to the transition metal compound-supported titanium oxide reached equilibrium, light irradiation (LED, light intensity: 2.5 W/m 2 , light wavelength: 455 nm) was performed at room temperature (25°C), and from the start of light irradiation The amount of CO 2 produced after 24 hours is measured.

실시예Example

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하지만, 본 발명은 이들 실시예에 의해 한정되지 않는다.Hereinafter, the present invention will be described in more detail by examples, but the present invention is not limited by these examples.

실시예 1Example 1

(거친 산화티타늄 현탁액의 제조)(Preparation of coarse titanium oxide suspension)

실온(25℃)에서, 사염화티타늄 수용액(Ti 농도: 16.5중량%±0.5중량%, 염소 이온 농도: 31중량%±2중량%, 도호티타늄(주)제)을 Ti 농도가 5.6중량%가 되도록 순수로 희석하였다. 희석 후의 사염화티타늄 수용액 5650g을 용량 10L의 탄탈륨라이닝의 오토클레이브에 넣고 밀폐하였다. 열매를 사용하여, 2시간에 걸쳐서 상기 오토클레이브 내의 온도를 140℃까지 승온하였다. 그 후, 교반 소요 동력(Pv값) 1360W/m3로 교반하면서, 온도: 140℃, 압력: 그 온도에서의 증기압의 조건 하에서 5시간 유지한 후, 열매를 냉각함으로써 오토클레이브를 40℃ 이하까지 냉각하였다. 그 후, 재차 온도: 140℃, 압력: 그 온도에서의 증기압의 조건 하에서 5시간 유지한 후, 열매를 냉각함으로써 오토클레이브를 냉각하였다. 오토클레이브 내의 온도가 40℃ 이하가 된 것을 확인하고, 거친 산화티타늄 현탁액 (1) 5650g을 취출하였다.At room temperature (25°C), a titanium tetrachloride aqueous solution (Ti concentration: 16.5% by weight±0.5% by weight, chlorine ion concentration: 31% by weight±2% by weight, manufactured by Doho Titanium Co., Ltd.) is added so that the Ti concentration becomes 5.6% by weight. It was diluted with pure water. 5650 g of the diluted titanium tetrachloride aqueous solution was placed in a 10 L tantalum lined autoclave and sealed. Using the heat medium, the temperature in the autoclave was raised to 140°C over 2 hours. Thereafter, stirring at a required power (Pv value) of 1360 W/m 3 , temperature: 140°C, pressure: maintained for 5 hours under the condition of vapor pressure at that temperature, and then cooled the heat medium to keep the autoclave up to 40°C. Cooled. Thereafter, the autoclave was cooled by cooling the heat medium after holding again for 5 hours under conditions of temperature: 140°C, pressure: vapor pressure at that temperature. It was confirmed that the temperature in the autoclave became 40°C or less, and 5650 g of the coarse titanium oxide suspension (1) was taken out.

(크로스 플로우 방식에 의한 막 여과 처리 (1))(Membrane filtration treatment by cross flow method (1))

얻어진 거친 산화티타늄 현탁액 (1)을 순수로 3배로 희석하여, 중공사형 한외 여과막(상품명 「FS03-FC-FUS03C1」, 재질: PES, 공칭분화 분자량: 3만, 다이센·멤브레인·시스템즈(주)제)을 사용하여, 실온(25℃), 여과 압력 0.02MPa에서, 투과액량과 동일한 양의 순수를 첨가하면서 크로스 플로우 방식에 의한 여과 처리를 행하였다. 여과 처리를 거쳐서 얻어진 농축액은 다시 투입 탱크로 순환하고, 투과액의 pH가 4.0이 될 때까지 반복적으로 여과 처리에 첨가하였다. 또한, pH는 pH 시험지를 사용하여 측정하였다. 이 동안에, 1시간에 1회의 비율로 0.1MPa의 압력, 2kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다. 그 후, 순수의 투입을 중지하고, 산화티타늄 농도를 농축시켜서 산화티타늄 현탁액 (1-1)을 얻었다. 산화티타늄 현탁액 (1-1)을 상압 하, 105℃에서 1시간 건조한 바, 결정면 (110) 및 결정면 (111)을 갖는 로드상 루틸형 산화티타늄과, 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 로드상 루틸형 산화티타늄의 혼합물인 산화티타늄 (1) 525g을 얻었다(도 3 참조). 얻어진 산화티타늄 (1)의 하기 자외선에 의한 톨루엔 산화법으로 평가한 광촉매능은 625ppm(분해율: 94%)이었다.The obtained coarse titanium oxide suspension (1) was diluted 3 times with pure water, and a hollow fiber type ultrafiltration membrane (brand name "FS03-FC-FUS03C1", material: PES, nominal molecular weight: 30,000, manufactured by Daisen Membrane Systems Co., Ltd. ), at room temperature (25° C.) and a filtration pressure of 0.02 MPa, while adding pure water in an amount equal to the amount of permeated liquid, a cross-flow method was performed. The concentrate obtained through the filtration treatment was circulated again to the input tank, and was repeatedly added to the filtration treatment until the pH of the permeate reached 4.0. In addition, pH was measured using a pH test paper. In the meantime, backwashing was performed for 1 minute at a pressure of 0.1 MPa and a flow rate of 2 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank. Thereafter, the addition of pure water was stopped and the titanium oxide concentration was concentrated to obtain a titanium oxide suspension (1-1). The titanium oxide suspension (1-1) was dried for 1 hour at 105°C under normal pressure, and rod-shaped rutile titanium oxide having a crystal plane (110) and a crystal plane (111), and a crystal plane (110), a crystal plane (111) and a crystal plane 525 g of titanium oxide (1), which is a mixture of rod-shaped rutile type titanium oxide having (001), was obtained (see Fig. 3). The photocatalytic ability of the obtained titanium oxide (1) evaluated by the toluene oxidation method using the following ultraviolet rays was 625 ppm (decomposition rate: 94%).

(철 화합물 담지 처리)(Iron compound supporting treatment)

상기에서 얻어진 산화티타늄 현탁액 (1-1)에 염화철 수용액(35중량%) 7.5g을 첨가하고, 실온(25℃)에서 30분 교반하였다. 그 후, 메탄올 95g(산화티타늄 현탁액의 1.7중량%)을 첨가하고, 100W의 고압 수은 램프를 사용하여 자외선(UV)을 3시간 조사하여(UV 조사량: 5mW/cm2), 거친 철 화합물 담지 산화티타늄 현탁액 (1)을 얻었다.To the titanium oxide suspension (1-1) obtained above, 7.5 g of an aqueous iron chloride solution (35% by weight) was added, followed by stirring at room temperature (25°C) for 30 minutes. Thereafter, 95 g of methanol (1.7% by weight of the titanium oxide suspension) was added, and ultraviolet (UV) was irradiated for 3 hours using a 100W high-pressure mercury lamp (UV irradiation amount: 5mW/cm 2 ), and coarse iron compound supported oxidation A titanium suspension (1) was obtained.

(크로스 플로우 방식에 의한 막 여과 처리 (2))(Membrane filtration treatment by cross flow method (2))

거친 철 화합물 담지 산화티타늄 현탁액 (1)을 순수로 3배로 희석하여, 중공사형 한외 여과막(상품명 「FS03-FC-FUS03C1」, 재질: PES, 공칭분화 분자량: 3만, 다이센·멤브레인·시스템즈(주)제)을 사용하여, 실온(25℃), 여과 압력 0.02MPa에서, 투과액량과 동일한 양의 순수를 첨가하면서 크로스 플로우 방식에 의한 여과 처리를 행하였다. 여과 처리를 거쳐서 얻어진 농축액은 다시 투입 탱크에 순환하고, 투과액의 전기 전도도가 200μS/cm가 될 때까지 반복적으로 여과 처리에 첨가하였다. 이 동안에, 1시간에 1회의 비율로 0.1MPa의 압력, 2kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다. 그 후, 순수의 투입을 중지하고, 철 화합물 담지 산화티타늄 농도를 농축시켜서, 철 화합물 담지 산화티타늄 현탁액 (1-1)(평균 입자 직경: 1000nm, 철 화합물 담지 산화티타늄 농도: 15중량%, 상청액의 전기 전도도: 200μS/cm, 상청액의 pH: 4.9)을 얻었다. 이 동안에, 1시간에 1회의 비율로 0.1MPa의 압력, 2kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다.A coarse iron compound-supported titanium oxide suspension (1) was diluted three times with pure water, and a hollow fiber type ultrafiltration membrane (brand name ``FS03-FC-FUS03C1'', material: PES, nominal molecular weight: 30,000, Daisen Membrane Systems Co., Ltd. ) Agent), at room temperature (25°C) and a filtration pressure of 0.02 MPa, while adding pure water in an amount equal to the amount of permeated liquid, filtration was performed by a cross flow method. The concentrate obtained through the filtration treatment was circulated again in the input tank, and repeatedly added to the filtration treatment until the electrical conductivity of the permeated liquid became 200 µS/cm. In the meantime, backwashing was performed for 1 minute at a pressure of 0.1 MPa and a flow rate of 2 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank. Thereafter, the addition of pure water was stopped, the iron compound-supported titanium oxide concentration was concentrated, and the iron compound-supported titanium oxide suspension (1-1) (average particle diameter: 1000 nm, iron compound-supported titanium oxide concentration: 15% by weight, supernatant Electrical conductivity of: 200 μS/cm, pH of the supernatant: 4.9) was obtained. In the meantime, backwashing was performed for 1 minute at a pressure of 0.1 MPa and a flow rate of 2 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank.

그 후, 상압 하, 105℃에서 1시간 건조하여, 철 화합물 담지 산화티타늄 (1)(비표면적: 77m2/g, 평균 종횡비: 6)을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (1)의 철 화합물의 함유량은 800ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법에 의해 평가한 광촉매능은 734ppm이었다. 또한, 얻어진 철 화합물 담지 산화티타늄 (1)은, 결정면 (110) 및 결정면 (111)을 갖고, 상기 결정면 (111)에만 철 화합물이 담지된 로드상 루틸형 산화티타늄과, 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖고, 상기 결정면 (001) 및 결정면 (111)에 철 화합물이 담지된 로드상 루틸형 산화티타늄의 혼합물이었다.Then, it dried at 105 degreeC for 1 hour under normal pressure, and obtained the iron compound-supported titanium oxide (1) (specific surface area: 77 m 2 /g, average aspect ratio: 6). The content of the iron compound in the obtained iron compound-supported titanium oxide (1) was 800 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 734 ppm. In addition, the obtained iron compound-supported titanium oxide (1) has a crystal plane (110) and a crystal plane (111), and a rod-shaped rutile type titanium oxide in which an iron compound is supported only on the crystal plane (111), a crystal plane (110), and a crystal plane It was a mixture of rod-like rutile type titanium oxide having (111) and crystal plane (001), and carrying an iron compound on the crystal plane (001) and crystal plane (111).

실시예 2Example 2

(거친 산화티타늄 현탁액의 제조)(Preparation of coarse titanium oxide suspension)

실온(25℃)에서, 사염화티타늄 수용액(Ti 농도: 16.5중량%±0.5중량%, 염소 이온 농도: 31중량%±2중량%, 도호티타늄(주)제)을 Ti 농도가 5.6중량%가 되도록 순수로 희석하였다. 희석 후의 사염화티타늄 수용액 5650g을 용량 10L의 탄탈륨라이닝의 오토클레이브에 넣고 밀폐하였다. 열매를 사용하여, 2시간에 걸쳐서 상기 오토클레이브 내의 온도를 140℃까지 승온하였다. 그 후, 교반 소요 동력(Pv값) 220W/m3로 교반하면서, 온도: 140℃, 압력: 그 온도에서의 증기압의 조건 하에서 10시간 유지한 후, 열매를 냉각함으로써 오토클레이브를 냉각하였다. 오토클레이브 내의 온도가 40℃ 이하가 된 것을 확인하여, 거친 산화티타늄 현탁액 (2) 5650g을 취출하였다.At room temperature (25°C), a titanium tetrachloride aqueous solution (Ti concentration: 16.5% by weight±0.5% by weight, chlorine ion concentration: 31% by weight±2% by weight, manufactured by Doho Titanium Co., Ltd.) is added so that the Ti concentration becomes 5.6% by weight. It was diluted with pure water. 5650 g of the diluted titanium tetrachloride aqueous solution was placed in a 10 L tantalum lined autoclave and sealed. Using the heat medium, the temperature in the autoclave was raised to 140°C over 2 hours. Then, the autoclave was cooled by cooling the heat medium after holding for 10 hours under conditions of temperature: 140°C and pressure: vapor pressure at that temperature while stirring at 220 W/m 3 of power required for stirring (Pv value). It was confirmed that the temperature in the autoclave became 40°C or less, and 5650 g of the coarse titanium oxide suspension (2) was taken out.

(크로스 플로우 방식에 의한 막 여과 처리 (1))(Membrane filtration treatment by cross flow method (1))

얻어진 거친 산화티타늄 현탁액 (2)를 순수로 3배로 희석하여, 중공사형 한외 여과막(상품명 「FS03-FC-FUS03C1」, 재질: PES, 공칭분화 분자량: 3만, 다이센·멤브레인·시스템즈(주)제)을 사용하여, 실온(25℃), 여과 압력 0.02MPa에서, 투과액량과 동일한 양의 순수를 첨가하면서 크로스 플로우 방식에 의한 여과 처리를 행하였다. 여과 처리를 거쳐서 얻어진 농축액은 다시 투입 탱크에 순환하고, 투과액의 pH가 4.0이 될 때까지 반복적으로 여과 처리에 첨가하였다. 이 동안에, 1시간에 1회의 비율로 0.1MPa의 압력, 2kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다. 그 후, 순수의 투입을 중지하고, 산화티타늄 농도를 농축시켜서 산화티타늄 현탁액 (2-1)을 얻었다. 산화티타늄 현탁액 (2-1)을 상압 하, 105℃에서 1시간 건조한 바, 결정면 (110) 및 결정면 (111)을 갖는 로드상 루틸형 산화티타늄과, 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 로드상 루틸형 산화티타늄의 혼합물인 산화티타늄 (2) 533g을 얻었다. 얻어진 산화티타늄 (2)의 하기 자외선에 의한 톨루엔 산화법으로 평가한 광촉매능은 647ppm(분해율: 95%)이었다.The obtained coarse titanium oxide suspension (2) was diluted 3 times with pure water, and a hollow fiber type ultrafiltration membrane (brand name "FS03-FC-FUS03C1", material: PES, nominal molecular weight: 30,000, manufactured by Daisen Membrane Systems Co., Ltd. ), at room temperature (25° C.) and a filtration pressure of 0.02 MPa, while adding pure water in an amount equal to the amount of permeated liquid, a cross-flow method was performed. The concentrate obtained through the filtration treatment was circulated again in the input tank, and was repeatedly added to the filtration treatment until the pH of the permeate reached 4.0. In the meantime, backwashing was performed for 1 minute at a pressure of 0.1 MPa and a flow rate of 2 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank. After that, the addition of pure water was stopped and the titanium oxide concentration was concentrated to obtain a titanium oxide suspension (2-1). A titanium oxide suspension (2-1) was dried for 1 hour at 105°C under normal pressure, and rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111), and a crystal face (110), a crystal face (111) and a crystal face 533 g of titanium oxide (2), which is a mixture of rod-like rutile type titanium oxide having (001), was obtained. The photocatalytic ability of the obtained titanium oxide (2) evaluated by the toluene oxidation method by the following ultraviolet rays was 647 ppm (decomposition rate: 95%).

(철 화합물 담지 처리)(Iron compound supporting treatment)

상기에서 얻어진 산화티타늄 현탁액 (2-1)에 염화철 수용액(35중량%) 7.5g을 첨가하고, 실온(25℃)에서 30분 교반하였다. 그 후, 메탄올 95g(산화티타늄 현탁액의 1.7중량%)을 첨가하고, 100W의 고압 수은 램프를 사용하여 자외선(UV)을 3시간 조사하여(UV 조사량: 5mW/cm2), 거친 철 화합물 담지 산화티타늄 현탁액 (2)를 얻었다.7.5 g of an aqueous iron chloride solution (35% by weight) was added to the titanium oxide suspension (2-1) obtained above, followed by stirring at room temperature (25°C) for 30 minutes. Thereafter, 95 g of methanol (1.7% by weight of the titanium oxide suspension) was added, and ultraviolet (UV) was irradiated for 3 hours using a 100W high-pressure mercury lamp (UV irradiation amount: 5mW/cm 2 ), and coarse iron compound supported oxidation A titanium suspension (2) was obtained.

(크로스 플로우 방식에 의한 막 여과 처리 (2))(Membrane filtration treatment by cross flow method (2))

거친 철 화합물 담지 산화티타늄 현탁액 (2)를 순수로 2배로 희석하여, 중공사형 한외 여과막(상품명 「FS03-FC-FUS03C1」, 재질: PES, 공칭분화 분자량: 3만, 다이센·멤브레인·시스템즈(주)제)을 사용하여, 실온(25℃), 여과 압력 0.02MPa에서, 투과액량과 동일한 양의 순수를 첨가하면서 크로스 플로우 방식에 의한 여과 처리를 행하였다. 여과 처리를 거쳐서 얻어진 농축액은 다시 투입 탱크에 순환하고, 투과액의 전기 전도도가 200μS/cm가 될 때까지 반복적으로 여과 처리에 첨가하였다. 이 동안에, 1시간에 1회의 비율로 0.1MPa의 압력, 2kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다. 그 후, 순수의 투입을 중지하고, 철 화합물 담지 산화티타늄 농도를 농축시켜서 철 화합물 담지 산화티타늄 현탁액 (2-1)(평균 입자 직경: 880nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 200μS/cm, 상청액의 pH: 4.9, 점도(22.5℃에서의): 7mpa·s)을 얻었다. 이 동안에, 1시간에 1회의 비율로 0.1MPa의 압력, 2kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다.A coarse iron compound-supported titanium oxide suspension (2) was diluted twice with pure water, and a hollow fiber type ultrafiltration membrane (brand name ``FS03-FC-FUS03C1'', material: PES, nominal molecular weight: 30,000, Daisen Membrane Systems Co., Ltd. ) Agent), at room temperature (25°C) and a filtration pressure of 0.02 MPa, while adding pure water in an amount equal to the amount of permeated liquid, filtration was performed by a cross flow method. The concentrate obtained through the filtration treatment was circulated again in the input tank, and repeatedly added to the filtration treatment until the electrical conductivity of the permeated liquid became 200 µS/cm. In the meantime, backwashing was performed for 1 minute at a pressure of 0.1 MPa and a flow rate of 2 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank. Thereafter, the addition of pure water was stopped, the iron compound-supported titanium oxide concentration was concentrated, and the iron compound-supported titanium oxide suspension (2-1) (average particle diameter: 880 nm, the iron compound-supported titanium oxide concentration: 10% by weight, the supernatant Electrical conductivity: 200 μS/cm, pH of the supernatant liquid: 4.9, viscosity (at 22.5° C.): 7 mpa·s) were obtained. In the meantime, backwashing was performed for 1 minute at a pressure of 0.1 MPa and a flow rate of 2 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank.

그 후, 상압 하, 105℃에서 1시간 건조하여, 결정성의 철 화합물 담지 산화티타늄 (2)(비표면적: 78m2/g, 평균 종횡비: 3) 530g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (2)의 철 화합물의 함유량은 830ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 775ppm이었다. Then, it dried at 105 degreeC for 1 hour under normal pressure, and obtained 530 g of crystalline iron compound-supported titanium oxide (2) (specific surface area: 78 m 2 /g, average aspect ratio: 3). The content of the iron compound in the obtained iron compound-supported titanium oxide (2) was 830 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 775 ppm.

실시예 3Example 3

상기 (크로스 플로우 방식에 의한 여과 처리 (2))에 있어서, 투과액의 전기 전도도가 150μS/cm가 될 때까지 반복한 것 이외는 실시예 2와 마찬가지로 하여, 철 화합물 담지 산화티타늄 현탁액 (3-1)(평균 입자 직경: 550nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 150μS/cm, 상청액의 pH: 4.9, 점도(22.5℃에서의): 6.9mPa·s)을 얻고, 결정성의 철 화합물 담지 산화티타늄 (3)(비표면적: 78.5m2/g, 평균 종횡비: 3) 530g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (3)의 철 화합물의 함유량은 890ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 795ppm이었다.In the same manner as in Example 2, except that in the above (filtration treatment (2) by the cross-flow method), the permeate was repeated until the electrical conductivity of the permeate became 150 μS/cm, the iron compound-supported titanium oxide suspension (3- 1) (average particle diameter: 550 nm, iron compound supported titanium oxide concentration: 10% by weight, electrical conductivity of the supernatant: 150 μS/cm, pH of the supernatant: 4.9, viscosity (at 22.5°C): 6.9 mPa·s) to obtain , 530 g of crystalline iron compound-supported titanium oxide (3) (specific surface area: 78.5 m 2 /g, average aspect ratio: 3). The content of the iron compound in the obtained iron compound-supported titanium oxide (3) was 890 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 795 ppm.

실시예 4Example 4

상기 (크로스 플로우 방식에 의한 여과 처리 (2))에 있어서, 투과액의 전기 전도도가 100μS/cm가 될 때까지 반복한 것 이외는 실시예 2와 마찬가지로 하여, 철 화합물 담지 산화티타늄 현탁액 (4-1)(평균 입자 직경: 400nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 100μS/cm, 상청액의 pH: 5.2, 점도(22.5℃에서의): 6.8mPa·s)을 얻고, 결정성의 철 화합물 담지 산화티타늄 (4)(비표면적: 79m2/g, 평균 종횡비: 3) 530g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (4)의 철 화합물의 함유량은 950ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 800ppm이었다.In the same manner as in Example 2, except that in the above (filtration treatment (2) by the cross-flow method), the permeate was repeated until the electrical conductivity of the permeate reached 100 μS/cm, the iron compound-supported titanium oxide suspension (4- 1) (Average particle diameter: 400 nm, iron compound supported titanium oxide concentration: 10% by weight, electrical conductivity of the supernatant: 100 μS/cm, pH of the supernatant: 5.2, viscosity (at 22.5°C): 6.8 mPa·s) to obtain , 530 g of crystalline iron compound-supported titanium oxide (4) (specific surface area: 79 m 2 /g, average aspect ratio: 3). The content of the iron compound in the obtained iron compound-supported titanium oxide (4) was 950 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 800 ppm.

실시예 5Example 5

상기 (크로스 플로우 방식에 의한 여과 처리 (2))에 있어서, 투과액의 전기 전도도가 50μS/cm가 될 때까지 반복한 것 이외는 실시예 2와 마찬가지로 하여, 철 화합물 담지 산화티타늄 현탁액 (5-1)(평균 입자 직경: 300nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 50μS/cm, 상청액의 pH: 5.2, 점도(22.5℃에서의): 6.6mPa·s)을 얻고, 결정성의 철 화합물 담지 산화티타늄 (5)(비표면적: 80m2/g, 평균 종횡비: 3) 530g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (5)의 철 화합물의 함유량은 1200ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 800ppm이었다.In the same manner as in Example 2, except that in the above (filtration treatment (2) by the cross-flow method), the electrical conductivity of the permeate was repeated until 50 μS/cm, the iron compound-supported titanium oxide suspension (5- 1) (average particle diameter: 300 nm, iron compound supported titanium oxide concentration: 10% by weight, electrical conductivity of the supernatant: 50 μS/cm, pH of the supernatant: 5.2, viscosity (at 22.5°C): 6.6 mPa·s) to obtain , 530 g of crystalline iron compound-supported titanium oxide (5) (specific surface area: 80 m 2 /g, average aspect ratio: 3). The content of the iron compound in the obtained iron compound-supported titanium oxide (5) was 1200 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 800 ppm.

실시예 6Example 6

상기 (철 화합물 담지 처리)에 있어서, 염화철 수용액(35중량%)의 사용량을 7.5g에서 6.5g으로 변경한 것 이외는 실시예 2와 마찬가지로 하여, 거친 철 화합물 담지 산화티타늄 현탁액 (6)을 얻고, 철 화합물 담지 산화티타늄 현탁액 (6-1)(평균 입자 직경: 840nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 200μS/cm, 상청액의 pH: 4.9)을 얻고, 결정성의 철 화합물 담지 산화티타늄 (6)(비표면적: 76m2/g, 평균 종횡비: 3) 530g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (6)의 철 화합물의 함유량은 700ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 780ppm이었다.In the above (iron compound supporting treatment), a rough iron compound-supporting titanium oxide suspension (6) was obtained in the same manner as in Example 2 except that the amount of iron chloride aqueous solution (35% by weight) was changed from 7.5 g to 6.5 g. , Iron compound supported titanium oxide suspension (6-1) (average particle diameter: 840 nm, iron compound supported titanium oxide concentration: 10% by weight, electrical conductivity of the supernatant: 200 μS/cm, pH of the supernatant: 4.9) was obtained, Iron compound supported titanium oxide (6) (specific surface area: 76 m 2 /g, average aspect ratio: 3) 530 g was obtained. The content of the iron compound in the obtained iron compound-supported titanium oxide (6) was 700 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 780 ppm.

실시예 7Example 7

상기 (철 화합물 담지 처리)에 있어서, 염화철 수용액(35중량%)의 사용량을 7.5g에서 15.0g으로 변경한 것 이외는 실시예 2와 마찬가지로 하여, 거친 철 화합물 담지 산화티타늄 현탁액 (7)을 얻고, 철 화합물 담지 산화티타늄 현탁액 (7-1)(평균 입자 직경: 940nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 200μS/cm, 상청액의 pH: 4.9, 점도(22.5℃에서의): 7.4mPa·s)을 얻고, 결정성의 철 화합물 담지 산화티타늄 (7)(비표면적: 80m2/g, 평균 종횡비: 3) 530g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (7)의 철 화합물의 함유량은 2000ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 753ppm이었다.In the above (iron compound supporting treatment), a rough iron compound-supporting titanium oxide suspension (7) was obtained in the same manner as in Example 2 except that the amount of iron chloride aqueous solution (35% by weight) was changed from 7.5 g to 15.0 g. , Iron compound supported titanium oxide suspension (7-1) (average particle diameter: 940 nm, iron compound supported titanium oxide concentration: 10% by weight, electrical conductivity of the supernatant: 200 μS/cm, pH of the supernatant: 4.9, viscosity (at 22.5°C) ): 7.4 mPa·s) was obtained, and 530 g of crystalline iron compound-supported titanium oxide (7) (specific surface area: 80 m 2 /g, average aspect ratio: 3) was obtained. The content of the iron compound in the obtained iron compound-supported titanium oxide (7) was 2000 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 753 ppm.

실시예 8Example 8

상기 (거친 산화티타늄 현탁액의 제조)에 있어서, 반응 온도(오토클레이브 내의 온도)를 140℃에서 120℃로 변경한 것 이외는 실시예 2와 마찬가지로 하여, 거친 산화티타늄 현탁액 (8)을 얻고, 얻어진 거친 산화티타늄 현탁액 (8)에 대해서, 실시예 2와 마찬가지로 상기 (크로스 플로우 방식에 의한 막 여과 처리 (1))을 실시한 바, 산화티타늄 현탁액 (8-1)을 얻고, 결정면 (110) 및 결정면 (111)을 갖는 로드상 루틸형 산화티타늄과, 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 로드상 루틸형 산화티타늄의 혼합물인 산화티타늄 (8) 530g을 얻었다. 얻어진 산화티타늄 (8)의 하기 자외선에 의한 톨루엔 산화법으로 평가한 광촉매능은 600ppm(CO2 발생률: 90%)이었다.In the above (preparation of coarse titanium oxide suspension), a coarse titanium oxide suspension (8) was obtained, except that the reaction temperature (temperature in the autoclave) was changed from 140° C. to 120° C. The coarse titanium oxide suspension (8) was subjected to the above (membrane filtration treatment (1) by the cross-flow method) in the same manner as in Example 2 to obtain a titanium oxide suspension (8-1), and a crystal plane (110) and a crystal plane 530 g of titanium oxide (8), which is a mixture of rod-shaped rutile type titanium oxide having (111), and rod-shaped rutile type titanium oxide having crystal plane (110), crystal plane (111), and crystal plane (001), were obtained. The photocatalytic ability of the obtained titanium oxide (8) evaluated by the toluene oxidation method by the following ultraviolet rays was 600 ppm (CO 2 generation rate: 90%).

그 후, 실시예 2와 마찬가지로 (철 화합물 담지 처리), (크로스 플로우 방식에 의한 막 여과 처리 (2))를 실시하여, 거친 철 화합물 담지 산화티타늄 현탁액 (8)을 얻고, 철 화합물 담지 산화티타늄 현탁액 (8-1)(평균 입자 직경: 800nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 200μS/cm, 상청액의 pH: 5.2)을 얻고, 결정성의 철 화합물 담지 산화티타늄 (8)(비표면적: 85m2/g, 평균 종횡비: 2)을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (8)의 철 화합물의 함유량은 780ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 691ppm이었다.Thereafter, in the same manner as in Example 2, (iron compound-supporting treatment) and (membrane filtration treatment (2) by cross-flow method) were performed to obtain a coarse iron compound-supported titanium oxide suspension (8), and an iron compound-supported titanium oxide A suspension (8-1) (average particle diameter: 800 nm, iron compound-supported titanium oxide concentration: 10% by weight, supernatant electrical conductivity: 200 μS/cm, supernatant pH: 5.2) was obtained, and crystalline iron compound-supported titanium oxide ( 8) (specific surface area: 85 m 2 /g, average aspect ratio: 2) was obtained. The content of the iron compound in the obtained iron compound-supported titanium oxide (8) was 780 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 691 ppm.

실시예 9Example 9

상기 (거친 산화티타늄 현탁액의 제조)에 있어서, 반응 온도(오토클레이브 내의 온도)를 140℃에서 160℃로 변경한 것 이외는 실시예 2와 마찬가지로 하여, 거친 산화티타늄 현탁액 (9)를 얻고, 얻어진 거친 산화티타늄 현탁액 (9)에 대해서, 실시예 2와 마찬가지로 상기 (크로스 플로우 방식에 의한 막 여과 처리 (1))을 실시한 바, 산화티타늄 현탁액 (9-1)을 얻고, 결정면 (110) 및 결정면 (111)을 갖는 로드상 루틸형 산화티타늄과, 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 로드상 루틸형 산화티타늄의 혼합물인 산화티타늄 (9) 530g을 얻었다. 얻어진 산화티타늄 (9)의 하기 자외선에 의한 톨루엔 산화법으로 평가한 광촉매능은 645ppm(분해율: 95%)이었다.In the above (preparation of coarse titanium oxide suspension), a coarse titanium oxide suspension (9) was obtained, except that the reaction temperature (temperature in the autoclave) was changed from 140° C. to 160° C. The coarse titanium oxide suspension (9) was subjected to the above (membrane filtration treatment (1) by the cross flow method) in the same manner as in Example 2 to obtain a titanium oxide suspension (9-1), and a crystal plane (110) and a crystal plane 530 g of titanium oxide (9), which is a mixture of rod-shaped rutile type titanium oxide having (111), and rod-shaped rutile type titanium oxide having crystal plane (110), crystal plane (111), and crystal plane (001), were obtained. The photocatalytic ability of the obtained titanium oxide (9) evaluated by the toluene oxidation method by the following ultraviolet rays was 645 ppm (decomposition rate: 95%).

그 후, 실시예 2와 마찬가지로 (철 화합물 담지 처리), (크로스 플로우 방식에 의한 막 여과 처리 (2))를 실시하여, 거친 철 화합물 담지 산화티타늄 현탁액 (9)를 얻고, 철 화합물 담지 산화티타늄 현탁액 (9-1)(평균 입자 직경: 1000nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 200μS/cm, 상청액의 pH: 5.2)을 얻고, 결정성의 철 화합물 담지 산화티타늄 (9)(비표면적: 55m2/g, 평균 종횡비: 12)를 얻었다. 얻어진 철 화합물 담지 산화티타늄 (9)의 철 화합물의 함유량은 820ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 727ppm이었다.Thereafter, in the same manner as in Example 2, (iron compound-supporting treatment) and (membrane filtration treatment (2) by a cross-flow method) were performed to obtain a coarse iron compound-supported titanium oxide suspension (9), and an iron compound-supported titanium oxide A suspension (9-1) (average particle diameter: 1000 nm, iron compound supported titanium oxide concentration: 10% by weight, supernatant electrical conductivity: 200 μS/cm, supernatant pH: 5.2) was obtained, and crystalline iron compound supported titanium oxide ( 9) (specific surface area: 55 m 2 /g, average aspect ratio: 12) was obtained. The content of the iron compound in the obtained iron compound-supported titanium oxide (9) was 820 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 727 ppm.

실시예 10Example 10

(거친 산화티타늄 현탁액의 제조)(Preparation of coarse titanium oxide suspension)

실온(25℃)에서, 사염화티타늄 수용액(Ti 농도: 16.5중량%±0.5중량%, 염소 이온 농도: 31중량%±2중량%, 도호티타늄(주)제)을 Ti 농도가 5.6중량%가 되도록 순수로 희석하였다. 희석 후의 사염화티타늄 수용액 5650g을 용량 10L의 탄탈륨라이닝의 오토클레이브에 넣고 밀폐하였다. 열매를 사용하여, 2시간에 걸쳐서 상기 오토클레이브 내의 온도를 140℃까지 승온하였다. 그 후, 교반 소요 동력(Pv값) 13W/m3로 교반하면서, 온도: 140℃, 압력: 그 온도에서의 증기압의 조건 하에서 10시간 유지한 후, 열매를 냉각함으로써 오토클레이브를 냉각하였다. 오토클레이브 내의 온도가 40℃ 이하가 된 것을 확인하여, 거친 산화티타늄 현탁액 (10) 5650g을 취출하였다.At room temperature (25°C), a titanium tetrachloride aqueous solution (Ti concentration: 16.5% by weight±0.5% by weight, chlorine ion concentration: 31% by weight±2% by weight, manufactured by Doho Titanium Co., Ltd.) is added so that the Ti concentration becomes 5.6% by weight. It was diluted with pure water. 5650 g of the diluted titanium tetrachloride aqueous solution was placed in a 10 L tantalum lined autoclave and sealed. Using the heat medium, the temperature in the autoclave was raised to 140°C over 2 hours. Then, the autoclave was cooled by cooling the heat medium after holding for 10 hours under the conditions of temperature: 140°C and pressure: vapor pressure at that temperature while stirring at 13 W/m 3 of stirring required power (Pv value). It was confirmed that the temperature in the autoclave became 40°C or less, and 5650 g of the coarse titanium oxide suspension (10) was taken out.

(크로스 플로우 방식에 의한 막 여과 처리 (1))(Membrane filtration treatment by cross flow method (1))

얻어진 거친 산화티타늄 현탁액 (10)을 순수로 희석하지 않고, 중공사형 한외 여과막(상품명 「FS03-FC-FUS03C1」, 재질: PES, 공칭분화 분자량: 3만, 다이센·멤브레인·시스템즈(주)제)을 사용하여, 실온(25℃), 여과 압력 0.02MPa에서, 투과액량과 동일한 양의 순수를 첨가하면서 크로스 플로우 방식에 의한 여과 처리를 행하였다. 여과 처리를 거쳐서 얻어진 농축액은 다시 투입 탱크에 순환하고, 투과액의 pH가 4.0이 될 때까지 반복적으로 여과 처리에 첨가하였다. 이 동안에, 1시간에 1회의 비율로 0.1MPa의 압력, 2kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다. 이에 의해, 산화티타늄 현탁액 (10-1) 5650g을 얻었다. 산화티타늄 현탁액 (10-1)을 상압 하, 105℃에서 1시간 건조한 바, 결정면 (110) 및 결정면 (111)을 갖는 로드상 루틸형 산화티타늄과, 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 로드상 루틸형 산화티타늄의 혼합물인 산화티타늄 (10)을 얻었다. 얻어진 산화티타늄 (10)의 하기 자외선에 의한 톨루엔 산화법으로 평가한 광촉매능은 647ppm(분해율: 95%)이었다.Without diluting the obtained coarse titanium oxide suspension (10) with pure water, a hollow fiber type ultrafiltration membrane (brand name "FS03-FC-FUS03C1", material: PES, nominal molecular weight: 30,000, manufactured by Daisen Membrane Systems Co., Ltd.) Using, at room temperature (25°C) and a filtration pressure of 0.02 MPa, filtration treatment by a cross-flow method was performed while adding pure water in an amount equal to the amount of permeate. The concentrate obtained through the filtration treatment was circulated again in the input tank, and was repeatedly added to the filtration treatment until the pH of the permeate reached 4.0. In the meantime, backwashing was performed for 1 minute at a pressure of 0.1 MPa and a flow rate of 2 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank. Thereby, 5650 g of a titanium oxide suspension (10-1) was obtained. A titanium oxide suspension (10-1) was dried at 105°C for 1 hour under normal pressure, and rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111), and a crystal face (110), a crystal face (111) and a crystal face Titanium oxide (10), which is a mixture of rod-shaped rutile type titanium oxide having (001), was obtained. The photocatalytic ability of the obtained titanium oxide (10) evaluated by the toluene oxidation method by the following ultraviolet rays was 647 ppm (decomposition rate: 95%).

(철 화합물 담지 처리)(Iron compound supporting treatment)

상기에서 얻어진 산화티타늄 현탁액 (10-1)에 염화철 수용액(35중량%) 7.5g을 첨가하고, 실온(25℃)에서 30분 교반하였다. 그 후, 메탄올 95g(산화티타늄 현탁액의 1.7중량%)을 첨가하고, 100W의 고압 수은 램프를 사용하여 자외선(UV)을 3시간 조사하여(UV 조사량: 5mW/cm2), 거친 철 화합물 담지 산화티타늄 현탁액 (10)을 얻었다.To the titanium oxide suspension (10-1) obtained above, 7.5 g of an aqueous iron chloride solution (35% by weight) was added, and the mixture was stirred at room temperature (25°C) for 30 minutes. Thereafter, 95 g of methanol (1.7% by weight of the titanium oxide suspension) was added, and ultraviolet (UV) was irradiated for 3 hours using a 100W high-pressure mercury lamp (UV irradiation amount: 5mW/cm 2 ), and coarse iron compound supported oxidation A titanium suspension (10) was obtained.

(크로스 플로우 방식에 의한 막 여과 처리 (2))(Membrane filtration treatment by cross flow method (2))

거친 철 화합물 담지 산화티타늄 현탁액 (10)을 순수로 희석하지 않고, 중공사형 한외 여과막(상품명 「FS03-FC-FUS03C1」, 재질: PES, 공칭분화 분자량: 3만, 다이센·멤브레인·시스템즈(주)제)을 사용하여, 실온(25℃), 여과 압력 0.02MPa에서, 투과액량과 동일한 양의 순수를 첨가하면서 크로스 플로우 방식에 의한 여과 처리를 행하였다. 여과 처리를 거쳐서 얻어진 농축액은 다시 투입 탱크에 순환하고, 투과액의 전기 전도도가 200μS/cm가 될 때까지 반복적으로 여과 처리에 첨가하였다. 이 동안에, 1시간에 1회의 비율로 0.1MPa의 압력, 2kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다. 이에 의해, 철 화합물 담지 산화티타늄 현탁액 (10-1)(평균 입자 직경: 920nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 200μS/cm, 상청액의 pH: 4.9)을 얻었다.Hollow fiber type ultrafiltration membrane (brand name ``FS03-FC-FUS03C1'', material: PES, nominal molecular weight: 30,000, Daisen Membrane Systems Co., Ltd.) without diluting the coarse iron compound-supported titanium oxide suspension (10) with pure water Agent), at room temperature (25°C) and a filtration pressure of 0.02 MPa, filtration treatment by a cross-flow method was performed while adding pure water in an amount equal to the amount of permeate. The concentrate obtained through the filtration treatment was circulated again in the input tank, and repeatedly added to the filtration treatment until the electrical conductivity of the permeated liquid became 200 µS/cm. In the meantime, backwashing was performed for 1 minute at a pressure of 0.1 MPa and a flow rate of 2 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank. Thereby, an iron compound-supported titanium oxide suspension (10-1) (average particle diameter: 920 nm, iron compound-supported titanium oxide concentration: 10% by weight, electrical conductivity of the supernatant: 200 μS/cm, and pH of the supernatant: 4.9) was obtained.

그 후, 상압 하, 105℃에서 1시간 건조하여, 결정성의 철 화합물 담지 산화티타늄 (10)(비표면적: 76m2/g, 평균 종횡비: 5) 530g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (10)의 철 화합물의 함유량은 820ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 778ppm이었다.Then, it dried at 105 degreeC for 1 hour under normal pressure, and obtained 530 g of crystalline iron compound-supported titanium oxide (10) (specific surface area: 76 m 2 /g, average aspect ratio: 5). The content of the iron compound in the obtained iron compound-supported titanium oxide (10) was 820 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 778 ppm.

실시예 11Example 11

(거친 산화티타늄 현탁액의 제조)(Preparation of coarse titanium oxide suspension)

실온(25℃)에서, 사염화티타늄 수용액(Ti 농도: 16.5중량%±0.5중량%, 염소 이온 농도: 31중량%±2중량%, 도호티타늄(주)제)을 Ti 농도가 5.6중량%가 되도록 순수로 희석하였다. 희석 후의 사염화티타늄 수용액 560g을 용량 1L의 탄탈륨라이닝의 오토클레이브에 넣고 밀폐하였다. 열매를 사용하여, 2시간에 걸쳐서 상기 오토클레이브 내의 온도를 140℃까지 승온하였다. 그 후, 교반 소요 동력(Pv값) 13W/m3로 교반하면서, 온도: 140℃, 압력: 그 온도에서의 증기압의 조건 하에서 10시간 유지한 후, 열매를 냉각함으로써 오토클레이브를 냉각하였다. 오토클레이브 내의 온도가 40℃ 이하가 된 것을 확인하여, 거친 산화티타늄 현탁액 (11) 560g을 취출하였다.At room temperature (25°C), a titanium tetrachloride aqueous solution (Ti concentration: 16.5% by weight±0.5% by weight, chlorine ion concentration: 31% by weight±2% by weight, manufactured by Doho Titanium Co., Ltd.) is added so that the Ti concentration becomes 5.6% by weight. It was diluted with pure water. 560 g of the diluted titanium tetrachloride aqueous solution was put in a 1 L tantalum lined autoclave and sealed. Using the heat medium, the temperature in the autoclave was raised to 140°C over 2 hours. Then, the autoclave was cooled by cooling the heat medium after holding for 10 hours under the conditions of temperature: 140°C and pressure: vapor pressure at that temperature while stirring at 13 W/m 3 of stirring required power (Pv value). It was confirmed that the temperature in the autoclave became 40°C or less, and 560 g of the coarse titanium oxide suspension (11) was taken out.

(크로스 플로우 방식에 의한 막 여과 처리 (1))(Membrane filtration treatment by cross flow method (1))

얻어진 거친 산화티타늄 현탁액 (11)을 순수로 10배로 희석하여, 중공사형 한외 여과막(상품명 「FS03-FC-FUS03C1」, 재질: PES, 공칭분화 분자량: 3만, 다이센·멤브레인·시스템즈(주)제)을 사용하여, 실온(25℃), 여과 압력 0.05MPa에서, 투과액량과 동일한 양의 순수를 첨가하면서 크로스 플로우 방식에 의한 여과 처리를 행하였다. 여과 처리를 거쳐서 얻어진 농축액은 다시 투입 탱크에 순환하고, 투과액의 pH가 2.9가 될 때까지 반복적으로 여과 처리에 첨가하였다. 그 후, 순수의 투입을 중지하고, 산화티타늄 농도를 농축시켜서 산화티타늄 현탁액 (11-1)을 얻었다. 이 동안에, 1시간에 1회의 비율로 0.15MPa의 압력, 0.1kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다. 산화티타늄 현탁액 (11-1)을 감압 하, 60℃에서 15시간 건조한 바, 결정면 (110) 및 결정면 (111)을 갖는 로드상 루틸형 산화티타늄과, 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 로드상 루틸형 산화티타늄의 혼합물인 산화티타늄 (11)을 얻었다. 얻어진 산화티타늄 (11)의 하기 자외선에 의한 톨루엔 산화법으로 평가한 광촉매능은 617ppm(CO2 발생률: 93%)이었다.The obtained coarse titanium oxide suspension (11) was diluted 10 times with pure water, and a hollow fiber type ultrafiltration membrane (brand name "FS03-FC-FUS03C1", material: PES, nominal molecular weight: 30,000, manufactured by Daisen Membrane Systems Co., Ltd. ), at room temperature (25° C.) and a filtration pressure of 0.05 MPa, while adding pure water in an amount equal to the amount of the permeated liquid, was subjected to filtration by a cross flow method. The concentrate obtained through the filtration treatment was circulated again in the input tank, and was repeatedly added to the filtration treatment until the permeate had a pH of 2.9. After that, the addition of pure water was stopped and the titanium oxide concentration was concentrated to obtain a titanium oxide suspension (11-1). In the meantime, backwashing was performed for 1 minute at a pressure of 0.15 MPa and a flow rate of 0.1 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank. The titanium oxide suspension (11-1) was dried for 15 hours at 60°C under reduced pressure, and rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111), and a crystal face (110), a crystal face (111) and a crystal face Titanium oxide (11), which is a mixture of rod-like rutile type titanium oxide having (001), was obtained. The photocatalytic ability of the obtained titanium oxide (11) evaluated by the toluene oxidation method by the following ultraviolet rays was 617 ppm (CO 2 generation rate: 93%).

(철 화합물 담지 처리)(Iron compound supporting treatment)

상기에서 얻어진 산화티타늄 현탁액 (11-1)에 염화철 수용액(35중량%) 0.3g을 첨가하고, 실온(25℃)에서 30분 교반하였다. 그 후, 메탄올 9.6g(산화티타늄 현탁액의 1.7중량%)을 첨가하고, 100W의 고압 수은 램프를 사용하여 자외선(UV)을 3시간 조사하여(UV 조사량: 0.9mW/cm2), 거친 철 화합물 담지 산화티타늄 현탁액 (11)을 얻었다.To the titanium oxide suspension (11-1) obtained above, 0.3 g of an aqueous iron chloride solution (35% by weight) was added, followed by stirring at room temperature (25°C) for 30 minutes. Then, methanol 9.6g (1.7% by weight of the titanium oxide suspension) was added, and ultraviolet (UV) was irradiated for 3 hours using a 100W high-pressure mercury lamp (UV irradiation amount: 0.9 mW/cm 2 ), and a rough iron compound A supported titanium oxide suspension (11) was obtained.

(크로스 플로우 방식에 의한 막 여과 처리 (2))(Membrane filtration treatment by cross flow method (2))

거친 철 화합물 담지 산화티타늄 현탁액 (11)을 순수로 10배로 희석하여, 중공사형 한외 여과막(상품명 「FS03-FC-FUS03C1」, 재질: PES, 공칭분화 분자량: 3만, 다이센·멤브레인·시스템즈(주)제)을 사용하여, 실온(25℃), 여과 압력 0.05MPa에서, 투과액량과 동일한 양의 순수를 첨가하면서 크로스 플로우 방식에 의한 여과 처리를 행하였다. 여과 처리를 거쳐서 얻어진 농축액은 다시 투입 탱크에 순환하고, 투과액의 전기 전도도가 21μS/cm가 될 때까지 반복적으로 여과 처리에 첨가하였다. 그 후, 순수의 투입을 중지하고, 철 화합물 담지 산화티타늄 농도를 농축시켜서 철 화합물 담지 산화티타늄 현탁액 (11-1)(평균 입자 직경: 800nm, 철 화합물 담지 산화티타늄 농도: 5중량%, 상청액의 전기 전도도: 21μS/cm, 상청액의 pH: 5.2)을 얻었다. 이 동안에, 1시간에 1회의 비율로 0.15MPa의 압력, 0.1kg/min의 유속으로 1분간 역세정을 실시하였다. 이 역세정에 의해 막 통과된 세정수는 투입 탱크에 순환하였다.A coarse iron compound-supported titanium oxide suspension (11) was diluted 10-fold with pure water, and a hollow fiber type ultrafiltration membrane (brand name ``FS03-FC-FUS03C1'', material: PES, nominal molecular weight: 30,000, Daisen Membrane Systems Co., Ltd. ) Agent), at room temperature (25° C.) and a filtration pressure of 0.05 MPa, while adding pure water in an amount equal to the amount of permeated liquid, was subjected to filtration by a cross flow method. The concentrate obtained through the filtration treatment was circulated again in the input tank, and was repeatedly added to the filtration treatment until the electrical conductivity of the permeated liquid became 21 µS/cm. Thereafter, the addition of pure water was stopped, the iron compound-supported titanium oxide concentration was concentrated, and the iron compound-supported titanium oxide suspension (11-1) (average particle diameter: 800 nm, the iron compound-supported titanium oxide concentration: 5% by weight, the supernatant Electrical conductivity: 21 μS/cm, pH of the supernatant: 5.2) was obtained. In the meantime, backwashing was performed for 1 minute at a pressure of 0.15 MPa and a flow rate of 0.1 kg/min at a rate of once per hour. The washing water that had just passed by this backwash was circulated in the input tank.

그 후, 감압 하, 60℃에서 15시간 건조하여, 결정성의 철 화합물 담지 산화티타늄 (11)(비표면적: 71m2/g, 평균 종횡비: 9) 40g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (11)의 철 화합물의 함유량은 420ppm이었다. 또한, 하기 가시광에 의한 톨루엔 산화법으로 평가한 광촉매능은 416ppm이며, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 716ppm이었다.Then, it dried at 60 degreeC for 15 hours under reduced pressure, and obtained the crystalline iron compound-supported titanium oxide (11) (specific surface area: 71 m 2 /g, average aspect ratio: 9) 40 g. The content of the iron compound in the obtained iron compound-supported titanium oxide (11) was 420 ppm. In addition, the photocatalytic ability evaluated by the following visible light toluene oxidation method was 416 ppm, and the photocatalytic ability evaluated by the following visible light methanol oxidation method was 716 ppm.

비교예 1Comparative Example 1

실시예 11에서 얻어진 거친 산화티타늄 현탁액 (11)을 고속 원심 분리(20000G×60분간)하여, 상청액의 pH가 2.9가 될 때까지 고속 원심 분리하고, 상청액 발취, 순수 첨가, 물 분산의 반복에 의한 수세 처리를 실시하여 여과 찌꺼기 (12-1)을 얻었다. 얻어진 여과 찌꺼기를 물에 현탁시켜서, 평균 입자 직경이 800nm가 될 때까지 분쇄하여 산화티타늄 현탁액 (12-1)(산화티타늄 농도: 5중량%)을 얻었다.The coarse titanium oxide suspension (11) obtained in Example 11 was subjected to high-speed centrifugation (20000 G × 60 minutes), followed by high-speed centrifugation until the pH of the supernatant was 2.9, followed by extraction of the supernatant, addition of pure water, and water dispersion. Water washing treatment was performed to obtain a filter residue (12-1). The obtained filtration residue was suspended in water and pulverized until the average particle diameter became 800 nm, thereby obtaining a titanium oxide suspension (12-1) (titanium oxide concentration: 5% by weight).

(철 화합물 담지 처리)(Iron compound supporting treatment)

상기에서 얻어진 산화티타늄 현탁액 (12-1)에 염화철 수용액(35중량%) 0.3g을 첨가하고, 실온(25℃)에서 30분 교반하였다. 그 후, 메탄올 9.6g(산화티타늄 현탁액의 1.1중량%)을 첨가하고, 100W의 고압 수은 램프를 사용하여 자외선(UV)을 3시간 조사하여(UV 조사량: 0.9mW/cm2), 거친 철 화합물 담지 산화티타늄 현탁액 (12)를 얻었다.To the titanium oxide suspension (12-1) obtained above, 0.3 g of an aqueous iron chloride solution (35% by weight) was added, followed by stirring at room temperature (25°C) for 30 minutes. Then, methanol 9.6g (1.1% by weight of the titanium oxide suspension) was added, and ultraviolet (UV) was irradiated for 3 hours using a 100W high-pressure mercury lamp (UV irradiation amount: 0.9 mW/cm 2 ), and a rough iron compound A supported titanium oxide suspension (12) was obtained.

얻어진 거친 철 화합물 담지 산화티타늄 현탁액 (12)를, 다시 상기와 마찬가지로 고속 원심 분리하여, 상청액의 전기 전도도가 21μS/cm가 될 때까지 고속 원심 분리하고, 상청액 발취, 순수 첨가, 물 분산의 반복에 의한 수세 처리를 실시하여 여과 찌꺼기 (12-2)를 얻었다. 얻어진 여과 찌꺼기를 물에 현탁시켜서 평균 입자 직경이 800nm가 될 때까지 분쇄하여, 철 화합물 담지 산화티타늄 현탁액 (12-1)(평균 입자 직경: 800nm, 철 화합물 담지 산화티타늄 농도: 5중량%, 상청액의 전기 전도도: 21μS/cm, 상청액의 pH: 5.2)을 얻었다.The obtained coarse iron compound-supported titanium oxide suspension (12) was again centrifuged at high speed in the same manner as above, and then centrifuged at high speed until the electrical conductivity of the supernatant was 21 μS/cm, followed by extraction of the supernatant, addition of pure water, and repetition of water dispersion. Washing with water was performed to obtain a filter residue (12-2). The obtained filtrate was suspended in water and pulverized until the average particle diameter became 800 nm, and the iron compound supported titanium oxide suspension (12-1) (average particle diameter: 800 nm, iron compound supported titanium oxide concentration: 5% by weight, supernatant Electrical conductivity of: 21 μS/cm, pH of the supernatant: 5.2) was obtained.

그 후, 감압 하, 60℃에서 15시간 건조하여, 결정성의 철 화합물 담지 산화티타늄 (12)(비표면적: 220m2/g, 평균 종횡비: 1.3) 40g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (12)의 철 화합물의 함유량은 88ppm이었다. 또한, 하기 가시광에 의한 톨루엔 산화법으로 평가한 광촉매능은 459ppm이며, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 491ppm이었다.Then, it dried at 60 degreeC for 15 hours under reduced pressure, and obtained the crystalline iron compound-supported titanium oxide (12) (specific surface area: 220 m 2 /g, average aspect ratio: 1.3) 40 g. The content of the iron compound in the obtained iron compound-supported titanium oxide (12) was 88 ppm. In addition, the photocatalytic ability evaluated by the following visible light toluene oxidation method was 459 ppm, and the photocatalytic ability evaluated by the following visible light methanol oxidation method was 491 ppm.

비교예 2Comparative Example 2

상기 (크로스 플로우 방식에 의한 여과 처리 (2))에 있어서, 투과액의 전기 전도도가 700μS/cm가 될 때까지 반복한 것 이외는 실시예 2와 마찬가지로 하여, 철 화합물 담지 산화티타늄 현탁액 (13-1)(평균 입자 직경: 80000nm, 철 화합물 담지 산화티타늄 농도: 10중량%, 상청액의 전기 전도도: 700μS/cm, 상청액의 pH: 2.9)을 얻고, 결정성의 철 화합물 담지 산화티타늄 (13)(비표면적: 78m2/g, 평균 종횡비: 1.2) 530g을 얻었다. 얻어진 철 화합물 담지 산화티타늄 (13)의 철 화합물의 함유량은 20ppm이었다. 또한, 하기 가시광에 의한 메탄올 산화법으로 평가한 광촉매능은 300ppm이었다.In the same manner as in Example 2, except that in the above (filtration treatment (2) by the cross-flow method), the electrical conductivity of the permeate was 700 μS/cm, the iron compound-supported titanium oxide suspension (13- 1) (average particle diameter: 80000 nm, iron compound-supported titanium oxide concentration: 10% by weight, supernatant electrical conductivity: 700 μS/cm, supernatant pH: 2.9) was obtained, and crystalline iron compound-supported titanium oxide (13) (ratio Surface area: 78 m 2 /g, average aspect ratio: 1.2) 530 g was obtained. The content of the iron compound in the obtained iron compound-supported titanium oxide (13) was 20 ppm. In addition, the photocatalytic ability evaluated by the methanol oxidation method using the following visible light was 300 ppm.

<광촉매능의 평가 방법><Evaluation method of photocatalytic ability>

(가시광에 의한 톨루엔 산화법)(Toluene oxidation method by visible light)

실시예 및 비교예에서 얻어진 철 화합물 담지 산화티타늄을 광촉매로서 사용하여, 기상으로 톨루엔을 산화하고, 생성되는 CO2의 양을 측정함으로써 광촉매능을 평가하였다.Using the iron compound-supported titanium oxide obtained in Examples and Comparative Examples as a photocatalyst, toluene was oxidized in a gas phase, and the photocatalytic activity was evaluated by measuring the amount of CO 2 produced.

철 화합물 담지 산화티타늄 200mg을 유리제 접시에 펼쳐서 반응 용기(테드라백, 재질: 불화 비닐 수지) 안에 넣고, 100ppm의 톨루엔 가스 125mL를 반응 용기 내에 불어 넣었다. 톨루엔 가스의 철 화합물 담지 산화티타늄에의 흡착이 평형에 달한 후, 실온(25℃)에서 광 조사(LED, 광 강도: 2.5mW/cm2, 광의 파장: 455nm)를 행하였다. 광 조사 개시부터 24시간 후의 CO2의 생성량(반응 용기 내의 CO2 농도)을 메타나이저(상품명 「MT221」, GL사이언스(주)제)에 부속된 수소염 이온화 검출기 부착 가스 크로마토그래프(상품명 「GC-14B」, 시마즈세이사쿠쇼제)를 사용하여 측정하였다.200 mg of iron compound-supported titanium oxide was spread on a glass plate and placed in a reaction vessel (Tedrabag, material: vinyl fluoride resin), and 125 mL of 100 ppm of toluene gas was blown into the reaction vessel. After the adsorption of toluene gas to the iron compound-supported titanium oxide reached equilibrium, light irradiation (LED, light intensity: 2.5 mW/cm 2 , light wavelength: 455 nm) was performed at room temperature (25°C). The amount of CO 2 produced 24 hours after the start of light irradiation (CO 2 concentration in the reaction vessel) was measured by a gas chromatograph with a hydrogen salt ionization detector attached to the methanizer (brand name ``MT221'', manufactured by GL Science) (brand name ``GC -14B", manufactured by Shimadzu Corporation) was used for measurement.

(가시광에 의한 메탄올 산화법)(Methanol oxidation method by visible light)

실시예 및 비교예에서 얻어진 철 화합물 담지 산화티타늄을 광촉매로서 사용하여, 기상으로 메탄올을 산화하고, 생성되는 CO2의 양을 측정함으로써 광촉매능을 평가하였다.Using the iron compound-supported titanium oxide obtained in Examples and Comparative Examples as a photocatalyst, methanol was oxidized in a gas phase, and the photocatalytic performance was evaluated by measuring the amount of CO 2 produced.

철 화합물 담지 산화티타늄 200mg을 유리제 접시에 펼쳐서 반응 용기(테드라백, 재질: 불화 비닐 수지) 안에 넣고, 800ppm의 메탄올 가스 125mL를 반응 용기 내에 불어 넣었다. 메탄올 가스의 철 화합물 담지 산화티타늄에의 흡착이 평형에 달한 후, 실온(25℃)에서 광 조사(LED, 광 강도: 2.5W/m2, 광의 파장: 455nm)를 행하였다. 광 조사 개시부터 24시간 후의 CO2의 생성량(반응 용기 내의 CO2 농도)을 메타나이저(상품명 「MT221」, GL사이언스(주)제)에 부속된 수소염 이온화 검출기 부착 가스 크로마토그래프(상품명 「GC-14B」, 시마즈세이사쿠쇼제)를 사용하여 측정하였다.200 mg of titanium oxide supported by an iron compound was spread out on a glass dish and placed in a reaction vessel (Tedrabag, material: vinyl fluoride resin), and 125 mL of 800 ppm methanol gas was blown into the reaction vessel. After the adsorption of methanol gas to the iron compound-supported titanium oxide reached equilibrium, light irradiation (LED, light intensity: 2.5 W/m 2 , light wavelength: 455 nm) was performed at room temperature (25° C.). The amount of CO 2 produced 24 hours after the start of light irradiation (CO 2 concentration in the reaction vessel) was measured by a gas chromatograph with a hydrogen salt ionization detector attached to the methanizer (brand name ``MT221'', manufactured by GL Science) (brand name ``GC -14B", manufactured by Shimadzu Corporation) was used for measurement.

(자외선에 의한 톨루엔 산화법)(Toluene oxidation method by ultraviolet rays)

실시예에서 얻어진 산화티타늄을 광촉매로서 사용하여, 기상으로 톨루엔을 산화하고, 생성되는 CO2의 양을 측정함으로써 광촉매능을 평가하였다.Using the titanium oxide obtained in the examples as a photocatalyst, toluene was oxidized in a gas phase, and the photocatalytic activity was evaluated by measuring the amount of CO 2 produced.

산화티타늄 200mg을 유리제 접시에 펼쳐서 반응 용기(테드라백, 재질: 불화 비닐 수지) 안에 넣고, 100ppm의 톨루엔 가스 125mL를 반응 용기 내에 불어 넣었다. 톨루엔 가스의 산화티타늄에의 흡착이 평형에 달한 후, 실온(25℃)에서 광 조사(LED, 광 강도: 0.1mW/cm2, 광의 파장: 365nm)를 행하였다. 광 조사 개시부터 24시간 후의 CO2의 생성량(반응 용기 내의 CO2 농도)을 메타나이저(상품명 「MT221」, GL사이언스(주)제)에 부속된 수소염 이온화 검출기 부착 가스 크로마토그래프(상품명 「GC-14B」, 시마즈세이사쿠쇼제)를 사용하여 측정하였다.200 mg of titanium oxide was spread on a glass dish and placed in a reaction vessel (Tedrabag, material: vinyl fluoride resin), and 125 mL of 100 ppm of toluene gas was blown into the reaction vessel. After the adsorption of toluene gas to titanium oxide reached equilibrium, light irradiation (LED, light intensity: 0.1 mW/cm 2 , light wavelength: 365 nm) at room temperature (25° C.) was performed. The amount of CO 2 produced 24 hours after the start of light irradiation (CO 2 concentration in the reaction vessel) was measured by a gas chromatograph with a hydrogen salt ionization detector attached to the methanizer (brand name ``MT221'', manufactured by GL Science) (brand name ``GC -14B", manufactured by Shimadzu Corporation) was used for measurement.

본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은 평균 종횡비가 1.5 이상인 전이 금속 화합물 담지 산화티타늄 결정을 포함하고, 또한 이온성 불순물의 함유량이 매우 낮다. 그로 인해, 가시광에 대한 응답성이 우수하여, 태양광이나 백열등, 형광등, LED 조명등의 통상의 생활 공간에서의 광을 흡수하여, 유해 화학 물질을 물이나 이산화탄소로까지 분해할 수 있다. 즉, 본 발명의 전이 금속 화합물 담지 산화티타늄 현탁액은 LED 조명 아래용 광촉매로서도 적절하게 사용할 수 있다. 그리고, 항균, 살진균, 탈취, 대기 정화, 물 정화, 방오 등의 다양한 용도로 사용할 수 있고, 실내의 벽지나 가구를 비롯해 가정 내나 병원, 학교 등의 공공 시설 내에서의 환경 정화, 가전 제품의 고기능화 등, 광범위로의 응용이 가능하다.The transition metal compound-supported titanium oxide suspension of the present invention contains a transition metal compound-supported titanium oxide crystal having an average aspect ratio of 1.5 or more, and has an extremely low content of ionic impurities. Therefore, it has excellent responsiveness to visible light, absorbs sunlight, light in an ordinary living space such as incandescent lamps, fluorescent lamps, and LED lights, and can decompose harmful chemical substances into water or carbon dioxide. That is, the transition metal compound-supported titanium oxide suspension of the present invention can be suitably used also as a photocatalyst under LED lighting. In addition, it can be used for various purposes such as antibacterial, fungicidal, deodorization, air purification, water purification, and antifouling. In addition to indoor wallpaper and furniture, environmental purification in public facilities such as homes, hospitals, schools, etc. It can be applied to a wide range such as high functionality.

Claims (7)

결정성 산화티타늄 현탁액에 전이 금속 화합물을 포함하는 용액을 첨가하여 함침시켜 전이 금속 화합물 담지 산화티타늄을 포함하는 혼합물을 얻는 공정과, 얻어진 혼합물을 크로스 플로우 방식에 의한 막 여과에 첨가하여 정제하는 공정을 거쳐서, 하기 특성을 갖는 전이 금속 화합물 담지 산화티타늄 현탁액을 제조하는, 전이 금속 화합물 담지 산화티타늄 현탁액의 제조 방법.
[전이 금속 화합물 담지 산화티타늄 현탁액은,
평균 종횡비(장경/단경)가 1.5 이상인 전이 금속 화합물 담지 산화티타늄을 함유하고,
전이 금속 화합물 담지 산화티타늄을 4중량% 이상 함유할 경우, 상청액의 전기 전도도는 300μS/cm 이하이다]
A step of obtaining a mixture containing a transition metal compound-supported titanium oxide by adding and impregnating a solution containing a transition metal compound to the crystalline titanium oxide suspension, and a step of adding the obtained mixture to membrane filtration by a cross flow method for purification. A method for producing a transition metal compound-supported titanium oxide suspension through which a transition metal compound-supported titanium oxide suspension having the following characteristics is prepared.
[The transition metal compound-supported titanium oxide suspension,
It contains titanium oxide supported by a transition metal compound having an average aspect ratio (long/short axis) of 1.5 or more,
When containing 4% by weight or more of transition metal compound-supported titanium oxide, the electrical conductivity of the supernatant is 300 μS/cm or less.]
제1항에 있어서, 결정성 산화티타늄이 결정면 (110) 및 결정면 (111)을 갖는 루틸형 산화티타늄 및/또는 결정면 (110), 결정면 (111) 및 결정면 (001)을 갖는 루틸형 산화티타늄인 전이 금속 화합물 담지 산화티타늄 현탁액의 제조 방법.2. A method for producing a transition metal compound-supported titanium oxide suspension. 제1항 또는 제2항에 있어서, 전이 금속 화합물 담지 산화티타늄의 비표면적이 10m2/g 이상인 전이 금속 화합물 담지 산화티타늄 현탁액의 제조 방법.The method for producing a transition metal compound-supported titanium oxide suspension according to claim 1 or 2, wherein the transition metal compound-supported titanium oxide has a specific surface area of 10 m 2 /g or more. 제1항 또는 제2항에 있어서, 상청액의 pH가 3 이상인 전이 금속 화합물 담지 산화티타늄 현탁액의 제조 방법.The method for producing a transition metal compound-supported titanium oxide suspension according to claim 1 or 2, wherein the supernatant has a pH of 3 or more. 제1항 또는 제2항에 있어서, 전이 금속 화합물 담지 산화티타늄 농도를 10중량%로 조정한 경우, 그의 점도(22.5℃에서의)가 5 내지 25mPa·s인 전이 금속 화합물 담지 산화티타늄 현탁액의 제조 방법.The preparation of a transition metal compound-supported titanium oxide suspension according to claim 1 or 2, wherein when the transition metal compound-supported titanium oxide concentration is adjusted to 10% by weight, its viscosity (at 22.5° C.) is 5 to 25 mPa·s. Way. 제1항 또는 제2항에 있어서, 전이 금속 화합물 담지 산화티타늄의 평균 입자 직경이 20㎛ 이하인 전이 금속 화합물 담지 산화티타늄 현탁액의 제조 방법.The method for producing a transition metal compound-supported titanium oxide suspension according to claim 1 or 2, wherein the transition metal compound-supported titanium oxide has an average particle diameter of 20 µm or less. 결정성 산화티타늄 현탁액에 전이 금속 화합물을 포함하는 용액을 첨가하여 함침시켜 전이 금속 화합물 담지 산화티타늄을 포함하는 혼합물을 얻는 공정과, 얻어진 혼합물을 크로스 플로우 방식에 의한 막 여과에 첨가하여 하기 특성을 갖는 전이 금속 화합물 담지 산화티타늄 현탁액을 얻는 공정과, 얻어진 전이 금속 화합물 담지 산화티타늄 현탁액을 건조하는 공정을 거쳐서, 전이 금속 화합물 담지 산화티타늄을 제조하는, 전이 금속 화합물 담지 산화티타늄의 제조 방법.
[전이 금속 화합물 담지 산화티타늄 현탁액은,
평균 종횡비(장경/단경)가 1.5 이상인 전이 금속 화합물 담지 산화티타늄을 함유하고,
전이 금속 화합물 담지 산화티타늄을 4중량% 이상 함유할 경우, 상청액의 전기 전도도는 300μS/cm 이하이다]
A step of obtaining a mixture containing a transition metal compound-supported titanium oxide by adding and impregnating a solution containing a transition metal compound to the crystalline titanium oxide suspension, and adding the obtained mixture to membrane filtration by a cross flow method to have the following characteristics: A method for producing a transition metal compound-supported titanium oxide, in which a transition metal compound-supported titanium oxide is produced through a step of obtaining a transition metal compound-supported titanium oxide suspension and a step of drying the obtained transition metal compound-supported titanium oxide suspension.
[The transition metal compound-supported titanium oxide suspension,
It contains titanium oxide supported by a transition metal compound having an average aspect ratio (long/short axis) of 1.5 or more,
When containing 4% by weight or more of transition metal compound-supported titanium oxide, the electrical conductivity of the supernatant is 300 μS/cm or less.]
KR1020157005417A 2012-09-19 2013-09-06 Transition metal compound-loaded titanium oxide suspension KR102185603B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012206260 2012-09-19
JPJP-P-2012-206260 2012-09-19
JPJP-P-2012-234452 2012-10-24
JP2012234452 2012-10-24
PCT/JP2013/074086 WO2014045903A1 (en) 2012-09-19 2013-09-06 Transition metal compound-loaded titanium oxide suspension

Publications (2)

Publication Number Publication Date
KR20150054781A KR20150054781A (en) 2015-05-20
KR102185603B1 true KR102185603B1 (en) 2020-12-02

Family

ID=50341219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157005417A KR102185603B1 (en) 2012-09-19 2013-09-06 Transition metal compound-loaded titanium oxide suspension

Country Status (5)

Country Link
JP (1) JP6046732B2 (en)
KR (1) KR102185603B1 (en)
CN (1) CN104640811B (en)
TW (1) TWI580469B (en)
WO (1) WO2014045903A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6370698B2 (en) * 2014-12-05 2018-08-08 株式会社ダイセル Antimicrobial agent
KR20170125509A (en) * 2016-05-04 2017-11-15 현대자동차주식회사 Catalyst for anode, reversal tolerant anode for fuel cell and membrane electrode assembly comprising the same
JP6010718B1 (en) * 2016-07-01 2016-10-19 株式会社ダイセル Iron compound-supported titanium oxide photocatalyst
CN110215305A (en) * 2018-03-02 2019-09-10 张家港环纳环保科技有限公司 A kind of tooth whitening suit and tooth whitening method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230950A (en) 2007-02-21 2008-10-02 Kyushu Institute Of Technology N- and/or s-doped tubular titanium oxide particle and method for producing the same
JP2010046621A (en) * 2008-08-22 2010-03-04 Asahi Kasei Corp Separation refining method of inorganic nanoparticle
JP2011225422A (en) * 2010-01-09 2011-11-10 Daicel Chemical Industries Ltd Metal ion supporting titanium oxide particle having exposed crystal face, and method for producing the same
JP2012096133A (en) 2010-10-29 2012-05-24 Jgc Catalysts & Chemicals Ltd Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235215A (en) 1986-04-07 1987-10-15 Nippon Shokubai Kagaku Kogyo Co Ltd Production of rutile titanium oxide sol
JP3898792B2 (en) * 1996-10-02 2007-03-28 石原産業株式会社 Method for producing surface-treated titanium oxide sol
JP2005097096A (en) * 2003-08-19 2005-04-14 Showa Denko Kk Sol containing titanium oxide, thin film, and production process of the sol and thin film
CN100346874C (en) * 2005-03-17 2007-11-07 华中科技大学 Compound photocatalyst using titanium dioxide as its base, and its prepn. method
JP4265685B2 (en) * 2007-11-26 2009-05-20 住友化学株式会社 Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP5603272B2 (en) * 2010-03-25 2014-10-08 株式会社ダイセル Method for producing rutile-type titanium oxide having crystal plane (001)
WO2011118740A1 (en) * 2010-03-25 2011-09-29 ダイセル化学工業株式会社 Method for producing rutile-type titanium oxide having (001) crystal plane
JP5918580B2 (en) * 2011-03-14 2016-05-18 株式会社ダイセル Method for purifying fine particles, and method for producing transition metal compound-supported titanium oxide fine particles including the method for purifying fine particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230950A (en) 2007-02-21 2008-10-02 Kyushu Institute Of Technology N- and/or s-doped tubular titanium oxide particle and method for producing the same
JP2010046621A (en) * 2008-08-22 2010-03-04 Asahi Kasei Corp Separation refining method of inorganic nanoparticle
JP2011225422A (en) * 2010-01-09 2011-11-10 Daicel Chemical Industries Ltd Metal ion supporting titanium oxide particle having exposed crystal face, and method for producing the same
JP2012096133A (en) 2010-10-29 2012-05-24 Jgc Catalysts & Chemicals Ltd Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film

Also Published As

Publication number Publication date
TW201420183A (en) 2014-06-01
JP6046732B2 (en) 2016-12-21
CN104640811A (en) 2015-05-20
WO2014045903A1 (en) 2014-03-27
JPWO2014045903A1 (en) 2016-08-18
TWI580469B (en) 2017-05-01
KR20150054781A (en) 2015-05-20
CN104640811B (en) 2017-05-10

Similar Documents

Publication Publication Date Title
Hu et al. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment
KR102180235B1 (en) Titanium oxide liquid dispersion, titanium oxide liquid coating, and photocatalyst coating film
KR102185603B1 (en) Transition metal compound-loaded titanium oxide suspension
Sugunan et al. Radially oriented ZnO nanowires on flexible poly‐l‐lactide nanofibers for continuous‐flow photocatalytic water purification
JP5845182B2 (en) Stable nanotitania sols and their preparation
KR101868192B1 (en) Photocatalytic coating film and method for producing same
KR102207479B1 (en) Transition metal compound-loaded titanium oxide
JP5918580B2 (en) Method for purifying fine particles, and method for producing transition metal compound-supported titanium oxide fine particles including the method for purifying fine particles
JP6010718B1 (en) Iron compound-supported titanium oxide photocatalyst
KR102445141B1 (en) Iron compound supported titanium oxide photocatalyst
JP6143168B2 (en) Photocatalyst coated body
JP6370698B2 (en) Antimicrobial agent
JP5986799B2 (en) Method for adjusting amount of transition metal compound supported on transition metal compound supported titanium oxide
KR20060013181A (en) Preparation of visible light responding photocatalytic coating solution
JP6315791B2 (en) Iron compound-supported titanium oxide particles
JP2015157795A (en) Antimicrobial agent for dark places

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant