JP2008230950A - N- and/or s-doped tubular titanium oxide particle and method for producing the same - Google Patents

N- and/or s-doped tubular titanium oxide particle and method for producing the same Download PDF

Info

Publication number
JP2008230950A
JP2008230950A JP2007280488A JP2007280488A JP2008230950A JP 2008230950 A JP2008230950 A JP 2008230950A JP 2007280488 A JP2007280488 A JP 2007280488A JP 2007280488 A JP2007280488 A JP 2007280488A JP 2008230950 A JP2008230950 A JP 2008230950A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide particles
tubular titanium
doped
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007280488A
Other languages
Japanese (ja)
Other versions
JP5030735B2 (en
Inventor
Teruhisa Yokono
照尚 横野
Atsushi Tanaka
田中  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
JGC Catalysts and Chemicals Ltd
Original Assignee
Kyushu Institute of Technology NUC
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, JGC Catalysts and Chemicals Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2007280488A priority Critical patent/JP5030735B2/en
Publication of JP2008230950A publication Critical patent/JP2008230950A/en
Application granted granted Critical
Publication of JP5030735B2 publication Critical patent/JP5030735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide N- and/or S-doped tubular titanium oxide particles which exhibit high photocatalytic performance under natural light including visible light or under irradiation with light from an artificial light source. <P>SOLUTION: The N- and/or S-doped tubular titanium oxide particles are characterized in that the content of N is within a range of 0.1-5 wt.% expressed in terms of N, the content of S is within a range of 0.2-6 wt.% expressed in terms of S, the average outer tube diameter (D<SB>out</SB>) is within a range of 5-40 nm, the average inner tube diameter (D<SB>in</SB>) is within a range of 4-20 nm, the average tube thickness is within a range of 0.5-10 nm, the average length (L<SB>p</SB>) is within a range of 25-1,000 nm, and the aspect ratio (L<SB>p</SB>/D<SB>out</SB>) is within a range of 5-200. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒素(N)および/または硫黄(S)をドープした管状酸化チタン系粒子およびその製造方法に関する。また、酸化鉄を含む窒素(N)および/または硫黄(S)をドープした管状酸化チタン系粒子およびその製造方法に関する。
さらに詳しくは、可視光領域で高い光触媒活性を有し、このために環境触媒、消臭用触媒、太陽電池用半導体膜等に好適に用いることのできるNおよび/またはSドープ管状酸化チタン粒子およびその製造方法に関する。また、酸化鉄を含むためにさらに光触媒活性の向上したNおよび/またはSドープ管状酸化チタン粒子およびその製造方法に関する。
The present invention relates to tubular titanium oxide-based particles doped with nitrogen (N) and / or sulfur (S) and a method for producing the same. The present invention also relates to tubular titanium oxide-based particles doped with nitrogen (N) and / or sulfur (S) containing iron oxide and a method for producing the same.
More specifically, N- and / or S-doped tubular titanium oxide particles that have high photocatalytic activity in the visible light region and can be suitably used for environmental catalysts, deodorizing catalysts, semiconductor films for solar cells, and the like. It relates to the manufacturing method. The present invention also relates to N- and / or S-doped tubular titanium oxide particles further improved in photocatalytic activity due to containing iron oxide and a method for producing the same.

酸化チタンはその化学的特性を利用した用途が広い。例えば、酸素と適当な結合力を有するとともに耐酸性を有するため、酸化還元触媒あるいは担体として、紫外線の遮蔽力を利用した化粧材料またはプラスチック材料の表面コート剤として、さらには高誘電材料、高屈折を利用した反射防止コート材として、還元型酸化チタンでは導電性を利用した帯電防止材として用いられている。また、これらの特性を組み合わせて機能性ハードコート材に用いられ、さらに光触媒作用を使用した防菌剤、防汚剤、超親水性被膜などに用いられている。   Titanium oxide has a wide range of uses that make use of its chemical properties. For example, it has an appropriate bond strength with oxygen and has acid resistance, so it can be used as a redox catalyst or carrier, as a surface coating agent for cosmetic materials or plastic materials using the shielding ability of ultraviolet rays, and also as a high dielectric material, high refractive index. As an anti-reflective coating material that utilizes slag, reduced titanium oxide is used as an antistatic material that utilizes electrical conductivity. In addition, these properties are used in combination for functional hard coat materials, and further used for antibacterial agents, antifouling agents, superhydrophilic coatings and the like using photocatalysis.

更に近年、酸化チタンは、高いバンドギャップを有することから光触媒、さらには光エネルギーを電気エネルギーに変換する、いわゆる光電変換材料として好適に用いられるようになっている。また、リチウムバッテリーのような2次電池、水素吸蔵材料、プロトン導電材料等にも利用されるようになってきている。   In recent years, titanium oxide has been suitably used as a photocatalyst because it has a high band gap, and also as a so-called photoelectric conversion material that converts light energy into electric energy. Moreover, it has come to be used also for secondary batteries such as lithium batteries, hydrogen storage materials, proton conductive materials, and the like.

このように、酸化チタンは多くの用途に用いられているが、用途によって紫外線活性が高く、光触媒活性が強すぎて、耐光性に劣ることがあり、これを抑制するためにSi等をドーピングしたり、他の酸化物との複合酸化物として用いることが行われている。   Thus, titanium oxide is used in many applications, but depending on the application, the UV activity is high, the photocatalytic activity is too strong, and the light resistance may be inferior. In order to suppress this, Si or the like is doped. Or as a composite oxide with other oxides.

本願の出願人は、導電性、光触媒性能、可視光吸収能、耐薬品性等に優れたNドープ管状酸化チタン粒子、および、酸化チタン粒子の水分散液をアルカリ金属水酸化物の存在下で水熱処理した後、アンモニア、アミン等の存在下で還元処理するNドープ管状酸化チタン粒子の製造方法を開示している(特許文献1:特開2004−35362号公報)。
しかしながら、このNドープ管状酸化チタン粒子は必ずしも可視光吸収(遮蔽)性能が充分でなく、光触媒活性や耐久性等に問題があった。
The applicant of the present application is that N-doped tubular titanium oxide particles having excellent conductivity, photocatalytic performance, visible light absorption ability, chemical resistance, and the like, and an aqueous dispersion of titanium oxide particles in the presence of an alkali metal hydroxide. A method for producing N-doped tubular titanium oxide particles that is subjected to a reduction treatment in the presence of ammonia, amine or the like after hydrothermal treatment is disclosed (Patent Document 1: Japanese Patent Application Laid-Open No. 2004-35362).
However, the N-doped tubular titanium oxide particles do not necessarily have sufficient visible light absorption (shielding) performance, and have problems in photocatalytic activity and durability.

特許文献2(特開2001−205103号公報)には、酸化チタン結晶の格子間に窒素原子またはイオウ原子をドーピングしてなるチタン化合物であり、その表面に電荷分離物質が担持されている光触媒体が開示されている。
この光触媒体はスパッタリング法で製造することが例示されており、窒素ドーピングではTiO2ターゲットを真空チャンバー内にセットし、N2ガスおよびArガスを導入し、N2およびArプラズマ中でスパッタリングし、窒素雰囲気中で加熱処理(アニール)することによってNドープ酸化チタン膜を得ている。また、硫黄ドーピングではTi、TiO2あるいはTiS(硫化チタン)をターゲットとし、SO2+O2+Arガス中でスパッタリングし、加熱処理する方法が記載されている。しかしながらいずれの場合もドーピングと同時に酸素欠陥が多量に生成し、この欠陥が再結合中心となるためにドーピング濃度を上げると、触媒活性が大きく低下すると云う問題があった。
Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-205103) discloses a photocatalyst that is a titanium compound doped with nitrogen atoms or sulfur atoms between the lattices of a titanium oxide crystal and has a charge separation substance supported on the surface thereof. Is disclosed.
This photocatalyst is exemplified by a sputtering method. In nitrogen doping, a TiO 2 target is set in a vacuum chamber, N 2 gas and Ar gas are introduced, and sputtering is performed in N 2 and Ar plasma. An N-doped titanium oxide film is obtained by heat treatment (annealing) in a nitrogen atmosphere. In addition, in sulfur doping, a method is described in which Ti, TiO 2 or TiS (titanium sulfide) is used as a target, sputtering is performed in SO 2 + O 2 + Ar gas, and heat treatment is performed. However, in any case, a large amount of oxygen defects are generated simultaneously with doping, and this defect becomes a recombination center. Therefore, there is a problem that when the doping concentration is increased, the catalytic activity is greatly reduced.

また、本願発明者の一人は光酸化触媒として有用な硫黄含有金属酸化物およびその製造方法を開示している(特許文献3:特開2004−143032号公報)。しかしながら、この光酸化触媒も金属酸化物が無定型であり、必ずしも光触媒活性が充分とはいえなかった。   One of the inventors of the present application discloses a sulfur-containing metal oxide useful as a photo-oxidation catalyst and a method for producing the same (Patent Document 3: Japanese Patent Application Laid-Open No. 2004-143032). However, this photo-oxidation catalyst also has an amorphous metal oxide, and the photocatalytic activity is not always sufficient.

このような状況のもと、本発明者らは、さらに鋭意研究を重ねた結果、管状酸化チタンを尿素またはチオウレアで処理すると結晶性を維持しながら、光触媒活性に優れたNドープ管状酸化チタン、Sドープ管状酸化チタンが得られことを見出して本発明を完成するに至った。   Under such circumstances, the present inventors have conducted further earnest studies, and as a result, N-doped tubular titanium oxide having excellent photocatalytic activity while maintaining crystallinity when tubular titanium oxide is treated with urea or thiourea, The inventors have found that S-doped tubular titanium oxide can be obtained and have completed the present invention.

特開2004−35362号公報JP 2004-35362 A 特開2001−205103号公報JP 2001-205103 A 特開2004−143032号公報JP 2004-143032 A

本発明は、可視光を含む自然光もしくは人工光源の照射下で高い光触媒性能を発揮する、Nおよび/またはSドープ管状酸化チタン粒子、および、その製造方法を提供することを目的とする。   An object of the present invention is to provide N and / or S-doped tubular titanium oxide particles that exhibit high photocatalytic performance under irradiation of natural light including visible light or an artificial light source, and a method for producing the same.

本発明に係るNおよび/またはSドープ管状酸化チタン粒子は、Nの含有量がNとして0.1〜5重量%の範囲にあり、Sの含有量がSとして0.2〜6重量%の範囲にあることを特徴としている。
前記管状酸化チタン粒子の平均管外径(Dout)が5〜40nmの範囲にあり、平均管内径(Din)が4〜20nmの範囲にあり、平均管の厚みが0.5〜10nmの範囲にあり、平均長さ(Lp)が25〜1000nmの範囲にあり、アスペクト比(Lp)/(Dout)が5〜200の範囲にあることが好ましい。
前記Nおよび/またはSドープ管状酸化チタン粒子の結晶型がアナタース型であることが好ましい。
本発明に係るNおよび/またはSドープ管状酸化チタン粒子は、前記Nおよび/またはSドープ管状酸化チタン粒子に、酸化鉄がFe23として0.01〜5重量%の範囲で担持されたことを特徴とする。
In the N and / or S-doped tubular titanium oxide particles according to the present invention, the N content is in the range of 0.1 to 5% by weight as N, and the S content is 0.2 to 6% by weight as S. It is characterized by being in range.
The tubular titanium oxide particles have an average tube outer diameter (D out ) in the range of 5 to 40 nm, an average tube inner diameter (D in ) in the range of 4 to 20 nm, and an average tube thickness of 0.5 to 10 nm. The average length (L p ) is in the range of 25 to 1000 nm, and the aspect ratio (L p ) / (D out ) is preferably in the range of 5 to 200.
The crystal form of the N and / or S doped tubular titanium oxide particles is preferably an anatase type.
In the N and / or S-doped tubular titanium oxide particles according to the present invention, iron oxide is supported in the range of 0.01 to 5% by weight as Fe 2 O 3 on the N and / or S-doped tubular titanium oxide particles. It is characterized by that.

本発明に係るNおよび/またはSドープ管状酸化チタン粒子の製造方法は、管状酸化チタン粒子を200〜700℃で、尿素、アミノ酸から選ばれる1種または2種以上の窒素化合物および/または単体硫黄、チオウレア、メルカプタン、デカンチオール、チオアセトアミドから選ばれる1種または2種以上の硫黄化合物と接触させることを特徴とする。
前記窒素化合物および/または硫黄化合物は空気雰囲気下で接触させることが好ましい。
The method for producing N- and / or S-doped tubular titanium oxide particles according to the present invention comprises the tubular titanium oxide particles at 200 to 700 ° C., one or more nitrogen compounds selected from urea and amino acids and / or elemental sulfur. , Thiourea, mercaptan, decanethiol, and thioacetamide, which are contacted with one or more sulfur compounds.
The nitrogen compound and / or sulfur compound is preferably contacted in an air atmosphere.

前記管状酸化チタン粒子の平均管外径(Dout)が5〜40nmの範囲にあり、平均管内径(Din)が4〜20nmの範囲にあり、平均管の厚みが0.5〜10nmの範囲にあり、平均長さ(Lp)が25〜1000nmの範囲にあり、アスペクト比(Lp)/(Dout)が5〜200の範囲にあることが好ましい。
Nおよび/またはSドープ管状酸化チタン粒子中のNの含有量がNとして0.1〜5重量%の範囲にあり、Sの含有量がSとして0.2〜6重量%の範囲にあることが好ましい。
前記Nおよび/またはSドープ管状酸化チタン粒子の結晶型がアナタース型であることが好ましい。
The tubular titanium oxide particles have an average tube outer diameter (D out ) in the range of 5 to 40 nm, an average tube inner diameter (D in ) in the range of 4 to 20 nm, and an average tube thickness of 0.5 to 10 nm. The average length (L p ) is in the range of 25 to 1000 nm, and the aspect ratio (L p ) / (D out ) is preferably in the range of 5 to 200.
The N content in the N and / or S-doped tubular titanium oxide particles is in the range of 0.1 to 5% by weight as N, and the S content is in the range of 0.2 to 6% by weight as S. Is preferred.
The crystal form of the N and / or S doped tubular titanium oxide particles is preferably an anatase type.

本発明に係るNおよび/またはSドープ管状酸化チタン粒子の製造方法は、前記製造方法によって得られたNおよび/またはSドープ管状酸化チタン粒子の分散液にイオン交換樹脂の存在下、硝酸第2鉄水溶液を混合し、ついで、乾燥し、必要に応じて加熱処理することを特徴とする。
本発明に係るNおよび/またはSドープ管状酸化チタン粒子の製造方法は、前記製造方法によって得られたNおよび/またはSドープ管状酸化チタン粒子に硝酸第2鉄水溶液を吸収させ、ついで、乾燥し、必要に応じて加熱処理することを特徴とする。
In the method for producing N and / or S-doped tubular titanium oxide particles according to the present invention, the dispersion of N and / or S-doped tubular titanium oxide particles obtained by the production method is prepared by adding second nitric acid in the presence of an ion exchange resin. An aqueous iron solution is mixed, then dried, and heat-treated as necessary.
In the method for producing N and / or S-doped tubular titanium oxide particles according to the present invention, the ferric nitrate aqueous solution is absorbed in the N and / or S-doped tubular titanium oxide particles obtained by the production method, and then dried. The heat treatment is performed as necessary.

本発明によれば、管状酸化チタンを特定の窒素化合物、硫黄化合物を用いて処理した光触媒、光電変換材料、化粧材料、光学材料などの機能性材料の原料として有用なNおよび/またはSドープ管状酸化チタン粒子およびその製造方法を提供することができる。
また、本発明に係る酸化鉄を含むNおよび/またはSドープ管状酸化チタン粒子にあっては、光触媒活性がより一層向上する。
INDUSTRIAL APPLICABILITY According to the present invention, N- and / or S-doped tubes useful as raw materials for functional materials such as photocatalysts, photoelectric conversion materials, cosmetic materials, and optical materials obtained by treating tubular titanium oxide with specific nitrogen compounds and sulfur compounds. Titanium oxide particles and a method for producing the same can be provided.
Moreover, in the N and / or S-doped tubular titanium oxide particles containing iron oxide according to the present invention, the photocatalytic activity is further improved.

Nおよび/またはSドープ管状酸化チタン粒子
本発明に係るNおよび/またはSドープ管状酸化チタン粒子は、Nの含有量がNとして0.1〜5重量%の範囲にあり、Sの含有量がSとして0.2〜6重量%の範囲にあることを特徴としている。
本発明において管状酸化チタン粒子としては、従来公知の管状酸化チタン粒子を用いることができる。例えば、特開平10−152323号公報、特開2004−35362号公報(特許文献1)等に開示された管状酸化チタン粒子が挙げられる。このような管状酸化チタン粒子は内部に貫通した孔を有しているために、棒状あるいは繊維状の酸化チタンに較べて有効表面が大きく、反応物との接触効率が向上するために高い光触媒活性を発現することができる。また、粒子の内部まで均一なNおよび/またはSのドーピングが可能になる要因と考えられる。
N and / or S-doped tubular titanium oxide particles The N and / or S-doped tubular titanium oxide particles according to the present invention have a content of N in the range of 0.1 to 5% by weight as N, and a content of S. S is in the range of 0.2 to 6% by weight.
In the present invention, conventionally known tubular titanium oxide particles can be used as the tubular titanium oxide particles. Examples thereof include tubular titanium oxide particles disclosed in JP-A-10-152323 and JP-A-2004-35362 (Patent Document 1). Since such tubular titanium oxide particles have pores penetrating inside, the effective surface is larger than that of rod-like or fiber-like titanium oxide, and the contact efficiency with the reactants is improved, resulting in high photocatalytic activity. Can be expressed. It is also considered that this is a factor that enables uniform N and / or S doping to the inside of the particle.

なかでも、特許文献1に開示した還元処理する前の管状酸化チタン粒子はアルカリの残存量が少なく、後述するNおよび/またはSのドーピング処理が高温であっても、あるいは触媒として使用する際の温度が高温であっても容易に焼結(シンタリング)したりチタン酸ソーダを生成することがなく、光触媒活性等に優れたNおよび/またはSドープ管状酸化チタン粒子を得ることができる。   Among them, the tubular titanium oxide particles before the reduction treatment disclosed in Patent Document 1 have a small residual amount of alkali, and even when the N and / or S doping treatment described later is at a high temperature or when used as a catalyst. N- and / or S-doped tubular titanium oxide particles excellent in photocatalytic activity and the like can be obtained without being easily sintered (sintered) or producing sodium titanate even at a high temperature.

管状酸化チタン粒子の平均管外径(Dout)は、5〜40nm、さらには5〜20nmの範囲にあることが好ましい。
管状酸化チタン粒子の平均管外径(Dout)が5nm未満の場合は、得ることが困難であり、得られたとしても管状酸化チタン粒子の結晶性が不充分で、光触媒性能等が不充分となることがある。管状酸化チタン粒子の平均管外径(Dout)が40nmを越えると、Nおよび/またはSのドーピングが不均一になったり、ドーピング量が低下し光触媒性能等が不充分となることがある。
The average tube outer diameter (D out ) of the tubular titanium oxide particles is preferably in the range of 5 to 40 nm, more preferably 5 to 20 nm.
When the average tube outer diameter (D out ) of the tubular titanium oxide particles is less than 5 nm, it is difficult to obtain, and even if obtained, the crystallinity of the tubular titanium oxide particles is insufficient, and the photocatalytic performance is insufficient. It may become. When the average tube outer diameter (D out ) of the tubular titanium oxide particles exceeds 40 nm, the doping of N and / or S may become non-uniform, or the doping amount may decrease and the photocatalytic performance may become insufficient.

管状酸化チタンの平均管内径(Din)は、4〜20nm、さらには4〜15nmの範囲にあることが好ましい。
管状酸化チタン粒子の平均管内径(Din)が4nm未満の場合は、管状酸化チタン粒子の結晶性が不充分で、光触媒性能等が不充分となることがある。管状酸化チタン粒子の平均管内径(Din)が20nmを越えると、管状酸化チタン粒子の平均管外径(Dout)が40nmを越え、Nおよび/またはSのドーピングが不均一になったり、ドーピング量が低下し光触媒性能等が不充分となることがある。
The average tube inner diameter (D in ) of tubular titanium oxide is preferably in the range of 4 to 20 nm, more preferably 4 to 15 nm.
When the average tube inner diameter (D in ) of the tubular titanium oxide particles is less than 4 nm, the crystallinity of the tubular titanium oxide particles may be insufficient, and the photocatalytic performance and the like may be insufficient. When the average tube inner diameter (D in ) of the tubular titanium oxide particles exceeds 20 nm, the average tube outer diameter (D out ) of the tubular titanium oxide particles exceeds 40 nm, and N and / or S doping becomes non-uniform, Doping amount may decrease and photocatalytic performance may become insufficient.

管状酸化チタン粒子の平均管の厚みは、0.5〜10nm、さらには0.5〜5nmの範囲にあることが好ましい。
管状酸化チタン粒子の平均管の厚みが0.5nm未満の場合は、Nおよび/またはSのドーピング処理が高温になると、結晶性が低下したり、空洞を維持できず棒状あるいは繊維状の酸化チタン粒子となり、光触媒性能等が不充分となることがある。管状酸化チタン粒子の平均管の厚みが10nmを越えるとNおよび/またはSのドーピングが不均一になったり、ドーピング量が低下し光触媒性能等が不充分となることがある。
The average tube thickness of the tubular titanium oxide particles is preferably in the range of 0.5 to 10 nm, more preferably 0.5 to 5 nm.
When the average tube thickness of the tubular titanium oxide particles is less than 0.5 nm, when the doping treatment of N and / or S becomes a high temperature, the crystallinity is lowered or the voids cannot be maintained and the rod-like or fiber-like titanium oxide It may become particles and the photocatalytic performance and the like may be insufficient. If the average tube thickness of the tubular titanium oxide particles exceeds 10 nm, the doping of N and / or S may become non-uniform, or the amount of doping may decrease, resulting in insufficient photocatalytic performance.

管状酸化チタン粒子の平均長さ(Lp)が25〜1000nm、さらには50〜500nmの範囲にあることが好ましい。管状酸化チタン粒子の平均長さ(Lp)が前記範囲外のものは得ることが困難である。
また、管状酸化チタン粒子のアスペクト比(Lp)/(Dout)が5〜200、さらには10〜100の範囲にあることが好ましい。
アスペクト比(Lp)/(Dout)が前記範囲外のものも得ることが困難である。
The average length (L p ) of the tubular titanium oxide particles is preferably in the range of 25 to 1000 nm, more preferably 50 to 500 nm. It is difficult to obtain a tubular titanium oxide particle having an average length (L p ) outside the above range.
The aspect ratio (L p ) / (D out ) of the tubular titanium oxide particles is preferably 5 to 200, more preferably 10 to 100.
It is difficult to obtain an aspect ratio (L p ) / (D out ) outside the above range.

上記外径(Dout)、内径(Din)、長さ(Lp)等は透過型電子顕微鏡写真を撮影し、100個の粒子について各値を測定し、この平均値として求める。なお、内径(Din)は、外径を求める線の内側に認められるコントラストの境をなす線より求めることができる。 The outer diameter (D out ), inner diameter (D in ), length (L p ) and the like are obtained by taking a transmission electron micrograph, measuring each value for 100 particles, and obtaining the average value. The inner diameter (D in ) can be obtained from a line that forms a boundary of contrast recognized inside the line for obtaining the outer diameter.

本発明に用いる管状酸化チタン粒子は結晶性の管状酸化チタンが好ましく、アナタース型酸化チタン、ブルッカイト型酸化チタンおよびルチル型酸化チタンが好適に用いられる。なかでもアナタース型管状酸化チタン粒子は合成が比較的容易であり、光触媒活性にも優れているので好適である。   The tubular titanium oxide particles used in the present invention are preferably crystalline tubular titanium oxide, and anatase type titanium oxide, brookite type titanium oxide and rutile type titanium oxide are preferably used. Among these, anatase-type tubular titanium oxide particles are suitable because they are relatively easy to synthesize and have excellent photocatalytic activity.

さらに、本発明に用いる管状酸化チタン粒子は、合成時に使用することのあるNa、K等のアルカリの含有量(残存量)が、用途によっても異なるものの、Na2OあるいはK2Oとして0.1重量%以下、さらには0.05重量%以下、特に0.01重量%以下であることが好ましい。アルカリ含有量が0.1重量%以下であれば光触媒、光電変換材料等として好適に用いることができる。 Further, the tubular titanium oxide particles used in the present invention have an alkali content (residual amount) such as Na or K that may be used during synthesis, which varies depending on the application, but is 0.2 as Na 2 O or K 2 O. It is preferably 1% by weight or less, more preferably 0.05% by weight or less, and particularly preferably 0.01% by weight or less. If alkali content is 0.1 weight% or less, it can use suitably as a photocatalyst, a photoelectric conversion material, etc.

つぎに、Nおよび/またはSドープ管状酸化チタン粒子中のNの含有量は、Nとして0.1〜5重量%、さらには0.2〜3重量%の範囲にあることが好ましい。また、Sの含有量はSとして0.2〜6重量%、さらには0.5〜5重量%の範囲にあることが好ましい。
Nの含有量がNとして0.1重量%未満の場合は、N元素のドーピングに伴う不純物順位の生成密度が小さいために、可視光領域の光吸収が極めて小さく、可視光下での光触媒活性がほとんど発現しない。一方、Nの含有量がNとして5重量%を越えると、N元素が管状酸化チタン粒子中に過剰にドープされることで、酸化チタンの結晶構造にひずみが生じる。さらにN(3-)元素をO(2-)元素と置換することで酸化チタン結晶格子中の電気的中性が崩れてくる。これらの変化により、N元素が管状酸化チタン粒子中に5重量%を超えてドープした触媒は著しく触媒活性が低下する。
Next, the N content in the N and / or S-doped tubular titanium oxide particles is preferably 0.1 to 5% by weight, more preferably 0.2 to 3% by weight as N. Moreover, it is preferable that content of S exists in the range of 0.2-6 weight% as S, and also 0.5-5 weight%.
When the content of N is less than 0.1% by weight as N, the generation density of the impurity rank accompanying the doping of the N element is small, so the light absorption in the visible light region is extremely small, and the photocatalytic activity under visible light Is hardly expressed. On the other hand, when the content of N exceeds 5 wt% as N, the elemental N is excessively doped into the tubular titanium oxide particles, so that the crystal structure of titanium oxide is distorted. Further, by replacing the N (3-) element with the O (2-) element, the electrical neutrality in the titanium oxide crystal lattice is destroyed. Due to these changes, the catalyst activity of the catalyst doped with N element exceeding 5% by weight in the tubular titanium oxide particles is remarkably lowered.

また、Sの含有量がSとして0.2重量%未満の場合は、S元素のドーピングに伴う不純物順位の生成密度が小さいために、可視光領域の光吸収が極めて小さく、可視光下での光触媒活性がほとんど発現しない。一方、Sの含有量がSとして6重量%を越えると、S元素が管状酸化チタン粒子中に過剰にドープされることで、酸化チタンの結晶構造にひずみが生じる。この変化により、S元素が管状酸化チタン粒子中に6重量%を越えてドープした触媒は著しく触媒活性が低下する。   Further, when the S content is less than 0.2% by weight as S, since the generation density of the impurity rank accompanying the doping of the S element is small, the light absorption in the visible light region is extremely small, and under visible light. Almost no photocatalytic activity is exhibited. On the other hand, when the S content exceeds 6% by weight as S, the elemental S is excessively doped into the tubular titanium oxide particles, thereby causing distortion in the crystal structure of titanium oxide. Due to this change, the catalyst activity of the catalyst doped with S element exceeding 6 wt% in the tubular titanium oxide particles is remarkably lowered.

なお、Nおよび/またはSドープ管状酸化チタン粒子中にNとSの双方を含む場合、その合計含有量は、NおよびSとして0.1〜6重量%、さらには0.2〜5重量%の範囲にあることが好ましい。
このようなNおよび/またはSドープ管状酸化チタン粒子の平均管外径(Dout)、平均管内径(Din)、平均管の厚み、平均長さ(Lp)およびアスペクト比(Lp)/(Dout)は前記管状酸化チタン粒子と同一である。
When N and / or S-doped tubular titanium oxide particles contain both N and S, the total content is 0.1 to 6% by weight as N and S, and further 0.2 to 5% by weight. It is preferable that it exists in the range.
The average tube outer diameter (D out ), average tube inner diameter (D in ), average tube thickness, average length (L p ) and aspect ratio (L p ) of such N and / or S-doped tubular titanium oxide particles / (D out ) is the same as the tubular titanium oxide particles.

また、Nおよび/またはSドープ管状酸化チタン粒子は、結晶性のNおよび/またはSドープ管状酸化チタンが好ましく、アナタース型酸化チタン、ブルッカイト型酸化チタンおよびルチル型酸化チタンが好適に用いられる。なかでもアナタース型Nおよび/またはSドープ管状酸化チタン粒子は光触媒活性等に優れているので好適に用いることができる。   The N and / or S doped tubular titanium oxide particles are preferably crystalline N and / or S doped tubular titanium oxide, and anatase type titanium oxide, brookite type titanium oxide and rutile type titanium oxide are preferably used. Among these, anatase-type N and / or S-doped tubular titanium oxide particles are excellent in photocatalytic activity and can be suitably used.

本発明のNおよび/またはSドープ管状酸化チタン粒子は、酸化鉄がFe23として0.01〜5重量%、さらには0.02〜2重量%の範囲で担持されていることが好ましい。
酸化鉄の担持量がFe23として0.01重量%未満の場合は光触媒活性の向上効果が充分得られないことがあり、5重量%を越えると、理由は必ずしも明らかではないが、酸化鉄が担持されてない場合よりも光触媒活性が低くなる場合がある。
In the N and / or S-doped tubular titanium oxide particles of the present invention, iron oxide is preferably supported in the range of 0.01 to 5% by weight, more preferably 0.02 to 2% by weight as Fe 2 O 3. .
When the supported amount of iron oxide is less than 0.01% by weight as Fe 2 O 3 , the effect of improving the photocatalytic activity may not be sufficiently obtained. When the amount exceeds 5% by weight, the reason is not necessarily clear, but oxidation The photocatalytic activity may be lower than when no iron is supported.

Nおよび/またはSドープ管状酸化チタン粒子の製造方法
つぎに、本発明に係るNおよび/またはSドープ管状酸化チタン粒子の製造方法について説明する。
本発明に係るNおよび/またはSドープ管状酸化チタン粒子の製造方法は、管状酸化チタン粒子を200〜700℃で、尿素、アミノ酸から選ばれる1種または2種以上の窒素化合物および/または単体硫黄、チオウレア、メルカプタン、デカンチオール、チオアセトアミドから選ばれる1種または2種以上の硫黄化合物と接触させることを特徴としている。
管状酸化チタン粒子としては前記と同様の管状酸化チタン粒子を用いる。
Method for Producing N and / or S Doped Tubular Titanium Oxide Particles Next, a method for producing N and / or S doped tubular titanium oxide particles according to the present invention will be described.
The method for producing N- and / or S-doped tubular titanium oxide particles according to the present invention comprises the tubular titanium oxide particles at 200 to 700 ° C., one or more nitrogen compounds selected from urea and amino acids and / or elemental sulfur. , Thiourea, mercaptan, decanethiol, and thioacetamide, which are contacted with one or more sulfur compounds.
As the tubular titanium oxide particles, the same tubular titanium oxide particles as described above are used.

窒素化合物としては尿素、アミノ酸から選ばれる1種または2種以上の窒素化合物が好ましい。アミノ酸としてはグリシン、アラニン、バリン、ロイシン、チロシン等が例示される。
このような窒素化合物を用いると管状酸化チタン粒子の結晶性を殆ど損なうことなく、均一にNをドープした管状酸化チタン粒子を得ることができる。また、結晶性の低下を抑制することができるので、より高温でドーピング処理することができ、Nドープ量の多い管状酸化チタン粒子を得ることができる。
なお、特許文献1に開示した還元型管状酸化チタンの製造方法で用いたアンモニア、アミン、ヒドラジン、ピリジン等の窒素化合物は塩基性が強いためか、得られるNドープ管状酸化チタン粒子の結晶性が低下し、光触媒性能等が必ずしも満足のいくものではなかった。
The nitrogen compound is preferably one or more nitrogen compounds selected from urea and amino acids. Examples of amino acids include glycine, alanine, valine, leucine, tyrosine and the like.
When such a nitrogen compound is used, tubular titanium oxide particles uniformly doped with N can be obtained without substantially impairing the crystallinity of the tubular titanium oxide particles. In addition, since the decrease in crystallinity can be suppressed, doping treatment can be performed at a higher temperature, and tubular titanium oxide particles with a large amount of N doping can be obtained.
In addition, the nitrogen compounds such as ammonia, amine, hydrazine, and pyridine used in the method for producing reduced tubular titanium oxide disclosed in Patent Document 1 are strongly basic, or the crystallinity of the obtained N-doped tubular titanium oxide particles is low. The photocatalytic performance and the like were not always satisfactory.

硫黄化合物としてはチオウレア(チオ尿素ということもある。(NH2)2CS)、メルカプタン、デカンチオール、チオアセトアミドから選ばれる1種または2種以上の硫黄化合物が好ましい。このような硫黄化合物は他の硫黄化合物、例えば、H2S、CS2、SO2等に比して管状酸化チタン粒子と室温で物理的に混合することができる。また、添加量をコントロールすることも可能であるので好ましい。 The sulfur compound is preferably one or more sulfur compounds selected from thiourea (sometimes referred to as thiourea, (NH 2 ) 2 CS), mercaptan, decanethiol, and thioacetamide. Such a sulfur compound can be physically mixed with the tubular titanium oxide particles at room temperature as compared with other sulfur compounds such as H 2 S, CS 2 and SO 2 . Moreover, since it is also possible to control the addition amount, it is preferable.

このような窒素化合物、硫黄化合物を管状酸化チタン粒子と200〜700℃、さらには300〜650℃で接触させる。
接触させる方法としては、窒素化合物あるいは硫黄化合物と管状酸化チタン粒子とを混合して加熱することができるが、さらには前記窒素化合物および/または硫黄化合物をガス雰囲気下で接触させることもできる。
Such a nitrogen compound and sulfur compound are brought into contact with the tubular titanium oxide particles at 200 to 700 ° C, and further at 300 to 650 ° C.
As a contacting method, a nitrogen compound or a sulfur compound and tubular titanium oxide particles can be mixed and heated, and the nitrogen compound and / or the sulfur compound can also be contacted in a gas atmosphere.

このとき、ガスとしては希ガス、窒素ガス、酸素ガス、空気等を用いることができるが、本発明のNおよび/またはSドープ管状酸化チタン粒子の製造方法では空気が好ましい。希ガス、窒素ガス等の不活性ガスのみを用いると、接触させる温度によっては管状酸化チタン粒子の還元(脱酸素)が起こるとともに格子欠陥を多く生じることがある。また、ドーピング用窒素化合物、硫黄化合物が炭素を含む化合物である場合には、管状酸化チタン粒子表面に炭素が堆積することがあり、このため、得られるNおよび/またはSドープ管状酸化チタン粒子を光触媒として用いても充分な活性が得られないことがある。   At this time, rare gas, nitrogen gas, oxygen gas, air, or the like can be used as the gas, but air is preferred in the method for producing N and / or S-doped tubular titanium oxide particles of the present invention. When only an inert gas such as a rare gas or nitrogen gas is used, depending on the contact temperature, reduction (deoxygenation) of the tubular titanium oxide particles may occur and many lattice defects may occur. In addition, when the doping nitrogen compound and the sulfur compound are compounds containing carbon, carbon may be deposited on the surface of the tubular titanium oxide particles. For this reason, the obtained N and / or S doped tubular titanium oxide particles Even when used as a photocatalyst, sufficient activity may not be obtained.

前記空気中の窒素化合物および/または硫黄化合物の濃度は特に制限はないが、概ね10ppm〜50容積%、さらには50ppm〜10容積%の範囲にあることが好ましい。
前記濃度が10ppm未満の場合は、Nおよび/またはSのドーピングが不充分になったり、所望のNおよび/またはSをドーピングするのに長時間を要することがある。
前記濃度が50容積%を越えると、前記した管状酸化チタンの内部表面あるいは外部表面が選択的にNおよび/またはSがドーピングされ、不均一なドーピングが起きたり、ドーピング量が前記した上限値を超えることがあり、相分離や結晶性の低下とともに光触媒活性が不充分となることがある。
The concentration of the nitrogen compound and / or sulfur compound in the air is not particularly limited, but is generally in the range of 10 ppm to 50% by volume, more preferably 50 ppm to 10% by volume.
When the concentration is less than 10 ppm, N and / or S may be insufficiently doped, or it may take a long time to dope desired N and / or S.
When the concentration exceeds 50% by volume, the inner surface or the outer surface of the tubular titanium oxide is selectively doped with N and / or S, and uneven doping occurs, or the doping amount exceeds the upper limit described above. In some cases, the photocatalytic activity may become insufficient with phase separation and a decrease in crystallinity.

また、窒素化合物および/または硫黄化合物の使用量は、処理温度によっても異なるが、概ね所望の含有量と同等以上、乃至5倍以下であることが好ましい。また、必要に応じて前記した処理を繰り返し行うこともできる。このようにして、前記した所望の含有量にNおよび/またはSをドープした管状酸化チタン粒子が得られる。   Moreover, although the usage-amount of a nitrogen compound and / or a sulfur compound changes also with process temperature, it is preferable that it is the same or more thru | or 5 times or less substantially as desired content. Further, the above-described processing can be repeated as necessary. In this way, tubular titanium oxide particles doped with N and / or S in the desired content described above are obtained.

酸化鉄担持Nおよび/またはSドープ管状酸化チタン粒子の第1の製造方法
さらに、本発明のNおよび/またはSドープ管状酸化チタン粒子には酸化鉄が担持されているが、酸化鉄を担持したNおよび/またはSドープ管状酸化チタン粒子の第1の製造方法としては、上記のようにして得られたNおよび/またはSドープ管状酸化チタン粒子の分散液にイオン交換樹脂の存在下、硝酸第2鉄水溶液を混合し、ついで、乾燥し、必要に応じて加熱処理することが好ましい。
First method for producing iron oxide-supported N and / or S-doped tubular titanium oxide particles Further, iron oxide is supported on the N and / or S-doped tubular titanium oxide particles of the present invention, but iron oxide is supported. As a first method for producing N and / or S-doped tubular titanium oxide particles, the dispersion of N and / or S-doped tubular titanium oxide particles obtained as described above is mixed with nitric acid in the presence of an ion exchange resin. It is preferable to mix a two-iron aqueous solution, then dry, and heat-treat as necessary.

Nおよび/またはSドープ管状酸化チタン粒子分散液の濃度は後述するイオン交換樹脂を分散でき、分散液が均一に撹拌できれば特に制限はないが、固形分として1〜30重量%、さらには2〜20重量%の範囲にあることが好ましい。
Nおよび/またはSドープ管状酸化チタン粒子分散液の濃度が固形分として1重量%未満の場合は生産性が低下し、30重量%を越えると酸化鉄の担持が不均一になるためか、前記酸化鉄担持効果が低減し光触媒活性の向上効果が充分得られない場合がある。
The concentration of the N and / or S-doped tubular titanium oxide particle dispersion is not particularly limited as long as the ion exchange resin described later can be dispersed and the dispersion can be uniformly stirred, but the solid content is 1 to 30% by weight, It is preferably in the range of 20% by weight.
If the concentration of the N- and / or S-doped tubular titanium oxide particle dispersion is less than 1% by weight as the solid content, the productivity decreases, and if it exceeds 30% by weight, the iron oxide loading becomes non-uniform, In some cases, the effect of supporting the iron oxide is reduced, and the effect of improving the photocatalytic activity is not sufficiently obtained.

イオン交換樹脂としては、硝酸第2鉄の硝酸根を除去するために従来公知の陰イオン交換樹脂を用いることができる。
イオン交換樹脂の使用量はイオン交換樹脂のイオン交換容量および硝酸第2鉄の使用量によって変えることができるが、硝酸根を実質的に全量除去できる量とすることが好ましい。
本発明方法には硝酸第2鉄を用いるが、硝酸第1鉄も使用することができ、さらに硫酸第2鉄、塩化第2鉄も使用することができる。しかしながら、理由は明らかではないが硝酸第2鉄は光触媒活性向上効果に最も優れていることから好適に用いることができる。さらに、本発明方法では硝酸第2鉄と他の前記塩を混合して用いることもできる。
As the ion exchange resin, a conventionally known anion exchange resin can be used to remove the nitrate radical of ferric nitrate.
The amount of the ion exchange resin used can be varied depending on the ion exchange capacity of the ion exchange resin and the amount of ferric nitrate used, but it is preferable that the amount of nitrate radicals be removed substantially.
Although ferric nitrate is used in the method of the present invention, ferrous nitrate can also be used, and ferric sulfate and ferric chloride can also be used. However, although the reason is not clear, ferric nitrate can be suitably used because it has the most excellent effect of improving photocatalytic activity. Furthermore, in the method of the present invention, ferric nitrate and other salts can be mixed and used.

硝酸第2鉄の使用量は最終的に得られる酸化鉄を担持したNおよび/またはSドープ管状酸化チタン粒子中の酸化鉄の含有量がFe23として0.01〜5重量%、さらには0.02〜2重量%の範囲となるように使用する。
ついで、硝酸第2鉄水溶液を添加後、必要に応じて撹拌を継続した後、イオン交換樹脂を分離することによって酸化鉄を担持したNおよび/またはSドープ管状酸化チタン粒子の分散液を得ることができる。得られた酸化鉄担持Nおよび/またはSドープ管状酸化チタン粒子分散液はそのまま使用することができるが、必要に応じて濃縮、あるいは希釈して用いることができる。更に、乾燥し、必要に応じて加熱処理して粉体として、あるいは、粉体を成型して、成型体として用いることもできる。
The amount of ferric nitrate used is 0.01 to 5% by weight as the Fe 2 O 3 content of iron oxide in the finally obtained N and / or S-doped tubular titanium oxide particles supporting iron oxide, Is used in a range of 0.02 to 2% by weight.
Next, after adding the ferric nitrate aqueous solution, stirring is continued as necessary, and then a dispersion of N and / or S-doped tubular titanium oxide particles carrying iron oxide is obtained by separating the ion exchange resin. Can do. The obtained iron oxide-supported N and / or S-doped tubular titanium oxide particle dispersion can be used as it is, but can be concentrated or diluted as necessary. Furthermore, it can be dried and heat-treated as necessary to form a powder, or the powder can be molded and used as a molded body.

この時、乾燥温度は水分を実質的に除去できれば特に制限はないが、80〜250℃、さらには95〜200℃の範囲にあることが好ましい。
必要に応じて加熱処理する際の加熱温度は概ね200〜650℃、さらには300〜600℃の範囲である。加熱温度が200℃未満では硝酸根の分解、脱離が不充分で充分な光触媒活性の向上効果が得られないことがある。加熱温度が650℃を超えると酸化チタンの結晶型がアナタース型からルチル型に転移することがあり、光触媒活性が低下したり、酸化鉄を担持したNおよび/またはSドープ管状酸化チタン粒子が強く凝集し、粉砕を必要としたり、充分な光触媒活性が得られない場合がある。
At this time, the drying temperature is not particularly limited as long as moisture can be substantially removed, but is preferably in the range of 80 to 250 ° C, more preferably 95 to 200 ° C.
The heating temperature at the time of heat treatment as necessary is generally in the range of 200 to 650 ° C, and further 300 to 600 ° C. When the heating temperature is less than 200 ° C., decomposition and desorption of nitrate radicals are insufficient, and a sufficient effect of improving photocatalytic activity may not be obtained. When the heating temperature exceeds 650 ° C., the crystal form of titanium oxide may change from anatase type to rutile type, and the photocatalytic activity may decrease, or the N and / or S-doped tubular titanium oxide particles carrying iron oxide may be strong. Aggregation may require pulverization, or sufficient photocatalytic activity may not be obtained.

酸化鉄担持Nおよび/またはSドープ管状酸化チタン粒子の第2の製造方法
酸化鉄を担持したNおよび/またはSドープ管状酸化チタン粒子の第2の製造方法としては、前記で得られたNおよび/またはSドープ管状酸化チタン粒子に硝酸第2鉄水溶液を吸収させ、ついで、乾燥し、必要に応じて加熱処理することもできる。
粉体であるNおよび/またはSドープ管状酸化チタン粒子に硝酸第2鉄水溶液を吸収させる際に、硝酸第2鉄水溶液の量はNおよび/またはSドープ管状酸化チタン粒子の平均粒子径によっても異なるが、Nおよび/またはSドープ管状酸化チタン粒子が全体的に均一に水溶液を吸収し、ペースト状となる程度が好ましい。この時のペースト状の混合物中のNおよび/またはSドープ管状酸化チタン粒子の濃度は固形分として概ね25〜60重量%程度である。
Second Production Method of Iron Oxide-Supported N and / or S-Doped Tubular Titanium Oxide Particles As a second production method of N and / or S-doped tubular titanium oxide particles carrying iron oxide, the above-described N and It is also possible to absorb the ferric nitrate aqueous solution in the S-doped tubular titanium oxide particles, then dry and heat-treat as necessary.
When the ferric nitrate aqueous solution is absorbed by the powdered N and / or S-doped tubular titanium oxide particles, the amount of the ferric nitrate aqueous solution depends on the average particle diameter of the N and / or S-doped tubular titanium oxide particles. Although different, it is preferable that the N- and / or S-doped tubular titanium oxide particles absorb the aqueous solution uniformly and become a paste. The concentration of the N and / or S-doped tubular titanium oxide particles in the paste-like mixture at this time is about 25 to 60% by weight as the solid content.

ペースト状の混合物中のNおよび/またはSドープ管状酸化チタン粒子の濃度が固形分として25重量%未満の場合は酸化鉄の全量を担持することができない場合があり、60重量%を越えるとNおよび/またはSドープ管状酸化チタン粒子に均一に酸化鉄を担持できない場合があり、光触媒活性の向上効果が充分得られない場合がある。
硝酸第2鉄の使用量は最終的に得られる酸化鉄を担持したNおよび/またはSドープ管状酸化チタン粒子中の酸化鉄の含有量がFe23として0.01〜5重量%、さらには0.02〜2重量%の範囲となるように使用する。
When the concentration of the N and / or S-doped tubular titanium oxide particles in the paste-like mixture is less than 25% by weight as a solid content, the total amount of iron oxide may not be supported. In some cases, iron oxide cannot be uniformly supported on the S-doped tubular titanium oxide particles, and the effect of improving the photocatalytic activity may not be sufficiently obtained.
The amount of ferric nitrate used is 0.01 to 5% by weight as the Fe 2 O 3 content of iron oxide in the finally obtained N and / or S-doped tubular titanium oxide particles supporting iron oxide, Is used in a range of 0.02 to 2% by weight.

ついで、ペースト状の混合物を乾燥する。乾燥方法は特に制限はなく従来公知の方法を採用することができる。乾燥温度は水分を実質的に除去できれば特に制限はないが、80〜250℃、さらには95〜200℃の範囲にあることが好ましい。
ついで、必要に応じて加熱処理するが、加熱温度は概ね200〜650℃、さらには300〜600℃の範囲である。加熱温度が200℃未満では硝酸根の分解、脱離が不充分で充分な光触媒活性の向上効果が得られないことがある。加熱温度が650℃を超えると酸化チタンの結晶型がアナタース型からルチル型に転移することがあり、光触媒活性が低下したり、酸化鉄を担持したNおよび/またはSドープ管状酸化チタン粒子が強く凝集し、粉砕を必要としたり、充分な光触媒活性が得られない場合がある。
Next, the paste-like mixture is dried. There is no restriction | limiting in particular in the drying method, A conventionally well-known method is employable. Although there will be no restriction | limiting in particular if a drying temperature can remove a water | moisture content substantially, It is preferable that it exists in the range of 80-250 degreeC, Furthermore, 95-200 degreeC.
Next, heat treatment is performed as necessary, but the heating temperature is generally in the range of 200 to 650 ° C., more preferably 300 to 600 ° C. When the heating temperature is less than 200 ° C., decomposition and desorption of nitrate radicals are insufficient, and a sufficient effect of improving photocatalytic activity may not be obtained. When the heating temperature exceeds 650 ° C., the crystal form of titanium oxide may change from anatase type to rutile type, and the photocatalytic activity may decrease, or the N and / or S-doped tubular titanium oxide particles carrying iron oxide may be strong. Aggregation may require pulverization, or sufficient photocatalytic activity may not be obtained.

以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, although an example explains, the present invention is not limited by these examples.

[実施例1]
管状酸化チタン粒子(PT)の調製
塩化チタン水溶液を純水で希釈してTiO2として濃度5重量%の塩化チタン水溶液を調製した。この水溶液を、温度を5℃に調節した濃度15重量%のアンモニア水に添加して中和・加水分解した。塩化チタン水溶液添加後のpHは10.5であった。ついで、生成したゲルを濾過洗浄し、TiO2として濃度9重量%のオルソチタン酸のゲルを得た。
このオルソチタン酸のゲル1000gを純水29000gに分散させた後、濃度35重量%の過酸化水素水800gを加え、攪拌しながら、85℃で3時間加熱し、ペルオキソチタン酸水溶液を調製した。得られたペルオキソチタン酸水溶液のTiO2として濃度は0.5重量%であった。
[Example 1]
Preparation of tubular titanium oxide particles (PT) A titanium chloride aqueous solution was diluted with pure water to prepare a titanium chloride aqueous solution having a concentration of 5% by weight as TiO 2 . This aqueous solution was neutralized and hydrolyzed by adding it to 15% by weight ammonia water whose temperature was adjusted to 5 ° C. The pH after addition of the aqueous titanium chloride solution was 10.5. Next, the produced gel was washed by filtration to obtain an orthotitanic acid gel having a concentration of 9% by weight as TiO 2 .
After 1000 g of this orthotitanic acid gel was dispersed in 29000 g of pure water, 800 g of hydrogen peroxide having a concentration of 35% by weight was added and heated at 85 ° C. for 3 hours with stirring to prepare a peroxotitanic acid aqueous solution. The concentration of the resulting aqueous peroxotitanic acid solution as TiO 2 was 0.5% by weight.

ついで95℃で10時間加熱して酸化チタン粒子分散液とし、この酸化チタン粒子分散液に分散液中のTiO2 に対するモル比が0.016となるようにテトラメチルアンモニウムハイドロオキサイド(分子量:149.2)を添加した。このときの分散液のpHは11であった。ついで、230℃で5時間水熱処理して酸化チタン粒子分散液を調製した。酸化チタン粒子の平均粒子径は20nmであった。 Then, the mixture was heated at 95 ° C. for 10 hours to obtain a titanium oxide particle dispersion, and tetramethylammonium hydroxide (molecular weight: 149.m.) was added to the titanium oxide particle dispersion so that the molar ratio to TiO 2 in the dispersion was 0.016. 2) was added. The pH of the dispersion at this time was 11. Next, hydrothermal treatment was performed at 230 ° C. for 5 hours to prepare a titanium oxide particle dispersion. The average particle diameter of the titanium oxide particles was 20 nm.

上記酸化チタン粒子分散液に、濃度40重量%のKOH水溶液700gを、TiO2のモル数(TM)と水酸化カリウムのモル数(AM)とのモル比(AM)/(TM)が10となるように添加し、150℃で2時間水熱処理して管状酸化チタン粒子を合成した。
得られた粒子は純水にて充分洗浄した。このときのK2O残存量は0.9重量%であった。純水で洗浄した後、管状酸化チタン粒子の水分散液(TiO2としての濃度5重量%)とし、これに管状酸化チタン粒子と同量の陽イオン交換樹脂と陰イオン交換樹脂とを添加し、60℃で24時間処理してアルカリの除去等の高純度化を行った。
In the titanium oxide particle dispersion liquid, a KOH aqueous solution 700g of concentration 40 wt%, TiO 2 molar number (T M) and the number of moles of potassium hydroxide (A M) and the molar ratio of (A M) / (T M ) Was added to 10 and hydrothermally treated at 150 ° C. for 2 hours to synthesize tubular titanium oxide particles.
The obtained particles were sufficiently washed with pure water. At this time, the residual amount of K 2 O was 0.9% by weight. After washing with pure water, an aqueous dispersion of tubular titanium oxide particles (concentration 5% by weight as TiO 2 ) was added, and the same amount of cation exchange resin and anion exchange resin as tubular titanium oxide particles were added thereto. The resulting solution was treated at 60 ° C. for 24 hours to achieve high purity such as alkali removal.

ついで、100℃で3時間乾燥して管状酸化チタン粒子(PT)を調製した。
得られた管状酸化チタン粒子(PT)はアナタース型酸化チタンであった。また、粒子のTEM写真を撮影して求めた平均粒子長は180nm、平均管外径は10nm、平均管内径は7.5nmであった。
Subsequently, it dried at 100 degreeC for 3 hours, and the tubular titanium oxide particle (PT) was prepared.
The obtained tubular titanium oxide particles (PT) were anatase-type titanium oxide. The average particle length obtained by taking a TEM photograph of the particles was 180 nm, the average tube outer diameter was 10 nm, and the average tube inner diameter was 7.5 nm.

Nドープ管状酸化チタン粒子(NPT-1)の調製
管状酸化チタン粒子(PT)20gと尿素10.5gとを混合し、これをアルミナボートに入れ、300℃に設定した電気炉中、空気雰囲気下で3時間加熱処理してNドープ管状酸化チタン粒子(NPT-1)を調製した。
得られたNドープ管状酸化チタン粒子(NPT-1)について結晶型、Nドープ量およびK2O残存量を分析し、結果を表1に示した。また、粒子のTEM写真を撮影して平均粒子長(L)と平均管外径(Dout)および平均管内径(Din)を求めたところ、管状酸化チタン粒子(PT)と同一であった。
Preparation of N-doped tubular titanium oxide particles (NPT-1) 20 g of tubular titanium oxide particles (PT) and 10.5 g of urea were mixed, placed in an alumina boat, and placed in an electric furnace set at 300 ° C. in an air atmosphere. Was heated for 3 hours to prepare N-doped tubular titanium oxide particles (NPT-1).
The obtained N-doped tubular titanium oxide particles (NPT-1) were analyzed for crystal form, N-doping amount and K 2 O residual amount, and the results are shown in Table 1. Moreover, when the TEM photograph of particle | grains was image | photographed and the average particle length (L), the average pipe outer diameter (Dout), and the average pipe inner diameter (Din) were calculated | required, it was the same as a tubular titanium oxide particle (PT).

活性の評価
アセトニトリル溶媒中に2−プロパノールを濃度が50mmol/Lとなるように混合した溶液を調製し、この溶液5mlとNドープ管状酸化チタン粒子(NPT-1)100mgと撹拌子とを試験管に入れ、シリコンキャップをした後パラフィルム(登録商標)で密閉した。試験管に超音波を照射してNドープ管状酸化チタン粒子(NPT-1)を充分に分散させ、試験管をマグネチックスターラーで撹拌しながら、同時に送風機で風冷しながらXeランプの光を1時間照射した。このときUV―35フィルターで波長350nm以下の光を遮断して照射した。
照射後、溶液を取り出し、遠心分離器にてNドープ管状酸化チタン粒子(NPT-1)を分離し、反応後の溶液中の2−プロパノールおよび生成したアセトンの量をガスクロマトグラフィーにて測定し、2−プロパノールの減少量およびアセトンの生成量を表1に示した。
Evaluation of activity A solution prepared by mixing 2-propanol in acetonitrile solvent so as to have a concentration of 50 mmol / L was prepared, and 5 ml of this solution, 100 mg of N-doped tubular titanium oxide particles (NPT-1) and a stirrer were added to a test tube. And sealed with Parafilm (registered trademark). Irradiate the test tube with ultrasonic waves to fully disperse the N-doped tubular titanium oxide particles (NPT-1), stir the test tube with a magnetic stirrer, and simultaneously cool the air with an air blower to light the Xe lamp 1 Irradiated for hours. At this time, the light having a wavelength of 350 nm or less was blocked by the UV-35 filter and irradiated.
After irradiation, the solution was taken out, N-doped tubular titanium oxide particles (NPT-1) were separated with a centrifuge, and the amount of 2-propanol and produced acetone in the solution after the reaction was measured by gas chromatography. Table 1 shows the amount of 2-propanol reduced and the amount of acetone produced.

[実施例2〜5]
Nドープ管状酸化チタン粒子(NPT-2)〜(NPT-5)の調製
実施例1において、尿素を15g、30g、45gおよび60gを混合した以外は同様にしてNドープ管状酸化チタン粒子(NPT-2)〜(NPT-5)を調製した。
得られたNドープ管状酸化チタン粒子(NPT-2)〜(NPT-5)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。これらNドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Examples 2 to 5]
Preparation of N-doped tubular titanium oxide particles (NPT-2) to (NPT-5) N-doped tubular titanium oxide particles (NPT- ) were prepared in the same manner as in Example 1, except that 15 g, 30 g, 45 g and 60 g of urea were mixed. 2) to (NPT-5) were prepared.
The obtained N-doped tubular titanium oxide particles (NPT-2) to (NPT-5) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of these N-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例6、7]
Nドープ管状酸化チタン粒子(NPT-6)、(NPT-7)の調製
実施例2において、処理温度を450℃、600℃とした以外は同様にしてNドープ管状酸化チタン粒子(NPT-6)、(NPT-7)を調製した。
得られたNドープ管状酸化チタン粒子(NPT-6)、(NPT-7)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。これらNドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Examples 6 and 7]
Preparation of N-doped tubular titanium oxide particles (NPT-6) and (NPT-7) N-doped tubular titanium oxide particles (NPT-6) were prepared in the same manner as in Example 2, except that the processing temperatures were 450 ° C. and 600 ° C. , (NPT-7) was prepared.
The obtained N-doped tubular titanium oxide particles (NPT-6) and (NPT-7) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of these N-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例8〜10]
N/Sドープ管状酸化チタン粒子(NSPT-8)〜(NSPT-10)の調製
管状酸化チタン粒子(PT)20gとチオウレアを各々5.7g、19g、76gとを混合し、これをアルミナボートに入れ、300℃に設定した電気炉中、空気雰囲気下で3時間加熱処理してN/Sドープ管状酸化チタン粒子(NSPT-8)〜(NSPT-10)を調製した。
得られたN/Sドープ管状酸化チタン粒子(NSPT-8)〜(NSPT-10)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。これらN/Sドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Examples 8 to 10]
Preparation of N / S doped tubular titanium oxide particles (NSPT-8) to (NSPT-10 ) 20 g of tubular titanium oxide particles (PT) and 5.7 g, 19 g and 76 g of thiourea were mixed, and this was mixed into an alumina boat. Then, heat treatment was performed in an electric furnace set at 300 ° C. under an air atmosphere for 3 hours to prepare N / S-doped tubular titanium oxide particles (NSPT-8) to (NSPT-10).
The obtained N / S-doped tubular titanium oxide particles (NSPT-8) to (NSPT-10) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of these N / S-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例11〜13]
N/Sドープ管状酸化チタン粒子(NSPT-11)〜(NSPT-13)の調製
実施例10において、処理温度を350℃、400℃、450℃とした以外は同様にしてN/Sドープ管状酸化チタン粒子(NSPT-11)〜(NSPT-13)を調製した。
得られたN/Sドープ管状酸化チタン粒子(NSPT-11)〜(NSPT-13)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。これらN/Sドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Examples 11 to 13]
Preparation of N / S-doped tubular titanium oxide particles (NSPT-11) to (NSPT-13) N / S-doped tubular oxidation in the same manner as in Example 10, except that the processing temperatures were 350 ° C., 400 ° C., and 450 ° C. Titanium particles (NSPT-11) to (NSPT-13) were prepared.
The obtained N / S-doped tubular titanium oxide particles (NSPT-11) to (NSPT-13) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of these N / S-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例14]
Sドープ管状酸化チタン粒子(SPT-14)の調製
管状酸化チタン粒子(PT)20gと硫黄化合物として単体硫黄を3.2g混合し、これをアルミナボートに入れ、300℃に設定した電気炉中、空気雰囲気下で3時間加熱処理してSドープ管状酸化チタン粒子(SPT-14)を調製した。
得られたSドープ管状酸化チタン粒子(SPT-14)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。このSドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Example 14]
Preparation of S-doped tubular titanium oxide particles (SPT-14) 20 g of tubular titanium oxide particles (PT) and 3.2 g of simple sulfur as a sulfur compound were mixed, put in an alumina boat, and set in an electric furnace set at 300 ° C. S-doped tubular titanium oxide particles (SPT-14) were prepared by heat treatment in an air atmosphere for 3 hours.
The obtained S-doped tubular titanium oxide particles (SPT-14) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of the S-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例15]
Nドープ管状酸化チタン粒子(NPT-15)の調製
実施例1と同様にして調製したNドープ管状酸化チタン粒子(NPT-1)20gを水180gに分散し、充分撹拌した後、陰イオン交換樹脂(三菱化学(株)製:SA20A)5gを混合し、ついで、温度を50℃に調整した後、Fe23としての濃度1重量%の硝酸第2鉄水溶液2gを添加し、2時間撹拌した後、イオン交換樹脂を分離し、酸化鉄を担持したNドープ管状酸化チタン粒子(NPT-15)分散液を得た。
ついで、200℃で3時間乾燥して酸化鉄を担持したNドープ管状酸化チタン粒子(NPT-15)を調製した。酸化鉄の担持量を表に示した。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Example 15]
Preparation of N-doped tubular titanium oxide particles (NPT-15 ) 20 g of N-doped tubular titanium oxide particles (NPT-1) prepared in the same manner as in Example 1 were dispersed in 180 g of water, stirred sufficiently, and then anion exchange resin. (Mitsubishi Chemical Corporation: SA20A) 5 g was mixed, and then the temperature was adjusted to 50 ° C., and then 2 g of ferric nitrate aqueous solution having a concentration of 1 wt% as Fe 2 O 3 was added and stirred for 2 hours. After that, the ion exchange resin was separated to obtain a dispersion of N-doped tubular titanium oxide particles (NPT-15) carrying iron oxide.
Subsequently, it was dried at 200 ° C. for 3 hours to prepare N-doped tubular titanium oxide particles (NPT-15) carrying iron oxide. The amount of iron oxide supported is shown in the table. The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例16]
Nドープ管状酸化チタン粒子(NPT-16)の調製
実施例1と同様にして調製したNドープ管状酸化チタン粒子(NPT-1)20gを水180gに分散し、充分撹拌した後、陰イオン交換樹脂(三菱化学(株)製:SA20A)10gを混合し、ついで、温度を50℃に調整した後、Fe23としての濃度1重量%の硝酸第2鉄水溶液20gを添加し、2時間撹拌した後、イオン交換樹脂を分離し、酸化鉄を担持したNドープ管状酸化チタン粒子(NPT-16)分散液を得た。
ついで、200℃で3時間乾燥して酸化鉄を担持したNドープ管状酸化チタン粒子(NPT-16)を調製した。酸化鉄の担持量を表に示した。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Example 16]
Preparation of N-doped tubular titanium oxide particles (NPT-16 ) 20 g of N-doped tubular titanium oxide particles (NPT-1) prepared in the same manner as in Example 1 were dispersed in 180 g of water, stirred well, and then anion exchange resin. (Mitsubishi Chemical Corporation: SA20A) 10 g was mixed, and then the temperature was adjusted to 50 ° C., and then 20 g of ferric nitrate aqueous solution having a concentration of 1% by weight as Fe 2 O 3 was added and stirred for 2 hours. After that, the ion exchange resin was separated to obtain a dispersion of N-doped tubular titanium oxide particles (NPT-16) carrying iron oxide.
Subsequently, N-doped tubular titanium oxide particles (NPT-16) supporting iron oxide were prepared by drying at 200 ° C. for 3 hours. The amount of iron oxide supported is shown in the table. The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例17]
Nドープ管状酸化チタン粒子(NPT-17)の調製
実施例1と同様にして調製したNドープ管状酸化チタン粒子(NPT-1)20gを水180gに分散し、充分撹拌した後、陰イオン交換樹脂(三菱化学(株)製:SA20A)20gを混合し、ついで、温度を50℃に調整した後、Fe23としての濃度1重量%の硝酸第2鉄水溶液40gを添加し、2時間撹拌した後、イオン交換樹脂を分離し、酸化鉄を担持したNドープ管状酸化チタン粒子(NPT-17)分散液を得た。
ついで、200℃で3時間乾燥して酸化鉄を担持したNドープ管状酸化チタン粒子(NPT-17)を調製した。酸化鉄の担持量を表に示した。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Example 17]
Preparation of N-doped tubular titanium oxide particles (NPT-17 ) 20 g of N-doped tubular titanium oxide particles (NPT-1) prepared in the same manner as in Example 1 were dispersed in 180 g of water, stirred sufficiently, and then anion exchange resin. (Mitsubishi Chemical Corporation: SA20A) 20 g was mixed, and after adjusting the temperature to 50 ° C., 40 g of ferric nitrate aqueous solution having a concentration of 1 wt% as Fe 2 O 3 was added and stirred for 2 hours. After that, the ion exchange resin was separated to obtain a dispersion of N-doped tubular titanium oxide particles (NPT-17) carrying iron oxide.
Subsequently, N-doped tubular titanium oxide particles (NPT-17) supporting iron oxide were prepared by drying at 200 ° C. for 3 hours. The amount of iron oxide supported is shown in the table. The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例18]
Nドープ管状酸化チタン粒子(NPT-18)の調製
実施例1と同様にして調製したNドープ管状酸化チタン粒子(NPT-1)20gとFe23としての濃度1重量%の硝酸第2鉄水溶液20gとを混合してペースト状とした。
ついで、200℃で3時間乾燥して酸化鉄を担持したNドープ管状酸化チタン粒子(NPT-18)を調製した。酸化鉄の担持量を表に示した。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Example 18]
Preparation of N-doped tubular titanium oxide particles (NPT-18 ) 20 g of N-doped tubular titanium oxide particles (NPT-1) prepared in the same manner as in Example 1 and ferric nitrate at a concentration of 1% by weight as Fe 2 O 3 20 g of aqueous solution was mixed to make a paste.
Subsequently, it was dried at 200 ° C. for 3 hours to prepare N-doped tubular titanium oxide particles (NPT-18) carrying iron oxide. The amount of iron oxide supported is shown in the table. The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[比較例1]
管状酸化チタン粒子としてNおよび/またはSをドーピングする前の管状酸化チタン粒子(PT)について実施例1と同様にして活性を評価し、結果を表1に示した。
[Comparative Example 1]
The tubular titanium oxide particles (PT) before being doped with N and / or S as the tubular titanium oxide particles were evaluated for activity in the same manner as in Example 1, and the results are shown in Table 1.

[比較例2]
Nドープ管状酸化チタン粒子(RNPT-2)の調製
実施例1において、尿素0.75gを混合した以外は同様にしてNドープ管状酸化チタン粒子(RNPT-2)を調製した。
得られたNドープ管状酸化チタン粒子(RNPT-2)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。このNドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Comparative Example 2]
Preparation of N-doped tubular titanium oxide particles (RNPT-2) N-doped tubular titanium oxide particles (RNPT-2) were prepared in the same manner as in Example 1 except that 0.75 g of urea was mixed.
The obtained N-doped tubular titanium oxide particles (RNPT-2) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of the N-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[比較例3]
Nドープ管状酸化チタン粒子(RNPT-3)の調製
実施例1において、尿素72.6gを混合した以外は同様にしてNドープ管状酸化チタン粒子(RNPT-3)を調製した。
得られたNドープ管状酸化チタン粒子(RNPT-3)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。このNドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Comparative Example 3]
Preparation of N-doped tubular titanium oxide particles (RNPT-3) N-doped tubular titanium oxide particles (RNPT-3) were prepared in the same manner as in Example 1 except that 72.6 g of urea was mixed.
The obtained N-doped tubular titanium oxide particles (RNPT-3) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of the N-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[比較例4]
Sドープ管状酸化チタン粒子(RSPT-4)の調製
実施例14において、単体硫黄0.8gを混合した以外は同様にしてSドープ管状酸化チタン粒子(RSPT-4)を調製した。
得られたSドープ管状酸化チタン粒子(RSPT-4)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。このSドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Comparative Example 4]
Preparation of S-doped tubular titanium oxide particles (RSPT-4) In Example 14, S-doped tubular titanium oxide particles (RSPT-4) were prepared in the same manner except that 0.8 g of elemental sulfur was mixed.
The obtained S-doped tubular titanium oxide particles (RSPT-4) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of the S-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[比較例5]
Sドープ管状酸化チタン粒子(RSPT-5)の調製
実施例14において、単体硫黄40gを混合した以外は同様にしてSドープ管状酸化チタン粒子(RSPT-5)を調製した。
得られたSドープ管状酸化チタン粒子(RSPT-5)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。このSドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Comparative Example 5]
Preparation of S-doped tubular titanium oxide particles (RSPT-5) In Example 14, S-doped tubular titanium oxide particles (RSPT-5) were prepared in the same manner except that 40 g of elemental sulfur was mixed.
The obtained S-doped tubular titanium oxide particles (RSPT-5) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of the S-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[比較例6]
Nドープ管状酸化チタン粒子(RNPT-6)の調製
管状酸化チタン粒子(PT)を、400℃に調節した電気炉中、窒素で希釈したアンモニアガス(NH3:10容積%)を2時間供給してNドープ管状酸化チタン粒子(RNPT-6)を調製した。
得られたNドープ管状酸化チタン粒子(RNPT-6)について結晶型、Nドープ量、K2O残存量を測定し、結果を表1に示した。このNドープ管状酸化チタン粒子の平均粒子長(L)、平均管外径(Dout)および平均管内径(Din)は、管状酸化チタン粒子(PT)と同一であった。また、実施例1と同様にして活性を評価し、結果を表1に示した。
[Comparative Example 6]
Preparation of N-doped tubular titanium oxide particles (RNPT-6) In an electric furnace adjusted to 400 ° C, tubular titanium oxide particles (PT) were supplied with ammonia gas (NH 3 : 10% by volume) diluted with nitrogen for 2 hours. Thus, N-doped tubular titanium oxide particles (RNPT-6) were prepared.
The obtained N-doped tubular titanium oxide particles (RNPT-6) were measured for crystal type, N-doped amount, and K 2 O residual amount, and the results are shown in Table 1. The average particle length (L), average tube outer diameter (Dout), and average tube inner diameter (Din) of the N-doped tubular titanium oxide particles were the same as the tubular titanium oxide particles (PT). The activity was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

Figure 2008230950
Figure 2008230950

Claims (11)

Nおよび/またはSがドープされた管状酸化チタン粒子であって、該管状酸化チタン粒子中のNの含有量がNとして0.1〜5重量%の範囲にあり、Sの含有量がSとして0.2〜6重量%の範囲にあるNおよび/またはSドープ管状酸化チタン粒子。   Tubular titanium oxide particles doped with N and / or S, wherein the content of N in the tubular titanium oxide particles is in the range of 0.1 to 5% by weight as N, and the content of S is as S N and / or S doped tubular titanium oxide particles in the range of 0.2 to 6% by weight. 前記管状酸化チタン粒子の平均管外径(Dout)が5〜40nmの範囲にあり、平均管内径(Din)が4〜20nmの範囲にあり、平均管の厚みが0.5〜10nmの範囲にあり、平均長さ(Lp)が25〜1000nmの範囲にあり、アスペクト比(Lp)/(Dout)が5〜200の範囲にあることを特徴とする請求項1に記載のNおよび/またはSドープ管状酸化チタン粒子。 The tubular titanium oxide particles have an average tube outer diameter (D out ) in the range of 5 to 40 nm, an average tube inner diameter (D in ) in the range of 4 to 20 nm, and an average tube thickness of 0.5 to 10 nm. The average length (L p ) is in the range of 25 to 1000 nm, and the aspect ratio (L p ) / (D out ) is in the range of 5 to 200. N and / or S doped tubular titanium oxide particles. 前記Nおよび/またはSドープ管状酸化チタン粒子の結晶型がアナタース型であることを特徴とする請求項1または2に記載のNおよび/またはSドープ管状酸化チタン粒子。   3. The N and / or S-doped tubular titanium oxide particles according to claim 1 or 2, wherein the N and / or S-doped tubular titanium oxide particles have an anatase crystal type. 酸化鉄がFe23として0.01〜5重量%の範囲で担持されたことを特徴とする請求項1〜3のいずれかに記載のNおよび/またはSドープ管状酸化チタン粒子。 N and / or S-doped tubular titanium oxide particles according to any one of claims 1 to 3, characterized in that the iron oxide was loaded in a range of 0.01 to 5% by weight Fe 2 O 3. 管状酸化チタン粒子を200〜700℃で、尿素、アミノ酸から選ばれる1種または2種以上の窒素化合物および/または単体硫黄、チオウレア、メルカプタン、デカンチオール、チオアセトアミドから選ばれる1種または2種以上の硫黄化合物と接触させることを特徴とするNおよび/またはSドープ管状酸化チタン粒子の製造方法。   Tubular titanium oxide particles at 200 to 700 ° C., one or more nitrogen compounds selected from urea and amino acids, and / or one or more selected from elemental sulfur, thiourea, mercaptan, decanethiol, and thioacetamide A method for producing N- and / or S-doped tubular titanium oxide particles, characterized by contacting with a sulfur compound. 前記窒素化合物および/または硫黄化合物を空気雰囲気下で接触させることを特徴とする請求項5に記載のNおよび/またはSドープ管状酸化チタン粒子の製造方法。   The method for producing N and / or S-doped tubular titanium oxide particles according to claim 5, wherein the nitrogen compound and / or the sulfur compound are contacted in an air atmosphere. 前記管状酸化チタン粒子の平均管外径(Dout)が5〜40nmの範囲にあり、平均管内径(Din)が4〜20nmの範囲にあり、平均管の厚みが0.5〜10nmの範囲にあり、平均長さ(Lp)が25〜1000nmの範囲にあり、アスペクト比(Lp)/(Dout)が5〜200の範囲にあることを特徴とする請求項5〜6のいずれかに記載のNおよび/またはSドープ管状酸化チタン粒子の製造方法。 The tubular titanium oxide particles have an average tube outer diameter (D out ) in the range of 5 to 40 nm, an average tube inner diameter (D in ) in the range of 4 to 20 nm, and an average tube thickness of 0.5 to 10 nm. The average length (L p ) is in the range of 25 to 1000 nm, and the aspect ratio (L p ) / (D out ) is in the range of 5 to 200. The manufacturing method of the N and / or S dope tubular titanium oxide particle in any one. Nおよび/またはSドープ管状酸化チタン粒子中のNの含有量がNとして0.1〜5重量%の範囲にあり、Sの含有量がSとして0.2〜6重量%の範囲にあることを特徴とする請求項5〜7のいずれかに記載のNおよび/またはSドープ酸化チタン粒子の製造方法。   The N content in the N and / or S-doped tubular titanium oxide particles is in the range of 0.1 to 5% by weight as N, and the S content is in the range of 0.2 to 6% by weight as S. The method for producing N and / or S-doped titanium oxide particles according to any one of claims 5 to 7. 前記Nおよび/またはSドープ管状酸化チタン粒子の結晶型がアナタース型であることを特徴とする請求項5〜8のいずれかに記載のNおよび/またはSドープ管状酸化チタン粒子の製造方法。   The method for producing N and / or S doped tubular titanium oxide particles according to any one of claims 5 to 8, wherein the crystal form of the N and / or S doped tubular titanium oxide particles is an anatase type. 請求項5〜9のいずれかに記載の製造方法によって得られたNおよび/またはSドープ管状酸化チタン粒子の分散液にイオン交換樹脂の存在下、硝酸第2鉄水溶液を混合し、ついで、必要に応じて乾燥し、加熱処理することを特徴とするNおよび/またはSドープ管状酸化チタン粒子の製造方法。   A ferric nitrate aqueous solution is mixed with the dispersion of N and / or S doped tubular titanium oxide particles obtained by the production method according to claim 5 in the presence of an ion exchange resin, and then necessary The method for producing N- and / or S-doped tubular titanium oxide particles is characterized by drying according to the above and heat treatment. 請求項5〜9のいずれかに記載の製造方法によって得られたNおよび/またはSドープ管状酸化チタン粒子に硝酸第2鉄水溶液を吸収させ、ついで、乾燥し、必要に応じて加熱処理することを特徴とするNおよび/またはSドープ管状酸化チタン粒子の製造方法。   The N and / or S-doped tubular titanium oxide particles obtained by the production method according to claim 5 absorb the ferric nitrate aqueous solution, and then dry and heat-treat as necessary. A process for producing N and / or S doped tubular titanium oxide particles characterized by
JP2007280488A 2007-02-21 2007-10-29 N- and / or S-doped tubular titanium oxide particles and method for producing the same Expired - Fee Related JP5030735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280488A JP5030735B2 (en) 2007-02-21 2007-10-29 N- and / or S-doped tubular titanium oxide particles and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007040988 2007-02-21
JP2007040988 2007-02-21
JP2007280488A JP5030735B2 (en) 2007-02-21 2007-10-29 N- and / or S-doped tubular titanium oxide particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008230950A true JP2008230950A (en) 2008-10-02
JP5030735B2 JP5030735B2 (en) 2012-09-19

Family

ID=39904200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280488A Expired - Fee Related JP5030735B2 (en) 2007-02-21 2007-10-29 N- and / or S-doped tubular titanium oxide particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5030735B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190162A (en) * 2010-02-17 2011-09-29 Ishihara Sangyo Kaisha Ltd Electroconductive oxide particle, treatment method of oxide particle for obtaining the same, electrode active material containing the electroconductive oxide particle, and power storage device using the electrode active material
WO2011145801A2 (en) * 2010-05-17 2011-11-24 한국화학연구원 Visible ray-active spherical carbon-based porous material, and preparation method thereof
WO2014046020A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide
CN103801353A (en) * 2012-11-14 2014-05-21 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of carbon-nitrogen codoped titanium dioxide visible-light photocatalyst
KR20150054781A (en) * 2012-09-19 2015-05-20 주식회사 다이셀 Transition metal compound-loaded titanium oxide suspension

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152323A (en) * 1996-09-30 1998-06-09 Chubu Electric Power Co Inc Crystal titania and its production
JP2001205103A (en) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic body
JP2004035362A (en) * 2002-07-05 2004-02-05 Catalysts & Chem Ind Co Ltd Tubular titanium oxide particle and method for manufacturing tubular titanium oxide particle
JP2004143032A (en) * 2002-08-26 2004-05-20 Tokuyama Corp Sulfur-containing metal oxide
JP2004250239A (en) * 2003-02-18 2004-09-09 Catalysts & Chem Ind Co Ltd Active tubular titanium oxide particle, and catalyst and deodorant containing the same
JP2005169216A (en) * 2003-12-09 2005-06-30 Dowa Mining Co Ltd Titanium oxide for visible light response type photocatalyst and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152323A (en) * 1996-09-30 1998-06-09 Chubu Electric Power Co Inc Crystal titania and its production
JP2001205103A (en) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic body
JP2004035362A (en) * 2002-07-05 2004-02-05 Catalysts & Chem Ind Co Ltd Tubular titanium oxide particle and method for manufacturing tubular titanium oxide particle
JP2004143032A (en) * 2002-08-26 2004-05-20 Tokuyama Corp Sulfur-containing metal oxide
JP2004250239A (en) * 2003-02-18 2004-09-09 Catalysts & Chem Ind Co Ltd Active tubular titanium oxide particle, and catalyst and deodorant containing the same
JP2005169216A (en) * 2003-12-09 2005-06-30 Dowa Mining Co Ltd Titanium oxide for visible light response type photocatalyst and its production method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190162A (en) * 2010-02-17 2011-09-29 Ishihara Sangyo Kaisha Ltd Electroconductive oxide particle, treatment method of oxide particle for obtaining the same, electrode active material containing the electroconductive oxide particle, and power storage device using the electrode active material
WO2011145801A2 (en) * 2010-05-17 2011-11-24 한국화학연구원 Visible ray-active spherical carbon-based porous material, and preparation method thereof
WO2011145801A3 (en) * 2010-05-17 2012-01-26 한국화학연구원 Visible ray-active spherical carbon-based porous material, and preparation method thereof
WO2014046020A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide
KR20150054781A (en) * 2012-09-19 2015-05-20 주식회사 다이셀 Transition metal compound-loaded titanium oxide suspension
KR20150054782A (en) * 2012-09-19 2015-05-20 주식회사 다이셀 Transition metal compound-loaded titanium oxide
JPWO2014046020A1 (en) * 2012-09-19 2016-08-18 株式会社ダイセル Transition metal compound-supported titanium oxide
KR102185603B1 (en) 2012-09-19 2020-12-02 주식회사 다이셀 Transition metal compound-loaded titanium oxide suspension
KR102207479B1 (en) 2012-09-19 2021-01-26 주식회사 다이셀 Transition metal compound-loaded titanium oxide
CN103801353A (en) * 2012-11-14 2014-05-21 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of carbon-nitrogen codoped titanium dioxide visible-light photocatalyst
CN103801353B (en) * 2012-11-14 2016-02-17 上海纳米技术及应用国家工程研究中心有限公司 The preparation method of the titanium dioxide visible light catalyzer that a kind of carbon is nitrogen co-doped

Also Published As

Publication number Publication date
JP5030735B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP6887470B2 (en) Linear Porous Titanium Dioxide Material and Its Preparation Method and Application
Song et al. Two-step hydrothermally synthesized carbon nanodots/WO 3 photocatalysts with enhanced photocatalytic performance
Qian et al. In situ chemical transformation synthesis of Bi 4 Ti 3 O 12/I–BiOCl 2D/2D heterojunction systems for water pollution treatment and hydrogen production
Zaleska Doped-TiO2: a review
Wang et al. Enhanced photocatalytic activity and mechanism of CeO 2 hollow spheres for tetracycline degradation
JP4353978B2 (en) Method for producing titanium oxide photocatalyst
Zhang et al. Novel AgI-decorated β-Bi 2 O 3 nanosheet heterostructured Z-scheme photocatalysts for efficient degradation of organic pollutants with enhanced performance
Ida et al. Black-colored nitrogen-doped calcium niobium oxide nanosheets and their photocatalytic properties under visible light irradiation
Salari et al. Facile template-free synthesis of new α-MnO 2 nanorod/silver iodide p–n junction nanocomposites with high photocatalytic performance
WO2006064799A1 (en) Composite metal oxide photocatalyst exhibiting responsibility to visible light
Venkatesh et al. Enhanced photocatalytic activity of reduced graphene oxide/SrSnO3 nanocomposite for aqueous organic pollutant degradation
Eslami et al. Synthesis and characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate
JP2011031139A (en) Photocatalyst material and method for manufacturing the same
Abdurahman et al. Tunable band structure of synthesized carbon dots modified graphitic carbon nitride/bismuth oxychlorobromide heterojunction for photocatalytic degradation of tetracycline in water
JP5030735B2 (en) N- and / or S-doped tubular titanium oxide particles and method for producing the same
Pei et al. Enhancing visible-light degradation performance of g-C3N4 on organic pollutants by constructing heterojunctions via combining tubular g-C3N4 with Bi2O3 nanosheets
Xu et al. Insight into facet-dependent photocatalytic H 2 O 2 production on BiOCl nanosheets
Phadtare et al. Ultrasonically dispersed ultrathin g-C3N4 nanosheet/BaBi2Nb2O9 heterojunction photocatalysts for efficient photocatalytic degradation of organic pollutant
Vasanthakumar et al. MWCNT supported V2O5 quantum dot nanoparticles decorated Bi2O3 nanosheets hybrid system: efficient visible light driven photocatalyst for degradation of ciprofloxacin
Bastakoti et al. Synthesis of highly photocatalytic TiO2 microflowers based on solvothermal approach using N, N-dimethylformamide
Jiang et al. Effect of Bi/Ti ratio on (Na0. 5Bi0. 5) TiO3/Bi4Ti3O12 heterojunction formation and photocatalytic performance
Wei et al. A stable and efficient La-doped MIL-53 (Al)/ZnO photocatalyst for sulfamethazine degradation
Nguyen-Le et al. EDTA-Na2-assisted synthesis of rod-like titanate-TiO2 composite architectures with enhanced visible-light-driven properties
Navgire et al. Effect of poly (ethylene glycol) surfactant on carbon-doped MoO 3 nanocomposite materials and its photocatalytic activity
Fard et al. Efficient visible light-driven core–shell-structured ZnS@ Ag 2 S nanoparticles-anchored reduced graphene oxide for the reduction of Cr (vi)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees