JP2004250239A - Active tubular titanium oxide particle, and catalyst and deodorant containing the same - Google Patents

Active tubular titanium oxide particle, and catalyst and deodorant containing the same Download PDF

Info

Publication number
JP2004250239A
JP2004250239A JP2003039181A JP2003039181A JP2004250239A JP 2004250239 A JP2004250239 A JP 2004250239A JP 2003039181 A JP2003039181 A JP 2003039181A JP 2003039181 A JP2003039181 A JP 2003039181A JP 2004250239 A JP2004250239 A JP 2004250239A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide particles
group
tubular titanium
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003039181A
Other languages
Japanese (ja)
Other versions
JP4293801B2 (en
Inventor
Atsushi Tanaka
田中  敦
Katsuhiro Kino
勝博 城野
Tsuguo Koyanagi
嗣雄 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2003039181A priority Critical patent/JP4293801B2/en
Publication of JP2004250239A publication Critical patent/JP2004250239A/en
Application granted granted Critical
Publication of JP4293801B2 publication Critical patent/JP4293801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide active tubular titanium oxide particles useful as a deodorizer, catalyst, photocatalyst, etc., and to provide a catalyst having long-term catalyst activity and a deodorant having long-term deodorization performance. <P>SOLUTION: If specific oxides, such as SiO<SB>2</SB>, ZrO<SB>2</SB>, ZnO, Al<SB>2</SB>O<SB>3</SB>, CeO<SB>2</SB>, Y<SB>2</SB>O<SB>3</SB>, Nd<SB>2</SB>O<SB>3</SB>, WO<SB>3</SB>, Fe<SB>2</SB>O<SB>3</SB>, and Sb<SB>2</SB>O<SB>5</SB>, are included in the tubular titanium oxide particles, the tubular titanium oxide particles are particularly liable to be formed in the case the oxides are alkali-soluble oxides and the functions as multiple oxides, for example, solid catalyst function, and ion exchange function, can be imparted to the obtained tubular titanium oxide particles in the case the oxides are hardly soluble in alkali because the oxides are retained in the obtained tubular titanium oxide particles. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の技術分野】
本発明は、触媒、光触媒、消臭剤等として有用な活性管状酸化チタン粒子および該活性管状酸化チタン粒子を含んでなる触媒および消臭剤に関する。
【0002】
【発明の技術的背景】
酸化チタン粒子、酸化チタン系複合酸化物粒子はその化学的特性を利用した用途が広く、例えば、酸素との適当な結合力を有すると共に耐酸性を有するため、酸化還元触媒あるいは担体、紫外線の遮蔽力を利用した化粧材料またはプラスチック材料の表面コート剤、さらには高屈折を利用した反射防止コート材、導電性を利用した帯電防止材として用いられたり、これらの効果を組み合わせて機能性材料として用いられたり、さらに光触媒作用を使用した防菌剤、防汚剤、超親水性被膜などに用いられている。
また、高比表面積を有するナノチューブ結晶性チタニアも提案されているものの(例えば、特許文献1参照)、当該公報の実施例を忠実に実施して得られる結晶性チタニア粒子中には、チューブ形状以外に、粒状粒子や凝集体粒子が生成し、ナノチューブ結晶性チタニアの収率が低く、またナトリウムの残存量が多いために触媒、触媒担体、光触媒等としては充分な性能が得られなかったり、全く性能を発現しない場合があった。
【0003】
近年、「悪臭」が環境問題としてクローズアップされ、悪臭の発生源として、従前の工場等から生活の場へと重点が移ってきている。これらの悪臭は主に動物や植物などの有機物が腐敗、分解したものであり、例えば、アンモニア、アミン類などの塩基性成分、硫化水素、メルカプタンなどの酸性成分がその原因物質とされている。
悪臭の処理方法としては、燃焼法、ガス吸収法、吸着法、マスキング法、中和法、化学処理法、微生物処理法などが知られており、何れの処理法を採るかは臭気の成分、発生状況などにより適不適がある。日常の生活環境に於ける生活型の悪臭処理には、主として吸着法、マスキング法や化学反応により臭気成分を除去する化学処理法が採られており、これらの処理法には消臭剤が使用される。
【0004】
上記化学処理法の消臭剤として、ナトリウム、カリウム、リチウム、及びカルシウムを除く金属イオンの一種または二種以上、または金属化合物の一種または二種以上を層間に有することを特徴とする水膨潤性粘土鉱物からなる消臭剤が開示されており、上記金属イオンの金属として、マグネシウム、アルミニウム、マンガン、銅、コバルト、カドミウム、銀、又は亜鉛などが例示されている(例えば、特許文献2参照)。
また、粒状または塊状の吸着体に悪臭物質を分解ないし吸着する金属錯体を保持させてなる消臭体が開示されており、金属錯体として、金属がアルカリ金属、カルシウム、バリウム、マグネシウム、銅、鉄、ニッケル、コバルト、マンガン、チタン、バナジウム、モリブデン、タングステン、銀または亜鉛から選ばれた少なくとも一種である金属ポルフィリン誘導体が挙げられている(例えば、特許文献3参照)。
更に、Mg、SiおよびAlを含み、これらの元素の重量比が酸化物換算でコージェライトの理論組成に対応するMgO:SiO:Al=2:5:2である結合剤と金属酸化物触媒との焼成物からなる消臭剤が開示されている(例えば、特許文献4参照)。
しかしながら、上記従来の消臭剤は、粒子径、比表面積などの性状が考慮されていなかった為、消臭効果や耐久性の点で必ずしも十分ではなく改良の余地があった。また、これらの消臭剤を繊維に適用して消臭性繊維とする場合には、粒子径が大きいために繊維への付着力が弱く、また繊維の風合いを損ねたり、耐久性に劣るなどの問題点を有していた。
このため、本願出願人は、消臭機能を有する金属成分を担持した平均粒子径が500nm以下の無機酸化物微粒子を含む消臭剤を提案しているが(特許文献5参照)、長期使用した場合には消臭性能が低下するという問題があった。
【0005】
さらに、近年、生活空間での快適な居住性が要望されており、生活環境内で発生する各種臭気や室内の建材、家具等から発生するVOCなどの空気中の有害物質による汚染が深刻な問題となっている。
室内の建材、家具等から発生するホルムアルデヒドなどのVOCは、シックハウス症候群と称される居住者の頭痛や目がチカチカするなどの症状を引き起こす原因となっている。ホルムアルデヒドなどのVOCを低減する方法としては、活性炭などの細孔に物理的に吸着させる方法や高分子化合物などと化学反応させて分解する方法が知られている。しかし、いずれの方法も効果を持続させる上で問題があった。前述の問題点を解決するために、空気中の酸素を使ってVOCを酸化分解する方法が提案されている。例えば、VOCなどの汚染ガスを浄化する空気浄化材およびこれを用いた空気浄化装置として、空気が通過する開口部を有するセラミック構造体と、前記セラミック構造体に担時された汚染ガスを吸着する吸着剤と、前記セラミック構造体および前記吸着剤に担時された汚染ガスを分解する分解触媒とから構成される空気浄化部材が公知であり、分解触媒としてCu、Mn、Coの酸化物またはPt、Au、Pd、Rh、Agの金属の少なくとも1種で構成されることが開示されている(特許文献6参照)。
また、本願出願人は、無機酸化物コロイド粒子に活性成分を担持した、常温で高い酸化分解活性を有する触媒を提案しているが(特許文献7参照)、当該触媒も長期使用した場合には酸化分解活性が低下するという問題があった。
【0006】
【特許文献1】
特開平10−152323号公報
【特許文献2】
特公平6−93908号公報
【特許文献3】
特開平5−277167号公報
【特許文献4】
特開平6−121823号公報
【特許文献5】
特開平9−299460号公報
【特許文献6】
特開2000―217897号公報
【特許文献7】
特開2002−177782号公報
【0007】
【発明の目的】
本発明は、消臭剤、触媒、光触媒等として有用な活性管状酸化チタン粒子を提供することを目的としている。また、本発明は該活性管状酸化チタン粒子を含んでなり、長期間の触媒活性を有する触媒および長期間の消臭性能を有する消臭剤を提供することを目的としている。
【0008】
【発明の概要】
本発明に係る活性管状酸化チタン粒子は、酸化チタンまたは酸化チタンと酸化チタン以外の酸化物からなり、下記式(1)で表される管状酸化チタン粒子に、周期律表 VIIa、VIII、Ib、IIb族及び希土類元素から選ばれた少なくとも1種の元素成分が金属および/または金属酸化物として担持されたことを特徴とする。
Ti ・・・(1)
(a+b=1、b=0〜0.2、1≦x≦2)
(M:Ti以外の元素)
前記管状酸化チタン粒子は、外径(Dout)が5〜40nmの範囲にあり、内径(Din)が4〜20nmの範囲にあり、管の厚みが0.5〜10nmの範囲にあり、長さ(L)が50〜1000nmの範囲にあり、管の長さ(L)と外径(Dout)との比(L)/(Dout)が10〜200の範囲にあることが好ましい。
前記酸化チタン以外の酸化物は、周期律表の第Ia族、第Ib族、第IIa族、第IIb族、第IIIa族、第IIIb族、第IVa族、第IVb族、第Va族、第Vb族、第VIa族、第VIb族、第VIIa族、第VIII族から選ばれた少なくとも1種の元素(M)の酸化物であることが好ましく、特に、SiO、ZrO、ZnO、Al、CeO、Y、Nd、WO、Fe、Sbから選ばれる1種以上の酸化物であることが好ましい。
本発明に係る触媒は、前記活性管状酸化チタン粒子を含んでなることを特徴とする。また、本発明に係る消臭剤は、前記活性管状酸化チタン粒子を含んでなることを特徴とする。
【0009】
【発明の具体的な説明】
〔活性管状酸化チタン粒子〕
本発明に係る活性管状酸化チタン粒子は、酸化チタンまたは酸化チタンと酸化チタン以外の酸化物からなり、下記式(1)で表される管状酸化チタン粒子に、周期律表 VIIa、VIII、Ib、IIb族及び希土類元素から選ばれた少なくとも1種の元素成分が金属および/または金属酸化物として担持されたことを特徴とする。
Ti ・・・(1)
(a+b=1、b=0〜0.2、1≦x≦2)
(M:Ti以外の元素)
前記酸化チタン以外の酸化物は、周期律表の第Ia族、第Ib族、第IIa族、第IIb族、第IIIa族、第IIIb族、第IVa族、第IVb族、第Va族、第Vb族、第VIa族、第VIb族、第VIIa族、第VIII族から選ばれた少なくとも1種の元素(M)の酸化物であることが好ましく、具体的には、SiO、ZrO、ZnO、Al、CeO、Y、Nd、WO、Fe、Sb、CeO、CuO、AgO、AuO、LiO、SrO、BaO、RuO等を挙げることができる。
【0010】
本発明の活性管状酸化チタン粒子においてこのような酸化物が含まれていると、酸化物がアルカリ可溶の酸化物の場合には管状酸化チタン粒子が特に生成しやすく、また、アルカリ難溶の酸化物の場合には、該酸化物が得られる管状酸化チタン粒子中に残留し、複合酸化物としての機能、例えば固体酸触媒能、イオン交換機能、などを得られる管状酸化チタン粒子に付与することができ、このため消臭剤、触媒等として好適に用いることができる。
本発明ではこれらの酸化物のうち、特にSiO、ZrO、ZnO、Al、CeO、Y、Nd、WO、Fe、Sb が好適である。これらの酸化物が残存することにより得られる管状酸化チタンの収率が極めて高く、またこれらの酸化物が残存することにより得られる管状酸化チタン粒子の光触媒活性、プロトン導電性、固体酸特性、吸着性能等を調節することができ、さらに熱的安定性や化学的安定性等を調節することができ、このため消臭剤、触媒等として好適に用いることができる。
【0011】
上記に於いて、Ti以外の元素Mの割合bが0.2を越えると、元素Mの種類によっても異なるが管状酸化チタンが得られないことがある。
また、酸素原子(O)の割合はa+b=1としたときに1≦x≦2、さらには1.2≦x≦2の範囲にあることが好ましい。xが2の場合は、実質的に酸素欠陥のない酸化チタンまたは酸化チタン系複合酸化物である。xが1未満の場合は、酸素欠陥が多く結晶性が低下したり、結晶性を維持できない場合がある。xが1≦x<2の場合は、管状酸化チタン粒子が後述する還元型酸化チタンとなり、酸化チタン(二酸化チタン)の半導体特性が低下し、管状酸化チタン粒子が導電性を有するようになり、また、分子軌道が大きく変化し、このため光吸収特性が変化し、紫外線のみの吸収から可視光を吸収できる管状酸化チタンが得られる。なお、本発明の還元型管状酸化チタン粒子には前述した元素成分の他に水素原子(H)を含んでも良い。
【0012】
上記管状酸化チタン粒子の製造方法については後述するが、外径(Dout)が5〜40nmの範囲にあり、内径(Din)が4〜20nmの範囲にあり、管の厚みが0.5〜10nmの範囲にあり、長さ(L)が50〜1000nmの範囲にあり、この長さ(L)と前記外径(Dout)との比(L)/(Dout)が10〜200の範囲にあることが好ましい。
上記外径(Dout)、内径(Din)、長さ(L)等は透過型電子顕微鏡で写真撮影し、100個の粒子について各値を測定し、この平均値として求める。また、内径(Din)は、外径を求める線の内側に認められるコントラストの境をなす線より求めることができる。
【0013】
前記活性成分としての金属および/または金属酸化物としては、具体的に、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Hg、La、Ce、Pr、Nd、Pm等の各元素の金属および/または金属酸化物が例示され、特に、Mn、Cu、Zn、Co、Ni、Ag、Pt、Au、Ru、Pd、は人体に対する安全性および酸化分解活性などの点で好ましい。
活性成分の担持方法には特に制限はなく、所望の性能を発現できれば従来公知の方法を採用することができる。
例えば、管状酸化チタン粒子に前記成分の金属塩水溶液を含浸し、還元雰囲気下で乾燥、加熱処理することによって金属成分を担持した活性管状酸化チタンを得ることができる。また、前記成分の金属塩水溶液に還元剤を加えて金属微粒子を生成させ、得られた金属微粒子を管状酸化チタンに担持することによって活性管状酸化チタンを得ることができる。
あるいは、管状酸化チタン粒子に前記成分の金属塩水溶液を含浸し、酸化雰囲気下で乾燥、加熱処理することによって金属酸化物成分を担持した活性管状酸化チタンを得ることができる。また、常法によって得られた金属酸化物微粒子を管状酸化チタンに担持することによっても活性管状酸化チタンを得ることができる。
【0014】
〔管状酸化チタン粒子の製造方法〕
管状酸化チタン粒子は、好ましくは、酸化チタン粒子(酸化チタン系複合酸化物粒子)の水分散ゾルを得、次に、この水分散液をアルカリ存在下で水熱処理することにより製造することができる。以下、工程順に説明するが、次述する方法によれば、特定のゾルを用いるので原料を高温で焼成することなく、単分散した管状酸化チタン粒子を高収率で得ることができる。
【0015】
1.酸化チタン粒子(酸化チタン系複合酸化物粒子)の水分散ゾルの製造
水分散ゾルの製造方法としては、安定なゾルが得られれば特に制限はないが、本願出願人の発明である特開昭62−283817号公報、特開昭63−185820号公報、特開平2−255532号公報等に開示した酸化チタンゾル、酸化チタン系複合酸化物ゾルを用いると好適である。
例えば、チタニアゾルまたはチタニアゲルに過酸化水素を加えてチタニアゾルまたはチタニアゲルを溶解し、ついで得られた溶液に酸化チタンゾルあるいは水酸化チタンゾルまたは酸化チタン以外の無機酸化物ゾルあるいは無機水酸化物ゾルを混合した後加熱することによって製造することができる。
本発明の管状酸化チタン粒子の製造方法に用いる酸化チタン粒子、酸化チタン系複合酸化物粒子の製造には、酸化チタン源としてペルオキソチタン酸に由来する酸化チタンを用いることが好ましい。ペルオキソチタン酸を用いて得られる酸化チタン粒子、酸化チタン系複合酸化物粒子は平均粒子径が均一で、安定な水分散ゾルを得ることができる。
ペルオキソチタン酸を用いる酸化チタン粒子の水分散液(ゾル)、酸化チタン系複合酸化物粒子の水分散液(ゾル)の製造方法としては以下のような方法を例示することができる。
【0016】
(a) オルソチタン酸のゲルまたはゾルの調製工程
まず、従来公知の方法によってチタン化合物を加水分解してオルソチタン酸のゾルまたはゲルを調製する。
オルソチタン酸のゲルは、チタン化合物として塩化チタン、硫酸チタン、硫酸チタニルなどのチタン塩を使用し、この水溶液にアルカリを加えて中和し、洗浄することによって得ることができる。
また、オルソチタン酸のゾルは、チタン塩の水溶液をイオン交換樹脂に通して陰イオンを除去するか、あるいはチタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシドなどのチタンアルコキシドの水および/または有機溶媒に酸またはアルカリを加えて加水分解することによって得ることができる。
中和あるいは加水分解する際のチタン化合物の溶液のpHは7〜13の範囲にあることが好ましい。チタン化合物溶液のpHが上記範囲にない場合は後述するゲルまたはゾルの比表面積が低すぎることがあり、管状酸化チタン、特に結晶性酸化チタンの生成が低下する傾向がある。
さらに、中和あるいは加水分解する際の温度は0〜40℃の範囲にあることが好ましく、特に好ましい範囲は0〜30℃の範囲である。中和あるいは加水分解する際の温度が上記範囲にない場合は管状酸化チタン、特に結晶性管状酸化チタンの生成が低下する傾向がある。
得られたゲルまたはゾル中のオルソチタン酸粒子は、非晶質であることが好ましい。
【0017】
(b) 酸化チタン微粒子の水分散ゾルの調製工程
次に、オルソチタン酸のゲルまたはゾルあるいはこれらの混合物に、過酸化水素を添加してオルソチタン酸を溶解してペルオキソチタン酸水溶液を調製する。ついでさらに高温で熟成して酸化チタン微粒子の水分散ゾルを調製する。
ペルオキソチタン酸水溶液を調製するに際しては、オルソチタン酸のゲルまたはゾルあるいはこれらの混合物を、必要に応じて約50℃以上に加熱したり、攪拌したりすることが好ましい。また、この際、オルソチタン酸の濃度が高くなるすぎると、その溶解に長時間を必要とし、さらに未溶解のゲルが沈殿したり、あるいは得られるペルオキソチタン酸水溶液が粘調になることがある。このため、TiO濃度としては、約10重量%以下であることが好ましく、さらに約5重量%以下であることが望ましい。
【0018】
添加する過酸化水素の量は、H/TiO(オルソチタン酸はTiOに換算)重量比で1以上であれば、オルソチタン酸を完全に溶解することができる。H/TiO重量比が1未満であると、オルソチタン酸が完全には溶解せず、未反応のゲルまたはゾルが残存することがある。また、H/TiO重量比は大きいほど、オルソチタン酸の溶解速度は大きく反応時間は短時間で終了するが、あまり過剰に過酸化水素を用いても、未反応の過酸化水素が系内に残存するだけであり、経済的でない。このような量で過酸化水素を用いると、オルソチタン酸は0.5〜20時間程度で溶解する。
ついでさらに50℃以上の高温で熟成して酸化チタン微粒子の水分散ゾルを調製することができる。
さらに、得られた酸化チタン微粒子の水分散ゾルは、必要に応じて水酸化アンモニウムおよび/または有機塩基の存在下、50〜300℃、好ましくは80℃〜250℃の温度範囲で水熱処理することができる。有機塩基としては後述する有機塩基と同様のものを用いることができる。
水酸化アンモニウムおよび/または有機塩基の使用量は、分散液のpHが室温基準で8〜14、さらには10〜13.5となるように添加することが好ましい。
上記温度範囲および分散液のpH範囲で水熱処理すると、最終的に得られる管状酸化チタンの結晶性および収率が向上する傾向にある。
【0019】
(b’) 酸化チタン微粒子の水分散ゾルの調製工程
上記(a),(b)工程の代わりに、チタン化合物として水素化チタン微粉体を使用することによってペルオキソチタン酸水溶液、ついで酸化チタン微粒子の水分散ゾルを調製することもできる。
この場合、このような水素化チタン微粉体を水に分散させれば、上記(a)工程で調製したオルソチタン酸のゲルまたはゾルの代わりとなる。
水酸化チタン微粉体を水に分散させる際に、TiO濃度としては、約10重量%以下であることが好ましく、さらに好ましい範囲は約5重量%以下であることが望ましい。また、オルソチタン酸の代わりに、水素化チタン微粉体を用いる場合であっても、添加する過酸化水素の量は、同様にH/TiO(水素化チタンはTiOに換算)重量比で1以上であればよい。このとき、水素化チタン微粉体の水分散体を、必要に応じて約50℃以上に加熱したり、攪拌したりしてもよい。
【0020】
なお、酸化チタン系複合酸化物粒子の水分散液(ゾル)を調製するには前記オルソチタン酸のゲルまたはゾルあるいはこれらの混合物に、過酸化水素を添加してオルソチタン酸を溶解したペルオキソチタン酸水溶液に前記したチタン以外の元素の無機化合物粒子を混合して加熱し、さらに必要に応じて前記工程(b)と同様にして水酸化アンモニウムおよび/または有機塩基の存在下、50〜300℃、好ましくは80℃〜250℃の温度範囲で水熱処理することによって調製することができる。
上記で得られる水分散ゾル中の酸化チタン粒子(酸化チタン系複合酸化物粒子)の平均粒子径は、2〜100nm、特に5〜80nmの範囲にあることが好ましい。平均粒子径が2nm未満の場合は、安定な水分散ゾルを得ることが困難であり、平均粒子径が100nmを越えても、得られる管状酸化チタンの収率が向上するとか、より単分散した管状酸化チタンが得られるなどの効果がさらに向上することがなく、大きな粒子径の酸化チタン粒子(酸化チタン系複合酸化物粒子)の製造に長時間を要するので好ましくない。
【0021】
2.管状酸化チタン粒子の製造
次いで、上記で得られた酸化チタン粒子(酸化チタン系複合酸化物粒子)の水分散液をアルカリ存在下で水熱処理する。
本発明では、前記水分散ゾルの他、必要に応じてアルコール等の有機溶媒を含むゾルを用いても良い。また、酸化チタン粒子(酸化チタン系複合酸化物粒子)の水分散液の濃度には特に制限はないが、酸化物として2〜50重量%、さらには5〜40重量%の範囲にあることが好ましい。前記濃度が2重量%未満の場合は、アルカリ処理時の濃度が低くなることがあり、管状酸化チタンの生成に長時間を要したり、得られる管状酸化チタンの収率が低く効率的でなく、前記濃度が50重量%を越えると水分散ゾルの安定性が低下したり、アルカリ処理時の濃度が高いために得られる管状酸化チタンが凝集する傾向にある。
【0022】
アルカリとしては、LiOH、NaOH、KOH、RbOH、CsOHおよびこれらの混合物を用いることができ、特に、NaOH、KOHおよびこれらの混合物は管状酸化チタン粒子の収率が高く好適である。
このときのアルカリ金属水酸化物の添加量は、酸化チタン粒子または酸化チタン系複合酸化物粒子中のTiOのモル数(T)とアルカリ金属水酸化物のモル数(A)とのモル比(A)/(T)が1〜30、さらには2〜15の範囲にあることが好ましい。モル比(A)/(T)が1未満の場合は、酸化チタン粒子または酸化チタン系複合酸化物粒子の結晶性化自体が起きにくく、管状酸化チタン粒子が得られず、モル比(A)/(T)が30を越えると中実で板状の酸化チタン粒子が増加して管状酸化チタン粒子の収率が低下する傾向にある。
【0023】
また、本発明ではこれらアルカリ金属水酸化物とともに水酸化アンモニウムおよび/または有機塩基を用いることができる。
有機塩基としては、テトラメチルアンモニウム塩などの第4級アンモニウム塩または水酸化物、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができる。
このような水酸化アンモニウムおよび/または有機塩基はこれらのモル数(OB)と(A)との合計モル数とTiOのモル数(T)との比(A)+(OB)/(T)が1〜30となるように添加して用いることができる。
このような範囲で水酸化アンモニウムおよび/または有機塩基を用いると、得られる管状酸化チタン微粒子中のアルカリ金属の量が低減する傾向にあり、触媒や光触媒としての有用性を向上することができる。
【0024】
水熱処理は50〜350℃、好ましくは80〜250℃の温度範囲で行う。処理温度が50℃未満では、管状酸化チタン微粒子の生成に長時間を要し、また管状酸化チタン微粒子の収率が低く、水熱処理温度が350℃を越えても管状酸化チタン微粒子の生成速度が速くなったり収率がさらに高くなることもない。
得られた管状酸化チタン微粒子は、ついで、洗浄し、乾燥することができる。洗浄方法としてはアルカリ金属等を低減できれば特に制限はなく、従来公知の脱水濾過法、限外濾過膜法、イオン交換樹脂法、電気透析、逆浸透法等を採用することができる。また、塩酸、硝酸などの酸をもちいて洗浄することもできる。
本発明に用いる洗浄方法としては、得られた管状酸化チタン粒子の水分散液にアルカリ金属カチオン以外のカチオンまたはプロトンを加えて30〜100℃、好ましくは50〜80℃の温度範囲で水熱処理することが好ましい。
前記プロトンとしては、塩酸、硝酸、硫酸等の鉱酸、有機酸、あるいはイオン交換樹脂等を用いることができる。イオン交換樹脂として水素型イオン交換樹脂、有機酸として酢酸、蓚酸、クエン酸、グリコール酸、グリシド酸、マロン酸、マレイン酸等を用いて処理すると結晶性を損なうことなくアルカリ金属、特にNaの少ない還元型管状酸化チタンを得ることができる。なお、イオン交換樹脂としては、必要に応じて両イオン交換樹脂を用いたり陰イオン交換樹脂を併用することもできる。
【0025】
ついで、乾燥するが、乾燥方法は特に制限はなく従来公知の方法、例えば、風乾、加熱乾燥、凍結乾燥等いずれも採用することができる。
乾燥後、加熱処理することにより前記式(1)で表される管状酸化チタン粒子が得られるが、この加熱処理が酸化雰囲気であれば、前記式(1)において、主としてx=2のものが得られ、還元雰囲気あるいは不活性ガス雰囲気であれば主としてx<2のものが得られる。本発明では、後者を還元処理といい、得られた管状酸化チタンを還元型管状酸化チタンということがある。
還元処理する際の雰囲気として、不活性ガスとしてはN、He、Ne、Ar、Kr、Xe、Rn等のガスが挙げられる。還元ガスとしてはアンモニア、アミン、ヒドラジン、ピリジン等の還元能を有する窒素化合物の他、H、およびメタン、エタン、プロパン等の炭化水素等を用いることができる。
【0026】
還元処理温度は100〜700℃、さらには200〜500℃の範囲にあることが好ましい。還元処理温度が100℃未満の場合は管状酸化チタン粒子の格子酸素が脱離したり、脱離して窒素原子と置換する等の反応が起きにくいために、還元型管状酸化チタンが得られないことがある。
還元処理温度が700℃を越えると酸素の脱離が進みすぎてx<1未満となったり、同時に結晶性が損なわれ、充分な導電性、光触媒性能、触媒性能、吸着能力、所望の光学特性、光電変換性能等が得られないことがある。
このようにして得られる管状酸化チタン粒子は、アルカリ含有量がNaOとして0.1重量%以下、更に0.05重量%以下、特に0.01重量%以下となる。
【0027】
〔触媒〕
本発明に係る触媒は、前記活性管状酸化チタン粒子を含んでなることを特徴としている。前記活性管状酸化チタン粒子はそのまま触媒として用いることもできるが、ハニカム状、円柱状、板状、シート状、繊維状、膜状など任意の形状の物質に保持させて使用することもできる。またバインダー成分と混合し、上記形状に成形して用いることもできる。バインダー成分としては、従来公知のものを用いることができ、SiO、Al、TiO、ZrO、SiO−Al等のゲルあるいはゾル等の他、カオリナイト、ベントナイト等の粘土鉱物を用いることができ、さらに有機樹脂、無機樹脂等を用いることもできる。
特に本発明に係る触媒は常温にても高い活性を発現することから、生活環境内で発生する各種臭気や室内の建材、家具等から発生するホルムアルデヒド、アセトアルデヒド、アセトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、フタル酸ジ−n−ブチル、エチルベンゼン、スチレン、パラジクロロベンゼン、クロルピリホス、その他の有機溶剤を含むVOC等、空気中の有害物質を常温で酸化分解して除去するのに好適である。また、本発明に係る触媒は光触媒活性を有し、特に金属が担持されている場合には、紫外線に加えて可視光の一部によっても活性化され、光の利用効率が向上すると共に高い活性を発現する。
【0028】
〔消臭剤〕
本発明に係る消臭剤は、前記活性管状酸化チタン粒子を含んでなることを特徴としている。
前記活性管状酸化チタン粒子はそのまま消臭剤として用いることもできるが、前記特許文献5に開示したように、(1)繊維への適用、(2)樹脂、ゴムへの適用、(3)塗料への適用、(4)その他、塗料、食品、樹脂等の製造・加工工場から排出される悪臭、飲食店等から排出される調理品、煙草などの臭いの消臭に有効である。また、家屋の建築材料、建具材(壁紙、襖、障子、畳等)、セラミックス類(タイル、陶器、磁気等)、革類製品(鞄、靴、毛皮、サイフ、定期入れ等)、木製品(机、戸棚、タンス、床板、天井板、内装材等)、紙製品(ティシュペーパー、ダンボール紙、紙コップ、紙皿等)、ガラス製品(花瓶、水槽等)、金属製品(サッシ、ケトル、カーエアコン等)などに消臭性を付与することができる。更に、本発明の消臭剤は、浄水器、プールの水などの水処理剤、化粧品材料、猫砂などの防臭に使用しても好適である。
【0029】
【発明の効果】
本発明の活性管状酸化チタン粒子は、触媒、光触媒、消臭剤等として極めて 有用であり、当該触媒、消臭剤は、特に、常温における触媒活性、消臭性能、ならびに、長期間にわたる触媒活性、消臭性能に優れる。
【0030】
【実施例】
以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
【0031】
【実施例1】
(1) 管状酸化チタン( AT−1) の調製
塩化チタン水溶液を純水で希釈してTiOとして濃度5重量%の塩化チタン水溶液を調製した。この水溶液を、温度を5℃に調節した濃度15重量%のアンモニア水に添加して中和・加水分解した。塩化チタン水溶液添加後のpHは10.5であった。ついで、生成したゲルを濾過洗浄し、TiOとして濃度9重量%のオルソチタン酸のゲルを得た。
このオルソチタン酸のゲル100gを純水2900gに分散させた後、濃度35重量%の過酸化水素水800gを加え、攪拌しながら、85℃で3時間加熱し、ペルオキソチタン酸水溶液を調製した。得られたペルオキソチタン酸水溶液のTiOとして濃度は0.5重量%であった。
ついで、95℃で10時間加熱して酸化チタン粒子分散液とし、この酸化チタン粒子分散液に分散液中のTiOに対するモル比が0.016となるようにテトラメチルアンモニウムハイドロオキサイド(TMAH、MW=149.2)を添加した。このときの分散液のpHは11であった。ついで、230℃で5時間水熱処理して酸化チタン粒子(T−a)分散液を調製した。酸化チタン粒子(T−a)の平均粒子径は30nmであった。
【0032】
ついで、酸化チタン粒子(T−a)分散液に、濃度40重量%のKOH水溶液70gを、TiOのモル数(T)とアルカリ金属水酸化物のモル数(A)とのモル比(A)/(T)が10となるように添加し、150℃で2時間水熱処理した。
得られた粒子は純水にて充分洗浄した。このときのKO残存量は0.9重量%であった。純水で洗浄した後、管状酸化チタン粒子の水分散液(TiOとしての濃度5重量%)とし、これに管状酸化チタン粒子と同量の陽イオン交換樹脂と陰イオン交換樹脂とを添加し、60℃で24時間処理してアルカリの除去等高純度化を行った。
ついで、凍結乾燥して管状酸化チタン粒子(AT−1)を調製した。
得られた管状酸化チタン粒子(AT−1)の組成パラメーターを表1に示した。また粒子のTEM写真を撮影して平均粒子長(L)と平均管外径(Dout)および平均管内径(Din)を求め、結果を表1に示した。
【0033】
(2) 活性成分 (MA−1) の調製
純水400mlにHPtCl0.44gと濃度30重量%の過酸化水素水溶液4.7gを加えた。ついで、還元剤として濃度4.5重量%のNa(亜ジチオン酸ナトリウム)水溶液70.2mlを加え70分間撹拌して、Pt微粒子からなる活性成分(MA−1)分散液を調製した。このとき、Pt微粒子の平均粒子径は4nmであった。
【0034】
活性管状酸化チタン粒子( AT−1) の調製
上記で得た管状酸化チタン粒子(AT−1)4.0gを純水800mlに分散させ、撹拌しながら、これを、超音波発生装置(海上電気(株)製:AUTOCHDER−300、形式−5271、27kHz、300W)で超音波を照射しながら、Pt微粒子からなる活性成分(MA−1)分散液を30分間で滴下した。ついで、24時間撹拌を継続して活性成分を担持した後、濾過、洗浄し、60℃で24時間乾燥し、水素雰囲気下、200℃で3時間還元処理して活性管状酸化チタン粒子(AT−1)を調製した。
【0035】
消臭剤 (1) の調製
活性管状酸化チタン粒子(AT−1)をそのまま消臭剤として用いた。
消臭性試験
容量1.5Lのビニール製テトラパックに消臭剤(1)を0.5g入れ、ついで試験用臭気ガスを封入した。室温にて1時間放置後、検知管((株)ガステック製)にて残存臭気ガスの濃度を測定し、結果を表1に示した。
なお、臭気ガスとしてはアンモニア(濃度100ppm)、硫化水素(濃度28ppm)、ホルムアルデヒド(濃度14ppm)を用い、検知管は各臭気ガス専用の検知管を使用した。
【0036】
触媒 (1) の調製
活性管状酸化チタン粒子(AT−1)をそのまま触媒として用いた。
触媒性能(酸化能)の評価
スクリュー管(内容積4ml)に触媒(1)を0.25g入れ、ついでイソプロピルアルコール(IPA)を1ml入れ、太陽光(晴天日の日中)を5時間または紫外線(ブラックライト、360nm)を5時間照射し、太陽光または紫外線照射時のアセトンの生成量をガスクロマトグラフ質量分析装置(日本電子(株)製:JMF AX505)にて分析し、結果を表1に示した。
【0037】
【実施例2】
(2) 活性成分 (MA−2) の調製
純水400mlにPdClを0.35gと濃度30重量%の過酸化水素水溶液4.7gを加えた。ついで、還元剤として濃度4.5重量%のNa水溶液70.2mlを加え70分間撹拌して、Pd微粒子からなる活性成分(MA−2)分散液を調製した。このとき、Pd微粒子の平均粒子径は5nmであった。
活性管状酸化チタン粒子( AT−2) の調製
実施例1において、活性成分(MA−1)分散液の代わりに活性成分(MA−2)分散液を用いた以外は同様にして活性管状酸化チタン粒子(AT−2)を調製した。
消臭剤 (2) および触媒 (2) の調製
実施例1において、活性管状酸化チタン粒子(AT−2)を用いた以外は同様にして消臭剤(2)および触媒(2)を調製し、評価結果を表1に示した。
【0038】
【実施例3】
(1) 管状酸化チタン( BT−1) の調製
実施例1と同様にしてTiOとして濃度が0.5重量%ペルオキソチタン酸水溶液3800gを調製した。これにシリカゾル(触媒化成工業(株)製:SI−350、SiO濃度30重量%、平均粒子径8nm)7.0gを混合し、95℃で3時間加熱し、TiO・SiO としての濃度が0.56重量%の酸化チタン粒子(T−b)分散液を調製した。酸化チタン粒子(T−b)の平均粒子径は20nmであった。
ついで、酸化チタン粒子(T−b)分散液に、濃度40重量%のKOH水溶液70gを、TiOのモル数(T)とアルカリ金属水酸化物のモル数(A)とのモル比(A)/(T)が10となるように添加し、150℃で2時間水熱処理した。得られた粒子は純水にて充分洗浄した。このときのKO残存量は1.5重量%であった。
ついで管状酸化チタン粒子の水分散液(TiO・SiOとしての濃度3重量%)とし、これに管状酸化チタン粒子と同量の陽イオン交換樹脂と陰イオン交換樹脂とを添加し、60℃で24時間処理した。再び、純水にて充分洗浄した後、管状酸化チタン粒子の水分散液(TiO・SiOとしての濃度3重量%)とし、これにクエン酸をTiOに対するモル比が0.1となるように添加した。このときのpHは3であった。ついで分散液を60℃で24時間水熱処理し、ついで水洗した後、凍結乾燥して管状酸化チタン粒子(BT−1)を調製した。
得られた管状酸化チタン粒子(BT−1)の組成パラメーターを表1に示した。また粒子のTEM写真を撮影して平均粒子長(L)と平均管外径(Dout)および平均管内径(Din)を求め、結果を表1に示した。
【0039】
活性管状酸化チタン粒子( BT−1 )の調製
実施例1において、管状酸化チタン粒子(AT−1)4.0gの代わりに管状酸化チタン粒子(BT−1)8.0gを用いた以外は同様にして、活性管状酸化チタン粒子(BT−1)を調製した。
消臭剤 (3) および触媒 (3) の調製
実施例1において、活性管状酸化チタン粒子(BT−1)を用いた以外は同様にして消臭剤(3)および触媒(3)を調製し、評価結果を表1に示した。
【0040】
【実施例4】
活性管状酸化チタン粒子( BT−2 )の調製
実施例1において、管状酸化チタン粒子(AT−1)4.0gの代わりに管状酸化チタン粒子(BT−1)4.0gを用いた以外は同様にして、活性管状酸化チタン粒子(BT−2)を調製した。
消臭剤 (4) および触媒 (4) の調製
実施例1において、活性管状酸化チタン粒子(BT−2)を用いた以外は同様にして消臭剤(4)および触媒(4)を調製し、評価結果を表1に示した。
【0041】
【実施例5】
活性管状酸化チタン粒子( BT−3 )の調製
実施例1において、管状酸化チタン粒子(AT−1)4.0gの代わりに管状酸化チタン粒子(BT−1)2.7gを用いた以外は同様にして活性管状酸化チタン粒子(BT−3)を調製した。
消臭剤 (5) および触媒 (5) の調製
実施例1において、活性管状酸化チタン粒子(BT−3)を用いた以外は同様にして消臭剤(5)および触媒(5)を調製し、評価結果を表1に示した。
【0042】
【実施例6】
活性管状酸化チタン粒子( BT−4) の調製
実施例4において、活性成分(MA−1)の分散液の代わりに活性成分(MA−2)分散液を用いた以外は同様にして活性管状酸化チタン粒子(BT−4)を調製した。
消臭剤 (6) および触媒 (6) の調製
実施例1において、活性管状酸化チタン粒子(BT−4)を用いた以外は同様にして消臭剤(6)および触媒(6)を調製し、評価結果を表1に示した。
【0043】
【実施例7】
(2) 活性成分 (MA−3) の調製
純水400mlにAgNO0.31gと濃度30重量%の過酸化水素水溶液4.7gを加えた。ついで、50℃に昇温した後、還元剤として濃度4.5重量%のNa水溶液70.2mlを加え70分間撹拌して、Ag微粒子からなる活性成分(MA−3)分散液を調製した。このとき、Ag微粒子の平均粒子径は3nmであった。
活性管状酸化チタン粒子( BT−5) の調製
実施例4において、活性成分(MA−1)の分散液の代わりに活性成分(MA−3)分散液を用いた以外は同様にして活性管状酸化チタン粒子(BT−5)を調製した。
消臭剤 (7) および触媒 (7) の調製
実施例1において、活性管状酸化チタン粒子(BT−5)を用いた以外は同様にして消臭剤(7)および触媒(7)を調製し、評価結果を表1に示した。
【0044】
【実施例8】
(1) 還元型管状酸化チタン( AT−2 )の調製
実施例1と同様にして得た管状酸化チタン粒子(AT−1)を、400℃に調節した電気炉に窒素で希釈したアンモニアガス(NH:10容積%)を2時間供給して還元型管状酸化チタン粒子(AT−2)を調製した。
得られた還元型管状酸化チタン粒子(AT−2)の組成パラメーターを表1に示した。また粒子のTEM写真を撮影して平均粒子長(L)と平均管外径(Dout)および平均管内径(Din)を求め、結果を表1に示した。
活性管状酸化チタン粒子( AT−3) の調製
実施例1において、管状酸化チタン粒子(AT−1)の代わりに還元型管状酸化チタン粒子(AT−2)を用いた以外は同様にして活性管状酸化チタン粒子(AT−3)を調製した。
消臭剤 (8) および触媒 (8) の調製
実施例1において、活性管状酸化チタン粒子(AT−3)を用いた以外は同様にして消臭剤(8)および触媒(8)を調製し、評価結果を表1に示した。
【0045】
【比較例1】
酸化チタン粒子( RAT−1)
酸化チタン粒子分散液(触媒化成工業(株)製:PW−1010、TiO濃度76重量%、平均粒子径10nm)を乾燥して酸化チタン粒子(RAT−1)として用いた。
消臭剤 (R1) および触媒 (R1) の調製
実施例1において、酸化チタン粒子(RAT−1)を用いた以外は同様にして消臭剤(R1)および触媒(R1)を調製し、評価結果を表1に示した。
【0046】
【比較例2】
活性酸化チタン粒子( RAT−2
実施例1において、活性管状酸化チタン粒子(AT−1)の代わりに比較例1の酸化チタン粒子(RAT−1)5.3gを用いた以外は同様にして活性酸化チタン粒子(RAT−2)を調製した。
消臭剤 (R2) および触媒 (R2) の調製
実施例1において、活性酸化チタン粒子(RAT−2)の分散液を用いた以外は同様にして消臭剤(R2)および触媒(R2)を調製し、評価結果を表1に示した。
【0047】
【比較例3】
消臭剤 (R3) および触媒 (R3) の調製
実施例1において、活性成分を担持せず、実施例1で得た管状酸化チタン粒子(AT−1)をそのまま用いた以外は同様にして、消臭剤(R3)および触媒(R3)を調製し、評価結果を表1に示した。
【0048】
【比較例4】
消臭剤 (R4) および触媒 (R4) の調製
実施例3において、活性成分を担持せず、実施例3で得た管状酸化チタン粒子(BT−1)をそのまま用いた以外は同様にして、消臭剤(R4)および触媒(R4)を調製し、評価結果を表1に示した。
【0049】
【表1】

Figure 2004250239
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an active tubular titanium oxide particle useful as a catalyst, a photocatalyst, a deodorant, and the like, and a catalyst and a deodorant comprising the active tubular titanium oxide particle.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Titanium oxide particles and titanium oxide-based composite oxide particles have a wide range of applications utilizing their chemical properties. For example, they have a suitable binding force to oxygen and have acid resistance, so they can be used for oxidation-reduction catalysts or carriers, and for shielding ultraviolet rays. Used as a cosmetic or plastic material surface coating agent using force, an anti-reflection coating material using high refraction, an antistatic material using conductivity, or used as a functional material by combining these effects It is also used for antibacterial agents, antifouling agents, and superhydrophilic coatings using photocatalysis.
Further, although crystalline nanotube titania having a high specific surface area has also been proposed (see, for example, Patent Document 1), crystalline titania particles obtained by faithfully carrying out the examples of the publication include non-tubular shaped particles. In addition, granular or aggregated particles are produced, the yield of nanotube crystalline titania is low, and the remaining amount of sodium is large, so that sufficient performance cannot be obtained as a catalyst, catalyst carrier, photocatalyst, etc. In some cases, performance was not exhibited.
[0003]
In recent years, “odor” has been highlighted as an environmental problem, and as a source of generation of odor, the focus has shifted from a conventional factory or the like to a place of daily life. These odors are mainly caused by decomposition and decomposition of organic substances such as animals and plants. For example, basic components such as ammonia and amines, and acidic components such as hydrogen sulfide and mercaptan are considered as causative substances.
As a method for treating odors, a combustion method, a gas absorption method, an adsorption method, a masking method, a neutralization method, a chemical treatment method, a microbial treatment method, and the like are known. There are some unsuitability depending on the situation. For daily life-type malodor treatment in the daily living environment, adsorption methods, masking methods and chemical treatment methods that remove odor components by chemical reactions are used, and deodorants are used in these treatment methods. Is done.
[0004]
As a deodorant of the chemical treatment method, water swelling characterized by having one or more metal ions except for sodium, potassium, lithium and calcium, or one or more metal compounds between layers. A deodorant made of a clay mineral is disclosed, and magnesium, aluminum, manganese, copper, cobalt, cadmium, silver, zinc, or the like is exemplified as the metal of the metal ion (for example, see Patent Document 2). .
Further, a deodorant obtained by holding a metal complex that decomposes or adsorbs a malodorous substance on a granular or massive adsorbent has been disclosed, and as the metal complex, the metal is an alkali metal, calcium, barium, magnesium, copper, iron. And metal porphyrin derivatives that are at least one selected from nickel, cobalt, manganese, titanium, vanadium, molybdenum, tungsten, silver and zinc (for example, see Patent Document 3).
Furthermore, MgO: SiO, which contains Mg, Si and Al, and the weight ratio of these elements corresponds to the theoretical composition of cordierite in terms of oxide.2: Al2O3A deodorant composed of a calcined product of a binder and a metal oxide catalyst having a ratio of 2: 5: 2 is disclosed (for example, see Patent Document 4).
However, the above-mentioned conventional deodorants have not taken into account properties such as particle diameter and specific surface area, and therefore are not necessarily sufficient in terms of deodorant effect and durability, and have room for improvement. In addition, when these deodorants are applied to fibers to produce deodorant fibers, the large particle size results in weak adhesion to the fibers, impairs the texture of the fibers, and has poor durability. Had the problem of
For this reason, the applicant of the present application has proposed a deodorant containing inorganic oxide fine particles having an average particle diameter of 500 nm or less carrying a metal component having a deodorant function (see Patent Document 5). In this case, there is a problem that the deodorizing performance is reduced.
[0005]
Further, in recent years, there has been a demand for comfortable living in living spaces, and contamination by harmful substances in the air, such as various odors generated in the living environment and VOCs generated from indoor building materials and furniture, is a serious problem. It has become.
VOCs such as formaldehyde generated from indoor building materials, furniture, and the like cause sick house syndrome, which is a occupant's illness and causes headaches and tingling eyes of residents. As a method of reducing VOC such as formaldehyde, a method of physically adsorbing in pores of activated carbon or the like, and a method of decomposing by chemically reacting with a polymer compound or the like are known. However, both methods have problems in maintaining the effect. In order to solve the above-mentioned problems, a method of oxidatively decomposing VOC using oxygen in the air has been proposed. For example, as an air purifying material for purifying a pollutant gas such as VOC and an air purifier using the same, a ceramic structure having an opening through which air passes, and a pollutant gas carried by the ceramic structure are adsorbed. An air purifying member including an adsorbent and a decomposition catalyst that decomposes the pollutant gas carried by the ceramic structure and the adsorbent is known. As the decomposition catalyst, an oxide of Cu, Mn, or Co or Pt is used. , Au, Pd, Rh, and Ag are disclosed (see Patent Document 6).
In addition, the applicant of the present application has proposed a catalyst having a high oxidative decomposition activity at room temperature, in which an active ingredient is supported on inorganic oxide colloid particles (see Patent Document 7). There is a problem that the oxidative decomposition activity decreases.
[0006]
[Patent Document 1]
JP-A-10-152323
[Patent Document 2]
Japanese Patent Publication No. Hei 6-93908
[Patent Document 3]
JP-A-5-277167
[Patent Document 4]
JP-A-6-121823
[Patent Document 5]
JP-A-9-299460
[Patent Document 6]
JP 2000-217897 A
[Patent Document 7]
JP-A-2002-177782
[0007]
[Object of the invention]
An object of the present invention is to provide active tubular titanium oxide particles useful as a deodorant, a catalyst, a photocatalyst, and the like. Another object of the present invention is to provide a catalyst comprising the active tubular titanium oxide particles and having a long-term catalytic activity and a deodorant having a long-term deodorizing performance.
[0008]
Summary of the Invention
The active tubular titanium oxide particles according to the present invention are composed of titanium oxide or an oxide other than titanium oxide and titanium oxide. The tubular titanium oxide particles represented by the following formula (1) are added to the periodic table VIIa, VIII, Ib, At least one element component selected from the group IIb and rare earth elements is supported as a metal and / or a metal oxide.
TiaMbOx  ... (1)
(A + b = 1, b = 0-0.2, 1 ≦ x ≦ 2)
(M: element other than Ti)
The tubular titanium oxide particles have an outer diameter (Dout) Is in the range of 5 to 40 nm, and the inner diameter (Din) Is in the range of 4 to 20 nm, the thickness of the tube is in the range of 0.5 to 10 nm, the length (L) is in the range of 50 to 1000 nm, and the length (L) and outer diameter (Dout) And (L) / (Dout) Is preferably in the range of 10 to 200.
The oxides other than the titanium oxide include Group Ia, Group Ib, Group IIa, Group IIb, Group IIIa, Group IIIb, Group IVa, Group IVb, Group Va, and Group Va of the periodic table. It is preferably an oxide of at least one element (M) selected from the group consisting of Vb, VIa, VIb, VIIa, and VIII.2, ZrO2, ZnO, Al2O3, CeO2, Y2O3, Nd2O3, WO3, Fe2O3, Sb2O5It is preferably at least one oxide selected from the group consisting of:
The catalyst according to the present invention is characterized by comprising the active tubular titanium oxide particles. Further, the deodorant according to the present invention is characterized by comprising the active tubular titanium oxide particles.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(Active tubular titanium oxide particles)
The active tubular titanium oxide particles according to the present invention are composed of titanium oxide or an oxide other than titanium oxide and titanium oxide. The tubular titanium oxide particles represented by the following formula (1) are added to the periodic table VIIa, VIII, Ib, At least one element component selected from the group IIb and rare earth elements is supported as a metal and / or a metal oxide.
TiaMbOx  ... (1)
(A + b = 1, b = 0-0.2, 1 ≦ x ≦ 2)
(M: element other than Ti)
The oxides other than the titanium oxide include Group Ia, Group Ib, Group IIa, Group IIb, Group IIIa, Group IIIb, Group IVa, Group IVb, Group Va, and Group Va of the periodic table. The oxide is preferably an oxide of at least one element (M) selected from the group Vb, group VIa, group VIb, group VIIa, and group VIII.2, ZrO2, ZnO, Al2O3, CeO2, Y2O3, Nd2O3, WO3, Fe2O3, Sb2O5, CeO2, CuO, AgO, AuO, Li2O, Sr2O, BaO, RuO2And the like.
[0010]
When such an oxide is contained in the activated tubular titanium oxide particles of the present invention, the tubular titanium oxide particles are particularly easily formed when the oxide is an alkali-soluble oxide, In the case of an oxide, the oxide remains in the obtained tubular titanium oxide particles and imparts a function as a composite oxide, for example, a solid acid catalyzing ability, an ion exchange function, etc., to the obtained tubular titanium oxide particles. Therefore, it can be suitably used as a deodorant, a catalyst and the like.
In the present invention, among these oxides, particularly SiO 22, ZrO2, ZnO, Al2O3, CeO2, Y2O3, Nd2O3, WO3, Fe2O3, Sb2O5  Is preferred. The yield of tubular titanium oxide obtained by these oxides remaining is extremely high, and the photocatalytic activity, proton conductivity, solid acid properties, and adsorption of the tubular titanium oxide particles obtained by these oxides remaining The performance and the like can be adjusted, and the thermal stability and the chemical stability and the like can be adjusted. Therefore, it can be suitably used as a deodorant, a catalyst and the like.
[0011]
In the above, when the ratio b of the element M other than Ti exceeds 0.2, tubular titanium oxide may not be obtained in some cases depending on the type of the element M.
Further, when a + b = 1, the ratio of oxygen atoms (O) is preferably in the range of 1 ≦ x ≦ 2, more preferably 1.2 ≦ x ≦ 2. When x is 2, it is a titanium oxide or a titanium oxide-based composite oxide having substantially no oxygen defects. When x is less than 1, the crystallinity may be reduced due to many oxygen vacancies or the crystallinity may not be maintained. When x is 1 ≦ x <2, the tubular titanium oxide particles become reduced titanium oxide described below, the semiconductor properties of titanium oxide (titanium dioxide) are reduced, and the tubular titanium oxide particles become conductive. In addition, the molecular orbital greatly changes, and therefore, the light absorption characteristics change, whereby a tubular titanium oxide capable of absorbing visible light from absorption of only ultraviolet light is obtained. The reduced tubular titanium oxide particles of the present invention may contain hydrogen atoms (H) in addition to the above-mentioned elemental components.
[0012]
The method for producing the tubular titanium oxide particles will be described later, but the outer diameter (Dout) Is in the range of 5 to 40 nm, and the inner diameter (Din) Is in the range of 4 to 20 nm, the thickness of the tube is in the range of 0.5 to 10 nm, the length (L) is in the range of 50 to 1000 nm, and the length (L) and the outer diameter (Dout) And (L) / (Dout) Is preferably in the range of 10 to 200.
The above outer diameter (Dout), Inner diameter (Din), Length (L) and the like are photographed with a transmission electron microscope, and each value is measured for 100 particles, and the average value is determined. The inner diameter (Din) Can be determined from the line that is bounded by the contrast that is recognized inside the line for determining the outer diameter.
[0013]
Specific examples of the metal and / or metal oxide as the active component include Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, and Zn. , Cd, Hg, La, Ce, Pr, Nd, Pm, etc., and metals and / or metal oxides of each element, and particularly, Mn, Cu, Zn, Co, Ni, Ag, Pt, Au, Ru, Pd is preferable in terms of safety to the human body and oxidative decomposition activity.
The method for supporting the active ingredient is not particularly limited, and a conventionally known method can be adopted as long as desired performance can be exhibited.
For example, an active tubular titanium oxide carrying a metal component can be obtained by impregnating tubular titanium oxide particles with the aqueous solution of the metal salt of the above component, drying and heating in a reducing atmosphere. In addition, an active tubular titanium oxide can be obtained by adding a reducing agent to the aqueous solution of the metal salt of the above-mentioned component to generate fine metal particles and supporting the obtained fine metal particles on the tubular titanium oxide.
Alternatively, an active tubular titanium oxide carrying a metal oxide component can be obtained by impregnating the tubular titanium oxide particles with an aqueous solution of the metal salt of the above component, and drying and heating in an oxidizing atmosphere. Alternatively, activated tubular titanium oxide can be obtained by supporting metal oxide fine particles obtained by a conventional method on tubular titanium oxide.
[0014]
(Production method of tubular titanium oxide particles)
The tubular titanium oxide particles can be preferably produced by obtaining an aqueous dispersion sol of titanium oxide particles (titanium oxide-based composite oxide particles) and then subjecting this aqueous dispersion to hydrothermal treatment in the presence of an alkali. . Hereinafter, the steps will be described in the order of steps. However, according to the method described below, monodispersed tubular titanium oxide particles can be obtained at a high yield without using a specific sol and firing the raw material at a high temperature.
[0015]
1. Production of aqueous dispersion sol of titanium oxide particles (titanium oxide-based composite oxide particles)
The method for producing the aqueous dispersion sol is not particularly limited as long as a stable sol can be obtained, but the inventions of the applicant of the present invention are disclosed in JP-A-62-283817, JP-A-63-185820, and JP-A-Hei. It is preferable to use a titanium oxide sol or a titanium oxide-based composite oxide sol disclosed in -255532 and the like.
For example, after adding hydrogen peroxide to titania sol or titania gel to dissolve titania sol or titania gel, and then mixing titanium oxide sol or titanium hydroxide sol or inorganic oxide sol other than titanium oxide or inorganic hydroxide sol with the obtained solution, It can be produced by heating.
In the production of the titanium oxide particles and the titanium oxide-based composite oxide particles used in the method for producing tubular titanium oxide particles of the present invention, it is preferable to use titanium oxide derived from peroxotitanic acid as a titanium oxide source. The average particle diameter of the titanium oxide particles and titanium oxide-based composite oxide particles obtained using peroxotitanic acid is uniform, and a stable aqueous dispersion sol can be obtained.
Examples of the method for producing an aqueous dispersion (sol) of titanium oxide particles using peroxotitanic acid and an aqueous dispersion (sol) of titanium oxide-based composite oxide particles include the following methods.
[0016]
(A) Preparation process of orthotitanic acid gel or sol
First, a sol or gel of orthotitanic acid is prepared by hydrolyzing a titanium compound by a conventionally known method.
The gel of orthotitanic acid can be obtained by using a titanium salt such as titanium chloride, titanium sulfate or titanyl sulfate as a titanium compound, adding an alkali to the aqueous solution, neutralizing the aqueous solution, and washing.
In addition, the sol of orthotitanic acid is prepared by passing an aqueous solution of a titanium salt through an ion exchange resin to remove anions, or water of titanium alkoxide such as titanium tetramethoxide, titanium tetraethoxide, and titanium tetraisopropoxide. It can be obtained by adding an acid or alkali to an organic solvent and hydrolyzing.
The pH of the titanium compound solution at the time of neutralization or hydrolysis is preferably in the range of 7 to 13. If the pH of the titanium compound solution is not within the above range, the specific surface area of the gel or sol described below may be too low, and the production of tubular titanium oxide, particularly crystalline titanium oxide, tends to decrease.
Further, the temperature at the time of neutralization or hydrolysis is preferably in the range of 0 to 40 ° C, and particularly preferably in the range of 0 to 30 ° C. When the temperature at the time of neutralization or hydrolysis is not within the above range, the production of tubular titanium oxide, particularly crystalline tubular titanium oxide, tends to decrease.
The orthotitanic acid particles in the obtained gel or sol are preferably amorphous.
[0017]
(B) Preparation process of aqueous dispersion sol of titanium oxide fine particles
Next, hydrogen peroxide is added to the gel or sol of orthotitanic acid or a mixture thereof to dissolve the orthotitanic acid, thereby preparing an aqueous solution of peroxotitanic acid. Subsequently, the mixture is aged at a higher temperature to prepare an aqueous dispersion sol of titanium oxide fine particles.
In preparing the aqueous solution of peroxotitanic acid, it is preferable that the gel or sol of orthotitanic acid or a mixture thereof is heated or stirred at about 50 ° C. or higher as necessary. Further, at this time, if the concentration of orthotitanic acid is too high, it takes a long time to dissolve the orthotitanic acid, and the undissolved gel may precipitate or the obtained peroxotitanic acid aqueous solution may become viscous. . For this reason, TiO2The concentration is preferably about 10% by weight or less, more preferably about 5% by weight or less.
[0018]
The amount of hydrogen peroxide added is H2O2/ TiO2(Ortho titanic acid is TiO2When the weight ratio is 1 or more, orthotitanic acid can be completely dissolved. H2O2/ TiO2If the weight ratio is less than 1, the orthotitanic acid may not completely dissolve and unreacted gel or sol may remain. Also, H2O2/ TiO2The higher the weight ratio, the higher the dissolution rate of orthotitanic acid and the shorter the reaction time, but even if excessive hydrogen peroxide is used, only unreacted hydrogen peroxide remains in the system. Not economic. When hydrogen peroxide is used in such an amount, orthotitanic acid dissolves in about 0.5 to 20 hours.
Then, it is further aged at a high temperature of 50 ° C. or more to prepare an aqueous dispersion sol of titanium oxide fine particles.
Further, the obtained aqueous dispersion sol of titanium oxide fine particles is subjected to hydrothermal treatment at a temperature of 50 to 300 ° C, preferably 80 to 250 ° C in the presence of ammonium hydroxide and / or an organic base, if necessary. Can be. As the organic base, the same organic base as described later can be used.
The amount of ammonium hydroxide and / or organic base used is preferably such that the pH of the dispersion is 8 to 14, more preferably 10 to 13.5, based on room temperature.
Hydrothermal treatment in the above temperature range and pH range of the dispersion tends to improve the crystallinity and yield of the finally obtained tubular titanium oxide.
[0019]
(B ') Preparation process of aqueous dispersion sol of titanium oxide fine particles
Instead of the above steps (a) and (b), a titanium hydride fine powder can be used as a titanium compound to prepare an aqueous solution of peroxotitanic acid and then an aqueous dispersion sol of titanium oxide fine particles.
In this case, if such a titanium hydride fine powder is dispersed in water, it replaces the orthotitanic acid gel or sol prepared in the above step (a).
When the titanium hydroxide fine powder is dispersed in water, TiO2The concentration is preferably about 10% by weight or less, and more preferably about 5% by weight or less. Even when titanium hydride fine powder is used instead of orthotitanic acid, the amount of hydrogen peroxide to be added is similarly H2O2/ TiO2(Titanium hydride is TiO2The weight ratio may be 1 or more. At this time, the aqueous dispersion of the titanium hydride fine powder may be heated to about 50 ° C. or higher or stirred as needed.
[0020]
In order to prepare an aqueous dispersion (sol) of titanium oxide-based composite oxide particles, peroxotitanium obtained by adding hydrogen peroxide to the aforementioned orthotitanic acid gel or sol or a mixture thereof to dissolve the orthotitanic acid is used. The inorganic compound particles of the above-mentioned elements other than titanium are mixed and heated in an aqueous acid solution, and further, if necessary, in the same manner as in the step (b), in the presence of ammonium hydroxide and / or an organic base at 50 to 300 ° C. , Preferably by a hydrothermal treatment in a temperature range of 80 ° C to 250 ° C.
The average particle size of the titanium oxide particles (titanium oxide-based composite oxide particles) in the water-dispersed sol obtained above is preferably in the range of 2 to 100 nm, particularly preferably 5 to 80 nm. When the average particle diameter is less than 2 nm, it is difficult to obtain a stable aqueous dispersion sol, and even when the average particle diameter exceeds 100 nm, the yield of the obtained tubular titanium oxide is improved or the monodispersed titanium oxide is more dispersed. The effect of obtaining tubular titanium oxide is not further improved, and it takes a long time to produce titanium oxide particles having a large particle diameter (titanium oxide-based composite oxide particles), which is not preferable.
[0021]
2. Production of tubular titanium oxide particles
Next, the aqueous dispersion of the titanium oxide particles (titanium oxide-based composite oxide particles) obtained above is subjected to hydrothermal treatment in the presence of an alkali.
In the present invention, in addition to the aqueous dispersion sol, a sol containing an organic solvent such as alcohol may be used as necessary. The concentration of the aqueous dispersion of titanium oxide particles (titanium oxide-based composite oxide particles) is not particularly limited, but may be in the range of 2 to 50% by weight, and more preferably 5 to 40% by weight as the oxide. preferable. When the concentration is less than 2% by weight, the concentration at the time of alkali treatment may be low, and it takes a long time to produce tubular titanium oxide, or the yield of tubular titanium oxide obtained is low and inefficient. If the concentration is more than 50% by weight, the stability of the aqueous dispersion sol tends to decrease, and the resulting titanium oxide tends to aggregate due to the high concentration during the alkali treatment.
[0022]
As the alkali, LiOH, NaOH, KOH, RbOH, CsOH and a mixture thereof can be used. In particular, NaOH, KOH and a mixture thereof are preferable because the yield of tubular titanium oxide particles is high.
At this time, the addition amount of the alkali metal hydroxide is determined by the amount of TiO in the titanium oxide particles or the titanium oxide-based composite oxide particles.2Moles (TM) And the mole number of alkali metal hydroxide (AM) And the molar ratio (AM) / (TM) Is preferably in the range of 1 to 30, more preferably 2 to 15. Molar ratio (AM) / (TM) Is less than 1, crystallization of titanium oxide particles or titanium oxide-based composite oxide particles is unlikely to occur, tubular titanium oxide particles cannot be obtained, and the molar ratio (A)M) / (TM) Exceeds 30, solid and plate-like titanium oxide particles tend to increase and the yield of tubular titanium oxide particles tends to decrease.
[0023]
In the present invention, ammonium hydroxide and / or an organic base can be used together with these alkali metal hydroxides.
Examples of the organic base include quaternary ammonium salts such as tetramethylammonium salts or hydroxides, and amines such as monoethanolamine, diethanolamine, and triethanolamine.
Such ammonium hydroxides and / or organic bases are available in these moles (OBM) And (AM) And TiO2Moles (TM) And the ratio (AM) + (OBM) / (TM) Is 1 to 30.
When ammonium hydroxide and / or an organic base is used in such a range, the amount of alkali metal in the obtained tubular titanium oxide fine particles tends to decrease, and the usefulness as a catalyst or a photocatalyst can be improved.
[0024]
The hydrothermal treatment is performed in a temperature range of 50 to 350C, preferably 80 to 250C. When the treatment temperature is lower than 50 ° C., it takes a long time to form the tubular titanium oxide fine particles, and the yield of the tubular titanium oxide fine particles is low. It will not be faster or the yield higher.
The obtained tubular titanium oxide fine particles can then be washed and dried. The washing method is not particularly limited as long as alkali metals and the like can be reduced, and conventionally known dehydration filtration methods, ultrafiltration membrane methods, ion exchange resin methods, electrodialysis, reverse osmosis methods and the like can be employed. The cleaning can be performed using an acid such as hydrochloric acid or nitric acid.
As the washing method used in the present invention, a cation or a proton other than the alkali metal cation is added to the obtained aqueous dispersion of tubular titanium oxide particles, and the mixture is subjected to hydrothermal treatment at a temperature of 30 to 100 ° C, preferably 50 to 80 ° C. Is preferred.
As the proton, a mineral acid such as hydrochloric acid, nitric acid, and sulfuric acid, an organic acid, and an ion exchange resin can be used. Hydrogen-type ion-exchange resin as the ion-exchange resin, and alkali metal, especially low in Na, without impairing the crystallinity when treated with acetic acid, oxalic acid, citric acid, glycolic acid, glycidic acid, malonic acid, maleic acid, etc. as the organic acid A reduced tubular titanium oxide can be obtained. In addition, as an ion exchange resin, both ion exchange resins can be used as needed, or an anion exchange resin can be used in combination.
[0025]
Next, drying is performed, and the drying method is not particularly limited, and any conventionally known method, for example, air drying, heat drying, freeze drying, or the like can be used.
After drying, heat treatment is performed to obtain the tubular titanium oxide particles represented by the formula (1). If the heat treatment is performed in an oxidizing atmosphere, in the formula (1), mainly, x = 2 In the case of a reducing atmosphere or an inert gas atmosphere, x <2 is mainly obtained. In the present invention, the latter is referred to as reduction treatment, and the obtained tubular titanium oxide is sometimes referred to as reduced tubular titanium oxide.
As an atmosphere for the reduction treatment, an inert gas such as N2, He, Ne, Ar, Kr, Xe, Rn and the like. Examples of the reducing gas include nitrogen compounds having a reducing ability such as ammonia, amine, hydrazine, pyridine and the like;2And hydrocarbons such as methane, ethane, and propane.
[0026]
The reduction treatment temperature is preferably in the range of 100 to 700C, more preferably 200 to 500C. When the reduction treatment temperature is lower than 100 ° C., it is difficult to cause a reaction such as desorption of lattice oxygen of the tubular titanium oxide particles or elimination and replacement with nitrogen atoms, so that reduced tubular titanium oxide may not be obtained. is there.
If the reduction treatment temperature exceeds 700 ° C., the desorption of oxygen proceeds too much to make x <1 or at the same time the crystallinity is impaired, and sufficient conductivity, photocatalytic performance, catalytic performance, adsorption capacity, and desired optical properties are obtained. In some cases, photoelectric conversion performance or the like cannot be obtained.
The tubular titanium oxide particles thus obtained have an alkali content of Na2O is 0.1% by weight or less, further 0.05% by weight or less, particularly 0.01% by weight or less.
[0027]
〔catalyst〕
The catalyst according to the present invention is characterized by comprising the active tubular titanium oxide particles. The active tubular titanium oxide particles can be used as a catalyst as they are, but can also be used by being held in a substance of any shape such as a honeycomb shape, a column shape, a plate shape, a sheet shape, a fiber shape, and a film shape. It can also be mixed with a binder component and molded into the above-mentioned shape before use. As the binder component, conventionally known binder components can be used.2, Al2O3, TiO2, ZrO2, SiO2-Al2O3In addition to gels or sols, clay minerals such as kaolinite and bentonite can be used, and organic resins and inorganic resins can also be used.
Particularly, since the catalyst according to the present invention exhibits high activity even at room temperature, various odors generated in the living environment and formaldehyde, acetaldehyde, acetone, toluene, xylene, methyl isobutyl ketone generated from indoor building materials, furniture, etc. Suitable for removing harmful substances in the air by oxidative decomposition at room temperature, such as ethyl acetate, butyl acetate, di-n-butyl phthalate, ethylbenzene, styrene, p-dichlorobenzene, chlorpyrifos, and other organic solvents. It is. In addition, the catalyst according to the present invention has photocatalytic activity, and particularly when a metal is supported, the catalyst is activated by a part of visible light in addition to ultraviolet light, so that light utilization efficiency is improved and high activity is achieved. Is expressed.
[0028]
〔Deodorants〕
The deodorant according to the present invention is characterized by comprising the active tubular titanium oxide particles.
The activated tubular titanium oxide particles can be used as they are as a deodorant, but as disclosed in Patent Document 5, (1) application to fiber, (2) application to resin and rubber, (3) paint (4) In addition, it is effective in deodorizing odors emitted from factories for manufacturing and processing paints, foods, resins, etc., cooking products emitted from restaurants, cigarettes and the like. In addition, house building materials, fittings (wallpaper, fusuma, shoji, tatami, etc.), ceramics (tiles, ceramics, magnetism, etc.), leather products (bags, shoes, fur, wallet, regular inserts, etc.), wood products ( Desks, cupboards, chests, floorboards, ceiling boards, interior materials, etc.), paper products (tissue paper, cardboard paper, paper cups, paper plates, etc.), glass products (vases, aquariums, etc.), metal products (sashes, kettles, cars) Air conditioners and the like). Further, the deodorant of the present invention is also suitable for use in water purifiers, water treatment agents such as pool water, cosmetic materials, and deodorization of cat litter.
[0029]
【The invention's effect】
The active tubular titanium oxide particles of the present invention are extremely useful as a catalyst, a photocatalyst, a deodorant, and the like. The catalyst and the deodorant are particularly useful in catalytic activity at room temperature, deodorant performance, and long-term catalytic activity. Excellent deodorizing performance.
[0030]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0031]
Embodiment 1
(1) Tubular titanium oxide ( AT-1) Preparation of
Dilute an aqueous solution of titanium chloride with pure water2, An aqueous titanium chloride solution having a concentration of 5% by weight was prepared. This aqueous solution was neutralized and hydrolyzed by adding it to a 15% by weight aqueous ammonia solution whose temperature was adjusted to 5 ° C. The pH after the addition of the aqueous titanium chloride solution was 10.5. Then, the formed gel is filtered and washed, and TiO 22As a result, a gel of orthotitanic acid having a concentration of 9% by weight was obtained.
After 100 g of this orthotitanic acid gel was dispersed in 2900 g of pure water, 800 g of a hydrogen peroxide solution having a concentration of 35% by weight was added, and the mixture was heated at 85 ° C. for 3 hours with stirring to prepare an aqueous peroxotitanic acid solution. TiO of the obtained aqueous solution of peroxotitanic acid2And the concentration was 0.5% by weight.
Then, the mixture was heated at 95 ° C. for 10 hours to form a titanium oxide particle dispersion, and the TiO in the dispersion was added to the titanium oxide particle dispersion.2Tetramethylammonium hydroxide (TMAH, MW = 149.2) was added so that the molar ratio with respect to was 0.016. The pH of the dispersion at this time was 11. Subsequently, a hydrothermal treatment was performed at 230 ° C. for 5 hours to prepare a dispersion of titanium oxide particles (Ta). The average particle diameter of the titanium oxide particles (Ta) was 30 nm.
[0032]
Next, 70 g of a 40% by weight KOH aqueous solution was added to the titanium oxide particle (Ta) dispersion liquid with TiO 2.2Moles (TM) And the mole number of alkali metal hydroxide (AM) And the molar ratio (AM) / (TM) Was adjusted to 10 and hydrothermally treated at 150 ° C. for 2 hours.
The obtained particles were sufficiently washed with pure water. K at this time2The residual amount of O was 0.9% by weight. After washing with pure water, an aqueous dispersion of tubular titanium oxide particles (TiO 2)2And a cation-exchange resin and an anion-exchange resin in the same amount as the tubular titanium oxide particles were added thereto, and treated at 60 ° C. for 24 hours to perform high purification such as removal of alkali. Was.
Subsequently, it was freeze-dried to prepare tubular titanium oxide particles (AT-1).
Table 1 shows the composition parameters of the obtained tubular titanium oxide particles (AT-1). In addition, a TEM photograph of the particles is taken and the average particle length (L) and the average tube outer diameter (Dout) And the average pipe diameter (Din) Was determined, and the results are shown in Table 1.
[0033]
(2) Active ingredient (MA-1) Preparation of
H in 400 ml of pure water2PtCl60.44 g and 4.7 g of a 30% by weight aqueous hydrogen peroxide solution were added. Then, as a reducing agent, Na having a concentration of 4.5% by weight was used.2S2O470.2 ml of an aqueous solution of (sodium dithionite) was added and stirred for 70 minutes to prepare a dispersion of the active ingredient (MA-1) composed of Pt fine particles. At this time, the average particle diameter of the Pt fine particles was 4 nm.
[0034]
Activated tubular titanium oxide particles ( AT-1) Preparation of
4.0 g of the tubular titanium oxide particles (AT-1) obtained above were dispersed in 800 ml of pure water, and the resulting mixture was stirred and mixed with an ultrasonic wave generator (manufactured by Kaijyo Electric Co., Ltd .: AUTOCHDER-300, type-5271). , 27 kHz, 300 W), an active ingredient (MA-1) dispersion liquid composed of Pt fine particles was dropped over 30 minutes while irradiating ultrasonic waves at 30 kHz. Then, after stirring was continued for 24 hours to carry the active ingredient, filtration, washing, drying at 60 ° C. for 24 hours, reduction treatment at 200 ° C. for 3 hours in a hydrogen atmosphere, and activated tubular titanium oxide particles (AT- 1) was prepared.
[0035]
Deodorants (1) Preparation of
Activated tubular titanium oxide particles (AT-1) were used directly as a deodorant.
Deodorant test
0.5 g of the deodorant (1) was put into a 1.5 L vinyl tetrapack, and then a test odor gas was sealed. After standing at room temperature for 1 hour, the concentration of the remaining odorous gas was measured with a detector tube (manufactured by Gastech Co., Ltd.), and the results are shown in Table 1.
As the odor gas, ammonia (concentration: 100 ppm), hydrogen sulfide (concentration: 28 ppm), and formaldehyde (concentration: 14 ppm) were used, and a detection tube dedicated to each odor gas was used.
[0036]
catalyst (1) Preparation of
Activated tubular titanium oxide particles (AT-1) were used as they were as catalysts.
Evaluation of catalyst performance (oxidation ability)
0.25 g of the catalyst (1) is placed in a screw tube (4 ml in internal volume), 1 ml of isopropyl alcohol (IPA) is placed in the screw tube, and 5 hours of sunlight (during a clear day) or 5 minutes of ultraviolet light (black light, 360 nm) are applied. Irradiation for hours and irradiation of sunlight or ultraviolet rays were analyzed by a gas chromatograph mass spectrometer (JMF AX505, manufactured by JEOL Ltd.), and the results are shown in Table 1.
[0037]
Embodiment 2
(2) Active ingredient (MA-2) Preparation of
PdCl in pure water 400ml2Was added and 4.7 g of a 30% by weight aqueous solution of hydrogen peroxide was added. Then, as a reducing agent, Na having a concentration of 4.5% by weight was used.2S2O470.2 ml of an aqueous solution was added and stirred for 70 minutes to prepare an active ingredient (MA-2) dispersion liquid composed of Pd fine particles. At this time, the average particle diameter of the Pd fine particles was 5 nm.
Activated tubular titanium oxide particles ( AT-2) Preparation of
Active tubular titanium oxide particles (AT-2) were prepared in the same manner as in Example 1, except that the active ingredient (MA-2) dispersion was used instead of the active ingredient (MA-1) dispersion.
Deodorants (2) And catalyst (2) Preparation of
A deodorant (2) and a catalyst (2) were prepared in the same manner as in Example 1 except that the active tubular titanium oxide particles (AT-2) were used, and the evaluation results are shown in Table 1.
[0038]
Embodiment 3
(1) Tubular titanium oxide ( BT-1) Preparation of
TiO as in Example 12As a result, 3,800 g of a 0.5 wt% aqueous solution of peroxotitanic acid was prepared. This was mixed with silica sol (catalyst Kasei Kogyo Co., Ltd .: SI-350, SiO27.0 g at a concentration of 30% by weight and an average particle diameter of 8 nm), and heated at 95 ° C. for 3 hours.2・ SiO2  A titanium oxide particle (Tb) dispersion having a concentration of 0.56% by weight was prepared. The average particle diameter of the titanium oxide particles (Tb) was 20 nm.
Then, 70 g of a 40% by weight KOH aqueous solution was added to the titanium oxide particle (Tb) dispersion liquid with TiO 2.2Moles (TM) And the mole number of alkali metal hydroxide (AM) And the molar ratio (AM) / (TM) Was adjusted to 10 and hydrothermally treated at 150 ° C. for 2 hours. The obtained particles were sufficiently washed with pure water. K at this time2The residual amount of O was 1.5% by weight.
Then, an aqueous dispersion of tubular titanium oxide particles (TiO 2)2・ SiO2, A cation exchange resin and an anion exchange resin in the same amounts as the tubular titanium oxide particles were added, and the mixture was treated at 60 ° C. for 24 hours. After sufficient washing with pure water again, an aqueous dispersion of tubular titanium oxide particles (TiO 2)2・ SiO23% by weight), and citric acid was added to TiO2Was added so that the molar ratio with respect to was 0.1. The pH at this time was 3. Then, the dispersion was hydrothermally treated at 60 ° C. for 24 hours, washed with water, and freeze-dried to prepare tubular titanium oxide particles (BT-1).
Table 1 shows the composition parameters of the obtained tubular titanium oxide particles (BT-1). In addition, a TEM photograph of the particles is taken and the average particle length (L) and the average tube outer diameter (Dout) And the average pipe diameter (Din) Was determined, and the results are shown in Table 1.
[0039]
Activated tubular titanium oxide particles ( BT-1 Preparation of
Activated tubular titanium oxide particles (BT-1) were prepared in the same manner as in Example 1, except that 8.0 g of tubular titanium oxide particles (BT-1) were used instead of 4.0 g of tubular titanium oxide particles (AT-1). ) Was prepared.
Deodorants (3) And catalyst (3) Preparation of
A deodorant (3) and a catalyst (3) were prepared in the same manner as in Example 1 except that the active tubular titanium oxide particles (BT-1) were used, and the evaluation results are shown in Table 1.
[0040]
Embodiment 4
Activated tubular titanium oxide particles ( BT-2 Preparation of
Activated tubular titanium oxide particles (BT-2) were prepared in the same manner as in Example 1, except that 4.0 g of tubular titanium oxide particles (BT-1) were used instead of 4.0 g of tubular titanium oxide particles (AT-1). ) Was prepared.
Deodorants (4) And catalyst (4) Preparation of
A deodorant (4) and a catalyst (4) were prepared in the same manner as in Example 1 except that the active tubular titanium oxide particles (BT-2) were used, and the evaluation results are shown in Table 1.
[0041]
Embodiment 5
Activated tubular titanium oxide particles ( BT-3 Preparation of
Activated tubular titanium oxide particles (BT-3) in the same manner as in Example 1, except that 2.7 g of tubular titanium oxide particles (BT-1) were used instead of 4.0 g of tubular titanium oxide particles (AT-1). Was prepared.
Deodorants (5) And catalyst (5) Preparation of
A deodorant (5) and a catalyst (5) were prepared in the same manner as in Example 1 except that the active tubular titanium oxide particles (BT-3) were used, and the evaluation results are shown in Table 1.
[0042]
Embodiment 6
Activated tubular titanium oxide particles ( BT-4) Preparation of
Active tubular titanium oxide particles (BT-4) were prepared in the same manner as in Example 4, except that an active ingredient (MA-2) dispersion was used instead of the active ingredient (MA-1) dispersion.
Deodorants (6) And catalyst (6) Preparation of
A deodorant (6) and a catalyst (6) were prepared in the same manner as in Example 1 except that the active tubular titanium oxide particles (BT-4) were used, and the evaluation results are shown in Table 1.
[0043]
Embodiment 7
(2) Active ingredient (MA-3) Preparation of
AgNO in 400 ml of pure water30.31 g and 4.7 g of a 30% by weight aqueous hydrogen peroxide solution were added. Then, after the temperature was raised to 50 ° C., 4.5% by weight of Na was used as a reducing agent.2S2O470.2 ml of an aqueous solution was added and stirred for 70 minutes to prepare an active ingredient (MA-3) dispersion liquid composed of Ag fine particles. At this time, the average particle diameter of the Ag fine particles was 3 nm.
Activated tubular titanium oxide particles ( BT-5) Preparation of
Active tubular titanium oxide particles (BT-5) were prepared in the same manner as in Example 4, except that an active ingredient (MA-3) dispersion was used instead of the active ingredient (MA-1) dispersion.
Deodorants (7) And catalyst (7) Preparation of
A deodorant (7) and a catalyst (7) were prepared in the same manner as in Example 1 except that the active tubular titanium oxide particles (BT-5) were used, and the evaluation results are shown in Table 1.
[0044]
Embodiment 8
(1) Reduced tubular titanium oxide ( AT-2 Preparation of
The tubular titanium oxide particles (AT-1) obtained in the same manner as in Example 1 were placed in an electric furnace adjusted to 400 ° C. and diluted with ammonia gas (NH3: 10% by volume) for 2 hours to prepare reduced tubular titanium oxide particles (AT-2).
Table 1 shows the composition parameters of the obtained reduced tubular titanium oxide particles (AT-2). In addition, a TEM photograph of the particles is taken and the average particle length (L) and the average tube outer diameter (Dout) And the average pipe diameter (Din) Was determined, and the results are shown in Table 1.
Activated tubular titanium oxide particles ( AT-3) Preparation of
Activated tubular titanium oxide particles (AT-3) were prepared in the same manner as in Example 1, except that reduced tubular titanium oxide particles (AT-2) were used instead of the tubular titanium oxide particles (AT-1).
Deodorants (8) And catalyst (8) Preparation of
A deodorant (8) and a catalyst (8) were prepared in the same manner as in Example 1 except that the active tubular titanium oxide particles (AT-3) were used, and the evaluation results are shown in Table 1.
[0045]
[Comparative Example 1]
Titanium oxide particles ( RAT-1)
Titanium oxide particle dispersion (manufactured by Catalyst Chemical Industry Co., Ltd .: PW-1010, TiO)2The powder having a concentration of 76% by weight and an average particle diameter of 10 nm) was dried and used as titanium oxide particles (RAT-1).
Deodorants (R1) And catalyst (R1) Preparation of
A deodorant (R1) and a catalyst (R1) were prepared in the same manner as in Example 1 except that the titanium oxide particles (RAT-1) were used, and the evaluation results are shown in Table 1.
[0046]
[Comparative Example 2]
Active titanium oxide particles ( RAT-2 )
Activated titanium oxide particles (RAT-2) were prepared in the same manner as in Example 1, except that 5.3 g of the titanium oxide particles (RAT-1) of Comparative Example 1 was used instead of the activated tubular titanium oxide particles (AT-1). Was prepared.
Deodorants (R2) And catalyst (R2) Preparation of
A deodorant (R2) and a catalyst (R2) were prepared in the same manner as in Example 1 except that a dispersion of activated titanium oxide particles (RAT-2) was used. The evaluation results are shown in Table 1.
[0047]
[Comparative Example 3]
Deodorants (R3) And catalyst (R3) Preparation of
A deodorant (R3) and a catalyst (R3) were prepared in the same manner as in Example 1 except that the active ingredient was not supported and the tubular titanium oxide particles (AT-1) obtained in Example 1 were used as they were. The evaluation results are shown in Table 1.
[0048]
[Comparative Example 4]
Deodorants (R4) And catalyst (R4) Preparation of
A deodorant (R4) and a catalyst (R4) were prepared in the same manner as in Example 3, except that the active ingredient was not supported and the tubular titanium oxide particles (BT-1) obtained in Example 3 were used as they were. The evaluation results are shown in Table 1.
[0049]
[Table 1]
Figure 2004250239

Claims (6)

酸化チタンまたは酸化チタンと酸化チタン以外の酸化物からなり、下記式(1)で表される管状酸化チタン粒子に、周期律表 VIIa、VIII、Ib、IIb族及び希土類元素から選ばれた少なくとも1種の元素成分が金属および/または金属酸化物として担持されたことを特徴とする活性管状酸化チタン粒子。
Ti ・・・(1)
(a+b=1、b=0〜0.2、1≦x≦2)
(M:Ti以外の元素)
Tubular titanium oxide particles composed of titanium oxide or titanium oxide and an oxide other than titanium oxide and represented by the following formula (1) are provided with at least one selected from the group consisting of groups VIIa, VIII, Ib, IIb and rare earth elements of the periodic table. Activated tubular titanium oxide particles, characterized in that various elemental components are supported as metal and / or metal oxide.
Ti a M b O x ··· ( 1)
(A + b = 1, b = 0-0.2, 1 ≦ x ≦ 2)
(M: element other than Ti)
前記管状酸化チタン粒子が、外径(Dout)が5〜40nmの範囲にあり、内径(Din)が4〜20nmの範囲にあり、管の厚みが0.5〜10nmの範囲にあり、長さ(L)が50〜1000nmの範囲にあり、管の長さ(L)と外径(Dout)との比(L)/(Dout)が10〜200の範囲にあることを特徴とする請求項1に記載の活性管状酸化チタン粒子。The tubular titanium oxide particles have an outer diameter (D out ) in the range of 5 to 40 nm, an inner diameter (D in ) in the range of 4 to 20 nm, and a tube thickness of 0.5 to 10 nm; The length (L) is in the range of 50 to 1000 nm, and the ratio (L) / (D out ) of the length (L) of the tube to the outer diameter (D out ) is in the range of 10 to 200. The activated tubular titanium oxide particles according to claim 1, wherein 前記酸化チタン以外の酸化物が周期律表の第Ia族、第Ib族、第IIa族、第IIb族、第IIIa族、第IIIb族、第IVa族、第IVb族、第Va族、第Vb族、第VIa族、第VIb族、第VIIa族、第VIII族から選ばれた少なくとも1種の元素(M)の酸化物であることを特徴とする請求項1または2に記載の活性管状酸化チタン粒子。The oxides other than the titanium oxide may be any one of Group Ia, Group Ib, Group IIa, Group IIb, Group IIIa, Group IIIb, Group IVa, Group IVb, Group Va, and Group Vb of the periodic table. The active tubular oxidation according to claim 1, wherein the oxide is an oxide of at least one element (M) selected from the group consisting of Group VIa, Group VIa, Group VIb, Group VIIa, and Group VIII. Titanium particles. 前記酸化チタン以外の酸化物がSiO、ZrO、ZnO、Al、CeO、Y、Nd、WO、Fe、Sbから選ばれる1種以上の酸化物であることを特徴とする請求項1〜3のいずれかに記載の活性管状酸化チタン粒子。1 oxide other than the titanium oxide is selected from SiO 2, ZrO 2, ZnO, Al 2 O 3, CeO 2, Y 2 O 3, Nd 2 O 3, WO 3, Fe 2 O 3, Sb 2 O 5 The active tubular titanium oxide particles according to any one of claims 1 to 3, wherein the active tubular titanium oxide particles are at least one kind of oxide. 請求項1〜4のいずれかに記載の活性管状酸化チタン粒子を含んでなる触媒。A catalyst comprising the activated tubular titanium oxide particles according to claim 1. 請求項1〜4のいずれかに記載の活性管状酸化チタン粒子を含んでなる消臭剤。A deodorant comprising the activated tubular titanium oxide particles according to claim 1.
JP2003039181A 2003-02-18 2003-02-18 Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant Expired - Lifetime JP4293801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039181A JP4293801B2 (en) 2003-02-18 2003-02-18 Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039181A JP4293801B2 (en) 2003-02-18 2003-02-18 Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant

Publications (2)

Publication Number Publication Date
JP2004250239A true JP2004250239A (en) 2004-09-09
JP4293801B2 JP4293801B2 (en) 2009-07-08

Family

ID=33023422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039181A Expired - Lifetime JP4293801B2 (en) 2003-02-18 2003-02-18 Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant

Country Status (1)

Country Link
JP (1) JP4293801B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109902A (en) * 2004-10-12 2006-04-27 Chemiprokasei Kaisha Ltd Deodorant and article with the deodorant at least on the surface
JP2006224043A (en) * 2005-02-21 2006-08-31 Kyocera Corp Photocatalyst body, its production method and energy transducer using photocatalyst catalyst body
JP2006240967A (en) * 2005-03-07 2006-09-14 Nippon Oil Corp Amorphous titania
JP2007320821A (en) * 2006-06-02 2007-12-13 Catalysts & Chem Ind Co Ltd Electroconductive titanium oxide and its manufacture method
JP2008230950A (en) * 2007-02-21 2008-10-02 Kyushu Institute Of Technology N- and/or s-doped tubular titanium oxide particle and method for producing the same
JP2009131756A (en) * 2007-11-29 2009-06-18 Jgc Catalysts & Chemicals Ltd Method for producing titanium oxide-based deodorant
JP2009233575A (en) * 2008-03-27 2009-10-15 National Institute Of Advanced Industrial & Technology Tubular body of tungsten oxide and photocatalyst using the same
CN101797504A (en) * 2010-04-08 2010-08-11 成都理工大学 Preparation of nanometer CeO2-base light catalyst capable of improving degradation performance
CN104056616A (en) * 2014-07-01 2014-09-24 崔洁心 Method for preparing silica aerogel photocatalyst formed by compounding nanometer titanium oxide and rare earth solid solution
CN104477987A (en) * 2014-12-12 2015-04-01 中国科学院过程工程研究所 Clean production method of high-purity titanium dioxide
CN104667906A (en) * 2015-02-03 2015-06-03 桂林理工大学 Visible light responding photocatalyst NdW2O9 and preparation method thereof
CZ305801B6 (en) * 2011-07-18 2016-03-23 Ústav Anorganické Chemie Av Čr, V.V.I. Process for preparing photocatalycally active material with foamy structure
JP2016172202A (en) * 2015-03-16 2016-09-29 国立研究開発法人物質・材料研究機構 Photocatalyst composition, photocatalytic activity improver and photocatalytic activity improving method
CN108855041A (en) * 2018-06-27 2018-11-23 台州聚合科技有限公司 A kind of preparation method of Ceria-zirconia solid solution catalyst
CN109107566A (en) * 2018-09-27 2019-01-01 青岛科技大学 A kind of WO3·0.33H2The preparation method and its photocatalytic applications of O nanometers of cuboids
CN110841597A (en) * 2019-12-09 2020-02-28 中国石油大学(华东) Zinc acetate modified activated carbon fiber and titanium dioxide composite material and preparation method thereof
WO2020110874A1 (en) * 2018-11-30 2020-06-04 住友化学株式会社 Aldehyde decomposition catalyst
CN113003698A (en) * 2021-03-05 2021-06-22 浙江理工大学 Long-acting deodorant and preparation method thereof
CN116809062A (en) * 2023-06-29 2023-09-29 东北石油大学 Yttrium oxide loaded atomic-level cluster palladium-based catalyst and its preparation method and use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020140191A1 (en) * 2019-01-02 2020-07-09 纳琦环保科技有限公司 Method of preparing multifunctional composite water purification material

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109902A (en) * 2004-10-12 2006-04-27 Chemiprokasei Kaisha Ltd Deodorant and article with the deodorant at least on the surface
JP2006224043A (en) * 2005-02-21 2006-08-31 Kyocera Corp Photocatalyst body, its production method and energy transducer using photocatalyst catalyst body
JP2006240967A (en) * 2005-03-07 2006-09-14 Nippon Oil Corp Amorphous titania
JP4728666B2 (en) * 2005-03-07 2011-07-20 Jx日鉱日石エネルギー株式会社 Method for producing amorphous titania
JP2007320821A (en) * 2006-06-02 2007-12-13 Catalysts & Chem Ind Co Ltd Electroconductive titanium oxide and its manufacture method
JP2008230950A (en) * 2007-02-21 2008-10-02 Kyushu Institute Of Technology N- and/or s-doped tubular titanium oxide particle and method for producing the same
JP2009131756A (en) * 2007-11-29 2009-06-18 Jgc Catalysts & Chemicals Ltd Method for producing titanium oxide-based deodorant
JP2009233575A (en) * 2008-03-27 2009-10-15 National Institute Of Advanced Industrial & Technology Tubular body of tungsten oxide and photocatalyst using the same
CN101797504A (en) * 2010-04-08 2010-08-11 成都理工大学 Preparation of nanometer CeO2-base light catalyst capable of improving degradation performance
CZ305801B6 (en) * 2011-07-18 2016-03-23 Ústav Anorganické Chemie Av Čr, V.V.I. Process for preparing photocatalycally active material with foamy structure
CN104056616A (en) * 2014-07-01 2014-09-24 崔洁心 Method for preparing silica aerogel photocatalyst formed by compounding nanometer titanium oxide and rare earth solid solution
CN104477987A (en) * 2014-12-12 2015-04-01 中国科学院过程工程研究所 Clean production method of high-purity titanium dioxide
CN104667906A (en) * 2015-02-03 2015-06-03 桂林理工大学 Visible light responding photocatalyst NdW2O9 and preparation method thereof
JP2016172202A (en) * 2015-03-16 2016-09-29 国立研究開発法人物質・材料研究機構 Photocatalyst composition, photocatalytic activity improver and photocatalytic activity improving method
CN108855041A (en) * 2018-06-27 2018-11-23 台州聚合科技有限公司 A kind of preparation method of Ceria-zirconia solid solution catalyst
CN109107566B (en) * 2018-09-27 2021-05-18 青岛科技大学 WO (WO)3·0.33H2Preparation method of O nano cuboid and photocatalytic application thereof
CN109107566A (en) * 2018-09-27 2019-01-01 青岛科技大学 A kind of WO3·0.33H2The preparation method and its photocatalytic applications of O nanometers of cuboids
WO2020110874A1 (en) * 2018-11-30 2020-06-04 住友化学株式会社 Aldehyde decomposition catalyst
CN112512682A (en) * 2018-11-30 2021-03-16 住友化学株式会社 Catalyst for aldehyde decomposition
CN110841597A (en) * 2019-12-09 2020-02-28 中国石油大学(华东) Zinc acetate modified activated carbon fiber and titanium dioxide composite material and preparation method thereof
CN113003698A (en) * 2021-03-05 2021-06-22 浙江理工大学 Long-acting deodorant and preparation method thereof
CN113003698B (en) * 2021-03-05 2022-12-06 浙江理工大学 Long-acting deodorant and preparation method thereof
CN116809062A (en) * 2023-06-29 2023-09-29 东北石油大学 Yttrium oxide loaded atomic-level cluster palladium-based catalyst and its preparation method and use
CN116809062B (en) * 2023-06-29 2024-06-07 东北石油大学 Yttrium oxide loaded atomic-level cluster palladium-based catalyst and its preparation method and use

Also Published As

Publication number Publication date
JP4293801B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
US8791044B2 (en) Doped titanium dioxide as a visible and sun light photo catalyst
JP4878141B2 (en) Composite photocatalyst
CN107555481B (en) Manganese oxide material and preparation method thereof
US20080119352A1 (en) Visible Light-Responsive Photocatalyst Composition and Process for Producing the Same
KR20130092592A (en) Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
KR101649334B1 (en) Preparation method of porous copper-manganese oxide catalysts
KR101762718B1 (en) Porous copper-manganese filter media and the preparation of the same
TW200810831A (en) Photocatalyst, process for preparing the same, photocatalyst coating agent, photocatalyst dispersion and photocatalyst article using the same
JP4319184B2 (en) PHOTOCATALYST, ITS MANUFACTURING METHOD, AND ARTICLE USING PHOTOCATALYST
JPWO2013118714A1 (en) Aldehyde gas deodorant and method for producing the same
JP2832342B2 (en) Photocatalyst particles and method for producing the same
JP5127134B2 (en) Deodorant comprising tubular titanium oxide particles
JP2002187712A (en) Spheric porous silica or silica/metal composite particle and method for manufacturing the same
JP4180316B2 (en) Tubular titanium oxide particles and method for producing tubular titanium oxide particles
JP2007098293A (en) Visible light response type photocatalyst, visible light response type photocatalyst composition and its production method
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
JP2010131531A (en) Air cleaning catalyst and its manufacturing method
JP5610329B2 (en) Titanium oxide volatile organic compound decomposition material coated with silicate
JP2010150434A (en) Method for manufacturing weatherproof and foulingproof emulsion coating material and coated film thereof
JP3876124B2 (en) Method for producing hydrated iron-containing aluminum oxide
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
WO2019033695A1 (en) Manganese oxide material and method for preparing same
JP3884503B2 (en) Hazardous substance removing agent and method of removing harmful substance using the same
JP2005219966A (en) Production method for titanium oxide solution, titanium oxide solution, and photocatalyst coating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4293801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term