JPS62235215A - Production of rutile titanium oxide sol - Google Patents

Production of rutile titanium oxide sol

Info

Publication number
JPS62235215A
JPS62235215A JP61078170A JP7817086A JPS62235215A JP S62235215 A JPS62235215 A JP S62235215A JP 61078170 A JP61078170 A JP 61078170A JP 7817086 A JP7817086 A JP 7817086A JP S62235215 A JPS62235215 A JP S62235215A
Authority
JP
Japan
Prior art keywords
sol
titanium oxide
rutile
hydrochloric acid
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61078170A
Other languages
Japanese (ja)
Inventor
Takehiko Suzuki
武彦 鈴木
Shigemi Osaka
大坂 重美
Hideki Imai
秀樹 今井
Norikazu Aikawa
規一 相川
Tsukasa Takahashi
典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP61078170A priority Critical patent/JPS62235215A/en
Publication of JPS62235215A publication Critical patent/JPS62235215A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To obtain the titled high-purity rutile titanium oxide sol with high efficiency by heating hydrated titanium oxide along with the hydroxide of an alkali metal, aging the material in an aq. hydrochloric acid soln. and washing the obtained rutile titanium oxide by using a filter membrane. CONSTITUTION:Hydrated titanium oxide obtained by the hydrolysis of titanyl sulfate aq. solution, for example, is heated along with the hydroxide of an alkali metal (e.g., NaOH). The heated material is then heated and aged in an aq. hydrochloric acid soln., or TiCl4 is dripped into an aq. hydrochloric acid soln., and the obtained soln. is hydrolyzed, to prepare a rutile titania sol. The obtained titania sol is desirable washed by using the filter membrane of a filter consisting of a circulating system. In this case, a permeable membrane having 10-5,000Angstrom , especially 30-2,000Angstrom , permeation pores is used. The high- purity rutile titania sol is stable for a long time even at high concn., and the fine powder of the rutile titanium oxide is obtained by drying the sol.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化チタン、特にルチル型酸化チタンゾルの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing titanium oxide, particularly rutile type titanium oxide sol.

酸化チタンは高い屈折率をもち、着色力、隠蔽力が優れ
かつ化学的に安定であることから白色顔料として多くの
分野で使用されている。そして本発明が提供するような
高純度のゾルやそれから製造される微粉末はさらに以下
のごとき用途が見出されるものである。すなわちガラス
、プラスチック成形品、−/−ト+フィルム等の基材に
本発明が提供するゾルや微粉末を分散させあるいは本発
明が提供するゾルや微粉末を含むコーテイング膜を上記
基材に製膜し、基材に対して、紫外線遮蔽。
Titanium oxide has a high refractive index, excellent coloring power and hiding power, and is chemically stable, so it is used as a white pigment in many fields. The high-purity sol provided by the present invention and the fine powder produced therefrom can be found to have further uses as described below. In other words, the sol or fine powder provided by the present invention is dispersed in a base material such as glass, plastic molded product, -/- sheet + film, or a coating film containing the sol or fine powder provided by the present invention is formed on the above base material. Film and UV shielding for the base material.

耐光性、耐候性、硬度の強化、耐熱性、耐薬品性等の機
能を付与し、あるいは向上させるために使用される。特
に本発明により見られる分散性にすぐれ粒度の揃ったゾ
ルや微粉末を透明基材に適用した場合は基材の透明性を
そこなうことなく上記の機能の付与向上がはかれる利点
がある。
It is used to impart or improve functions such as light resistance, weather resistance, hardness reinforcement, heat resistance, and chemical resistance. In particular, when a sol or fine powder with excellent dispersibility and uniform particle size as seen in the present invention is applied to a transparent substrate, there is an advantage that the above-mentioned functions can be improved without impairing the transparency of the substrate.

〔従来の技術〕[Conventional technology]

硫酸チタンル溶液や四塩化チタン溶液等を加熱処理する
ことにより得られる含水酸化チタンを水酸化ナトリウム
などで処理しさらに塩酸中で熟成することだより、ある
いは、四塩化チタンを塩酸等の溶液中に滴加した溶液を
加熱処理することによシルチル型の結晶構造を持ったチ
タニアゾルが得られることは知られている。又特開昭5
9−223231号公報ではルチル型チタニアゾル中だ
おいて炭素数7個以上のカルがン酸あるいはその水性塩
と酸または多価金属塩とを反応せしめ生成した遊離カル
ボン酸またはその多価金属塩をもって分散粒子を被覆し
、しかる後、分散粒子を濾過し乾燥し、場合により焼成
することにより0.1μ以下の粒子径のルチル型微粒子
酸化チタンの製造方法が開示されている。
Hydrous titanium oxide obtained by heat treating a titanium sulfate solution or a titanium tetrachloride solution, etc. is treated with sodium hydroxide, etc., and then aged in hydrochloric acid, or titanium tetrachloride is added to a solution of hydrochloric acid, etc. It is known that a titania sol having a siltyl type crystal structure can be obtained by heating a solution added dropwise. Also, Tokukai Sho 5
Publication No. 9-223231 discloses that a free carboxylic acid or a polyvalent metal salt thereof is produced by reacting a carboxylic acid having 7 or more carbon atoms or an aqueous salt thereof with an acid or a polyvalent metal salt in a rutile type titania sol. A method for producing rutile-type fine particle titanium oxide having a particle size of 0.1 μm or less is disclosed by coating dispersed particles, then filtering and drying the dispersed particles, and optionally calcining the dispersed particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらルチル型チタニアゾルを得るため従来法の
加水分解法を適用する場合、加水分解後得られるゾル中
には陰イオンや金属イオンが含有されており、チタニア
ゾルの洗浄が必要となるが、このゾル中の粒子の径は通
常0.1μ以下からなっているため、これは水との親和
力が強く水分子と強固な水利層を形成し、通常の濾過操
作では濾過膜の目すまり等を起し、4過洗浄作業が著し
く困難であり、又、傾斜法等により洗浄を行う場合に。
However, when applying the conventional hydrolysis method to obtain a rutile-type titania sol, the sol obtained after hydrolysis contains anions and metal ions, and the titania sol needs to be washed. The diameter of the particles is usually less than 0.1μ, so they have a strong affinity with water and form a strong water layer with water molecules, causing clogging of the filtration membrane during normal filtration operations. 4. When over-cleaning is extremely difficult, or when cleaning is performed using a tilting method, etc.

洗浄が進むにつれ、水利層が解膠され粒子が孤立した状
態となるが、この粒子は微小で水溶液中で安定となるた
め、従来、この粒子を捕捉する適当な方法がなく、チタ
ニアゾルの効率のよい洗浄を行うことは困難であった。
As cleaning progresses, the aquifer becomes peptized and the particles become isolated, but since these particles are small and stable in an aqueous solution, there has been no suitable method to capture them, and the efficiency of titania sol has been limited. It was difficult to perform a good cleaning.

本発明者らは、前記ルチル型チタニアゾルの濾過洗浄方
法について検討した結果、限外濾過あるいは分子濾過と
称される濾過方法を採用することにより、きわめて効率
よくチタニアゾルの洗浄が可能であることがわかり、該
濾過法によυ高純度のルチル型酸化チタンゾルを調製し
ついで該ゾルの乾燥、焼成によりルチル型微粒子酸化チ
タンを得ることができることを見出した。
The present inventors investigated the filtration and cleaning method for the rutile-type titania sol and found that titania sol can be cleaned extremely efficiently by employing a filtration method called ultrafiltration or molecular filtration. It has been found that rutile type titanium oxide particles can be obtained by preparing a high-purity rutile type titanium oxide sol using the filtration method, and then drying and calcining the sol.

〔手段〕〔means〕

本発明が対象とするルチル型チタニアゾルは、公知の方
法で調製される。例えば硫酸チタニル溶液の加水分解に
より得られる含水酸化チタンをアルカリ金属水酸化物で
加熱処理し、ついで塩酸水溶液中で加熱熟成することに
より、あるいは四塩化チタンを塩酸溶液中に滴下して得
られる溶液を加水分解することによりルチル型チタニア
ゾルは調製される。かくして得られるゾルを次いで濾過
装置に導ひき洗浄を行う。濾過装置は循環システムを採
用するのが望ましく、陰イオンや金属イオンを含む水を
系外に排出させ、濃縮されたゾルに純水を追加して連続
的に洗浄を行う。この際濾過膜の選定が重要であり、ゾ
ル中の粒子を完全に捕捉し陰イオンや金属イオンのみを
通過させる大きさの透過孔を有する膜を使用する必要が
ある。洗浄後得られる高純度のルチル型チタニアゾルは
高濃度でも長期間安定であり、ゾルとしての用途知供さ
れる。
The rutile titania sol targeted by the present invention is prepared by a known method. For example, a solution obtained by heat-treating hydrous titanium oxide obtained by hydrolysis of a titanyl sulfate solution with an alkali metal hydroxide and then heating and aging in an aqueous hydrochloric acid solution, or by dropping titanium tetrachloride into a hydrochloric acid solution. Rutile type titania sol is prepared by hydrolyzing . The sol thus obtained is then introduced into a filtration device and washed. It is preferable that the filtration device adopts a circulation system, in which water containing anions and metal ions is discharged from the system, and purified water is added to the concentrated sol to continuously wash it. At this time, the selection of the filtration membrane is important, and it is necessary to use a membrane that has permeable pores large enough to completely capture particles in the sol and allow only anions and metal ions to pass through. The highly purified rutile type titania sol obtained after washing is stable for a long period of time even at high concentrations, and can be used as a sol.

また、該ゾルを乾燥することによりルチル型酸化チタン
微粉末が簡便に得られ、さらにこれを必要により焼成す
ることにより粒子径も調節できる。
Further, by drying the sol, a rutile-type titanium oxide fine powder can be easily obtained, and the particle size can also be adjusted by firing this if necessary.

〔作用〕[Effect]

本発明で使用される濾過方法は限外濾過あるいはそれよ
りも透過の小さ1分子濾過と称されているもので、その
濾過方式として、濾過膜上での粒子の沈着を防止するた
め、濾過膜上でゾルが流動化している状態で濾過できる
方式が必要である。
The filtration method used in the present invention is called ultrafiltration or single molecule filtration with a smaller permeation rate. There is a need for a method that can filter the sol while it is fluidized.

濾過すべきゾルを濾過装置に導ひき、濾過されずに濾過
装置を出たゾルを元にもどしながら連続的に濾過が可能
な本発明の循環方式は好ましいものであり、濾過膜上に
ゾル中の粒子が実質的に沈着することなく連続的に効率
よく濾過操作が可能であり、又、ゾルの濃縮も可能であ
る。さらに、本発明で使用される濾過膜の透過孔の太き
さは最適なものを選択する必要があり、太き過ぎると粒
子が捕捉されず洗浄が不可能となったりあるいは粒子の
損出が多くなり、又小さ過ぎると陰イオンや金属イオン
が透過することがで今ないため、洗浄ができなかったり
洗浄に長時間必要となる。本発明では、IOX〜500
0X好ましくは30□に〜2000Xの間の透過孔で孔
径分布巾の狭い濾過膜が好適であり、濾過膜上でのゾル
の流速が0.51少以上もあれば長時間濾過操作を行っ
ても粒子の沈着に起因する濾過能力の低下は認められな
かった。又濾過能力を高めるため加圧下で濾過操作を行
うと有利であるが、この際には6kg/Crn2以下の
圧力で充分である。
The circulation method of the present invention is preferable because it allows continuous filtration by introducing the sol to be filtered into the filtration device and returning the sol that has left the filtration device without being filtered. It is possible to carry out continuous and efficient filtration operations without substantially depositing particles, and it is also possible to concentrate the sol. Furthermore, the diameter of the permeation pores of the filtration membrane used in the present invention must be selected to be optimal; if the diameter is too large, particles may not be captured and cleaning may become impossible, or particles may be lost. If the number is too large, or if it is too small, anions and metal ions can pass through, making cleaning impossible or requiring a long time. In the present invention, IOX~500
A filtration membrane with a narrow pore size distribution width and permeation pores of 30□ to 2000X is preferable, and if the flow rate of the sol on the filtration membrane is 0.51 or more, the filtration operation can be carried out for a long time. No decrease in filtration ability due to particle deposition was observed. It is also advantageous to carry out the filtration operation under pressure in order to increase the filtration ability, but in this case a pressure of 6 kg/Crn2 or less is sufficient.

なを、硫酸チタニルや四基fヒチタンの加水分解により
得られる含水酸化チタ/の洗浄および含水酸化チタンを
アルカリ金属水酸化物で加熱処理した後の洗浄も、本発
明での洗浄方法を適用することにより、スラリー状態で
の洗浄がきわめて効率よく行うことができ、前記ゾルと
の洗浄とあわせ、高純度のルチル型酸化チタンゾルを簡
便に、能率よく調製することができる。
Furthermore, the cleaning method of the present invention can also be applied to the cleaning of hydrated titanium oxide obtained by hydrolysis of titanyl sulfate or tetra-f titanium, and the cleaning after heat-treating hydrated titanium oxide with an alkali metal hydroxide. By doing so, cleaning in a slurry state can be performed extremely efficiently, and in combination with the cleaning with the sol, a high purity rutile type titanium oxide sol can be easily and efficiently prepared.

ルチル型酸化チタン微粉末を得る場合は、高純度のルチ
ル型酸化チタンゾルをそのま\乾燥するか、あるいは用
途に合せ、通常行なわれているように、界面活性剤、ア
ルミナ、シリカ等で表面処理した後乾燥することにより
ルチル型酸化チタン微粉末が得られる。乾燥方法は通常
の加熱乾燥でもよいが、誘電加熱乾燥法、凍結乾燥法、
あるいは噴霧乾燥法により分散性の良好なルチル型酸化
チタン微粉末が得られ、さらにこれを必要により焼成す
ることにより粒子径を大きくしたルチル型酸化チタンが
得られる。
To obtain rutile-type titanium oxide fine powder, high-purity rutile-type titanium oxide sol can be dried as is, or surface treated with surfactant, alumina, silica, etc., as is usually done, depending on the purpose. After drying, a rutile-type titanium oxide fine powder is obtained. The drying method may be normal heating drying, but dielectric heating drying, freeze drying,
Alternatively, fine rutile titanium oxide powder with good dispersibility can be obtained by spray drying, and if necessary, this can be calcined to obtain rutile titanium oxide with a larger particle size.

なお、洗浄を終えた高純度のルチル型チタニアゾルヲ濃
縮後、アルコール@、ベンゼン、トルエン等の有機溶媒
中に分散せしめ加熱蒸留することにより水分除去を行い
、有機溶媒中に分散された高純度のルチル型酸化チタン
ゾルを調製することができる。そして該有機溶媒ゾルを
乾燥後焼成することによシ分散性の良好なルチル型酸化
チタン微粉末が得られる。
After concentrating the washed high-purity rutile titania sol, it is dispersed in an organic solvent such as alcohol, benzene, toluene, etc., and then heated and distilled to remove moisture. A rutile titanium oxide sol can be prepared. By drying and firing the organic solvent sol, a rutile-type titanium oxide fine powder with good dispersibility can be obtained.

実施例1 硫酸チタニル溶液を煮沸することにより得られる含水酸
化チタンを濾過洗浄し、T + 02として500g含
有するスラリーを調製した。ついで該スラリーに苛性ソ
ーダを攪拌下添加し90〜95℃にて加熱処理を行った
後十分洗浄して得たスラリーに36%塩酸2tを投入し
、98℃で3時間加熱し、チタニアゾルを調製した。つ
いで全濾過面積が約2 m2で平均通過孔が約100X
の濾過膜がセットされた濾過装置にチタニアゾルをポン
プに−より送入し濾過を行い、膜を通過した濾液は排出
し、濾過されないゾルを元にもどし連続的に濾過濃縮を
行った。ゾルが約4tとなったとき純水を追加しながら
、濾液を排出し続はゾルの洗滌を行った。
Example 1 Hydrous titanium oxide obtained by boiling a titanyl sulfate solution was filtered and washed to prepare a slurry containing 500 g of T + 02. Next, caustic soda was added to the slurry under stirring, heat treatment was performed at 90 to 95°C, and 2 tons of 36% hydrochloric acid was added to the slurry obtained by thorough washing and heated at 98°C for 3 hours to prepare titania sol. . Then, the total filtration area is about 2 m2 and the average passage hole is about 100X.
The titania sol was pumped into a filtration device equipped with a filtration membrane and filtered. The filtrate that passed through the membrane was discharged, and the unfiltered sol was returned to its original state for continuous filtration and concentration. When the sol weighed about 4 tons, the filtrate was discharged while adding pure water, and the sol was subsequently washed.

ゾル中の塩素イオン濃度が2 PPM以下となったとき
洗浄操作をやめゾルを5tまで濃縮した。洗浄に要した
純水は約300tで所要時間は約150分間であった。
When the chloride ion concentration in the sol became 2 PPM or less, the washing operation was stopped and the sol was concentrated to 5 tons. The cleaning required approximately 300 tons of pure water and took approximately 150 minutes.

かくして得られたチタニアゾルは長時間保存しても安定
であった。
The titania sol thus obtained was stable even when stored for a long time.

また、このゾルの一部を用い液体窒素を使用して凍結乾
燥を行い微粉末とした。得られた微粉末はX線回折でル
チル型の結晶構造を示し、その比表面積は140 m2
/9であった。
Further, a part of this sol was freeze-dried using liquid nitrogen to form a fine powder. The obtained fine powder showed a rutile crystal structure by X-ray diffraction, and its specific surface area was 140 m2.
/9.

実施例2 イオン交換水1tVC36%塩酸40.Izを加え、水
浴で冷却しながら攪拌下、四塩化チタン95gを少量づ
つ満願し満願終了後も30分間冷却を続けた。次いで6
0℃で3時間加熱し、チタニアゾルを得た。このゾルは
静置・放冷すると粒子は沈降した。該ゾルを攪拌しなが
ら、全濾過面積が4.000iでその平均通過孔が約6
0Xの濾過膜を使用した以外実施例1と同一の濾過装置
を使用しゾルの洗浄を行った。ゾル中の塩素イオン濃度
が2 PPM以下となったとき洗浄操作をやめゾルを2
50m1まで濃縮した。かくして得られたゾルは飴ヱ+
A?梧−1/F八鮎才拍イψ−hF什qμ目すご一部 
Σ洗浄に要した純水は約30tで所要時間は約100分
間であった。ゾルの一部を凍結乾燥し得た微粉末のX線
回折はルチル型の結晶構造を示し、その結晶粒子径は平
均o、 o o sμであった。又このルチル型酸化チ
タン微粉末を500℃で1時間熱処理した後の結晶粒子
径は平均0.04μであり8o。
Example 2 Ion exchange water 1t VC36% hydrochloric acid 40. After adding Iz, 95 g of titanium tetrachloride was added little by little while stirring while cooling in a water bath, and cooling was continued for 30 minutes even after the addition was completed. then 6
The mixture was heated at 0° C. for 3 hours to obtain titania sol. When this sol was allowed to stand and cool, the particles settled. While stirring the sol, the total filtration area is 4.000i and the average passing pore is about 6.
The sol was washed using the same filtration device as in Example 1 except that a 0X filtration membrane was used. When the chlorine ion concentration in the sol becomes 2 PPM or less, stop the cleaning operation and remove the sol.
It was concentrated to 50ml. The sol thus obtained is candy +
A? Go-1/F Yayu Saibi I ψ-hF 1st qμ eye part
About 30 tons of pure water was required for the Σ cleaning, and the time required was about 100 minutes. X-ray diffraction of the fine powder obtained by freeze-drying a part of the sol showed a rutile crystal structure, and the average crystal particle size was o, o o sμ. Further, the average crystal particle size of this rutile type titanium oxide fine powder after heat treatment at 500° C. for 1 hour was 0.04 μm and 8°.

℃1時間の処理では0.18μであった。When treated at ℃ for 1 hour, it was 0.18μ.

Claims (1)

【特許請求の範囲】[Claims] (1)含水酸化チタンをアルカリ金属の水酸化物ととも
に加熱処理し、ついで塩酸水溶液中で熟成することによ
り、又は四塩化チタン溶液の加水分解により、ルチル型
酸化チタンゾルを得、ついて該ゾルを濾過膜を使用し洗
浄することを特徴とする高純度のルチル型酸化チタンゾ
ルを製造する方法。
(1) A rutile-type titanium oxide sol is obtained by heat-treating hydrous titanium oxide with an alkali metal hydroxide and then aging in an aqueous hydrochloric acid solution, or by hydrolyzing a titanium tetrachloride solution, and then filtering the sol. A method for producing a high-purity rutile-type titanium oxide sol, which is characterized by using a membrane and cleaning it.
JP61078170A 1986-04-07 1986-04-07 Production of rutile titanium oxide sol Pending JPS62235215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61078170A JPS62235215A (en) 1986-04-07 1986-04-07 Production of rutile titanium oxide sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61078170A JPS62235215A (en) 1986-04-07 1986-04-07 Production of rutile titanium oxide sol

Publications (1)

Publication Number Publication Date
JPS62235215A true JPS62235215A (en) 1987-10-15

Family

ID=13654464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61078170A Pending JPS62235215A (en) 1986-04-07 1986-04-07 Production of rutile titanium oxide sol

Country Status (1)

Country Link
JP (1) JPS62235215A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643020A (en) * 1986-09-22 1989-01-06 Ishihara Sangyo Kaisha Ltd Titania sol and production thereof
EP0774443A1 (en) * 1995-11-20 1997-05-21 Bayer Ag Nanodisperse titanium dioxide, process for its preparation and its use
EP0847961A1 (en) * 1996-12-16 1998-06-17 Toda Kogyo Corp. Titanium oxide particles, substrate for magnetic recording medium and magnetic recording medium using the same
WO1998035746A1 (en) * 1997-02-14 1998-08-20 Warner-Jenkinson Company, Inc. Method and apparatus for purifying water-insoluble compounds
KR100383219B1 (en) * 2000-06-29 2003-05-12 한국화학연구원 Titania sol having a high dispersibility in aqueous and organic media, and process for preparation its
KR100383220B1 (en) * 2000-06-15 2003-05-12 한국화학연구원 A process for preparing of neutral TiO2 sols having transparence in visible range
JP2008308386A (en) * 2007-06-18 2008-12-25 Sumitomo Osaka Cement Co Ltd Composite rutile fine particle, composite rutile fine particle dispersion liquid, high refractive index material, high refractive index member, and method for manufacturing composite rutile fine particle
WO2011056151A1 (en) * 2009-11-04 2011-05-12 Cinkarna Metalurško Kemična Industrija Celje, D.D. Rutile nanoparticles and synthesis method for obtaining rutile nanoparticles
WO2014045903A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide suspension
JP2014186033A (en) * 2014-04-04 2014-10-02 Sakai Chem Ind Co Ltd Cesium adsorbent containing titanium hydroxide
KR20150054782A (en) 2012-09-19 2015-05-20 주식회사 다이셀 Transition metal compound-loaded titanium oxide

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643020A (en) * 1986-09-22 1989-01-06 Ishihara Sangyo Kaisha Ltd Titania sol and production thereof
EP0774443A1 (en) * 1995-11-20 1997-05-21 Bayer Ag Nanodisperse titanium dioxide, process for its preparation and its use
EP0847961A1 (en) * 1996-12-16 1998-06-17 Toda Kogyo Corp. Titanium oxide particles, substrate for magnetic recording medium and magnetic recording medium using the same
WO1998035746A1 (en) * 1997-02-14 1998-08-20 Warner-Jenkinson Company, Inc. Method and apparatus for purifying water-insoluble compounds
GB2337214A (en) * 1997-02-14 1999-11-17 Warner Jenkinson Co Inc Method and apparatus for purifying water-insoluble compounds
GB2337214B (en) * 1997-02-14 2000-09-20 Warner Jenkinson Co Inc Method for purifying water-insoluble compounds
KR100383220B1 (en) * 2000-06-15 2003-05-12 한국화학연구원 A process for preparing of neutral TiO2 sols having transparence in visible range
KR100383219B1 (en) * 2000-06-29 2003-05-12 한국화학연구원 Titania sol having a high dispersibility in aqueous and organic media, and process for preparation its
JP2008308386A (en) * 2007-06-18 2008-12-25 Sumitomo Osaka Cement Co Ltd Composite rutile fine particle, composite rutile fine particle dispersion liquid, high refractive index material, high refractive index member, and method for manufacturing composite rutile fine particle
WO2011056151A1 (en) * 2009-11-04 2011-05-12 Cinkarna Metalurško Kemična Industrija Celje, D.D. Rutile nanoparticles and synthesis method for obtaining rutile nanoparticles
WO2014045903A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide suspension
KR20150054782A (en) 2012-09-19 2015-05-20 주식회사 다이셀 Transition metal compound-loaded titanium oxide
KR20150054781A (en) 2012-09-19 2015-05-20 주식회사 다이셀 Transition metal compound-loaded titanium oxide suspension
JPWO2014045903A1 (en) * 2012-09-19 2016-08-18 株式会社ダイセル Transition metal compound-supported titanium oxide suspension
JP2014186033A (en) * 2014-04-04 2014-10-02 Sakai Chem Ind Co Ltd Cesium adsorbent containing titanium hydroxide

Similar Documents

Publication Publication Date Title
US6306361B1 (en) Method for manufacturing photocatalytic anatase titanium dioxide powder
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
EP0444798B1 (en) Method for the preparation of titanium dioxide
US6548039B1 (en) Processing aqueous titanium solutions to titanium dioxide pigment
CN1064285A (en) When containing the titanium dioxide of micro-pigment, preparation adds the colloid tindioxide
JPS62235215A (en) Production of rutile titanium oxide sol
JP2009521392A5 (en)
JPS61187931A (en) Adsorbent of arsenic in aqueous solution
JPH01148710A (en) Crystalline cerium(iv) oxide sol and its production
US3981978A (en) Working up aqueous titanium dioxide hydrate suspensions
US4885034A (en) Method of making a composite TiO2 pigment
KR100224732B1 (en) Process for producing a micropowder type crystalline titanium oxide
KR101038949B1 (en) Process for Synthesizing Nanosize Silica Particles
CA2816795A1 (en) Method for producing small size titanium oxide particles
CN101445270A (en) Preparation of high pure gold redrock nano-titanium dioxide
US3528773A (en) Method of preparing titanium dioxide pigment
JPS632809A (en) Production of high-purity zirconia sol
KR100343395B1 (en) Method for production of titanium dioxide ultrafine powders with rutile phase from titanium sulfate
JPS6283305A (en) Production of transparent metal oxide
JPS62226815A (en) Production of zirconia base colloidal sol
JPS62252328A (en) Method for purifying inorganic compound
KR101825137B1 (en) Preparing method of titanium oxide derivative
JPS62132725A (en) Production of hydrogen ion-exchanged dealuminized mordenite
KR100396085B1 (en) A Titanium Dioxide powder and The method for preparation thereof
KR0128123B1 (en) Refining method of wasting acid