JPH01148710A - Crystalline cerium(iv) oxide sol and its production - Google Patents

Crystalline cerium(iv) oxide sol and its production

Info

Publication number
JPH01148710A
JPH01148710A JP62306575A JP30657587A JPH01148710A JP H01148710 A JPH01148710 A JP H01148710A JP 62306575 A JP62306575 A JP 62306575A JP 30657587 A JP30657587 A JP 30657587A JP H01148710 A JPH01148710 A JP H01148710A
Authority
JP
Japan
Prior art keywords
sol
gel
acid
present
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62306575A
Other languages
Japanese (ja)
Other versions
JPH062582B2 (en
Inventor
Shin Yamamoto
伸 山本
Hiroshi Nishikura
西倉 宏
Goro Suzuki
吾郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP62306575A priority Critical patent/JPH062582B2/en
Publication of JPH01148710A publication Critical patent/JPH01148710A/en
Publication of JPH062582B2 publication Critical patent/JPH062582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To produce the title sol having excellent transparency, ultraviolet- absorbing power, dispersibility and coating characteristic by hydrothermally treating the gel obtd. by reacting cerium chloride compd. with alkali metal hydroxide or ammonia. CONSTITUTION:The gel is obtd. by reacting the cerium chloride compd. (e.g., CeCl3) (A) at 10-90 deg.C in an aq. medium with the alkali metal hydroxide (e.g., NaOH) or ammonia (B) in 0.9-1.3 the equiv. ratio B/A of acid radicals originated in (B) and (A) components. Then, the gel is filtered and washed to remove impurities. Thereafter, the gel is added with 0.01-1.00mol acid to 1mol CeO2 in the gel and hydrothermally treated at >=100 deg.C to obtain sol, and the obtd. sol is dried at a temp. below the temp. that the added acid can be evaporated or changed in quality to obtain the crystalline CeO2 sol having <=300Angstrom particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は結晶質酸化第二セリウムゾル及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a crystalline ceric oxide sol and a method for producing the same.

酸化第二セリウムは、研磨材、触媒、IC基板のマスキ
ング剤、紫外線吸収剤、ガラスの消色剤、電子線吸収剤
、セラミック誘電体などに利用されている。本発明はこ
れら利用分野の内、紫外線吸収ガラス、紫外線吸収高分
子フィルム、プラスチック、合成繊維の耐液性改良等に
適用できる優れた紫外線吸収材料を供与するものである
Ceric oxide is used in abrasives, catalysts, masking agents for IC substrates, ultraviolet absorbers, decolorizing agents for glass, electron beam absorbers, ceramic dielectrics, and the like. Among these fields of application, the present invention provides an excellent ultraviolet absorbing material that can be applied to ultraviolet absorbing glass, ultraviolet absorbing polymer films, plastics, improving the liquid resistance of synthetic fibers, and the like.

(従来の技術) 近年、透光性に優れた紫外線吸収ガラスやフィルムの開
発が行われている。従来、このようなガラスを得る方法
は、紫外線吸収能を有する金属酸化物等をガラス成分と
ともに溶融し製造されていた。
(Prior Art) In recent years, ultraviolet absorbing glasses and films with excellent translucency have been developed. Conventionally, such glass has been produced by melting metal oxides and the like having ultraviolet absorbing ability together with glass components.

また、化学蒸着法(CVD法)によりガラス表面に金属
酸化物を蒸着させるコーティング方法も開発されている
A coating method has also been developed in which a metal oxide is deposited on a glass surface by chemical vapor deposition (CVD).

しかし、化学蒸着法では、原料として一般に金属の無水
塩化物を使用する結果、I1着時に腐食性の塩素ガスが
発生したり、密閉炉内で高温下に蒸着させるため、この
時の蒸着ガスのコントロールが難しく、均一な薄膜を得
ることが困難であった。
However, as chemical vapor deposition generally uses anhydrous metal chloride as a raw material, corrosive chlorine gas is generated during I1 deposition, and the deposition is performed at high temperatures in a closed furnace, so the deposition gas Control was difficult and it was difficult to obtain a uniform thin film.

更には、この際に使用する装置は大型化し、製造コスト
が高くなるなどの欠点があった。
Furthermore, the equipment used in this case is large in size and has the disadvantage of increasing manufacturing cost.

また、金属の物理的蒸着法(PVD法)によると、ガラ
ス面に可視光を吸収する金属の薄膜が形成されるため、
ガラスの透光性は著しく低下し、囚って透光性の悪い暗
いガラスとなることで、この方法によるものは使用用途
が制限されていた。
In addition, according to the physical vapor deposition method (PVD method) of metal, a thin metal film that absorbs visible light is formed on the glass surface.
The light transmittance of the glass is significantly reduced, resulting in a dark glass with poor light transmittance, which limits the uses of products made by this method.

一方、最近では自動車等のガラスに紫外線吸収能を持た
せる要望が高く、従来以上に大型ガラスの表面処理技術
が必要であり、蒸着法では益々困難、且つコスl−にと
なる傾向にある。
On the other hand, recently there has been a strong demand for glass for automobiles to have ultraviolet absorbing ability, and surface treatment techniques for large-sized glass are required more than ever, and vapor deposition methods tend to be increasingly difficult and cost-effective.

従って、CVD法やPVD法に代わって、安価で大型品
に対しても均一な薄膜が形成できる方法の開発が要望さ
れている。
Therefore, in place of the CVD method or the PVD method, there is a demand for the development of an inexpensive method that can form uniform thin films even on large products.

また、食品包装用のフィルム等についても紫外線による
プラスチックの光酸化劣化の防止、または食品の変質防
止のため、有機紫外線吸収剤に代わる無害の代替品の要
望が高まりつつあるのが現状である。
Furthermore, with regard to films for food packaging, there is currently an increasing demand for harmless alternatives to organic ultraviolet absorbers in order to prevent photooxidative deterioration of plastics caused by ultraviolet rays or deterioration of foods.

(発明が解決しようとする問題点) 本発明者らはこれらの実情に鑑み、透光性、紫外線吸収
性に優れ、更には使用時の分散性、コーテイング性等の
緒特性に於て優れる紫外線吸収材料を得るべく、結晶質
ゾルについて鋭意研究を重ねた結果、結晶質酸化第二七
リウムからなる本発明の新規なゾルが紫外線吸収材料と
して優れることを見出し、係る知見に基づき本発明を完
成したものである。
(Problems to be Solved by the Invention) In view of these circumstances, the present inventors have developed an ultraviolet ray that has excellent translucency and ultraviolet absorption, and also has excellent properties such as dispersibility and coating properties during use. As a result of extensive research into crystalline sol in order to obtain an absorbing material, we discovered that the novel sol of the present invention, which is made of crystalline heptartium oxide, is excellent as an ultraviolet absorbing material, and based on this knowledge, we completed the present invention. This is what I did.

(問題点を解決するための手段) 即ち、本発明は結晶質酸化第二セリウムゾル及びその製
造法に関し、水筒−の発明は、粒子径300大以下の酸
化第二セリウムゾルであり、また本第二の発明は、セリ
ウム塩化合物とアルカリ金属の水酸化物またはアンモニ
アとを反応させゲルを生成させた後、これを水熱処理す
ることを特徴とする結晶質酸化第二セリウムゾルの製造
法である。
(Means for Solving the Problems) That is, the present invention relates to a crystalline ceric oxide sol and a method for producing the same, and the water bottle invention relates to a ceric oxide sol with a particle size of 300 or less; The invention is a method for producing a crystalline ceric oxide sol, which comprises reacting a cerium salt compound with an alkali metal hydroxide or ammonia to form a gel, and then hydrothermally treating the gel.

(作 用) 先ず、水筒−の発明である結晶質酸化第二セリウムゾル
について以下詳記する。
(Function) First, the crystalline ceric oxide sol, which is the invention of the water bottle, will be described in detail below.

従来、結晶質の酸化第二セリウムゾルについては全く知
られていない。
Until now, no crystalline ceric oxide sol has been known at all.

水溶性のセリウム塩化合物をアルカリ剤で中和する際に
、溶液がゾル状となる場合がある。しかし、これはごく
一部の中和析出物が、−時的にコロイドレベルの大きさ
になったためにゾル状となるものであり、このものは非
晶質か或いは水酸化物の粒子からなるゾル状物である。
When neutralizing a water-soluble cerium salt compound with an alkaline agent, the solution may become a sol. However, this is because a small portion of the neutralized precipitate becomes sol-like because it temporarily reaches the colloidal level, and this is amorphous or consists of hydroxide particles. It is a sol-like substance.

従って、中和反応が進むとこの析出物は大きく成長して
沈澱となり、溶液はゾル状からゲル状となる。
Therefore, as the neutralization reaction progresses, this precipitate grows to a large size and becomes a precipitate, and the solution changes from a sol to a gel.

また、セリウム塩化合物の酸根をイオン交換樹脂で除去
するか、或いはセリウム塩化合物を中和して得たゲルを
当量以下の酸に溶解させることにより(例えば、塩酸の
場合組成として、Ce(O)l)、C14−ゎで示され
るようなものが得られる)、塩基性塩水溶液またはゾル
状物を得ることができる。
In addition, by removing the acid radicals of the cerium salt compound with an ion exchange resin, or by dissolving the gel obtained by neutralizing the cerium salt compound in an equivalent amount or less of acid (for example, in the case of hydrochloric acid, the composition is Ce(O ) l), C14-ゎ can be obtained), a basic salt aqueous solution or a sol can be obtained.

しかし、このような方法により得られるゾル状物は、全
て非晶質であり、且つ不安定なものである。
However, all sol-like materials obtained by such methods are amorphous and unstable.

これに対して、本発明の酸化第二セリウムゾルは結晶質
であり、またこれが300A以下という極めて微細なコ
ロイド粒子であり、且つ水溶液状態で安定であって、数
ケ月間放置しても沈降することはない。
On the other hand, the ceric oxide sol of the present invention is crystalline, is extremely fine colloidal particles of 300A or less, and is stable in an aqueous solution state, and does not settle even if left for several months. There isn't.

このようなゾルは従来全く知られていなかったものであ
り、酸化第二セリウム系複合材料の適用分野に於て、新
たな用途を生み出すものである。
Such a sol has not been previously known and will create new uses in the field of application of ceric oxide-based composite materials.

本発明の結晶質酸化第二セリウムゾルの特徴を更に挙げ
れば次の通りである。
Further characteristics of the crystalline ceric oxide sol of the present invention are as follows.

第一に、本発明のゾルは、溶液状態で酸化第二セリウム
として40%以上の高濃度のゾルで得ることができる。
First, the sol of the present invention can be obtained as a sol having a high concentration of 40% or more as ceric oxide in a solution state.

非晶質のゾルは、一般に高粘性であるが、本発明のゾル
は低粘度で高濃度のゾルであることがら、紫外線吸収材
、電子線吸収材、IC基板のマスキング剤等への使用時
には、−回のコーティング作業で所望の膜厚のものを調
製でき、優れた性能のコーテイング膜を得ることができ
る。
Amorphous sols generally have high viscosity, but since the sol of the present invention has a low viscosity and high concentration, it is suitable for use in ultraviolet absorbers, electron beam absorbers, masking agents for IC boards, etc. A film having a desired thickness can be prepared in , - times of coating operations, and a coating film with excellent performance can be obtained.

また、非晶質ゾルのような低濃度高粘性のもののコーテ
ィングでは、乾燥時にクラックが発生し易い。そのため
、希釈して多数回コーティングをしなければならないが
、乾燥程度では2回目以降にもどり現象が起こる。
Furthermore, in coatings of low concentration and high viscosity such as amorphous sol, cracks are likely to occur during drying. Therefore, the coating must be diluted and coated multiple times, but if it dries out, it will return to its original state after the second coating.

従って、コーティングの都度、焼成して酸化第二セリウ
ム質とした後、再度コーティングを行わなければならず
、これは工業的にがなり煩雑な作業となる。
Therefore, each time the coating is applied, it is necessary to bake it to form a ceric oxide substance and then apply the coating again, which is an industrially expensive and complicated operation.

第二に、本発明のゾルをコーテイング後乾燥したものは
、CeO2と安定化剤のみとなり、水分を殆ど含有して
いないため、これを焼成しても重量減少が少なく、因っ
て堅牢なコーティング被膜が得られる。
Second, the sol of the present invention that is coated and dried becomes only CeO2 and a stabilizer, and contains almost no water, so even when it is fired, there is little weight loss, resulting in a robust coating. A coating is obtained.

この場合に、本発明のゾルに代えてセリウム塩水溶液を
用いると、乾燥してもまだ多くの酸根や結晶水を残すこ
とから、基板上に結晶析出する等、皮膜はポーラスとな
り、堅牢なコーテイング膜が得られない。
In this case, if a cerium salt aqueous solution is used instead of the sol of the present invention, many acid roots and crystal water will still remain even after drying, resulting in crystal precipitation on the substrate, resulting in a porous film and a strong coating. A film cannot be obtained.

第三に、本発明のゾルは、研磨剤としても優れた特質を
有するものである。
Thirdly, the sol of the present invention has excellent properties as an abrasive.

酸化第二セリウムは、一般に酸化ジルコニウムや弁柄に
比べて優れた研磨力を有することから、適用分野の中で
研磨剤として大きな需要をしめている。
Ceric oxide generally has superior abrasive power compared to zirconium oxide and Bengara, and is therefore in great demand as an abrasive in the field of application.

近年の技術の進歩により、光学ガラス、単結晶や透光性
セラミックの表面精度への要求が厳密となり、研磨剤と
しては、より細かい砥粒のものが要望されている。本発
明のゾルは、粒子径が小さく、均一であると共に、結晶
質であることから研磨力が高く、またその結晶粒子径も
所望のものが75I!lJでき、これら研磨剤として要
求される性能を満たすものである。
With recent advances in technology, requirements for surface precision of optical glasses, single crystals, and translucent ceramics have become stricter, and abrasives with finer abrasive grains are required. The sol of the present invention has a small and uniform particle size, and is crystalline, so it has high polishing power, and the desired crystal particle size is 75I! 1J, and satisfies the performance required for these abrasives.

尚、本発明に於いてコロイド粒子径の測定は、電子顕微
鏡観察により行ったが、本発明のゾルは、実質上全ての
コロイド粒子が300λ以下の粒子径であった。
In the present invention, the colloidal particle size was measured by electron microscopic observation, and in the sol of the present invention, substantially all colloidal particles had a particle size of 300λ or less.

次に、本第二の発明である、結晶質酸化第二セリウムゾ
ルの製造方法について詳述する。
Next, a method for producing a crystalline ceric oxide sol, which is the second invention, will be described in detail.

本第二の発明は、セリウム塩化合物とアルカリ金属の水
酸化物またはアンモニアとを反応させゲルを生成させた
後、これを水熱処理することを特徴とする結晶質酸化第
二セリウムゾルの製造法に関する。
The second invention relates to a method for producing a crystalline ceric oxide sol, which comprises reacting a cerium salt compound with an alkali metal hydroxide or ammonia to form a gel, and then hydrothermally treating the gel. .

本発明に用いるセリウム塩化合物としては、硫酸第二セ
リウム、硝酸第二七リウムアンモニウム、硫酸第二セリ
ウムアンモニウム、酢酸第一セリウム、塩化第一セリウ
ム、硝酸第一七リウムアンモニウム、硝酸第一セリウム
、疏酸第−セリウム等を例示できる。
The cerium salt compounds used in the present invention include ceric sulfate, 77ium ammonium nitrate, ceric ammonium sulfate, cerous acetate, cerous chloride, 77ium ammonium nitrate, cerous nitrate, Examples include cerium sulfate.

また、アルカリ金属の水酸化物としては、水酸化すトリ
ウム、水酸化カリウム、水酸化リチウム等を例示するこ
とができる。
Furthermore, examples of the alkali metal hydroxide include thorium hydroxide, potassium hydroxide, lithium hydroxide, and the like.

本発明では、先ず前記のセリウム塩化合物とアルカリ金
属の水酸化物またはアンモニアとを反応させゲルを生成
させる。
In the present invention, first, the cerium salt compound and an alkali metal hydroxide or ammonia are reacted to form a gel.

このゲルの製造条件に関して云えば、両者の反応時の温
度は大略10〜90°Cで行う。
Regarding the conditions for producing this gel, the temperature during the reaction between the two is approximately 10 to 90°C.

また、これらの使用割合に関しては、アルカリ金属の水
酸化物またはアンモニア(A)とセリウム塩化合物に由
来する酸根(B)との当量比がA/Bとして大略0,9
〜1.3の範囲となるように各々を使用する。
In addition, regarding the usage ratio of these, the equivalent ratio of the alkali metal hydroxide or ammonia (A) and the acid radical (B) derived from the cerium salt compound is approximately 0.9 as A/B.
Each is used so that the range is 1.3 to 1.3.

尚、セリウム・アンモニウム複塩使用の場合には、アン
モニウム塩に由来する酸根は、上記(B)から除いた量
で算出する。
In addition, in the case of using a cerium-ammonium double salt, the acid radical derived from the ammonium salt is calculated by the amount removed from the above (B).

添加順序に関して特段限定はなく、セリウム塩化合物と
アルカリ金属の水酸化物またはアンモニアのいずれか一
方を先に、あるいは両者を同時に添加反応させてもよい
There is no particular limitation on the order of addition, and either the cerium salt compound and the alkali metal hydroxide or ammonia may be added first, or both may be added and reacted simultaneously.

尚、第一セリウム塩を用いる場合には、ゲル生成後、第
一セリウムは第二セリウムに徐々に酸化されるが、酸化
時間が長くまた酸化率が低いことより、工業的には適当
な酸化剤を併用することが好ましい。
When using a cerous salt, cerous is gradually oxidized to ceric after gel formation, but due to the long oxidation time and low oxidation rate, it is difficult to oxidize industrially. It is preferable to use agents together.

このようにして得られたゲルは、次いでろ過、洗浄を行
い、ゲル中の不純物を除去する。
The gel thus obtained is then filtered and washed to remove impurities in the gel.

この残存不純物は、酸化第二セリウムゾルの製造上、ま
た用途上、少なくする必要があり、例えば上述のろ過洗
浄作業を全く行わない場合には、得られるゾルは不安定
なものとなり、本発明のゾルを得ることができない。
This residual impurity needs to be reduced in terms of production and usage of the ceric oxide sol. For example, if the above-mentioned filtration and cleaning operation is not performed at all, the resulting sol will be unstable, and the present invention Can't get sol.

ろ過、洗浄手段に関しては特に限定されず、通常用いら
れているフィルタープレスや遠心ろ過のような注水ろ過
、リパルプ−遠心分離法等の任意の手段を用いることが
できる。
The filtration and washing means are not particularly limited, and any commonly used means such as a filter press, water filtration such as centrifugal filtration, repulp-centrifugation method, etc. can be used.

ろ過、洗浄後のゲルに次いで酸を添加し、水熱処理に供
する。添加する酸の種類としては、塩酸、硝酸、酢酸、
蟻酸、乳酸、グリコール酸等を例示できる。また酸の添
加量はゲル中のCe081モルに対して0,01〜1.
00モルの範囲とする。この場合に、酸の添加量がこの
範囲を逸脱すると、本発明の分散性に優れたゾルを得る
ことができない。
After filtering and washing, an acid is added to the gel, and the gel is subjected to hydrothermal treatment. The types of acids to be added include hydrochloric acid, nitric acid, acetic acid,
Examples include formic acid, lactic acid, and glycolic acid. The amount of acid added is 0.01 to 1.0 to 1.0 to 1 mole of Ce08 in the gel.
00 moles. In this case, if the amount of acid added exceeds this range, the sol with excellent dispersibility of the present invention cannot be obtained.

尚、酸の添加は水熱処F!l!後でもよく、酸の添加と
水熱処理の順序は特段限定されるものではない。
In addition, add acid at a hydrothermal treatment F! l! The order of acid addition and hydrothermal treatment is not particularly limited.

水熱処理条件に関しては、温度は100°C以上で行う
が、一般に処理温度が高く、また処理時間が長くなる程
、結晶形の発達が良好となり、粒径の大きなコロイド粒
子が得られる。
Regarding the hydrothermal treatment conditions, the temperature is 100° C. or higher, and generally, the higher the treatment temperature and the longer the treatment time, the better the development of the crystal form and the larger the particle size can be obtained.

また、100°Cを下回る温度での処理は、長時間行っ
てもコロイド粒子が結晶化せず、たとえ一部が結晶化し
てもその結晶化度は著しく低く、非晶質の性質が残るも
のしか得ることができないことより、本発明の目的を達
成することができない。
In addition, if the treatment is carried out at a temperature below 100°C, the colloidal particles will not crystallize even if it is carried out for a long time, and even if some of them crystallize, the degree of crystallinity will be extremely low and the particles will remain amorphous. Therefore, the object of the present invention cannot be achieved.

尚、本発明の方法によると、本発明のゾルの各用途に応
じて水熱処理条件を選択し、所望する粒子径のゾルを得
ることができ、その制御が水熱処理条件の選択によって
可能である点が本発明の大きな特徴である。
According to the method of the present invention, a sol with a desired particle size can be obtained by selecting hydrothermal treatment conditions according to each use of the sol of the present invention, and this can be controlled by selecting the hydrothermal treatment conditions. This point is a major feature of the present invention.

次いで、水熱処理して得られたゾルを乾燥工程に供する
Next, the sol obtained by hydrothermal treatment is subjected to a drying process.

乾燥方法は、加熱乾燥、真空乾燥、凍結乾燥等の任意の
手段を用いることができる。
As the drying method, any method such as heat drying, vacuum drying, freeze drying, etc. can be used.

乾燥条件は、加熱乾燥による場合には、添加した酸が蒸
発または変質する温度以下で行う必要がある。
When drying by heating, the drying conditions need to be below the temperature at which the added acid evaporates or changes in quality.

乾燥によってゾル溶液中の水分のみを除去し、粉末化す
ることで、これを再溶解した時のゾル液は、極めて安定
なものとなる。
By removing only the moisture in the sol solution by drying and pulverizing it, the sol solution when redissolved becomes extremely stable.

尚、前工程に於いて、酸の添加を水熱処理前に行い、且
つ酸の添加量をゲル中のCe021モルに対して0.2
モル以上で行う場合には、この乾燥操作を行わなくとも
本発明のゾルを得ることができる。
In addition, in the previous step, acid was added before the hydrothermal treatment, and the amount of acid added was 0.2 per mole of Ce02 in the gel.
When the amount is mol or more, the sol of the present invention can be obtained without performing this drying operation.

即ち、この乾燥工程は、本発明ゾルの製造条件の選択に
よっては特段必要なものではない。
That is, this drying step is not particularly necessary depending on the selection of manufacturing conditions for the sol of the present invention.

また、乾燥によって得られるゾル粉末は、所望するゾル
液濃度の調整が可能となり、更に水以外の溶媒に分散し
てオルガノゾルとすることも出来、このことは本発明の
結晶質酸化第二セリウムゾルの利用用途を更に拡大する
ものである。
In addition, the sol powder obtained by drying can be adjusted to a desired sol concentration, and can also be dispersed in a solvent other than water to form an organosol. This will further expand its usage.

(実施例) 以下に本発明の実施例を揚げ、更に説明を行うが、本発
明はこれらに限定されるものではない。
(Example) Examples of the present invention will be given below to further explain the present invention, but the present invention is not limited thereto.

また%は特にことわらない限り、全て重量%を示す。All percentages are by weight unless otherwise specified.

実施例1 硫酸第二セリウム水溶液(CeL8.0%) 1000
gにアンモニア水(NH34,0%)1028[を攪拌
下で添加し、ゲルを生成させた。
Example 1 Ceric sulfate aqueous solution (CeL8.0%) 1000
1028 g of aqueous ammonia (NH34, 0%) was added under stirring to form a gel.

これをろ液中に804′−イオンが認められなくなるま
で充分に水洗し、CeO□21.0%のゲルを得た。
This was thoroughly washed with water until no 804'-ions were observed in the filtrate, to obtain a gel containing 21.0% CeO□.

このゲル200gにHN O9/ Ce O2モル比0
.1となるように硝酸(HN0361%)2.5g及び
水322gを加え、これをオートクレーブに入れ、15
0°Cで15時間の水熱処理を行った。
200g of this gel has a HN O9/Ce O2 molar ratio of 0.
.. Add 2.5 g of nitric acid (HN0361%) and 322 g of water so that the amount of
Hydrothermal treatment was performed at 0°C for 15 hours.

水熱処理後、このスラリーを100°Cで恒星となるま
で乾燥させ、本発明ゾルの粉末を得た。
After the hydrothermal treatment, this slurry was dried at 100°C until it became a star, to obtain a powder of the sol of the present invention.

このゾル粉末の分析を行ったところ、Ce0p92.5
%、NO33,3%8040%、であった。
When this sol powder was analyzed, Ce0p92.5
%, NO33,3%8040%.

また、このゾル粉末を水に分散させCeO21,0%の
ゾルを調製して静置したところ、1ケ月後の分散率は9
9.5%であった・ 更に、透過型電子顕微鏡観察によりコロイド粒子径を測
定した結果、平均粒子径は90スであった。
In addition, when this sol powder was dispersed in water to prepare a CeO2 1.0% sol and left to stand, the dispersion rate after one month was 9.
The colloid particle size was measured by transmission electron microscopy, and the average particle size was 90%.

また、本発明ゾルのX線回折測定を行い、この回折図を
第1図に示した。
Furthermore, the sol of the present invention was subjected to X-ray diffraction measurement, and the diffraction pattern is shown in FIG.

第1図で明らかなように、回折ピークがブロードである
のは、 5cherrerの式から理解できるように、
本発明の結晶質酸化第二セリウムゾルの粒子径が90に
と、かなり小さいことに由来するものである。
As is clear from Figure 1, the reason why the diffraction peak is broad is that, as can be understood from the 5cherrer equation,
This is because the particle size of the crystalline ceric oxide sol of the present invention is quite small at 90 mm.

尚、X線回折の測定に於いて、X線回折装置は■リガク
製RAD・−Ia型を使用し、Cu管球を用いて30K
V、20mAの条件下で行った。
In the measurement of X-ray diffraction, the X-ray diffraction device used was Rigaku RAD・-Ia type, and a Cu tube was used at 30K.
The test was carried out under conditions of V and 20 mA.

実施例2 実施例1に於いて硫酸第二セリウムとアンモニア水との
反応により得たゲル100gにCH3CO0)1/Ce
O2モル比0.25となるように氷酢酸1.8gと水3
20gを加え、これをオートクレーブに入れ、200 
’Cで24時間の水熱処理を行い、本発明のゾルを得た
Example 2 CH3CO0)1/Ce was added to 100 g of the gel obtained by the reaction of ceric sulfate and aqueous ammonia in Example 1.
Add 1.8 g of glacial acetic acid and 3 ml of water to give an O2 molar ratio of 0.25.
Add 20g, put this in an autoclave, and add 200g.
A hydrothermal treatment was carried out at 'C for 24 hours to obtain the sol of the present invention.

このゾル液の分析を行ったところ、CeO□5.0%、
5O4O%、C1(3COOH0,4%であった。
When this sol solution was analyzed, it was found that CeO□5.0%,
5O4O%, C1 (3COOH 0.4%).

また、このゾルを80°Cで恒量となるまで乾燥さ・V
、乾燥物を実施例1と同様にX線回折の測定に供し、そ
の回折図を第1図に示した。
In addition, this sol was dried at 80°C until it reached a constant weight.
The dried product was subjected to X-ray diffraction measurement in the same manner as in Example 1, and the diffraction pattern is shown in FIG.

更に、透過型電子顕微鏡観察によりコロイド粒子径を測
定した結果、平均粒子径は170′Aであった。
Further, the colloid particle size was measured by transmission electron microscopy, and the average particle size was 170'A.

尚、X線回折に於てd(入)値は、3.12.1691
.1.63であったが、これは回折値を記載したJCP
DSカード(Joint Comm1ttee on 
Powder Diffraction 5tanda
rcl) 1986午版によると、酸化第二セリウム結
晶(Cerianite)と同定される。
In addition, in X-ray diffraction, the d (input) value is 3.12.1691
.. It was 1.63, but this is the JCP that describes the diffraction value.
DS card (Joint Comm1ttee on
Powder Diffraction 5tanda
rcl) According to the 1986 edition, it is identified as ceric oxide crystal (Cerianite).

実施例3 硝酸第二セリウムアンモニウム水溶液(CeO22,0
%)5000gと水酸化すトリウム水溶液(Na1.5
%)3380gを予め水1000gを加えておいた反応
槽中に攪拌下、別々の定量ポンプで約1時間を要して同
時に添加した。この時の反応液温度は21°Cであった
Example 3 Ceric ammonium nitrate aqueous solution (CeO22,0
%) 5000g and thorium hydroxide aqueous solution (Na1.5
%) were simultaneously added to a reaction tank to which 1000 g of water had been previously added, using separate metering pumps, while stirring, over a period of about 1 hour. The temperature of the reaction solution at this time was 21°C.

反応後、ゲルをろ別水洗し、Ce021?、33%、N
o30.3%、Na、 NH3は、20 p p m以
下のつxッ(−ケーキを得た。
After the reaction, the gel was filtered, washed with water, and Ce021? , 33%, N
A cake containing 0.3% O3, Na, and NH3 of 20 ppm or less was obtained.

このウェットケーキ200gに水145gを加えて均一
なスラリーとし、これをオートクレーブに入れ、180
℃で15時間の水熱処理を行った。
Add 145 g of water to 200 g of this wet cake to make a uniform slurry, put it in an autoclave, and heat it to 180 g.
Hydrothermal treatment was performed at ℃ for 15 hours.

水熱処理後、硝酸(HN0361%)5.2gを添加し
、均一に混合した。
After the hydrothermal treatment, 5.2 g of nitric acid (HN0361%) was added and mixed uniformly.

このスラリーを100 ’Cで恒量となるまで乾燥させ
本発明のゾルを得た。
This slurry was dried at 100'C until a constant weight was obtained to obtain the sol of the present invention.

このゾル粉末を水に分散し、Ce0235%としたもの
は、高濃度であるにもかかわらず流動性に優れるもので
あった。
This sol powder was dispersed in water to give 35% Ce02, which had excellent fluidity despite its high concentration.

次いで、これをCe026%に調製したゾルを石英ガラ
ス上にコーティング処理した。
Next, a sol prepared to have Ce026% was coated on quartz glass.

尚、コーティング装置は、ミカサ■製スピンナー1)1
−02型を使用した。
The coating equipment is Mikasa spinner 1) 1
-02 type was used.

ゾルをガラス上にコーティングした後、これを乾燥し、
次に500°Cで1時間の焼成を行った。
After coating the sol on glass, it is dried,
Next, baking was performed at 500°C for 1 hour.

焼成後のコーティングガラスの紫外から可視領域の吸収
をみるため、分光光度計(■島津製作所製UV−260
型)を用い、波長190〜900nmの範囲の光透過率
を測定した。
In order to observe the absorption in the ultraviolet to visible range of the coated glass after firing, we used a spectrophotometer (UV-260 manufactured by Shimadzu Corporation).
The light transmittance in the wavelength range of 190 to 900 nm was measured using a mold).

結果を第2図に示した。The results are shown in Figure 2.

また比較のために、下記の方法で酸化チタンゾルを製造
し、同様に紫外領域から可視領域の光透過率を測定し、
結果を第2図に示した。(比較例(酸化チタンゾルの製
法) 四塩化チタン水溶液(TiO83,0%) 600gに
アンモニア水(NH,2,0%)812gを約1時間を
要して攪拌下、添加反応を行いゲルを得た。
For comparison, a titanium oxide sol was produced using the method described below, and the light transmittance from the ultraviolet to the visible region was similarly measured.
The results are shown in Figure 2. (Comparative Example (Production method of titanium oxide sol) 812 g of ammonia water (NH, 2.0%) was added to 600 g of titanium tetrachloride aqueous solution (TiO 83.0%) under stirring for about 1 hour, and a gel was obtained. Ta.

生成したゲルをろ別した後、ゲル中に塩素イオンが認め
られなくなるまで注水濾過洗浄を行った。
After filtering the generated gel, water injection filtration and washing were performed until no chloride ions were observed in the gel.

このゲル100gにアンモニア水(NH,2,0%)1
6gと水24gを加え、これをオートクレーブに移し、
120°Cで10時間の水熱処理を行い、比較例のTi
026%の酸化チタンゾルを得た。
To 100g of this gel, 1 ammonia water (NH, 2.0%)
Add 6g and 24g of water, transfer this to an autoclave,
Hydrothermal treatment was performed at 120°C for 10 hours, and Ti
0.026% titanium oxide sol was obtained.

第2図から明らかなように、本発明例は比較例の酸化チ
タンよりも優れた紫外線吸収能を有することがわかる。
As is clear from FIG. 2, it can be seen that the example of the present invention has a superior ultraviolet absorption ability than the titanium oxide of the comparative example.

実施例4 硫酸第二セリウムアンモニウム溶液CCeO32,5%
)tooogをアンモニア水(NH34,2%)260
gに常温で攪拌下に添加し、ゲルを生成させた。
Example 4 Ceric ammonium sulfate solution CCeO32.5%
) Tooog ammonia water (NH34, 2%) 260
g under stirring at room temperature to form a gel.

生成したゲルをろ別した後、ゲル中に304イオンが認
められなくなるまで洗浄を行った。
After filtering the generated gel, washing was performed until 304 ions were no longer observed in the gel.

このゲルを分析した結果、CeO223,5%でNH3
イオンは検出されなかった。
As a result of analyzing this gel, it was found that at 5% CeO2, NH3
No ions were detected.

このゲル100gにCH3CO0H/CeO。モル比0
.4となるように、酢酸3.3gと水130gを加え、
これをオートクレーブに入れ、130°Cで15時間の
水熱処理を行い、次いでこのスラリーを恒量となるまで
凍結乾燥し、本発明のゾルを得た。
CH3COOH/CeO to 100g of this gel. molar ratio 0
.. 4, add 3.3 g of acetic acid and 130 g of water,
This was placed in an autoclave and subjected to hydrothermal treatment at 130°C for 15 hours, and then this slurry was freeze-dried to a constant weight to obtain the sol of the present invention.

このゾル粉末に水を加えてI:’eo215%のゾルと
し、これとポリビニルアルコール(日本合成化学工業■
製、NL−05)を 混合 し 、 Ce0I2/ホ0
リヒゝニルアルコ一ル重量比が0.05となる溶液を調
製した。
Water was added to this sol powder to make a 15% I:'eo sol, and this and polyvinyl alcohol (Nippon Gosei Chemical Co., Ltd.
Ce0I2/Ho0
A solution having a richenyl alcohol weight ratio of 0.05 was prepared.

この溶液を100 X 100mmの型枠に流し込み、
40°Cで約70時間乾燥させて、100X100X1
00.2+nm17のフィルムを得た。
Pour this solution into a 100 x 100 mm mold,
Dry at 40°C for about 70 hours, 100X100X1
A film of 00.2+nm17 was obtained.

このフィルムの可視領域から紫外領域の光透!AI!を
測定し、結果を第3図に示した。
This film transmits light from the visible region to the ultraviolet region! AI! was measured, and the results are shown in Figure 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1及び実施例2で得た本発明結晶質酸
化第二セリウムゾルのX線回折図である。 第2図は、実施例3で得た本発明結晶質酸化第二セリウ
ムゾル及び酸化チタンゾルをガラスコーティング処理し
たものの紫外から可視領域の光透過率を示す図である。 第3図は、実施例4で得た本発明結晶質酸化第二セリウ
ムゾルを含有するポリビニルアルコールフィルムの紫外
から可視領域の光透過率を示す図である。 特許出願人  多木化学株式会社 ニー づを吟) 一^^駄=;□0 稽窄2+云
FIG. 1 is an X-ray diffraction diagram of the crystalline ceric oxide sols of the present invention obtained in Examples 1 and 2. FIG. 2 is a diagram showing the light transmittance in the ultraviolet to visible region of the crystalline ceric oxide sol and titanium oxide sol of the present invention obtained in Example 3, which were subjected to glass coating treatment. FIG. 3 is a diagram showing the light transmittance in the ultraviolet to visible region of a polyvinyl alcohol film containing the crystalline ceric oxide sol of the present invention obtained in Example 4. Patent applicant: Taki Chemical Co., Ltd. Nizuwo Gin)

Claims (2)

【特許請求の範囲】[Claims] (1)粒子径300Å以下の結晶質酸化第二セリウムゾ
ル。
(1) Crystalline ceric oxide sol with a particle size of 300 Å or less.
(2)セリウム塩化合物とアルカリ金属の水酸化物また
はアンモニアとを反応させゲルを生成させた後、これを
水熱処理することを特徴とする結晶質酸化第二セリウム
ゾルの製造法。
(2) A method for producing a crystalline ceric oxide sol, which comprises reacting a cerium salt compound with an alkali metal hydroxide or ammonia to form a gel, and then hydrothermally treating the gel.
JP62306575A 1987-12-02 1987-12-02 Crystalline ceric oxide sol and method for producing the same Expired - Lifetime JPH062582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62306575A JPH062582B2 (en) 1987-12-02 1987-12-02 Crystalline ceric oxide sol and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306575A JPH062582B2 (en) 1987-12-02 1987-12-02 Crystalline ceric oxide sol and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01148710A true JPH01148710A (en) 1989-06-12
JPH062582B2 JPH062582B2 (en) 1994-01-12

Family

ID=17958710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306575A Expired - Lifetime JPH062582B2 (en) 1987-12-02 1987-12-02 Crystalline ceric oxide sol and method for producing the same

Country Status (1)

Country Link
JP (1) JPH062582B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279789A (en) * 1988-12-23 1994-01-18 Rhone-Poulenc Chimie Ceric oxide particulates having improved morphology
US5376304A (en) * 1991-03-28 1994-12-27 Taki Chemical Co., Ltd. Ceric oxide sol
US5466428A (en) * 1987-06-26 1995-11-14 Rhone-Poulenc Chimie Morphologically improved ceric oxide particulates
JP2000328044A (en) * 1999-05-17 2000-11-28 Hitachi Chem Co Ltd Cerium compound polisher and method for polishing substrate
WO2001036331A1 (en) * 1999-11-19 2001-05-25 Rhodia Terres Rares Colloidal dispersion of a cerium compound and containing cerium iii, preparation method and use
WO2004104134A1 (en) * 2003-05-22 2004-12-02 Hanwha Chemical Corporation Concentrate of fine ceria particles for chemical mechanical polishing and preparing method thereof
JP2006082994A (en) * 2004-09-14 2006-03-30 Daiichi Kigensokagaku Kogyo Co Ltd Ceria sol, method for production thereof, and ceric oxide
JP2006182604A (en) * 2004-12-28 2006-07-13 Catalysts & Chem Ind Co Ltd Method for producing metal oxide sol and metal oxide sol
JP2006335635A (en) * 2005-06-01 2006-12-14 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing ceria sol
JP2007063108A (en) * 2005-08-26 2007-03-15 Daiichi Kigensokagaku Kogyo Co Ltd Neodymium oxide sol and its production method
JP2008508175A (en) * 2004-07-29 2008-03-21 エルジー・ケム・リミテッド Cerium oxide powder and method for producing the same
KR100873940B1 (en) * 2008-07-16 2008-12-12 (주) 뉴웰 Pure cerium oxide powder and preparing method the same and cmp slurry comprising the same
KR100873945B1 (en) * 2008-07-16 2008-12-12 (주) 뉴웰 Fine cerium oxide powder and preparing method the same and cmp slurry comprising the same
JP2009010402A (en) * 2001-02-20 2009-01-15 Hitachi Chem Co Ltd Polishing compound and polishing method for substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596042B1 (en) * 2001-11-16 2003-07-22 Ferro Corporation Method of forming particles for use in chemical-mechanical polishing slurries and the particles formed by the process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169126A (en) * 1980-05-09 1981-12-25 Atomic Energy Authority Uk Improvement on compound
US4637992A (en) * 1984-12-17 1987-01-20 Shell Oil Company Intercalated clay compositions
JPS6236022A (en) * 1985-06-20 1987-02-17 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Novel cerium (iv) compound and manufacture
JPS62275021A (en) * 1986-03-26 1987-11-30 ロ−ヌ−プ−ラン・シミ Novel cerium iv compound and manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169126A (en) * 1980-05-09 1981-12-25 Atomic Energy Authority Uk Improvement on compound
US4356106A (en) * 1980-05-09 1982-10-26 United Kingdom Atomic Energy Authority Cerium compounds
US4637992A (en) * 1984-12-17 1987-01-20 Shell Oil Company Intercalated clay compositions
JPS6236022A (en) * 1985-06-20 1987-02-17 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Novel cerium (iv) compound and manufacture
JPS62275021A (en) * 1986-03-26 1987-11-30 ロ−ヌ−プ−ラン・シミ Novel cerium iv compound and manufacture

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466428A (en) * 1987-06-26 1995-11-14 Rhone-Poulenc Chimie Morphologically improved ceric oxide particulates
US5279789A (en) * 1988-12-23 1994-01-18 Rhone-Poulenc Chimie Ceric oxide particulates having improved morphology
US5891412A (en) * 1988-12-23 1999-04-06 Rhone-Poulenc Chimie Ceric oxide particulates having improved morphology
US5376304A (en) * 1991-03-28 1994-12-27 Taki Chemical Co., Ltd. Ceric oxide sol
JP2000328044A (en) * 1999-05-17 2000-11-28 Hitachi Chem Co Ltd Cerium compound polisher and method for polishing substrate
WO2001036331A1 (en) * 1999-11-19 2001-05-25 Rhodia Terres Rares Colloidal dispersion of a cerium compound and containing cerium iii, preparation method and use
FR2801298A1 (en) * 1999-11-19 2001-05-25 Rhodia Terres Rares COLLOIDAL DISPERSION OF A CERIUM COMPOUND AND CONTAINING CERIUM III, METHOD OF PREPARATION AND USE
JP2009010402A (en) * 2001-02-20 2009-01-15 Hitachi Chem Co Ltd Polishing compound and polishing method for substrate
WO2004104134A1 (en) * 2003-05-22 2004-12-02 Hanwha Chemical Corporation Concentrate of fine ceria particles for chemical mechanical polishing and preparing method thereof
JP2008508175A (en) * 2004-07-29 2008-03-21 エルジー・ケム・リミテッド Cerium oxide powder and method for producing the same
JP2006082994A (en) * 2004-09-14 2006-03-30 Daiichi Kigensokagaku Kogyo Co Ltd Ceria sol, method for production thereof, and ceric oxide
JP4561975B2 (en) * 2004-09-14 2010-10-13 第一稀元素化学工業株式会社 Ceria sol and method for producing the same
JP2006182604A (en) * 2004-12-28 2006-07-13 Catalysts & Chem Ind Co Ltd Method for producing metal oxide sol and metal oxide sol
JP2006335635A (en) * 2005-06-01 2006-12-14 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing ceria sol
JP2007063108A (en) * 2005-08-26 2007-03-15 Daiichi Kigensokagaku Kogyo Co Ltd Neodymium oxide sol and its production method
KR100873940B1 (en) * 2008-07-16 2008-12-12 (주) 뉴웰 Pure cerium oxide powder and preparing method the same and cmp slurry comprising the same
KR100873945B1 (en) * 2008-07-16 2008-12-12 (주) 뉴웰 Fine cerium oxide powder and preparing method the same and cmp slurry comprising the same

Also Published As

Publication number Publication date
JPH062582B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JPH01148710A (en) Crystalline cerium(iv) oxide sol and its production
JP3946982B2 (en) Method for producing zirconia-ceria based composite oxide
JP3980272B2 (en) Perovskite-type titanium-containing composite oxide particles, sol and production method thereof, and thin film
JPH0262499B2 (en)
JPS62207718A (en) Sol of crystalline titanium oxide and its preparation
JPWO2003004416A1 (en) Barium titanate and method for producing the same
JPH0258213B2 (en)
KR101750473B1 (en) Method for preparing high crystalline vanadium dioxide without calcination
NL8001098A (en) FIBER TITANIC ACID METAL SALTS AND METHOD FOR THE PREPARATION THEREOF.
JPH05139744A (en) Easily sinterable barium titanate fine particle powder and production therefor
JP4800914B2 (en) Method for producing metal oxide film
JPH0445453B2 (en)
JP3537885B2 (en) Method for producing anatase-type titanium oxide
JP5574527B2 (en) Method for producing cerium oxide fine particles
JP3490012B2 (en) Method for producing crystalline titanium oxide particle dispersion liquid
JPS63210027A (en) Crystalline titanium oxide-tin oxide sol and production thereof
JPS62207717A (en) Sol of crystalline tin oxide and its preparation
JP2875486B2 (en) Tantalum oxide sol and method for producing the same
JPH07242422A (en) Fine particle-shaped acicular titanium oxide and production thereof
JPH0527571B2 (en)
JPH0617232B2 (en) Method for producing hydrated spherical titanium oxide
JP4247812B2 (en) Plate-like titanic acid composite oxide particles and method for producing the same
EP0200176B1 (en) Method for producing fine particles of lead zirconate
JP2001089111A (en) Method for producing high-purity amorphous compound powder
JPH01294528A (en) Production of oxide of perovskite type of abo3 type