JPH0617232B2 - Method for producing hydrated spherical titanium oxide - Google Patents
Method for producing hydrated spherical titanium oxideInfo
- Publication number
- JPH0617232B2 JPH0617232B2 JP17871586A JP17871586A JPH0617232B2 JP H0617232 B2 JPH0617232 B2 JP H0617232B2 JP 17871586 A JP17871586 A JP 17871586A JP 17871586 A JP17871586 A JP 17871586A JP H0617232 B2 JPH0617232 B2 JP H0617232B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- spherical titanium
- hydrogen peroxide
- hydrated
- hydrated spherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば顔料、ファインセラミックス等の原料
等として用いられる結晶性の球形酸化チタンの製造原料
等として用いられる水和型球形酸化チタンの製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydrated spherical titanium oxide used as a raw material for producing crystalline spherical titanium oxide used as a raw material for pigments, fine ceramics, etc. It relates to a manufacturing method.
(従来の技術) 従来、この種の水和型球形酸化チタンの製造方法として
は、Ti(OC3H7)4・Ti(OC2H5)4等のチタンアルコキシドの
加水分解を利用したアルコキシド法が知られており、か
かるアルコキシド法によって得られるサブミクロンの単
分散に近い水和型球形酸化チタンの加熱処理によればサ
ブミクロンの単分散に近い高結晶性の球形酸化チタンが
得られる。(Prior Art) Conventionally, as a method for producing this type of hydrated spherical titanium oxide, an alkoxide utilizing hydrolysis of titanium alkoxide such as Ti (OC 3 H 7 ) 4 · Ti (OC 2 H 5 ) 4 has been used. A method is known, and by heat-treating hydrated spherical titanium oxide having a submicron monodispersion obtained by such an alkoxide method, highly crystalline spherical titanium oxide having a submicron monodispersion can be obtained.
(発明が解決しようとする問題点) 前記従来のアルコキド法の場合、希薄な濃度でのチタン
アルコキシドの精密に制御された加水分解によらなけれ
ば水和型球形酸化チタンが得られず製造が複雑で且つ製
造効率も悪く、しかもチタンアルコキシドの液体粘度が
高いためイソプロピルアルコール、エチルアルコール等
の有機溶媒の使用が必要で、しかもチタンアルコキシド
が高価なために製造コストも高いという不都合を有す
る。(Problems to be Solved by the Invention) In the case of the conventional alkoxide method, hydrated spherical titanium oxide cannot be obtained without complicated controlled hydrolysis of titanium alkoxide in a dilute concentration, and the production is complicated. In addition, the production efficiency is low, and since the liquid viscosity of titanium alkoxide is high, it is necessary to use an organic solvent such as isopropyl alcohol and ethyl alcohol. Further, since titanium alkoxide is expensive, the production cost is high.
(問題点を解決するための手段) 本発明は、前記不都合を解消した水和型球形酸化チタン
の製造方法を提供することを目的とするもので、その発
明は、pHを4以上に調整された水溶液中において、過酸
化水素を可溶性チタン化合物に作用させてチタニルイオ
ン過酸化水素錯体を形成し、該錯体を含む溶液を室温放
置或いは加温処理することから成る。(Means for Solving Problems) An object of the present invention is to provide a method for producing a hydrated spherical titanium oxide in which the above-mentioned inconvenience is eliminated, and the present invention has a pH adjusted to 4 or more. In an aqueous solution, hydrogen peroxide is allowed to act on the soluble titanium compound to form a titanyl ion hydrogen peroxide complex, and the solution containing the complex is left at room temperature or heated.
水溶液のpHを4以上に調整するのは、pHが4未満である
と過酸化水素を可溶性チタン化合物に作用させてもチタ
ニルイオン過酸化水素錯体は常温で分解してしまい水酸
化チタンゲルを析出してしまうからである。尚、pHはア
ルカリ側に移動するほど安定化し、高濃度のチタニルイ
オン過酸化水素錯体が得られる。水溶液のpHを調整する
には例えばアンモニア水等のアルカリを用いる。The pH of the aqueous solution should be adjusted to 4 or higher because if the pH is less than 4, the titanyl ion hydrogen peroxide complex will decompose at room temperature even if hydrogen peroxide acts on the soluble titanium compound, and titanium hydroxide gel will precipitate. This is because it will end up. The pH is stabilized as it moves to the alkali side, and a high-concentration titanyl ion hydrogen peroxide complex can be obtained. To adjust the pH of the aqueous solution, an alkali such as aqueous ammonia is used.
過酸化水素は、一般には、市販の過酸化水素水を用い
る。As hydrogen peroxide, commercially available hydrogen peroxide solution is generally used.
可溶性チタン化合物としては、例えば三塩化チタン、四
塩化チタン、硫酸チタニル、硝酸チタニル、水酸化チタ
ン等のチタン化合物を用いる。特に高純度の水和型球形
酸化チタンを得たい場合には、予めチタン化合物を加水
分解し、含水性水酸化チタンを生成させ、過水洗等に
より陰イオンを十分に取り除いておいてから、これに過
酸化水素水を作用させるようにすればよい。As the soluble titanium compound, for example, titanium compounds such as titanium trichloride, titanium tetrachloride, titanyl sulfate, titanyl nitrate and titanium hydroxide are used. In particular, when it is desired to obtain highly pure hydrated spherical titanium oxide, the titanium compound is hydrolyzed in advance to form hydrous titanium hydroxide, and the anions are sufficiently removed by washing with water, etc. The hydrogen peroxide solution may be allowed to act on the.
前記過酸化水素を可溶性チタン化合物に作用させて得た
チタニルイオン過酸化水素錯体は、常温で長時間放置し
ても水和型球形酸化チタンを生成するが、40〜80℃
程度の加温処理を加えれば、水和型球形酸化チタンは短
時間で生成する。また、必要に応じ、超微粒子の種或い
は何らかの機械的衝撃を与えて水和型球形酸化チタンの
析出反応を開始させる。一度開始した析出反応は、途中
で停止することなく全ての過酸化水素錯体が分解するま
で続く。生成する水和型球形酸化チタンはその溶解度が
著しく小さいので、生成率は100%である。尚、析出
した水和型酸化チタンが球形になるのは、均一核生成反
応機構であるからと考えられる。得られた水和型球形酸
化チタンは、必要に応じ水洗して、分離後乾燥する。The titanyl ion hydrogen peroxide complex obtained by acting the hydrogen peroxide on the soluble titanium compound produces hydrated spherical titanium oxide even when left standing at room temperature for a long time,
Hydrated spherical titanium oxide is produced in a short time if a moderate heating treatment is applied. If necessary, the seed of ultrafine particles or some mechanical impact is applied to start the precipitation reaction of hydrated spherical titanium oxide. The precipitation reaction once started continues without stopping halfway until all hydrogen peroxide complexes are decomposed. Since the solubility of the hydrated spherical titanium oxide produced is extremely small, the production rate is 100%. Incidentally, it is considered that the precipitated hydrated titanium oxide becomes spherical because of the homogeneous nucleation reaction mechanism. The obtained hydrated spherical titanium oxide is washed with water as necessary, separated and dried.
尚、得られた水和型球形酸化チタンに、400〜800
℃程度の加熱処理を施せば、サブミクロンの単分散に近
いアナタース型の高結晶性球形酸化チタンが得られる。The obtained hydrated spherical titanium oxide had 400 to 800
By subjecting to a heat treatment at about ℃, anatase-type highly crystalline spherical titanium oxide close to submicron monodisperse can be obtained.
(実施例) 次に本発明の水和型球形酸化チタンの製造方法の具体的
な実施例を比較例と共に説明する。(Examples) Next, specific examples of the method for producing a hydrated spherical titanium oxide of the present invention will be described together with comparative examples.
実施例 約0.4Mの四塩化チタン水溶液(大阪チタニウム製造
(株)製)15mlに純水185mlを加え、約0.3Mの四
塩化チタン水溶液200mlを調整した。本水溶液に試薬
特級の過酸化水素水(和光化学(株)製、H2O2濃度30
wt%)17mlを加え、黒褐色の液体を得た。さらに本溶
液中に試薬特級のアンモニア水(和光化学(株)製、ア
ンモニア濃度28−30wt%)18mlを加えて黄色の透
明な水溶液を得た。この時のpHは10であった。本水溶
液を水浴中で50℃にて10分間保持して水和型球形酸
化チタン微粒子を析出させた。析出粒子を透過型電子顕
微鏡で観察したところ、従来のアルコキシド法によって
得られたものと同様にサブミクロンの単分散に近い球形
の微粒子が得られたことが確認できた。次で、析出微粒
子を純水にて十分洗浄後、遠心分離器にて母液から分離
して、室温で乾燥した。乾燥後、析出微粒子の熱重量分
析と示差熱分析を行なった。得られた加熱減量曲線並び
に示差熱曲線を夫々第1図中に曲線A並びにA′として
示した。尚、得られた水和型球形酸化チタンの乾燥粉末
を400℃で2時間仮焼して結晶性の球形酸化チタンを
得た。得られた結晶性球形酸化チタンのX線回折を行
い、そのX線図形を第2図に示した。Example 185 ml of pure water was added to 15 ml of an aqueous solution of titanium tetrachloride of about 0.4 M (manufactured by Osaka Titanium Manufacturing Co., Ltd.) to prepare 200 ml of an aqueous solution of titanium tetrachloride of about 0.3 M. Aqueous hydrogen peroxide solution (Wako Chemical Co., Ltd., H 2 O 2 concentration 30
wt%) 17 ml was added to obtain a blackish brown liquid. Furthermore, 18 ml of a reagent grade ammonia water (manufactured by Wako Chemical Co., Ltd., ammonia concentration 28-30 wt%) was added to this solution to obtain a yellow transparent aqueous solution. The pH at this time was 10. This aqueous solution was kept in a water bath at 50 ° C. for 10 minutes to precipitate hydrated spherical titanium oxide fine particles. When the deposited particles were observed by a transmission electron microscope, it was confirmed that spherical particles having submicron monodisperse, similar to those obtained by the conventional alkoxide method, were obtained. Next, the precipitated fine particles were thoroughly washed with pure water, separated from the mother liquor by a centrifugal separator, and dried at room temperature. After drying, the deposited fine particles were subjected to thermogravimetric analysis and differential thermal analysis. The heating loss curve and the differential heat curve obtained are shown as curves A and A'in FIG. 1, respectively. The obtained dry powder of hydrated spherical titanium oxide was calcined at 400 ° C. for 2 hours to obtain crystalline spherical titanium oxide. The obtained crystalline spherical titanium oxide was subjected to X-ray diffraction, and its X-ray pattern is shown in FIG.
比較例 上記実施例と同様にして、約0.3Mの四塩化チタン水溶
液200mlを調整すると共に前記と同様の試薬特級のア
ンモニア水18mlに純水182mlを加えて希薄なアンモ
ニア水200mlを調整した。得られた調整アンモニア水
を十分に攪拌しながら前記の四塩化チタン水溶液に徐々
に滴下して水酸化チタンを析出させた。析出粒子を透過
型電子顕微鏡で観察したところ、球状粒子ではなく、ゲ
ル状の析出物であった。次で、ゲル状の析出物を純水に
て十分に洗浄後、遠心分離器にて母液から分離して、室
温で乾燥させた。乾燥後、前記実施例と同様にして熱分
析を行ない、得られた加熱減量曲線並びに示差熱曲線を
夫々第3図中に曲線B並びにB′として示した。尚、次
で、得られた乾燥粉末を500℃で2時間仮焼した。得
られた仮焼物のX線回折を行ない、そのX線回折図形を
第4図に示した。Comparative Example In the same manner as in the above Example, 200 ml of an aqueous solution of titanium tetrachloride of about 0.3 M was prepared, and 182 ml of pure water was added to 18 ml of ammonia water of the same reagent grade as described above to prepare 200 ml of diluted ammonia water. The prepared adjusted ammonia water was gradually added dropwise to the above titanium tetrachloride aqueous solution with sufficient stirring to precipitate titanium hydroxide. When the deposited particles were observed with a transmission electron microscope, they were not spherical particles but gel-like deposits. Next, the gel precipitate was thoroughly washed with pure water, separated from the mother liquor by a centrifuge, and dried at room temperature. After drying, thermal analysis was carried out in the same manner as in the above example, and the resulting heating loss curve and differential thermal curve are shown as curves B and B'in FIG. 3, respectively. In addition, next, the obtained dry powder was calcined at 500 ° C. for 2 hours. The obtained calcined product was subjected to X-ray diffraction, and its X-ray diffraction pattern is shown in FIG.
尚、従来法のチタンアルコキシドの加水分解によって得
られた水和型球形酸化チタンの乾燥物の熱分析によって
得られた加熱減量曲線並びに示差熱曲線を夫々第5図中
に曲線C並びにC′として示した。また、かかる乾燥物
を430℃で2時間仮焼して得られた結晶性の球形酸化
チタンのX線回折図形を第6図に示した。The heating loss curve and the differential thermal curve obtained by thermal analysis of the dried product of hydrated spherical titanium oxide obtained by hydrolysis of titanium alkoxide by the conventional method are shown as curves C and C'in FIG. 5, respectively. Indicated. Further, FIG. 6 shows the X-ray diffraction pattern of crystalline spherical titanium oxide obtained by calcining the dried product at 430 ° C. for 2 hours.
第1図乃至第6図示の、前記実施例、比較例並びに従来
のアルコキシド法の各加熱減量曲線、示差熱曲線並びに
X線回折図から、実施例によって得られた水和型球形酸
化チタンの方が、比較例に比して低温の熱処理で、従来
のアルコキシド法による水和型球形酸化チタンを仮焼し
て得た結晶性球形酸化チタンと同等の高結晶性のアナタ
ース型酸化チタンが得られることが確認された。The hydrated spherical titanium oxides obtained in the examples from the above-mentioned examples, comparative examples and respective heating loss curves, differential thermal curves and X-ray diffraction diagrams of the alkoxide method shown in FIGS. However, by heat treatment at a lower temperature than that of Comparative Example, highly crystalline anatase titanium oxide equivalent to crystalline spherical titanium oxide obtained by calcination of hydrated spherical titanium oxide by the conventional alkoxide method can be obtained. It was confirmed.
(発明の効果) このように、本発明の水和型球形酸化チタンの製造方法
によれば、pHを4以上に調整された水溶液中において、
過酸化水素を可溶性チタン化合物に作用させてチタニル
イオン過酸化水素錯体を形成し、該錯体を含む溶液を室
温放置或いは加温処理するようにしたので、従来のアル
コキド法に比して極めて簡単且つ製造効率よくしかも低
コストでサブミクロンの単分散に近い水和型球形酸化チ
タンを製造でき、また得られた水和型球形酸化チタンか
らは従来のアルコキシド法と同様のサブミクロンの単分
散に近い高結晶性の球形酸化チタンが得られる等の効果
を有する。(Effect of the Invention) As described above, according to the method for producing a hydrated spherical titanium oxide of the present invention, in an aqueous solution whose pH is adjusted to 4 or more,
Hydrogen peroxide is allowed to act on the soluble titanium compound to form a titanyl ion hydrogen peroxide complex, and the solution containing the complex is allowed to stand at room temperature or heated, so that it is much simpler than the conventional alkoxide method. It is possible to produce hydrated spherical titanium oxide close to submicron monodispersion with high production efficiency and at low cost. Also, the obtained hydrated spherical titanium oxide is close to submicron monodisperse like the conventional alkoxide method. It has effects such as obtaining highly crystalline spherical titanium oxide.
【図面の簡単な説明】 第1図、第3図並びに第5図は、夫々、本発明の実施
例、比較例並びに従来例によって得られた析出物の熱分
析特性線図、第2図、第4図並びに第6図は、夫々、各
析出物の仮焼物のX線回折図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, FIG. 3, and FIG. 5 are thermal analysis characteristic diagrams of deposits obtained by Examples of the present invention, Comparative Examples, and Conventional Examples, respectively, and FIG. FIG. 4 and FIG. 6 are X-ray diffraction patterns of the calcined product of each precipitate, respectively.
Claims (1)
て、過酸化水素を可溶性チタン化合物に作用させてチタ
ニルイオン過酸化水素錯体を形成し、該錯体を含む溶液
を室温放置或いは加温処理することから成る水和型球形
酸化チタンの製造方法。1. A hydrogen peroxide is allowed to act on a soluble titanium compound to form a titanyl ion hydrogen peroxide complex in an aqueous solution whose pH is adjusted to 4 or more, and the solution containing the complex is left at room temperature or heated. A process for producing a hydrated spherical titanium oxide comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17871586A JPH0617232B2 (en) | 1986-07-31 | 1986-07-31 | Method for producing hydrated spherical titanium oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17871586A JPH0617232B2 (en) | 1986-07-31 | 1986-07-31 | Method for producing hydrated spherical titanium oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6335419A JPS6335419A (en) | 1988-02-16 |
JPH0617232B2 true JPH0617232B2 (en) | 1994-03-09 |
Family
ID=16053299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17871586A Expired - Lifetime JPH0617232B2 (en) | 1986-07-31 | 1986-07-31 | Method for producing hydrated spherical titanium oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0617232B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2350841B (en) * | 1999-06-08 | 2001-12-19 | Kansai Paint Co Ltd | Inorganic film-forming coating composition, preparation method therof and inorganic film-forming method |
AU2001267910A1 (en) * | 2000-07-03 | 2002-01-14 | Kansai Paint Co. Ltd. | Gas-barrier film |
TW575523B (en) | 2001-05-22 | 2004-02-11 | Kansai Paint Co Ltd | Inorganic film-forming coating composition and inorganic film-forming method by use of the same |
JP4829771B2 (en) * | 2006-12-22 | 2011-12-07 | 石原産業株式会社 | Spherical peroxotitanium hydrate and method for producing spherical titanium oxide |
JP4841421B2 (en) * | 2006-12-25 | 2011-12-21 | 石原産業株式会社 | Spherical peroxotitanium hydrate and method for producing spherical titanium oxide |
-
1986
- 1986-07-31 JP JP17871586A patent/JPH0617232B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6335419A (en) | 1988-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ichinose et al. | Synthesis of peroxo-modified anatase sol from peroxo titanic acid solution | |
Nam et al. | Preparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation | |
KR100869666B1 (en) | Method for synthesizing nano-sized titanium dioxide particles | |
JP2783417B2 (en) | Manufacturing method of rutile type titanium oxide sol | |
KR20090064576A (en) | Low temperature process for producing nano-sized titanium dioxide particles | |
CN109761282B (en) | Flaky cesium tungsten bronze nano powder and preparation method and application thereof | |
KR100627621B1 (en) | Rutile Titania Nano Sol, and Process for Preparation Its | |
JPH0617232B2 (en) | Method for producing hydrated spherical titanium oxide | |
JPH04164814A (en) | Production of ultra-fine zinc oxide powder having excellent dispersibility | |
KR101764016B1 (en) | Method for preparation of pure anatase type TiO2 powders | |
JP2009029645A (en) | Flake-like hydrous titanium oxide, production method of the same and flake-like titanium oxide | |
JP3490012B2 (en) | Method for producing crystalline titanium oxide particle dispersion liquid | |
JP2004131366A (en) | Method of manufacturing super fine particle of titanium dioxide practically composed of brookite phase using titanium tetrachloride and hydrochloric acid aqueous solution, nitric acid aqueous solution or mixed solution thereof | |
JPH04280815A (en) | Fine particulate alkali titanate and its production | |
US3528773A (en) | Method of preparing titanium dioxide pigment | |
KR100523451B1 (en) | Production Method of Nano-sized Crystalline Titania Powders | |
JPS6217005A (en) | Preparation of mullite powder having high purity | |
JP2547007B2 (en) | Method for producing perovskite type oxide fine powder | |
JPS62207717A (en) | Sol of crystalline tin oxide and its preparation | |
KR100335754B1 (en) | Method for making photochromic TiO2 powder by the hydrothermal method | |
JP3224298B2 (en) | Method for producing acicular alkali titanate | |
JP3254693B2 (en) | Preparation of hydrated zirconia sol and zirconia powder | |
KR100519040B1 (en) | A process for preparing an ultrafine particle of brookite-type titanium oxide, using titanium tetrachloride and aqueous nitric acid | |
Potdar et al. | Synthesis of ultra-fine TiO 2 powders by controlled hydrolysis of titanium tetrabutoxide | |
JPH072598A (en) | Production of acicular titanium oxide |