JP2007063108A - Neodymium oxide sol and its production method - Google Patents

Neodymium oxide sol and its production method Download PDF

Info

Publication number
JP2007063108A
JP2007063108A JP2005278690A JP2005278690A JP2007063108A JP 2007063108 A JP2007063108 A JP 2007063108A JP 2005278690 A JP2005278690 A JP 2005278690A JP 2005278690 A JP2005278690 A JP 2005278690A JP 2007063108 A JP2007063108 A JP 2007063108A
Authority
JP
Japan
Prior art keywords
neodymium
oxide sol
neodymium oxide
hydroxide
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005278690A
Other languages
Japanese (ja)
Other versions
JP4836532B2 (en
Inventor
Akitaka Iwakura
章貴 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP2005278690A priority Critical patent/JP4836532B2/en
Publication of JP2007063108A publication Critical patent/JP2007063108A/en
Application granted granted Critical
Publication of JP4836532B2 publication Critical patent/JP4836532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a neodymium oxide sol which has an average particle diameter of 5-50 nm, preferably 10-25 nm, and is stable with time by an inexpensive and simple process, and to provide its production method. <P>SOLUTION: This production method comprises neutralizing a neodymium salt-containing solution with an alkali, to convert it to neodymium hydroxide, dispersing the resultant neodymium hydroxide in water, adding an oxycarboxylic acid thereto and heating/aging the dispersion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸化ネオジムゾル及びその製造方法に関する。  The present invention relates to a neodymium oxide sol and a method for producing the same.

従来、酸化ネオジムは、特異的な分光カーブを示し、580nmに大きな光吸収を示すという、特徴的な光学特性や電気特性などを利用し、レーザ素子、強誘電体材料、永久磁石などに利用されている。最近では、ディスプレイパネルの発光スペクトル分離技術への応用についても検討されている。更に、自動車排ガス触媒としても、酸化ネオジムを含む複合酸化物(例えば、ジルコニア/セリア複合酸化物)が利用されている。
また、酸化ネオジムゾルは、成形加工用バインダー、含浸処理液、金属酸化物膜のコーティング塗布液、金属酸化物粉末・繊維等の表面処理、薄膜用フィラー等に利用できる。
Conventionally, neodymium oxide has a specific spectral curve and shows a large optical absorption at 580 nm, which is used for laser elements, ferroelectric materials, permanent magnets, etc. ing. Recently, application to display panel emission spectrum separation technology has also been studied. Furthermore, composite oxides containing neodymium oxide (for example, zirconia / ceria composite oxide) are also used as automobile exhaust gas catalysts.
Further, the neodymium oxide sol can be used as a molding processing binder, an impregnation treatment liquid, a metal oxide film coating application liquid, a surface treatment of metal oxide powder / fiber, a thin film filler, and the like.

特許文献1には、ランタン、プラセオジム、ネオジムのうち少なくとも1種以上とアルミニウムの複合酸化物から成る耐熱性担体の製造に際し、ランタンアルコキシド、プラセオジムアルコキシド、ネオジムアルコキシドのうち少なくとも1種以上とアルミニウムアルコキシドを混合した溶液を加水分解し、水酸化物の複合ゾルを生成させる工程を含む耐熱性担体の製造方法が記載されている。
しかしながら、特許文献1に記載の方法を用いる場合、金属アルコキシドの加水分解を制御する為、有機溶媒中で加水分解を行う必要があり、かつ希土類のアルコキシドは高価であるという問題がある。
In Patent Document 1, when producing a heat-resistant carrier composed of a composite oxide of at least one of lanthanum, praseodymium, and neodymium and aluminum, at least one of lanthanum alkoxide, praseodymium alkoxide, and neodymium alkoxide and aluminum alkoxide are included. A method for producing a heat-resistant carrier is described which includes the step of hydrolyzing the mixed solution to produce a composite sol of hydroxide.
However, when the method described in Patent Document 1 is used, it is necessary to perform hydrolysis in an organic solvent in order to control the hydrolysis of the metal alkoxide, and the rare earth alkoxide is expensive.

特許文献2には、金属塩の水溶液あるいは金属塩混合物の溶液を−20℃から50℃で直接電気分解によって加水分解をすることを特徴とする単一成分あるいは多成分金属酸化物ゾルの製造方法が記載されている。
しかしながら、電気分解の電極素材が酸化ルテニウムあるいは、酸化イリジウムがコーティングされたチタニウム金属の格子電極が好ましいと記載されており、これらはいずれも高価である。さらに、酸化ネオジムゾルの合成についての記載はされていない。
Patent Document 2 discloses a method for producing a single-component or multi-component metal oxide sol, in which an aqueous solution of a metal salt or a solution of a metal salt mixture is hydrolyzed by direct electrolysis at −20 ° C. to 50 ° C. Is described.
However, it is described that the electrode material for the electrolysis is preferably a ruthenium oxide or a titanium metal grid electrode coated with iridium oxide, both of which are expensive. Furthermore, there is no description about the synthesis of neodymium oxide sol.

また、特許文献3には、『セリウムを除くランタニドの少なくとも1種の化合物、又は一方がセリウムであってもよいランタニドの少なくとも2種の化合物の水性コロイド分散体であって、該分散体が2.5以上のpK(錯化剤とランタニドカチオンにより形成される錯体の解離定数の共対数値)の錯化剤を含んでいることを特徴とする分散体。』及び『少なくとも一種のランタニドの塩と、場合により追加元素の塩と、錯化剤との水性混合物を形成し、形成された水性混合物に塩基を添加し、そして混合物を分散体が得られるまで加熱することを含む分散体の製造方法』が記載されている。
しかしながら、ランタニド塩に錯化剤と塩基を添加し加熱し分散体を得る方法では、安定化されたコロイド粒子表面及びコロイド分子内部に取り込まれた陰イオン(NO 、Cl等)を除去することは難しい。また、加熱が少なくとも60℃、好ましくは少なくとも100℃で行われると記載されており、100℃以上での加熱が必要であり、更に加圧下でゾルが製造されている。
Patent Document 3 states that “an aqueous colloidal dispersion of at least one compound of lanthanide excluding cerium, or at least two compounds of lanthanide, one of which may be cerium, wherein the dispersion is 2 Dispersion characterized by containing a complexing agent having a pK of 5 or more (co-reaction value of dissociation constant of complex formed by complexing agent and lanthanide cation). And “to form an aqueous mixture of at least one lanthanide salt, and optionally additional element salts, and a complexing agent, adding a base to the formed aqueous mixture, and mixing the mixture until a dispersion is obtained. A process for producing a dispersion comprising heating "is described.
However, the method of adding a complexing agent and a base to a lanthanide salt and heating it to obtain a dispersion removes anions (NO 3 , Cl −, etc.) incorporated on the surface of the stabilized colloid particles and inside the colloid molecules. Difficult to do. Further, it is described that the heating is performed at least at 60 ° C., preferably at least 100 ° C., heating at 100 ° C. or higher is necessary, and the sol is produced under pressure.

一方、特許文献4には、分散安定剤としてヒドロキシル基を持つ水溶性有機酸及びヒドロキシル基を少なくとも2個持つ水溶性有機化合物の中から選ばれた少なくとも1種の化合物を含有し、pH10〜14であることを特徴とするジルコニアゾルが記載されている。
しかしながら、酸化ネオジムについては、何ら記載されていない。
On the other hand, Patent Document 4 contains at least one compound selected from a water-soluble organic acid having a hydroxyl group and a water-soluble organic compound having at least two hydroxyl groups as a dispersion stabilizer, and has a pH of 10-14. A zirconia sol characterized in that is described.
However, nothing is described about neodymium oxide.

特開昭63−175642号公報  JP-A 63-175642 特許第3242169号公報  Japanese Patent No. 3242169 特表2003−529516号公報  Japanese translation of PCT publication No. 2003-529516 特許第2900358号公報  Japanese Patent No. 2300388

本発明は上記欠点を解決したもので、本発明の目的は、安価で簡便な方法により、平均粒子径が5〜50nmであり、好ましくは、10〜25nmで経時安定性をもつ酸化ネオジムゾル及びその製造方法を提供することにある。  The present invention has solved the above-mentioned drawbacks, and the object of the present invention is to provide a neodymium oxide sol having an average particle diameter of 5 to 50 nm, preferably 10 to 25 nm and stable over time by an inexpensive and simple method, and its It is to provide a manufacturing method.

本発明者等は、上記目的を達成するため鋭意研究した結果、水酸化ネオジムを解膠し酸化ネオジムゾルを製造するに際し、水酸化ネオジム分散溶液にオキシカルボン酸を添加し、特定の条件下で保持することにより、経時安定性を持つ酸化ネオジムゾルが得られることを見出した。
この知見に基づき、本発明は、
(1)平均粒子径(D50)が5〜50nmであることを特徴とする酸化ネオジムゾル。
(2)ネオジム塩含有溶液をアルカリで中和し水酸化ネオジムとし、得られた水酸化ネオジムを水に分散させオキシカルボン酸を添加した後、加熱・熟成することを特徴とする酸化ネオジムゾルの製造方法。
(3)オキシカルボン酸添加量が、オキシカルボン酸/Nd(モル比)=0.1〜3.0であることを特徴とする前記(2)記載の酸化ネオジムゾルの製造方法。
(4)温度90℃以上で1時間以上加熱・熟成することを特徴とする前記(2)又は前記(3)記載の酸化ネオジムゾルの製造方法。
(5)酸化ネオジムゾルの平均粒子径(D50)が5〜50nmであることを特徴とする前記(2)〜前記(4)記載の酸化ネオジムゾルの製造方法。
を提供するものである。
As a result of diligent research to achieve the above-mentioned object, the present inventors have added oxycarboxylic acid to the neodymium hydroxide dispersion solution and maintained under specific conditions when peptizing neodymium hydroxide to produce a neodymium oxide sol. It was found that a neodymium oxide sol having stability over time can be obtained.
Based on this finding, the present invention
(1) A neodymium oxide sol having an average particle diameter (D50) of 5 to 50 nm.
(2) Production of neodymium oxide sol characterized by neutralizing a neodymium salt-containing solution with alkali to form neodymium hydroxide, dispersing the obtained neodymium hydroxide in water, adding oxycarboxylic acid, and then heating and aging. Method.
(3) The method for producing a neodymium oxide sol as described in (2) above, wherein the addition amount of oxycarboxylic acid is oxycarboxylic acid / Nd 2 O 3 (molar ratio) = 0.1 to 3.0.
(4) The method for producing a neodymium oxide sol as described in (2) or (3) above, wherein heating and aging are carried out at a temperature of 90 ° C. or more for 1 hour or more.
(5) The method for producing a neodymium oxide sol as described in (2) to (4) above, wherein the neodymium oxide sol has an average particle size (D50) of 5 to 50 nm.
Is to provide.

本発明により、安価で簡便な方法で、平均粒子径が5〜50nmであり、好ましくは、10〜25nmで経時安定性をもつ50nm以下の酸化ネオジムゾルが得られる為に、各種の用途において好適に使用することができる。特に、コーティングフィルム中のフィラーとして用いられる場合に、成膜後も透明なフィルムを得られるという利点がある。  According to the present invention, a neodymium oxide sol having an average particle diameter of 5 to 50 nm, preferably 10 to 25 nm and having stability over time can be obtained by an inexpensive and simple method. Can be used. In particular, when used as a filler in a coating film, there is an advantage that a transparent film can be obtained even after film formation.

以下に本発明の酸化ネオジム及びその製造方法について詳細を説明する。
なお、本発明において、平均粒子径(D50)とは粒子径分布の累積頻度が50%となる粒子径をいう。
Details of neodymium oxide and a method for producing the same according to the present invention will be described below.
In the present invention, the average particle size (D 50 ) refers to a particle size at which the cumulative frequency of particle size distribution is 50%.

酸化ネオジムゾル
本発明で製造される酸化ネオジムゾルは平均粒子径が5〜50nmであり、好ましくは、10〜25nm、更に好ましくは15〜20nmであり、単分散であることを特徴とする。
平均粒子径が5nm未満では、酸化ネオジムゾルの濃縮および精製が困難であり、50nmを超えると、コロイド粒子の成長により、酸化ネオジムゾル透明度の低下および成膜後の透明性に欠けるので、好ましくない。
図1に本発明で製造された酸化ネオジムゾルの粒子径分布を示す。これより、該酸化ネオジムゾルは10〜30nmの範囲に粒子径分布を持ち、平均粒子径が約17nmで、粒子径分布の累積頻度が10%となる粒子径が10nmであり、90%となる粒子径が28nmであることがわかる。
Neodymium oxide sol The neodymium oxide sol produced in the present invention has an average particle diameter of 5 to 50 nm, preferably 10 to 25 nm, more preferably 15 to 20 nm, and is monodisperse.
If the average particle size is less than 5 nm, it is difficult to concentrate and purify the neodymium oxide sol, and if it exceeds 50 nm, the colloidal particle growth causes a decrease in the transparency of the neodymium oxide sol and lacks transparency after film formation.
FIG. 1 shows the particle size distribution of the neodymium oxide sol produced by the present invention. Thus, the neodymium oxide sol has a particle size distribution in the range of 10 to 30 nm, an average particle size of about 17 nm, a particle size distribution of 10%, a particle size of 10 nm, and a particle size of 90%. It can be seen that the diameter is 28 nm.

酸化ネオジムゾルの製造方法
先ず、本発明において用いるネオジム塩としては、水溶性のものであれば特に限定されず、硝酸塩、硫酸塩、酢酸塩、塩化物等が例示されるが、後工程での不純物の混入が少ない、硝酸塩が好ましい。
ネオジム含有溶液中のNd濃度としては、1〜10重量%、好ましくは3〜8重量%、特に好ましくは4〜6重量%である。1重量%未満では生産効率が悪く、10重量%を超えると中和した場合に粘度が高く、攪拌し難くなり、水酸化物の生成が不均一であり、かつ、濾過性が悪いため、水酸化ネオジム中の不純物除去が困難となる。
中和剤としては、特に限定されず、アンモニア、水酸化ナトリウム、水酸化カリウム等が例示されるが、水酸化ネオジム中に残存する不純物を考慮に入れると、アンモニアが好ましい。
中和剤の濃度も特に限定されないが、通常、10〜30重量%のものが用いられる。
ネオジム含有溶液をアルカリで中和する際のpHとしては、7.0〜10.5が好ましい。pHが7.0未満では、溶液中のネオジム塩が全て水酸化物にならず、10.5を超えると経済的ではない。
Method for producing neodymium oxide sol First, the neodymium salt used in the present invention is not particularly limited as long as it is water-soluble, and examples thereof include nitrates, sulfates, acetates, chlorides, etc. Nitrate is preferred because of low contamination.
The Nd 2 O 3 concentration in the neodymium-containing solution is 1 to 10% by weight, preferably 3 to 8% by weight, and particularly preferably 4 to 6% by weight. If the amount is less than 1% by weight, the production efficiency is poor. If the amount exceeds 10% by weight, the water has a high viscosity when neutralized, it becomes difficult to stir, the formation of hydroxide is uneven, and the filterability is poor. It becomes difficult to remove impurities in neodymium oxide.
The neutralizing agent is not particularly limited, and examples thereof include ammonia, sodium hydroxide, potassium hydroxide, and the like, but ammonia is preferable in view of impurities remaining in neodymium hydroxide.
The concentration of the neutralizing agent is not particularly limited, but usually 10 to 30% by weight is used.
The pH for neutralizing the neodymium-containing solution with alkali is preferably 7.0 to 10.5. If the pH is less than 7.0, the neodymium salt in the solution is not all hydroxides, and if it exceeds 10.5, it is not economical.

中和が完了した後、濾過を行う。その後、水、好ましくは純水(本発明において全て同じである)を用いて水洗をおこない、溶液中の不純物を除去することが好ましい。
このようにして製造した水酸化ネオジム含有ウエットケーキ(水分含有量:約70〜90%)150〜250gに対して、純水を加えて1Lとして、Ndとして約1.0〜3.0重量%の溶液とすることが好ましい。1.0重量%未満では、生産効率上、経済的ではなく、3.0重量%を超えると、金属イオン濃度が高くなり、解膠が困難となる。
この水酸化ネオジム分散液を攪拌することにより、均一とした後、本発明の特徴である解膠剤として、オキシカルボン酸を添加する。
Filtration is performed after neutralization is complete. Thereafter, it is preferable to perform washing with water, preferably pure water (all the same in the present invention) to remove impurities in the solution.
Neodymium hydroxide-containing wet cake produced in this way (water content: about 70 to 90%) 150 to 250 g is added with pure water to make 1 L, and about 1.0 to 3.3 as Nd 2 O 3 . A 0% by weight solution is preferred. If it is less than 1.0% by weight, it is not economical in terms of production efficiency. If it exceeds 3.0% by weight, the metal ion concentration becomes high and peptization becomes difficult.
After stirring the neodymium hydroxide dispersion to make it uniform, oxycarboxylic acid is added as a peptizer that is a feature of the present invention.

なお、本発明において、水酸化ネオジム含有ウェットケーキにオキシカルボン酸を添加した後、純水を加えても良く、同じ結果となることは自明のことである。
解膠剤としては、一般的に硝酸、過酸化水素水等が知られているが、これらを用いると生成する酸化ネオジムの平均粒径が100nm以上となってしまうため、透明性がなくなるという点で好ましくなく、オキシカルボン酸を用いた場合のみ、平均粒径が10〜25nmとなることが判っている。
In addition, in this invention, after adding oxycarboxylic acid to a neodymium hydroxide containing wet cake, you may add a pure water, and it is self-evident that it becomes the same result.
As the peptizer, nitric acid, hydrogen peroxide solution, etc. are generally known. However, when these are used, the average particle diameter of the neodymium oxide produced becomes 100 nm or more, and the transparency is lost. It is known that the average particle size is 10 to 25 nm only when oxycarboxylic acid is used.

この理由としては、水酸化ネオジム中のネオジムにオキシカルボン酸のカルボキシル基の配位・吸着およびヒドロキシル基が吸着し、コロイド粒子表面の電荷は負に帯電する。更に、カルボキシル基の配位により放出されたプロトンは負に帯電した酸化ネオジムコロイドの対イオンとなり電気二重層を形成する為に、オキシカルボン酸が解膠剤として有効である。
オキシカルボン酸としては、特に限定されず、乳酸、クエン酸、酒石酸、りんご酸、マンデル酸等が例示されるが、オキシカルボン酸としては、分子量が小さく、成膜時に低温で分解除去できるという理由で、乳酸が特に好ましい。
This is because the coordination and adsorption of the carboxyl group of oxycarboxylic acid and the hydroxyl group are adsorbed to neodymium in neodymium hydroxide, and the charge on the surface of the colloidal particles is negatively charged. Furthermore, oxycarboxylic acid is effective as a peptizer because protons released by coordination of carboxyl groups become counterions of negatively charged neodymium oxide colloids to form an electric double layer.
Examples of the oxycarboxylic acid include, but are not limited to, lactic acid, citric acid, tartaric acid, malic acid, mandelic acid, and the like. The oxycarboxylic acid has a low molecular weight and can be decomposed and removed at a low temperature during film formation. Of these, lactic acid is particularly preferred.

オキシカルボン酸の添加量としては、オキシカルボン酸/Nd(モル比)=0.1〜3.0、さらに好ましくは、1.0〜2.0である。オキシカルボン酸/Nd(モル比)が、0.1未満では、ネオジム水酸化物の解膠が不十分となり、酸化ネオジムゾルを製造することができない。また、オキシカルボン酸/Nd(モル比)が、3.0を超えてもその添加効果が飽和しているため、経済的ではない。
次に、水酸化ネオジムを解膠させるには、90℃以上で1時間以上、好ましくは95℃以上で2時間以上加熱・熟成を行う。90℃未満では、水酸化ネオジムが完全に解膠されずに沈殿物として残り、1時間未満でも、同様に水酸化物の沈殿物として残るため、収率の点から好ましくない。
なお、反応の終了は、溶液が均一な紫色で透明になるので、目視で確認することができる。
このようにして製造した酸化ネオジムゾルを含有する溶液は、常温まで冷却した後、限外濾過を行うことで、酸化ネオジムゾルの濃縮を行うことが好ましい。
また、この際に純水で水洗し、不純物を除去することもできる。
The amount of oxycarboxylic acid added is oxycarboxylic acid / Nd 2 O 3 (molar ratio) = 0.1 to 3.0, and more preferably 1.0 to 2.0. When the oxycarboxylic acid / Nd 2 O 3 (molar ratio) is less than 0.1, the peptization of the neodymium hydroxide becomes insufficient and a neodymium oxide sol cannot be produced. Further, oxy acids / Nd 2 O 3 (molar ratio), the addition effects exceed 3.0 because of the saturation, not economical.
Next, in order to peptize neodymium hydroxide, heating and aging are performed at 90 ° C. or higher for 1 hour or longer, preferably 95 ° C. or higher for 2 hours or longer. If it is less than 90 ° C., neodymium hydroxide is not completely peptized and remains as a precipitate, and even if it is less than 1 hour, it similarly remains as a precipitate of hydroxide, which is not preferable from the viewpoint of yield.
The completion of the reaction can be visually confirmed because the solution becomes uniform purple and transparent.
It is preferable to concentrate the neodymium oxide sol by cooling the solution containing the neodymium oxide sol thus produced to room temperature and then performing ultrafiltration.
At this time, the impurities can be removed by washing with pure water.

以下に実施例を示し、本発明の特徴を一層明確にする。なお、本発明は、これらの実施例の態様に限定されるものではない。  Examples are given below to further clarify the features of the present invention. In addition, this invention is not limited to the aspect of these Examples.

硝酸ネオジム溶液(Ndとして、24.95%含有)400.8gへ純水を添加し、2000.0gとした。これに、25%アンモニア水溶液500.0g添加して中和し、水酸化ネオジムを生成させた。この時のpHは10.4であった。この溶液を濾過し、1000.0gの純水で洗浄を行い、水酸化ネオジム中の不純物を除去し、ウエットケーキ1042.4gを得た。
このウエットケーキ208.5gをビーカーに入れ、87%乳酸を10.0g(乳酸/Nd(モル比)=1.6)加え、純水を添加し、1000.0gとした。これを10分間攪拌し、水酸化ネオジムを均一に分散させた。その後、96℃に加温し、2時間攪拌・保持することにより、酸化ネオジムゾルを得た。
得られた溶液は、透明な紫色であり、完全に酸化ネオジムゾルになっていることが判った。
この後、室温まで冷却した後、メンプレンフィルターで限外濾過し、200.0gの純水で2回洗浄を行い、純水を加え酸化ネオジムゾル300.0gを得た。
得られた、酸化ネオジムゾルの粒度分布を図1に示す。
これより、粒径が10〜30nmで平均粒子径が約17.0nm、粒子径分布の累積頻度が10%となる粒子径が12.3nm、90%となる粒子径が27.9nmの酸化ネオジムゾルが出来ていることが判る。
Pure water was added to 400.8 g of a neodymium nitrate solution (containing 24.95% as Nd 2 O 3 ) to make 2000.0 g. This was neutralized by adding 500.0 g of a 25% aqueous ammonia solution to produce neodymium hydroxide. The pH at this time was 10.4. This solution was filtered and washed with 1000.0 g of pure water to remove impurities in neodymium hydroxide, to obtain 1042.4 g of a wet cake.
208.5 g of this wet cake was put into a beaker, 10.0 g of 87% lactic acid (lactic acid / Nd 2 O 3 (molar ratio) = 1.6) was added, and pure water was added to make 1000.0 g. This was stirred for 10 minutes to uniformly disperse neodymium hydroxide. Thereafter, the mixture was heated to 96 ° C. and stirred and held for 2 hours to obtain a neodymium oxide sol.
The obtained solution was clear purple and was found to be completely a neodymium oxide sol.
Then, after cooling to room temperature, it ultrafiltered with the membrane filter, wash | cleaned twice with 200.0g of pure water, the pure water was added, and 300.0g of neodymium oxide sol was obtained.
The particle size distribution of the obtained neodymium oxide sol is shown in FIG.
Accordingly, the neodymium oxide sol having a particle diameter of 10 to 30 nm, an average particle diameter of about 17.0 nm, a particle diameter distribution of 10% and a particle diameter of 12.3 nm and 90% of 27.9 nm. It can be seen that

実施例1で得られた酸化ネオジムゾル100.0gを室温で6ヶ月間保管し、ゾルの状態を観察したところ、ゲル化および沈殿物は認められず、安定した酸化ネオジムゾルであることを確認した。    100.0 g of the neodymium oxide sol obtained in Example 1 was stored at room temperature for 6 months, and the state of the sol was observed. As a result, gelation and precipitation were not observed, and it was confirmed that the neodymium oxide sol was stable.

比較例1Comparative Example 1

実施例1で得られた水酸化ネオジムのウエットケーキ208.5gに、87%乳酸の変わりに61%硝酸を10.0g(硝酸/Nd(モル比)=1.6)加えた以外は、実施例1と同様にした。
得られたゾルは乳紫白色であり、平均粒子径が402.8nmで、沈殿物が確認された。
Except for adding 10.0 g of nitric acid (Nd 2 O 3 (molar ratio) = 1.6) in place of 87% lactic acid to 208.5 g of neodymium hydroxide wet cake obtained in Example 1. Was the same as in Example 1.
The obtained sol was milky white in color, the average particle size was 402.8 nm, and precipitates were confirmed.

比較例2Comparative Example 2

実施例1で得られた水酸化ネオジムのウエットケーキ208.5gに、87%乳酸の変わりに35%過酸化水素水を10.0g(過酸化水素/Nd(モル比)=1.7)加えた以外は、実施例1と同様にした。
得られたゾルは乳紫白色であり、平均粒子径が217.5nmで、沈殿物が確認された。
To 208.5 g of the neodymium hydroxide wet cake obtained in Example 1, 10.0 g of 35% hydrogen peroxide solution instead of 87% lactic acid (hydrogen peroxide / Nd 2 O 3 (molar ratio)) = 1. 7) Same as Example 1 except for addition.
The obtained sol was milky white in color, the average particle size was 217.5 nm, and precipitates were confirmed.

実施例で製造された酸化ネオジムゾルの粒度分布を表1に示す。

Figure 2007063108
Table 1 shows the particle size distribution of the neodymium oxide sol produced in the examples.
Figure 2007063108

実施例1で製造された酸化ネオジムゾルの粒子径分布を示す。  The particle diameter distribution of the neodymium oxide sol manufactured in Example 1 is shown.

Claims (5)

平均粒子径(D50)が5〜50nmであることを特徴とする酸化ネオジムゾル。A neodymium oxide sol having an average particle size (D50) of 5 to 50 nm. ネオジム塩含有溶液をアルカリで中和し水酸化ネオジムとし、得られた水酸化ネオジムを水に分散させオキシカルボン酸を添加した後、加熱・熟成することを特徴とする酸化ネオジムゾルの製造方法。  A method for producing a neodymium oxide sol, comprising neutralizing a neodymium salt-containing solution with an alkali to form neodymium hydroxide, dispersing the obtained neodymium hydroxide in water, adding oxycarboxylic acid, and then heating and aging. オキシカルボン酸添加量が、オキシカルボン酸/Nd(モル比)=0.1〜3.0であることを特徴とする請求項2記載の酸化ネオジムゾルの製造方法。Amount added oxycarboxylic acids, method for producing oxidation Neojimuzoru of claim 2, wherein the hydroxycarboxylic acid / Nd 2 O 3 (molar ratio) is = 0.1 to 3.0. 温度90℃以上で1時間以上加熱・熟成することを特徴とする請求項2又は請求項3記載の酸化ネオジムゾルの製造方法。  The method for producing a neodymium oxide sol according to claim 2 or 3, wherein heating and aging are performed at a temperature of 90 ° C or more for 1 hour or more. 酸化ネオジムゾルの平均粒子径(D50)が5〜50nmであることを特徴とする請求項2〜請求項4記載の酸化ネオジムゾルの製造方法。It claims 2 to 4 manufacturing method of oxidation Neojimuzoru of, wherein the average particle diameter of the oxide Neojimuzoru (D 50) is 5 to 50 nm.
JP2005278690A 2005-08-26 2005-08-26 Method for producing neodymium oxide sol Expired - Fee Related JP4836532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005278690A JP4836532B2 (en) 2005-08-26 2005-08-26 Method for producing neodymium oxide sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005278690A JP4836532B2 (en) 2005-08-26 2005-08-26 Method for producing neodymium oxide sol

Publications (2)

Publication Number Publication Date
JP2007063108A true JP2007063108A (en) 2007-03-15
JP4836532B2 JP4836532B2 (en) 2011-12-14

Family

ID=37925708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005278690A Expired - Fee Related JP4836532B2 (en) 2005-08-26 2005-08-26 Method for producing neodymium oxide sol

Country Status (1)

Country Link
JP (1) JP4836532B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116622A (en) * 2009-10-29 2011-06-16 Mitsui Mining & Smelting Co Ltd Aqueous dispersion liquid including oxide of lanthanoid element
CN112723331A (en) * 2020-12-24 2021-04-30 益阳鸿源稀土有限责任公司 Preparation method of high-purity nanometer neodymium phosphate powder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452609A (en) * 1987-06-17 1989-02-28 Rhone Poulenc Chimie Manufacture and product of rare earth element oxide
JPH01148710A (en) * 1987-12-02 1989-06-12 Taki Chem Co Ltd Crystalline cerium(iv) oxide sol and its production
JPH03217230A (en) * 1989-11-07 1991-09-25 Nissan Chem Ind Ltd Modified metallic oxide sol and its production
JPH05132311A (en) * 1991-11-11 1993-05-28 Taki Chem Co Ltd Production of sol of ceric oxide
JPH1135320A (en) * 1997-07-17 1999-02-09 Shin Etsu Chem Co Ltd Production of spherical monodispersed fine particle of rare earth oxide
JP2003027045A (en) * 2000-12-25 2003-01-29 Nissan Chem Ind Ltd Cerium oxide sol and abrasive
JP2003238153A (en) * 2002-02-15 2003-08-27 Dainichiseika Color & Chem Mfg Co Ltd Fine neodymium oxide and its producing method
JP2006045015A (en) * 2004-08-06 2006-02-16 Taki Chem Co Ltd Oxide sol or hydroxide sol of rare earth element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452609A (en) * 1987-06-17 1989-02-28 Rhone Poulenc Chimie Manufacture and product of rare earth element oxide
JPH01148710A (en) * 1987-12-02 1989-06-12 Taki Chem Co Ltd Crystalline cerium(iv) oxide sol and its production
JPH03217230A (en) * 1989-11-07 1991-09-25 Nissan Chem Ind Ltd Modified metallic oxide sol and its production
JPH05132311A (en) * 1991-11-11 1993-05-28 Taki Chem Co Ltd Production of sol of ceric oxide
JPH1135320A (en) * 1997-07-17 1999-02-09 Shin Etsu Chem Co Ltd Production of spherical monodispersed fine particle of rare earth oxide
JP2003027045A (en) * 2000-12-25 2003-01-29 Nissan Chem Ind Ltd Cerium oxide sol and abrasive
JP2003238153A (en) * 2002-02-15 2003-08-27 Dainichiseika Color & Chem Mfg Co Ltd Fine neodymium oxide and its producing method
JP2006045015A (en) * 2004-08-06 2006-02-16 Taki Chem Co Ltd Oxide sol or hydroxide sol of rare earth element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116622A (en) * 2009-10-29 2011-06-16 Mitsui Mining & Smelting Co Ltd Aqueous dispersion liquid including oxide of lanthanoid element
CN112723331A (en) * 2020-12-24 2021-04-30 益阳鸿源稀土有限责任公司 Preparation method of high-purity nanometer neodymium phosphate powder
CN112723331B (en) * 2020-12-24 2023-05-26 益阳鸿源稀土有限责任公司 Preparation method of high-purity nano neodymium phosphate powder

Also Published As

Publication number Publication date
JP4836532B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4918880B2 (en) Method for producing zirconia sol
TWI464119B (en) Method for producing titanium oxide sol
JP3983544B2 (en) Aqueous colloidal dispersion based on at least a lanthanide compound and a complex-forming agent compound, its production method and its use
US7629389B2 (en) Production method of alkaline zirconia sol
JPH07165419A (en) Preparation of composition consisting mainly of serium (ii) oxide
JP4705361B2 (en) Method for producing zirconia sol
JPH0818833B2 (en) Cerium oxide with novel morphological characteristics
WO2006096936A1 (en) Rare earth nanorods
JP2008031023A (en) Zirconia sol and method for producing the same
US20090215614A1 (en) Colloidal dispersions of compounds of cerium and at least one of zirconium, rare earths, titanium and/or tin and preparation/applications thereof
JPH0859235A (en) Colloid dispersion based on cerium oxide and titanium oxide,its preparation,its use for coating of base material and base material coated thereby
JP5645015B2 (en) Method for producing yttrium oxide stabilized zirconium oxide sol
JP2005179111A (en) Method for manufacturing zirconia sol
JP4836532B2 (en) Method for producing neodymium oxide sol
JP2012131653A (en) Method for producing alumina colloid-containing aqueous solution and alumina colloid-containing aqueous solution obtained thereby
JP4488831B2 (en) Method for producing rare earth oxide sol or hydroxide sol
US20080242746A1 (en) Dispersion of metal oxide fine particles and method for producing the same
EP3502060B1 (en) Zirconia sol and method for manufacturing same
TWI357887B (en)
KR100703143B1 (en) Aqueous colloidal dispersion based on at least a metal compound and a complexing agent, preparation method and use
CN114735744A (en) Low-temperature synthesis method of semiconductor cerium dioxide nanocrystalline
JP5674083B2 (en) Iron oxyhydroxide sol and method for producing the same
JP4518844B2 (en) Method for producing yttria sol
JP7405078B2 (en) Method for producing ceria-zirconia complex oxide dispersion
Zinatloo-Ajabshir Lanthanide-based compounds for environmental remediation

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees