JP2005179111A - Method for manufacturing zirconia sol - Google Patents
Method for manufacturing zirconia sol Download PDFInfo
- Publication number
- JP2005179111A JP2005179111A JP2003421497A JP2003421497A JP2005179111A JP 2005179111 A JP2005179111 A JP 2005179111A JP 2003421497 A JP2003421497 A JP 2003421497A JP 2003421497 A JP2003421497 A JP 2003421497A JP 2005179111 A JP2005179111 A JP 2005179111A
- Authority
- JP
- Japan
- Prior art keywords
- zirconia sol
- zirconium hydroxide
- dispersion
- zirconium
- zirconia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、安定性に優れたコロイド領域のジルコニアゾルを製造する方法に関する。 The present invention relates to a method for producing a colloidal zirconia sol having excellent stability.
従来、シリカ、アルミナ、チタニア、ジルコニア、酸化亜鉛、五酸化アンチモン、酸化セリウム、酸化スズ、シリカ・アルミナ、シリカ・ジルコニアなどのコロイド粒子が知られており、光学材料として屈折率を調整するために被膜等に配合して用いられている。
例えば、シリカは低屈折材料として、アルミナは中程度の屈折率材料として、チタニア、ジルコニア等は高屈折率材料として用いられている。このとき、チタニアゾルは高屈折率である点では優れているものの、分散安定性や、用法、用途によっては酸化チタンの光触媒活性のために耐光性、耐候性等に問題があった。このため、他の成分、例えばシリカ成分などを複合化することによって分散安定性や、耐光性、耐候性等を向上させることが行われているが、複合化成分によっては屈折率を低下させることになることに加えて、光触媒活性を完全に抑制することが困難で、このため耐光性、耐候性等が不充分となることがあった。
Conventionally, colloidal particles such as silica, alumina, titania, zirconia, zinc oxide, antimony pentoxide, cerium oxide, tin oxide, silica-alumina, silica-zirconia, etc. are known, and to adjust the refractive index as an optical material It is blended and used for coatings.
For example, silica is used as a low refractive index material, alumina is used as a medium refractive index material, and titania, zirconia, and the like are used as high refractive index materials. At this time, although titania sol is excellent in that it has a high refractive index, there are problems in light resistance, weather resistance, and the like due to the dispersion stability, photocatalytic activity of titanium oxide depending on the usage and application. For this reason, it has been attempted to improve dispersion stability, light resistance, weather resistance, etc. by combining other components, such as silica components, but depending on the composite component, the refractive index can be lowered. In addition to this, it is difficult to completely suppress the photocatalytic activity, so that the light resistance, weather resistance, etc. may be insufficient.
一方、ジルコニアゾルは光触媒活性を実質に持たず、耐光性、耐候性等に優れており、従来より、ジルコニアゾルの製造方法としては、オキシ塩化ジルコニウム等の水溶性ジルコニウム塩を含む水溶液を加水分解させる方法が知られている。
さらに、特開平6−166519号公報(特許文献1)には、水溶性ジルコニウム塩を含む水溶液を陰イオン交換樹脂と接触させて、該ジルコニウム塩の陰イオンを水酸基イオンとイオン交換することにより粘調なゲル状物質を得、得られたゲル状物質を水に分散させると共に酢酸等の有機酸を添加するジルコニアゾルの製造方法が記載されている。
また、特開平5−24844号公報(特許文献2)には、水酸化ジルコニウムと酸とを含むスラリー状の混合物の酸濃度を制御して加熱処理する水和ジルコニアゾルの製造方法が記載され、酸として、塩酸、硝酸、硫酸等の無機酸、酢酸、クエン酸等の有機酸が挙げられている。
On the other hand, zirconia sol has substantially no photocatalytic activity and is excellent in light resistance, weather resistance, etc. Conventionally, as a method for producing zirconia sol, an aqueous solution containing a water-soluble zirconium salt such as zirconium oxychloride is hydrolyzed. The method of making it known is known.
Further, JP-A-6-166519 (Patent Document 1) discloses that an aqueous solution containing a water-soluble zirconium salt is brought into contact with an anion exchange resin, and the anion of the zirconium salt is ion-exchanged with a hydroxyl ion. A method for producing a zirconia sol is described, in which a smooth gel-like substance is obtained, and the obtained gel-like substance is dispersed in water and an organic acid such as acetic acid is added.
JP-A-5-24844 (Patent Document 2) describes a method for producing a hydrated zirconia sol in which the acid concentration of a slurry-like mixture containing zirconium hydroxide and an acid is controlled and heat-treated, Examples of the acid include inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids such as acetic acid and citric acid.
しかしながら、特許文献1または特許文献2のように、水酸化ジルコニウムのような加水分解物およびジルコニウム水酸化物ゲルに、酢酸クエン酸等の有機酸または無機酸を添加してジルコニアゾルを調製しても、均一な粒子径分布を有し、安定性に優れたコロイド領域のジルコニアゾルを得ることは困難であった。
本発明は、均一な粒子径分布を有し、安定性に優れたコロイド領域のジルコニアゾルを製造することを発明が解決しようとする課題とするものである。 It is an object of the present invention to produce a colloidal zirconia sol having a uniform particle size distribution and excellent stability.
本発明は、下記の工程(a)〜(d)からなることを特徴とする、平均粒子径が5〜100nmの範囲にあるジルコニア微粒子が分散したゾルの製造方法である。
(a)粒子成長調整剤の存在下、ジルコニウム化合物水溶液にアルカリ水溶液を加えてジルコニウム水酸化物ゲルの分散液を調製する工程
(b)前記ジルコニウム水酸化物ゲルを洗浄する工程
(c)粒子成長調整剤の存在下、前記ジルコニウム水酸化物ゲルの分散液を水熱処理する工程
(d)前記水熱処理したジルコニウム水酸化物ゲルを洗浄する工程
The present invention is a method for producing a sol in which zirconia fine particles having an average particle diameter in the range of 5 to 100 nm are dispersed, comprising the following steps (a) to (d).
(A) a step of preparing a dispersion of zirconium hydroxide gel by adding an alkaline aqueous solution to a zirconium compound aqueous solution in the presence of a particle growth regulator (b) a step of washing the zirconium hydroxide gel (c) particle growth A step of hydrothermally treating the dispersion of the zirconium hydroxide gel in the presence of a modifier (d) a step of washing the hydrothermally treated zirconium hydroxide gel
前記(d)工程で洗浄後のジルコニア微粒子分散ゾルは、濃縮または希釈しても良い。
前記粒子成長調整剤はカルボン酸またはヒドロキシカルボン酸とすることが好ましい。
前記水熱処理を100〜250℃の温度範囲で行うことが好ましい。
前記(b)工程では、ジルコニウム水酸化物ゲル分散液の電導度を10μS/cm以下とすることが好ましく、 前記(d)工程では、ジルコニアゾルの電導度を200μS/cm以下とすることが好ましい。
The zirconia fine particle-dispersed sol washed in the step (d) may be concentrated or diluted.
The particle growth regulator is preferably carboxylic acid or hydroxycarboxylic acid.
The hydrothermal treatment is preferably performed in a temperature range of 100 to 250 ° C.
In the step (b), the conductivity of the zirconium hydroxide gel dispersion is preferably 10 μS / cm or less, and in the step (d), the conductivity of the zirconia sol is preferably 200 μS / cm or less. .
本発明によれば、粒子径が比較的小さく、均一な粒子径分布を有し、非凝集体で、分散性、安定性に優れたジルコニアゾルを製造することができる。また、このジルコニアゾルは、透明性、耐光性、耐候性等に優れるので、光学材料等における、高屈折率材料、屈折率調整剤等として好適である。 According to the present invention, it is possible to produce a zirconia sol having a relatively small particle size, a uniform particle size distribution, a non-aggregate, and excellent dispersibility and stability. Moreover, since this zirconia sol is excellent in transparency, light resistance, weather resistance, etc., it is suitable as a high refractive index material, a refractive index adjusting agent, etc. in optical materials.
以下、本発明のジルコニアゾルの製造方法を工程順に説明する。
工程(a)
本発明に用いるジルコニウム化合物としては塩化ジルコニウム(ZrCl2)、オキシ塩化ジルコニウム(ZrOCl2)、硝酸ジルコニウム、硝酸ジルコニル、硫酸ジルコニウム、炭酸ジルコニウム、酢酸ジルコニウム等の他、ジルコニウムアルコキシド等が挙げられる。
先ず、ジルコニウム化合物の水溶液を調製する。このときのジルコニウム化合物水溶液の濃度は、ZrO2に換算して0.1〜5重量%、さらには0.2〜3重量%の範囲にあることが好ましい。該濃度が0.1重量%未満の場合は、収率、生産効率が低く、一方、該濃度が5重量%を越えると、得られるジルコニアゾルの粒子径が不均一となる傾向がある。
Hereinafter, the manufacturing method of the zirconia sol of this invention is demonstrated in order of a process.
Step (a)
Zirconium compounds used in the present invention include zirconium chloride (ZrCl 2 ), zirconium oxychloride (ZrOCl 2 ), zirconium nitrate, zirconyl nitrate, zirconium sulfate, zirconium carbonate, zirconium acetate and the like, as well as zirconium alkoxides.
First, an aqueous solution of a zirconium compound is prepared. The concentration of the zirconium compound aqueous solution at this time is preferably in the range of 0.1 to 5% by weight, more preferably 0.2 to 3% by weight in terms of ZrO 2 . When the concentration is less than 0.1% by weight, the yield and production efficiency are low. On the other hand, when the concentration exceeds 5% by weight, the particle size of the resulting zirconia sol tends to be non-uniform.
本発明に用いる粒子成長調整剤としては、カルボン酸、カルボン酸塩、またはヒドロキシカルボン酸、ヒドロキシカルボン酸塩が用いられる。
具体的には、蟻酸、酢酸、蓚酸、アクリル酸(不飽和カルボン酸)、グルコン酸等のモノカルボン酸およびモノカルボン酸塩、リンゴ酸、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、などの多価カルボン酸および多価カルボン酸塩等が挙げられる。
また、α−乳酸、β−乳酸、γ−ヒドロキシ吉草酸、グリセリン酸、酒石酸、クエン酸、トロパ酸、ベンジル酸のヒドロキシカルボン酸およびヒドロキシカルボン酸塩が挙げられる。
As the particle growth regulator used in the present invention, carboxylic acid, carboxylate, hydroxycarboxylic acid, or hydroxycarboxylate is used.
Specifically, monocarboxylic acids and monocarboxylic acid salts such as formic acid, acetic acid, succinic acid, acrylic acid (unsaturated carboxylic acid), gluconic acid, malic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid And polyvalent carboxylic acids such as sebacic acid, maleic acid, fumaric acid, and phthalic acid, and polyvalent carboxylic acid salts.
Further, α-lactic acid, β-lactic acid, γ-hydroxyvaleric acid, glyceric acid, tartaric acid, citric acid, tropic acid, hydroxycarboxylic acid and hydroxycarboxylate of benzylic acid can be mentioned.
工程(a)では、ジルコニウム化合物水溶液に前記粒子成長調整剤または粒子成長調整剤の水溶液を混合する。このときのジルコニウム化合物のモル数(Zm)と粒子成長調整剤のモル数(Cm)とのモル比(Cm/Zm)は0.01〜1、さらには0.1〜0.5の範囲にあることが好ましい。モル比が0.01未満の場合は、粗大なジルコニウム水酸化物ヒドロゲルが生成したり、不均一なジルコニウム水酸化物ヒドロゲルが生成し、このため、後述する工程(c)で水熱処理して得られるジルコニアゾルの粒子径が不均一であったり、平均粒子径が100nm以下とならないことがある。一方、前記モル比が1を越えてもさらに粒子径を均一にしたり、平均粒子径を小さく抑制する効果がさらに向上することもなく、加えて経済性が低下する問題がある。 In the step (a), the particle growth regulator or the aqueous solution of the particle growth regulator is mixed with the zirconium compound aqueous solution. At this time, the molar ratio (Cm / Zm) between the number of moles of zirconium compound (Zm) and the number of moles of grain growth regulator (Cm) is in the range of 0.01 to 1, more preferably 0.1 to 0.5. Preferably there is. When the molar ratio is less than 0.01, a coarse zirconium hydroxide hydrogel is formed or a heterogeneous zirconium hydroxide hydrogel is formed. Therefore, it is obtained by hydrothermal treatment in the step (c) described later. The particle diameter of the zirconia sol to be obtained may not be uniform or the average particle diameter may not be 100 nm or less. On the other hand, even when the molar ratio exceeds 1, there is a problem that the particle size is not made uniform or the effect of suppressing the average particle size is not further improved, and the economy is lowered.
ついで、粒子成長調整剤を含むジルコニウム化合物水溶液を充分に撹拌しながら、これにアルカリ水溶液を加える。
アルカリ水溶液としては、NaOH水溶液、KOH水溶液等のアルカリ金属水溶液の他、アンモニア水、有機アミン水溶液などの塩基性水溶液を用いることができる。
アルカリ水溶液はジルコニウム化合物水溶液のpHが3〜12、さらには4〜11の範囲となるように添加する。pHが3未満の場合は、ジルコニウム化合物の加水分解が不充分となったり、後述する工程(b)での洗浄が困難となることがあり、一方、pHが12を越えても後述する工程(b)での洗浄が困難となることがある。
なお、アルカリ水溶液を添加する際のジルコニウム化合物水溶液の温度は特に制限はないが、通常10〜50℃、さらには15〜40℃の範囲にあることが好ましい。
Next, an aqueous alkali compound solution is added to the zirconium compound aqueous solution containing the particle growth regulator while sufficiently stirring.
As the alkaline aqueous solution, a basic aqueous solution such as aqueous ammonia or organic amine can be used in addition to an aqueous alkali metal solution such as aqueous NaOH or KOH.
The aqueous alkali solution is added so that the zirconium compound aqueous solution has a pH of 3 to 12, more preferably 4 to 11. When the pH is less than 3, the hydrolysis of the zirconium compound may be insufficient, or washing in the step (b) described later may be difficult. On the other hand, even if the pH exceeds 12, the step described later ( Cleaning in b) may be difficult.
In addition, the temperature of the zirconium compound aqueous solution when adding the alkaline aqueous solution is not particularly limited, but it is usually preferably in the range of 10 to 50 ° C, more preferably 15 to 40 ° C.
工程(b)
次いで、生成したジルコニウム水酸化物ヒドロゲルの分散液を洗浄する。
洗浄方法としては、陽イオン、陰イオン、あるいは塩を除去できれば特に制限はなく、従来公知の方法を採用することができ、例えば、限外濾過膜法、濾過分離法、遠心分離濾過法、イオン交換樹脂法等が挙げられる。
なかでもイオン交換樹脂法は洗浄後のイオン濃度を効果的に低下させることができるので好ましい。この場合、予め限外濾過膜法で洗浄した後、イオン交換樹脂法で洗浄すると効率的である。イオン交換樹脂としては、両イオン交換樹脂を用いるか、陽イオン交換樹脂と陰イオン交換樹脂とを順次用いることができる。
洗浄後の電導度は10μS/cm以下、さらには5μS/cm以下であることが好ましい。洗浄後の電導度が10μS/cmを越えると、粒子成長調整剤の効果が充分得られないか、得られるジルコニアゾルの粒子径分布が不均一となる傾向がある。
また、このときの洗浄ジルコニウム水酸化物ヒドロゲル分散液のpHは概ね5〜8の範囲である。
Step (b)
Next, the produced dispersion of zirconium hydroxide hydrogel is washed.
The washing method is not particularly limited as long as it can remove cations, anions, or salts, and a conventionally known method can be adopted. For example, an ultrafiltration membrane method, a filtration separation method, a centrifugal filtration method, an ion Examples include the exchange resin method.
Among these, the ion exchange resin method is preferable because the ion concentration after washing can be effectively reduced. In this case, it is efficient to wash with an ion exchange resin method after washing with an ultrafiltration membrane method in advance. As the ion exchange resin, both ion exchange resins can be used, or a cation exchange resin and an anion exchange resin can be sequentially used.
The conductivity after washing is preferably 10 μS / cm or less, more preferably 5 μS / cm or less. When the electric conductivity after washing exceeds 10 μS / cm, the effect of the particle growth regulator cannot be obtained sufficiently, or the particle size distribution of the obtained zirconia sol tends to be non-uniform.
Further, the pH of the washed zirconium hydroxide hydrogel dispersion at this time is approximately in the range of 5-8.
工程(c)
次いで、粒子成長調整剤の存在下、ジルコニウム水酸化物ゲルの分散液を水熱処理する。
工程(b)で得た洗浄ジルコニウム水酸化物ヒドロゲル分散液の濃度はZrO2に換算して0.1〜20重量%、さらには0.2〜15重量%、特に0.5〜10重量%の範囲に調整することが好ましい。この濃度が0.1重量%未満の場合は、粒子径分布は均一になるものの収率、生産効率が低下する問題がある。一方、濃度が20重量%を越えると、得られるジルコニアゾルに凝集体が生成することがある。
Step (c)
Next, the zirconium hydroxide gel dispersion is hydrothermally treated in the presence of a particle growth regulator.
The concentration of the washed zirconium hydroxide hydrogel dispersion obtained in the step (b) is 0.1 to 20% by weight, more preferably 0.2 to 15% by weight, particularly 0.5 to 10% by weight in terms of ZrO 2. It is preferable to adjust to the range. When this concentration is less than 0.1% by weight, the particle size distribution becomes uniform, but the yield and production efficiency are lowered. On the other hand, if the concentration exceeds 20% by weight, aggregates may be formed in the resulting zirconia sol.
その後、ジルコニウム水酸化物ヒドロゲル分散液に粒子成長調整剤または粒子成長調整剤の水溶液を添加する。粒子成長調整剤としては前記と同様のものを用いることができる。
このときの粒子成長調整剤の添加量は、ジルコニウム水酸化物ヒドロゲル分散液中のZrO2のモル数(Zmc)と粒子成長調整剤のモル数(Cmc)とのモル比(Cmc/Zmc)が、0.05〜0.8、さらには0.1〜0.5の範囲にあることが好ましい。モル比(Cmc/Zmc)が0.05未満の場合は、シリカゾル中に凝集体が生成したり、平均粒子径が100nm以下のシリカゾルを得るのが困難となることがある。一方、前記モル比(Cmc/Zmc)が0.8を越えると、粒子成長あるいは結晶化が大きく抑制されるために所望の粒子径に成長させるに長時間を要したり、結晶化が不充分なためか所望の屈折率あるいは所望の粒子径のジルコニアゾルを得ることが困難となることがある。
Thereafter, a particle growth regulator or an aqueous solution of the particle growth regulator is added to the zirconium hydroxide hydrogel dispersion. As the particle growth regulator, the same ones as described above can be used.
The amount of the particle growth regulator added at this time is determined by the molar ratio (Cmc / Zmc) between the number of moles of ZrO 2 (Zmc) and the number of moles of grain growth regulator (Cmc) in the zirconium hydroxide hydrogel dispersion. , 0.05 to 0.8, and more preferably 0.1 to 0.5. When the molar ratio (Cmc / Zmc) is less than 0.05, aggregates may be generated in the silica sol, or it may be difficult to obtain a silica sol having an average particle size of 100 nm or less. On the other hand, if the molar ratio (Cmc / Zmc) exceeds 0.8, particle growth or crystallization is greatly suppressed, so that it takes a long time to grow to a desired particle diameter or crystallization is insufficient. For this reason, it may be difficult to obtain a zirconia sol having a desired refractive index or a desired particle size.
ついで、粒子成長調整剤を含むジルコニウム水酸化物ヒドロゲル分散液を充分に撹拌しながら昇温し、水熱処理する。なお、昇温する前または昇温中に超音波を照射するなどしてジルコニウム水酸化物ヒドロゲルの凝集体をできるだけ分散させておくことが好ましい。
ジルコニウム水酸化物ヒドロゲルの凝集体を分散させておくと、得られるジルコニアゾルに粗大粒子が存在することがなく、また粒子径分布がより均一なジルコニアゾルが得られる傾向がある。
水熱処理温度は100〜250℃、さらには120〜200℃の範囲にあることが好ましい。100℃未満の場合は、粒子成長に長時間を要したり、所望の屈折率あるいは所望の粒子径のジルコニアゾルを得ることが困難となることがある。一方、水熱処理温度が250℃を越えても粒子成長時間がさらに短くなる効果は小さく、場合によっては粒子径分布が不均一になったり、粗大な粒子が生成することがある。
なお、水熱処理時間は特に制限はなく、処理温度によって異なるが、通常0.5〜12時間である。
Next, the zirconium hydroxide hydrogel dispersion containing the particle growth regulator is heated with sufficient stirring and hydrothermally treated. It is preferable to disperse the aggregate of zirconium hydroxide hydrogel as much as possible by irradiating ultrasonic waves before or during the temperature rise.
When the aggregate of the zirconium hydroxide hydrogel is dispersed, coarse particles are not present in the obtained zirconia sol, and a zirconia sol having a more uniform particle size distribution tends to be obtained.
The hydrothermal treatment temperature is preferably in the range of 100 to 250 ° C, more preferably 120 to 200 ° C. When the temperature is lower than 100 ° C., it may take a long time for particle growth, or it may be difficult to obtain a zirconia sol having a desired refractive index or a desired particle size. On the other hand, even if the hydrothermal treatment temperature exceeds 250 ° C., the effect of further shortening the particle growth time is small, and in some cases, the particle size distribution may be non-uniform or coarse particles may be generated.
The hydrothermal treatment time is not particularly limited and is usually 0.5 to 12 hours, although it varies depending on the treatment temperature.
工程(d)
工程(c)で得られた水熱処理したジルコニウム水酸化物ヒドロゲル分散液を洗浄することによってジルコニアゾルを調製する。
工程(d)での洗浄方法としては、限外濾過膜法が過剰の粒子成長調整剤を除去できる点で好ましい。また、必要に応じて限外濾過膜法のよる洗浄の前および/または後にイオン交換樹脂による洗浄を行うこともできる。イオン交換樹脂法は洗浄後のイオン濃度を効果的に低下させることができるので好ましい。
ここで得られるジルコニアゾルの電導度は概ね200μS/cm以下であることが好ましい。また、ジルコニアゾルのpHは概ね3〜5の範囲であることが好ましい。ジルコニアゾルの電導度およびpHが前記範囲にあるとジルコニアゾルは安定性に優れる。
Step (d)
A zirconia sol is prepared by washing the hydrothermally treated zirconium hydroxide hydrogel dispersion obtained in step (c).
As a cleaning method in the step (d), an ultrafiltration membrane method is preferable in that an excess particle growth regulator can be removed. Further, if necessary, washing with an ion exchange resin can be performed before and / or after washing by the ultrafiltration membrane method. The ion exchange resin method is preferable because the ion concentration after washing can be effectively reduced.
The conductivity of the zirconia sol obtained here is preferably about 200 μS / cm or less. Moreover, it is preferable that the pH of a zirconia sol is about 3-5. When the conductivity and pH of the zirconia sol are in the above ranges, the zirconia sol is excellent in stability.
工程(e)
工程(d)で得られたジルコニアゾルは、そのまま用いることもできるが、その用途に応じて、濃縮または希釈して用いることができる。濃縮する方法として、従来公知の方法を採用することができ、例えば、ロータリーエバポレーター等で加熱濃縮してもよく、さらには減圧下で加熱濃縮してもよく、限外濾過膜法で濃縮することもできる。
このようにして得られたジルコニアゾルの電導度は200μS/cm以下、さらには100μS/cm以下であることが好ましい。また、このときのジルコニアゾルのpHは概ね3〜5の範囲である。ジルコニアゾルの電導度およびpHが前記範囲にあるとジルコニアゾルは安定性に優れる。
Step (e)
Although the zirconia sol obtained in the step (d) can be used as it is, it can be used after being concentrated or diluted depending on its use. As a method of concentration, a conventionally known method can be employed. For example, it may be concentrated by heating with a rotary evaporator or the like, or further concentrated under reduced pressure, or concentrated by an ultrafiltration membrane method. You can also.
The conductivity of the zirconia sol thus obtained is preferably 200 μS / cm or less, more preferably 100 μS / cm or less. Further, the pH of the zirconia sol at this time is approximately in the range of 3 to 5. When the conductivity and pH of the zirconia sol are in the above ranges, the zirconia sol is excellent in stability.
本発明方法によれば、平均粒子径が5〜100nm、さらには10〜50nmの範囲にあるジルコニア微粒子が分散したゾルが得られる。平均粒子径が5nm未満の場合は、ジルコニアの結晶化が不充分なためか屈折率が低下する傾向にある。
ジルコニアゾルの平均粒子径が100nmを越えるものは、本発明方法によらずとも得ることが可能である。また、得られたとしてもジルコニアゾルが白濁したり透明性が低く、用途に制限がある。
According to the method of the present invention, a sol in which zirconia fine particles having an average particle diameter of 5 to 100 nm, further 10 to 50 nm are dispersed is obtained. When the average particle diameter is less than 5 nm, the refractive index tends to decrease because of insufficient crystallization of zirconia.
A zirconia sol having an average particle diameter exceeding 100 nm can be obtained without using the method of the present invention. Moreover, even if it is obtained, the zirconia sol becomes cloudy or has low transparency, and there is a limit to applications.
なお、本発明では、上記ジルコニアゾル中の微粒子の平均粒子径について、透過型電子顕微鏡写真(TEM)で撮影し、50個の粒子について粒子径を測定し、これを平均して求めた。
また、本発明方法で得られたジルコニアゾル中の微粒子は、標準屈折率液法で測定した屈折率が1.7〜2.2の範囲にあった。
In the present invention, the average particle diameter of the fine particles in the zirconia sol was photographed with a transmission electron micrograph (TEM), and the particle diameters of 50 particles were measured and averaged.
The fine particles in the zirconia sol obtained by the method of the present invention had a refractive index measured by the standard refractive index liquid method in the range of 1.7 to 2.2.
本発明で得られる水を分散媒とするジルコニアゾルは、必要に応じてアルコール、グリコール、エステル、エーテル、ケトン等の有機溶媒に置換してオルガノジルコニアゾルとすることもできる。このようなオルガノジルコニアゾル、例えば、光学材料として樹脂レンズ用ハードコート膜の屈折率調整剤、反射防止膜等に好適に用いることができる。 The zirconia sol using water as a dispersion medium obtained in the present invention can be replaced with an organic solvent such as alcohol, glycol, ester, ether, ketone or the like as required to obtain an organozirconia sol. Such an organozirconia sol, for example, can be suitably used as an optical material for a refractive index adjuster of a hard coat film for a resin lens, an antireflection film, or the like.
ジルコニアゾル(1)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解し、これにリンゴ酸5.5g(Cm/Zm=0.2)を添加し、ついで、濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.6μS/cm、pHは7.2であった。
Preparation of zirconia sol (1) 65.5 g of zirconium oxychloride octahydrate ( ZrOCl 2 .8H 2 O) was dissolved in 2432 g of pure water, and 5.5 g of malic acid (Cm / Zm = 0.2) was added thereto. Then, 313 g of a 10 wt% KOH aqueous solution was added to prepare a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%). At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The conductivity of the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) thus obtained was 3.6 μS / cm and pH was 7.2.
ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に濃度2重量%のリンゴ酸水溶液197g(Cmc/Zmc=0.14)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理した。水熱処理によりジルコニアゾルが得られたが、電導度は640μS/cm、pHは2.53であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は47μS/cm、pHは3.4であった。その後、濃縮してジルコニアゾル(1)を調製した。得られたジルコニアゾル(1)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(1)の平均粒子径、pHおよび電導度を測定し、結果を表1に示した。また、屈折率を以下の方法で測定し、結果を表1に示した。
Next, 197 g (Cmc / Zmc = 0.14) of a malic acid aqueous solution having a concentration of 2% by weight was added to the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration of 1% by weight), and ultrasonic waves were irradiated for 1 hour. After the dispersion treatment, the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. A zirconia sol was obtained by hydrothermal treatment, but the conductivity was 640 μS / cm and the pH was 2.53.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the conductivity was 47 μS / cm, and the pH was 3.4. Thereafter, it was concentrated to prepare zirconia sol (1). In TEM observation of the obtained zirconia sol (1), coarse particles and fine particles were not observed. The average particle diameter, pH and conductivity of zirconia sol (1) were measured, and the results are shown in Table 1. The refractive index was measured by the following method, and the results are shown in Table 1.
屈折率の測定
(1)ジルコニアゾルをエバポレーターに採り、分散媒を蒸発させる。
(2)120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折率液を2,3滴ガラス基板状に滴下し、これにジルコニア粉末を混合する。
(4)上記(3)の操作を種々の標準屈折率液で行い、混合液が透明になったときの標準屈折率液の屈折率をジルコニア粒子の屈折率とする。
Refractive index measurement (1) A zirconia sol is taken in an evaporator and the dispersion medium is evaporated.
(2) Dry at 120 ° C. to obtain a powder.
(3) A standard refractive index liquid having a known refractive index is dropped in the form of a few drops of glass substrate, and zirconia powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive index liquids, and the refractive index of the standard refractive index liquid when the mixed liquid becomes transparent is set as the refractive index of the zirconia particles.
ジルコニアゾル(2)の調製
実施例1と同様にして洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製し、これに濃度2重量%のリンゴ酸水溶液141g(Cmc/Zmc=0.10)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理した。水熱処理によりジルコニアゾルが得られたが、電導度は620μS/cm、pHは2.65であった。
ついで、実施例1と同様にしてジルコニアゾル(2)を調製した。得られたジルコニアゾル(2)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(2)の平均粒子径、屈折率、pHおよび電導度を測定し、結果を表1に示した。
Preparation of zirconia sol (2) A washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) was prepared in the same manner as in Example 1, and 141 g of malic acid aqueous solution (Cmc / Zmc = 2% by weight) was prepared. 0.10) was added and ultrasonic waves were applied for 1 hour to disperse the hydrogel, and then the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. A zirconia sol was obtained by hydrothermal treatment, but the conductivity was 620 μS / cm and the pH was 2.65.
Next, a zirconia sol (2) was prepared in the same manner as in Example 1. In TEM observation of the obtained zirconia sol (2), coarse particles and fine particles were not observed. The average particle diameter, refractive index, pH and conductivity of zirconia sol (2) were measured, and the results are shown in Table 1.
ジルコニアゾル(3)の調製
実施例1と同様にして洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製し、これに濃度2重量%のリンゴ酸水溶液703g(Cmc/Zmc=0.50)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理した。水熱処理によりジルコニアゾルが得られたが、電導度は680μS/cm、pHは2.45であった。
ついで、実施例1と同様にしてジルコニアゾル(3)を調製した。得られたジルコニアゾル(3)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(3)の平均粒子径、屈折率、pHおよび電導度を測定し、結果を表1に示した。
Preparation of zirconia sol (3) A washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%) was prepared in the same manner as in Example 1, and 703 g (Cmc / Zmc = Cmc / Zmc = 2 wt% malic acid aqueous solution) was prepared. 0.550) was added and ultrasonic waves were applied for 1 hour to disperse the hydrogel, and then the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. A zirconia sol was obtained by hydrothermal treatment, but the conductivity was 680 μS / cm and the pH was 2.45.
Next, a zirconia sol (3) was prepared in the same manner as in Example 1. In TEM observation of the obtained zirconia sol (3), coarse particles and fine particles were not observed. The average particle diameter, refractive index, pH and conductivity of zirconia sol (3) were measured, and the results are shown in Table 1.
ジルコニアゾル(4)の調製
実施例1において、リンゴ酸2.8g(Cm/Zm=0.1)を添加した以外は同様にしてジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
ついで、限外濾過膜法での洗浄、陽イオン交換樹脂による脱イオン、陰イオン交換樹脂による脱イオンを行った。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.0μS/cm、pHは7.0であった。
以下、実施例1と同様にして水熱処理した。水熱処理により得られたジルコニアゾルは、電導度は640μS/cm、pHは2.60であった。
ついで、陰イオン交換樹脂による脱イオンを行い、限外濾過膜法で洗浄した。このときの電導度は45μS/cm、pHは3.3であった。その後、濃縮してジルコニアゾル(4)を調製した。得られたジルコニアゾル(4)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(4)の平均粒子径、屈折率、pHおよび電導度を測定し、結果を表1に示した。
Preparation of zirconia sol (4) In Example 1, a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%) was prepared in the same manner except that 2.8 g of malic acid (Cm / Zm = 0.1) was added. Prepared. At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.
Subsequently, washing with an ultrafiltration membrane method, deionization with a cation exchange resin, and deionization with an anion exchange resin were performed. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1% by weight) had an electric conductivity of 3.0 μS / cm and a pH of 7.0.
Thereafter, hydrothermal treatment was performed in the same manner as in Example 1. The zirconia sol obtained by hydrothermal treatment had an electric conductivity of 640 μS / cm and a pH of 2.60.
Subsequently, deionization with an anion exchange resin was performed, and the membrane was washed by an ultrafiltration membrane method. The electric conductivity at this time was 45 μS / cm, and the pH was 3.3. Then, it concentrated and the zirconia sol (4) was prepared. In TEM observation of the obtained zirconia sol (4), coarse particles and fine particles were not observed. The average particle diameter, refractive index, pH and conductivity of zirconia sol (4) were measured, and the results are shown in Table 1.
ジルコニアゾル(5)の調製
実施例1において、リンゴ酸13.8g(Cm/Zm=0.5)を添加した以外は同様にしてジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は20℃であった。
ついで、限外濾過膜法での洗浄、陽イオン交換樹脂による脱イオン、陰イオン交換樹脂による脱イオンを行った。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は10μS/cm、pHは7.2であった。
以下、実施例1と同様にして水熱処理した。水熱処理により得られたジルコニアゾルは、電導度は680μS/cm、pHは2.50であった。
ついで、陰イオン交換樹脂による脱イオンを行い、限外濾過膜法で洗浄した。このときの電導度は80μS/cm、pHは3.0であった。その後、濃縮してジルコニアゾル(5)を調製した。得られたジルコニアゾル(5)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(5)の平均粒子径、屈折率、pHおよび電導度を測定し、結果を表1に示した。
Preparation of zirconia sol (5) In Example 1, except that 13.8 g of malic acid (Cm / Zm = 0.5) was added, a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) was prepared. Prepared. At this time, the pH of the dispersion was 10.5 and the temperature was 20 ° C.
Subsequently, washing with an ultrafiltration membrane method, deionization with a cation exchange resin, and deionization with an anion exchange resin were performed. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1 wt%) had an electric conductivity of 10 μS / cm and a pH of 7.2.
Thereafter, hydrothermal treatment was performed in the same manner as in Example 1. The zirconia sol obtained by hydrothermal treatment had an electric conductivity of 680 μS / cm and a pH of 2.50.
Subsequently, deionization with an anion exchange resin was performed, and the membrane was washed by an ultrafiltration membrane method. At this time, the electric conductivity was 80 μS / cm and the pH was 3.0. Then, it concentrated and the zirconia sol (5) was prepared. In TEM observation of the obtained zirconia sol (5), coarse particles and fine particles were not observed. The average particle diameter, refractive index, pH and conductivity of zirconia sol (5) were measured, and the results are shown in Table 1.
ジルコニアゾル(6)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解し、これにクエン酸一水和物8.53g(Cm/Zm=0.2)を添加し、ついで、濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.6μS/cm、pHは7.0であった。
Preparation of zirconia sol (6) 65.5 g of zirconium oxychloride octahydrate ( ZrOCl 2 .8H 2 O) was dissolved in 2432 g of pure water, and 8.53 g of citric acid monohydrate (Cm / Zm = 0. 2) was added, and then 313 g of a 10 wt% KOH aqueous solution was added to prepare a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%). At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The conductivity of the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) thus obtained was 3.6 μS / cm, and the pH was 7.0.
ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に濃度2重量%のクエン酸水溶液273g(Cmc/Zmc=0.14)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理した。水熱処理によりジルコニアゾルが得られたが、電導度は660μS/cm、pHは2.45であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は55μS/cm、pHは3.2であった。その後、濃縮してジルコニアゾル(6)を調製した。得られたジルコニアゾル(6)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(6)の平均粒子径、屈折率、pHおよび電導度を測定し、結果を表1に示した。
Next, 273 g of a 2% by weight aqueous citric acid solution (Cmc / Zmc = 0.14) was added to the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight), and ultrasonic waves were applied for 1 hour to irradiate the hydrogel. After the dispersion treatment, the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. A zirconia sol was obtained by hydrothermal treatment, but the conductivity was 660 μS / cm and the pH was 2.45.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the electric conductivity was 55 μS / cm and the pH was 3.2. Thereafter, it was concentrated to prepare zirconia sol (6). In TEM observation of the obtained zirconia sol (6), coarse particles and fine particles were not observed. The average particle diameter, refractive index, pH and conductivity of zirconia sol (6) were measured, and the results are shown in Table 1.
ジルコニアゾル(7)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解し、これに酒石酸6g(Cm/Zm=0.2)を添加し、ついで、濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.6μS/cm、pHは7.0であった。
Preparation of zirconia sol (7) In 2432 g of pure water, 65.5 g of zirconium oxychloride octahydrate ( ZrOCl 2 .8H 2 O) was dissolved, to which 6 g of tartaric acid (Cm / Zm = 0.2) was added. Then, 313 g of a 10 wt% KOH aqueous solution was added to prepare a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%). At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The conductivity of the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) thus obtained was 3.6 μS / cm, and the pH was 7.0.
ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に濃度2重量%の酒石酸水溶液213g(Cmc/Zmc=0.14)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理した。水熱処理によりジルコニアゾルが得られたが、電導度は655μS/cm、pHは2.50であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は50μS/cm、pHは3.3であった。その後、濃縮してジルコニアゾル(7)を調製した。得られたジルコニアゾル(7)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(7)の平均粒子径、屈折率、pHおよび電導度を測定し、結果を表1に示した。
Next, 213 g (Cmc / Zmc = 0.14) of a tartaric acid aqueous solution having a concentration of 2% by weight was added to the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration of 1% by weight), and ultrasonic waves were irradiated for 1 hour to disperse the hydrogel. After the treatment, the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. A zirconia sol was obtained by hydrothermal treatment, but the conductivity was 655 μS / cm and the pH was 2.50.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the electric conductivity was 50 μS / cm and the pH was 3.3. Then, it concentrated and the zirconia sol (7) was prepared. In TEM observation of the obtained zirconia sol (7), coarse particles and fine particles were not observed. The average particle diameter, refractive index, pH and conductivity of zirconia sol (7) were measured, and the results are shown in Table 1.
ジルコニアゾル(R1)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解した水溶液に濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは12.0、温度は20℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.5μS/cm、pHは7.3であった。
Preparation of zirconia sol (R1) Zirconium hydroxide hydrogel by adding 313 g of 10% by weight KOH aqueous solution to an aqueous solution of 65.5 g of zirconium oxychloride octahydrate ( ZrOCl 2 .8H 2 O) in 2432 g of pure water A dispersion (ZrO 2 concentration 1% by weight) was prepared. At this time, the pH of the dispersion was 12.0, and the temperature was 20 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1% by weight) had an electric conductivity of 3.5 μS / cm and a pH of 7.3.
ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理した。水熱処理によりジルコニアゾルが得られたが、電導度は650μS/cm、pHは2.65であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は49μS/cm、pHは3.5であった。その後、濃縮してジルコニアゾル(R1)を調製した。得られたジルコニアゾル(R1)のTEM観察では約40nmの一次粒子が凝集した平均粒子径が115nmの二次粒子であった。
ジルコニアゾル(R1)の平均粒子径、屈折率、pHおよび電導度を測定し、結果を表1に示した。
Next, the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) was irradiated with ultrasonic waves for 1 hour to disperse the hydrogel, then filled in an autoclave, and hydrothermally treated at 200 ° C. for 2 hours. A zirconia sol was obtained by hydrothermal treatment, but the conductivity was 650 μS / cm and the pH was 2.65.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the electric conductivity was 49 μS / cm and the pH was 3.5. Thereafter, it was concentrated to prepare zirconia sol (R1). In the TEM observation of the obtained zirconia sol (R1), it was secondary particles having an average particle diameter of 115 nm in which primary particles of about 40 nm were aggregated.
The average particle diameter, refractive index, pH and conductivity of zirconia sol (R1) were measured, and the results are shown in Table 1.
ジルコニアゾル(R2)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解した水溶液に濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは12.0、温度は20℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.5μS/cm、pHは7.3であった。
Preparation of zirconia sol (R2) Zirconium hydroxide hydrogel was prepared by adding 313 g of 10 wt% KOH aqueous solution to an aqueous solution of 65.5 g of zirconium oxychloride octahydrate ( ZrOCl 2 .8H 2 O) in 2432 g of pure water. A dispersion (ZrO 2 concentration 1% by weight) was prepared. At this time, the pH of the dispersion was 12.0, and the temperature was 20 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The conductivity of the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) thus obtained was 3.5 μS / cm and pH was 7.3.
ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に濃度2重量%のリンゴ酸水溶液197g(Cmc/Zmc=0.14)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理した。水熱処理によりジルコニアゾルが得られたが、電導度は650μS/cm、pHは2.65であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は50μS/cm、pHは3.45であった。その後、濃縮してジルコニアゾル(R2)を調製した。得られたジルコニアゾル(R2)のTEM観察では約25nmの一次粒子が凝集した平均粒子径が105nmの二次粒子であった。
ジルコニアゾル(R2)の平均粒子径、屈折率、pHおよび電導度を測定し、結果を表1に示した。
Next, 197 g (Cmc / Zmc = 0.14) of a malic acid aqueous solution having a concentration of 2% by weight was added to the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration of 1% by weight), and ultrasonic waves were irradiated for 1 hour. After the dispersion treatment, the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. A zirconia sol was obtained by hydrothermal treatment, but the conductivity was 650 μS / cm and the pH was 2.65.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the electric conductivity was 50 μS / cm and the pH was 3.45. Thereafter, it was concentrated to prepare zirconia sol (R2). In the TEM observation of the obtained zirconia sol (R2), it was secondary particles having an average particle diameter of 105 nm in which primary particles of about 25 nm were aggregated.
The average particle diameter, refractive index, pH and conductivity of zirconia sol (R2) were measured, and the results are shown in Table 1.
Claims (6)
(a)粒子成長調整剤の存在下、ジルコニウム化合物水溶液にアルカリ水溶液を加えてジルコニウム水酸化物ゲルの分散液を調製する工程
(b)前記ジルコニウム水酸化物ゲルを洗浄する工程
(c)粒子成長調整剤の存在下、前記ジルコニウム水酸化物ゲルの分散液を水熱処理する工程
(d)前記水熱処理したジルコニウム水酸化物ゲルを洗浄する工程 A method for producing a sol in which zirconia fine particles having an average particle diameter in the range of 5 to 100 nm are dispersed, comprising the following steps (a) to (d).
(A) a step of preparing a dispersion of zirconium hydroxide gel by adding an alkaline aqueous solution to a zirconium compound aqueous solution in the presence of a particle growth regulator (b) a step of washing the zirconium hydroxide gel (c) particle growth A step of hydrothermally treating the dispersion of the zirconium hydroxide gel in the presence of a modifier (d) a step of washing the hydrothermally treated zirconium hydroxide gel
The method for producing a zirconia sol according to any one of claims 1 to 5, wherein an electric conductivity of the zirconia sol is set to 200 µS / cm or less in the step (d).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003421497A JP2005179111A (en) | 2003-12-18 | 2003-12-18 | Method for manufacturing zirconia sol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003421497A JP2005179111A (en) | 2003-12-18 | 2003-12-18 | Method for manufacturing zirconia sol |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005179111A true JP2005179111A (en) | 2005-07-07 |
Family
ID=34782704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003421497A Pending JP2005179111A (en) | 2003-12-18 | 2003-12-18 | Method for manufacturing zirconia sol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005179111A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007070212A (en) * | 2005-09-02 | 2007-03-22 | Daiichi Kigensokagaku Kogyo Co Ltd | SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME |
JP2007099931A (en) * | 2005-10-05 | 2007-04-19 | Sumitomo Osaka Cement Co Ltd | Transparent zirconia dispersion liquid, transparent composite material and method for producing transparent composite material |
JP2007254257A (en) * | 2006-03-20 | 2007-10-04 | Daiichi Kigensokagaku Kogyo Co Ltd | Method for producing zirconia sol |
WO2007129654A1 (en) | 2006-05-02 | 2007-11-15 | Daio Paper Corporation | Production method of enamel paper |
JP2008143734A (en) * | 2006-12-08 | 2008-06-26 | Univ Nihon | Method for producing sol of hafnia and/or zirconia containing complex structure with formic acid ion coordinated therein, method for producing hard film, and hard film |
EP1994979A1 (en) | 2007-05-23 | 2008-11-26 | Nissan Chemical Industries, Ltd. | Method for producing zirconia sol |
JP2009137774A (en) * | 2007-12-03 | 2009-06-25 | Sumitomo Osaka Cement Co Ltd | Zirconia particle, its producing method, zirconia transparent dispersion liquid, transparent complex and its producing method |
JP2010523451A (en) * | 2007-04-04 | 2010-07-15 | エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック | Preparation of colloidal solution of zirconia |
JP2010270094A (en) * | 2008-06-09 | 2010-12-02 | Sumitomo Chemical Co Ltd | Zirconium oxalate sol |
JP2011508721A (en) * | 2007-12-28 | 2011-03-17 | スリーエム イノベイティブ プロパティズ カンパニー | Method for producing zirconia-containing nanoparticles |
WO2013007015A1 (en) * | 2011-07-12 | 2013-01-17 | Essilor International (Compagnie Générale d'Optique) | Method for producing zirconia colloids |
JP2013075824A (en) * | 2012-12-25 | 2013-04-25 | Sumitomo Osaka Cement Co Ltd | Transparent composite and method for producing the same |
JP2014105133A (en) * | 2012-11-28 | 2014-06-09 | Japan Fine Ceramics Center | Method for producing ceria-zirconia composite oxide material and ceria-zirconia composite oxide material obtained thereby |
JP2016501825A (en) * | 2012-12-26 | 2016-01-21 | エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) | Method for producing zirconia colloid |
JP2017200857A (en) * | 2016-05-02 | 2017-11-09 | 株式会社アイテック | Method for producing zirconia particle |
CN115490263A (en) * | 2022-09-23 | 2022-12-20 | 上海大学 | Preparation method of nano zirconia powder |
CN118026257A (en) * | 2024-03-07 | 2024-05-14 | 山东麦丰新材料科技股份有限公司 | Preparation method of nano zirconia powder and prepared nano zirconia powder |
-
2003
- 2003-12-18 JP JP2003421497A patent/JP2005179111A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007070212A (en) * | 2005-09-02 | 2007-03-22 | Daiichi Kigensokagaku Kogyo Co Ltd | SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME |
JP2007099931A (en) * | 2005-10-05 | 2007-04-19 | Sumitomo Osaka Cement Co Ltd | Transparent zirconia dispersion liquid, transparent composite material and method for producing transparent composite material |
JP2007254257A (en) * | 2006-03-20 | 2007-10-04 | Daiichi Kigensokagaku Kogyo Co Ltd | Method for producing zirconia sol |
WO2007129654A1 (en) | 2006-05-02 | 2007-11-15 | Daio Paper Corporation | Production method of enamel paper |
JP2008143734A (en) * | 2006-12-08 | 2008-06-26 | Univ Nihon | Method for producing sol of hafnia and/or zirconia containing complex structure with formic acid ion coordinated therein, method for producing hard film, and hard film |
JP2010523451A (en) * | 2007-04-04 | 2010-07-15 | エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック | Preparation of colloidal solution of zirconia |
EP1994979A1 (en) | 2007-05-23 | 2008-11-26 | Nissan Chemical Industries, Ltd. | Method for producing zirconia sol |
JP2009137774A (en) * | 2007-12-03 | 2009-06-25 | Sumitomo Osaka Cement Co Ltd | Zirconia particle, its producing method, zirconia transparent dispersion liquid, transparent complex and its producing method |
US8647510B2 (en) | 2007-12-28 | 2014-02-11 | 3M Innovative Properties Company | Method of making zirconia-containing nanoparticles |
JP2011508721A (en) * | 2007-12-28 | 2011-03-17 | スリーエム イノベイティブ プロパティズ カンパニー | Method for producing zirconia-containing nanoparticles |
US8808549B2 (en) | 2007-12-28 | 2014-08-19 | 3M Innovative Properties Company | Method of making zirconia-containing nanoparticles |
JP2010270094A (en) * | 2008-06-09 | 2010-12-02 | Sumitomo Chemical Co Ltd | Zirconium oxalate sol |
WO2013007015A1 (en) * | 2011-07-12 | 2013-01-17 | Essilor International (Compagnie Générale d'Optique) | Method for producing zirconia colloids |
US9250360B2 (en) | 2011-07-12 | 2016-02-02 | Essilor International (Compagnie Generale D'optique) | Method for producing zirconia colloids |
JP2014105133A (en) * | 2012-11-28 | 2014-06-09 | Japan Fine Ceramics Center | Method for producing ceria-zirconia composite oxide material and ceria-zirconia composite oxide material obtained thereby |
JP2013075824A (en) * | 2012-12-25 | 2013-04-25 | Sumitomo Osaka Cement Co Ltd | Transparent composite and method for producing the same |
JP2016501825A (en) * | 2012-12-26 | 2016-01-21 | エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) | Method for producing zirconia colloid |
EP2958858A4 (en) * | 2012-12-26 | 2016-12-28 | Essilor Int (Compagnie Générale D'optique) | Method for producing zirconia colloids |
US9802174B2 (en) | 2012-12-26 | 2017-10-31 | Essilor International (Compagnie Generale D'optique) | Method for producing zirconia colloids |
JP2017200857A (en) * | 2016-05-02 | 2017-11-09 | 株式会社アイテック | Method for producing zirconia particle |
CN115490263A (en) * | 2022-09-23 | 2022-12-20 | 上海大学 | Preparation method of nano zirconia powder |
CN115490263B (en) * | 2022-09-23 | 2023-10-17 | 上海大学 | Preparation method of nano zirconia powder |
CN118026257A (en) * | 2024-03-07 | 2024-05-14 | 山东麦丰新材料科技股份有限公司 | Preparation method of nano zirconia powder and prepared nano zirconia powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4705361B2 (en) | Method for producing zirconia sol | |
JP2005179111A (en) | Method for manufacturing zirconia sol | |
JP5253095B2 (en) | Method for producing zirconia sol | |
JP5013671B2 (en) | Method for producing metal oxide sol and metal oxide sol | |
JP4918880B2 (en) | Method for producing zirconia sol | |
JP2783417B2 (en) | Manufacturing method of rutile type titanium oxide sol | |
JP5407324B2 (en) | Method for producing zirconium oxide dispersion | |
KR101563557B1 (en) | Titanium Oxide Sol Manufacturing Method | |
JP4171850B2 (en) | Modified titanium oxide-zirconium oxide-stannic oxide composite sol and method for producing the same | |
RU2569083C2 (en) | Method for producing disperse system of titanium oxide rutile particles | |
US20090088313A1 (en) | Production Method of Alkaline Zirconia Sol | |
JP4891021B2 (en) | Method for producing niobium oxide fine particles | |
JP5645015B2 (en) | Method for producing yttrium oxide stabilized zirconium oxide sol | |
JP4730487B2 (en) | Modified metal oxide sol and method for producing the same | |
JP4493320B2 (en) | Method for producing silica sol and silica sol | |
EP0641739B1 (en) | Sol and fine powder of sodium magnesium fluoride and processes for their production | |
JP6198379B2 (en) | Modified zirconia fine particle powder, modified zirconia fine particle dispersed sol and method for producing the same | |
JP2006176392A (en) | Process for producing modified stannic oxide sol and stannic oxide/zirconium oxide composite sol | |
KR101517369B1 (en) | Process for preparing zirconia sol | |
JP2011098859A (en) | Colloidal silica and method for producing the same | |
JP5108279B2 (en) | Method for producing aqueous dispersion containing chain silica-based fine particle group, aqueous dispersion of chain silica-based fine particle group, and organic solvent dispersion thereof | |
JP6300313B2 (en) | Rutile-type titanium oxide sol and method for producing the same | |
JP2003026417A (en) | Method of manufacturing silica sol and silica-base multiple oxide sol | |
JP3642490B1 (en) | Method for producing titania solution | |
KR102019698B1 (en) | Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method |