JP4488831B2 - Method for producing rare earth oxide sol or hydroxide sol - Google Patents

Method for producing rare earth oxide sol or hydroxide sol Download PDF

Info

Publication number
JP4488831B2
JP4488831B2 JP2004230059A JP2004230059A JP4488831B2 JP 4488831 B2 JP4488831 B2 JP 4488831B2 JP 2004230059 A JP2004230059 A JP 2004230059A JP 2004230059 A JP2004230059 A JP 2004230059A JP 4488831 B2 JP4488831 B2 JP 4488831B2
Authority
JP
Japan
Prior art keywords
sol
rare earth
acid
earth element
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004230059A
Other languages
Japanese (ja)
Other versions
JP2006045015A (en
Inventor
武利 黒田
京子 高井
裕之 井筒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2004230059A priority Critical patent/JP4488831B2/en
Publication of JP2006045015A publication Critical patent/JP2006045015A/en
Application granted granted Critical
Publication of JP4488831B2 publication Critical patent/JP4488831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、一価の無機酸根が少なく、且つゾルとしての安定性に優れた希土類元素の酸化物ゾルまたは水酸化物ゾルの製造方法に関する。
The present invention relates to a method for producing an oxide sol or hydroxide sol of a rare earth element having a small amount of monovalent inorganic acid radicals and excellent stability as a sol.

希土類元素(Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)は特異な物理・化学的性質を有することから、IT関連や地球環境保全、エネルギー分野などの次世代を担う新規な材料として研究が盛んに行われている。工業的な応用製品としては、希土類元素化合物を用いた蛍光体が有名であり、このほかにも誘電体材料の特性調整剤として、あるいはセラミクスの焼結助剤として、また希土類元素の酸化物の屈折率が例えばY=1.87、La=1.95、CeO=2.20と高いことから、高屈折率材料としての応用例が知られている。
これらの用途に用いられる希土類元素の水酸化物や酸化物は、近年の電子セラミクス関連製品の微小化、高性能化の要求から微粒子化されたものが求められており、特に数百ナノメーター以下の、いわゆるナノ粒子が必要とされている。
Since rare earth elements (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) have unique physical and chemical properties, Research is actively conducted as a new material for the next generation in IT-related, global environmental conservation, and energy fields. As industrially applied products, phosphors using rare earth compounds are well-known, and in addition to these, they are used as dielectric material property modifiers, ceramic sintering aids, and rare earth element oxides. Since the refractive index is high, for example, Y 2 O 3 = 1.87, La 2 O 3 = 1.95, and CeO 2 = 2.20, an application example as a high refractive index material is known.
Rare earth element hydroxides and oxides used in these applications are required to be finely divided due to recent demands for miniaturization and high performance of electronic ceramics-related products, especially several hundred nanometers or less. There is a need for so-called nanoparticles.

このような要求のもと、これまで希土類水酸化物ゾルの製造に関しては種々報告されている。例えば、希土類元素の塩水溶液と過剰量のアンモニアとの反応により、水酸化物ゲルを形成させた後、生成したアンモニウム塩を除去することにより希土類水酸化物のゾルを製造する方法が提案されている(例えば、特許文献1参照)。この方法は、希土類元素の塩水溶液の中和、生成ゲルの洗浄、熱処理という単純な工程でゾルが得られるという利点を有し、経済的にも大量生産に適した方法である。しかしながら、この製造法によって得られるゾルは、原料に塩化物や硝酸塩等の無機酸塩を使用しているため、通常の中和工程だけでは原料に由来する塩素や硝酸イオン等の一価の無機酸根がゾル中に残留する。特に、元素番号の大きい重希土類元素(Ho、Er、Tm、Yb、Lu)は塩基性が強く、一価の無機酸根を強く吸着する性質が強いため、例えば重希土類元素の塩化物を出発原料とする場合には、塩素イオンの相当量の残存を避けることができない。   Under such demands, various reports have been reported regarding the production of rare earth hydroxide sols. For example, a method of producing a rare earth hydroxide sol by forming a hydroxide gel by a reaction between an aqueous salt solution of a rare earth element and an excess amount of ammonia and then removing the produced ammonium salt has been proposed. (For example, refer to Patent Document 1). This method has an advantage that a sol can be obtained by simple steps of neutralization of a salt solution of rare earth elements, washing of a generated gel, and heat treatment, and is economically suitable for mass production. However, since the sol obtained by this production method uses inorganic acid salts such as chlorides and nitrates as raw materials, monovalent inorganic substances such as chlorine and nitrate ions derived from the raw materials can be obtained only by a normal neutralization step. Acid radicals remain in the sol. In particular, heavy rare earth elements having a large element number (Ho, Er, Tm, Yb, Lu) are strong in basicity and strongly adsorb monovalent inorganic acid radicals. In this case, a considerable amount of chlorine ions cannot be avoided.

従って、特許文献1に示すような従来法によって得られるゾルは、通常希土類元素の酸化物に対するモル比で0.1以上、重希土類では0.5以上の一価の無機酸根を含んでいるのが一般的である。例えば、希土類元素酸化物Mの平均的分子量を362とし、10質量%の酸化物を含む塩酸型のゾルを想定した場合には、ゾル中に含まれる塩酸量は約1000ppmとなる。これは希土類の元素の種類によって多少異なるが、これ以上の無機酸根の存在はいずれも望ましくなく、無機酸根量は出来るだけ少なくすることが望まれている。 Therefore, the sol obtained by the conventional method as shown in Patent Document 1 usually contains a monovalent inorganic acid group having a molar ratio of rare earth element to oxide of 0.1 or more and heavy rare earth of 0.5 or more. Is common. For example, assuming an average molecular weight of the rare earth element oxide M 2 O 3 of 362 and a hydrochloric acid type sol containing 10% by mass of oxide, the amount of hydrochloric acid contained in the sol is about 1000 ppm. This slightly differs depending on the kind of rare earth element, but any inorganic acid radicals beyond this level are undesirable, and it is desired to reduce the amount of inorganic acid radicals as much as possible.

前述の通り、希土類元素の多くは、セラミックス材料や触媒用途にも利用されており、これら材料の焼結時に発生する塩素イオン由来の酸性ガスは炉体または環境に悪影響を及ぼす可能性があるだけでなく、製品の性能そのものを悪化させる原因ともなっている。そこで、特許文献1ではこれらの問題を解決するため、過剰量のアルカリ剤であるアンモニアを投与して脱酸根を行っているが、過剰量の添加であるために生産効率は著しく悪いものであり、その結果、製造されたゾルは高価なものとなる。また酸根の除去効率向上のため中和・洗浄時の温度を高くすると、生成するゾルの粒子が大きくなり、所望する粒子径の小さなゾルを得ることができない欠点があった。   As mentioned above, most rare earth elements are also used for ceramic materials and catalyst applications, and the acidic gas derived from chlorine ions generated during sintering of these materials can only have an adverse effect on the furnace body or the environment. Not only that, it also causes the product performance itself to deteriorate. Therefore, in Patent Document 1, in order to solve these problems, deoxidation radicals are performed by administering an excessive amount of ammonia, which is an alkaline agent, but the production efficiency is extremely poor due to the excessive amount of addition. As a result, the produced sol becomes expensive. Further, if the temperature during neutralization / washing is increased to improve the removal efficiency of acid radicals, the sol particles produced increase in size, and there is a drawback that a desired sol with a small particle diameter cannot be obtained.

ところで、希土類元素の酸化物または水酸化物は塩基性化合物であるため、ゾルを構成する粒子を分散安定化させるためには陰イオン性物質を表面に吸着させる必要がある。それゆえに、特許文献1に於いては塩素イオンが分散安定化剤として作用しているため、これを単純に除去すると粒子が小さいゾルは得られるものの安定性に乏しいものとなり、沈殿、固化するという問題がある。   By the way, since the rare earth element oxide or hydroxide is a basic compound, it is necessary to adsorb an anionic substance on the surface in order to disperse and stabilize the particles constituting the sol. Therefore, in Patent Document 1, since chloride ions act as a dispersion stabilizer, if this is simply removed, a sol with small particles can be obtained, but the stability will be poor, and it will precipitate and solidify. There's a problem.

一方、塩素イオン等の一価の無機酸根を含有せず、酢酸で分散安定化した稀土類元素の酸化物ゾルが提案されている(例えば、特許文献2参照)。
この酢酸は無機の酸根の様な腐食性はなく、比較的利用しやすいものの、熱処理時にその臭気が問題になる場合があり、その結果用途は著しく限定されていた。また、上記従来技術によって得られる希土類元素のゾルはいずれも酸性領域のみで安定なもので、中性からアルカリ領域では不安定であり、塩基性物質を加えるとゲル化するという欠点を有していた。
On the other hand, a rare earth element oxide sol that does not contain monovalent inorganic acid radicals such as chloride ions and is stabilized by dispersion with acetic acid has been proposed (for example, see Patent Document 2).
Although this acetic acid is not corrosive like an inorganic acid radical and is relatively easy to use, its odor sometimes becomes a problem during heat treatment, and as a result, its use has been remarkably limited. In addition, the sols of rare earth elements obtained by the above-mentioned prior art are all stable only in the acidic region, unstable in the neutral to alkaline region, and have the disadvantage of gelling when a basic substance is added. It was.

希土類元素の酸化物の一種である酸化セリウムについて、本出願人は有機酸で解膠したセリウムゾルに関する技術を開示したが、この技術については、本発明で云う希土類元素の全てに適用できるものではなく、また酸根に関しては何ら詳細な説明を行なっていない(例えば、特許文献3及び特許文献4参照)。
前述のような背景技術から、希土類元素の酸化物または水酸化物のゾルを工業的に利用するためには、腐食性や臭気の問題が無く、且つ、酸性からアルカリ性の広い範囲で長期にわたって安定なものが強く要望されている。
Regarding cerium oxide, which is a kind of rare earth element oxide, the present applicant has disclosed a technique relating to cerium sol peptized with an organic acid, but this technique is not applicable to all rare earth elements in the present invention. In addition, no detailed explanation is given regarding acid radicals (see, for example, Patent Document 3 and Patent Document 4).
From the background art described above, in order to industrially use rare earth oxide or hydroxide sol, there is no problem of corrosiveness and odor, and it is stable over a wide range from acidic to alkaline. There is a strong demand for something.

米国特許第3024199号公報US Patent No. 3024199 特公平7-61864号公報Japanese Examined Patent Publication No. 7-61864 特許第2654880号公報Japanese Patent No. 2654880 特開平8-3541号公報JP-A-8-3541

本発明は、前述のように各種機能性材料に使用できる希土類元素酸化物を提供する希土類元素の酸化物ゾルまたは水酸化物ゾルの製造方法に関する。本発明は、有害なガスを発生する塩素イオン、硝酸イオン等の一価の無機酸根を実質的に含まないか或いは極めて少なく、しかも酢酸のような刺激臭を有しない、長期にわたって安定性の高い希土類元素の酸化物ゾルまたは水酸化物ゾルの製造方法を提供することを目的とする。
The present invention relates to a method for producing a rare earth oxide sol or hydroxide sol that provides a rare earth oxide that can be used in various functional materials as described above. The present invention has substantially no or very few monovalent inorganic acid radicals such as chlorine ions and nitrate ions that generate harmful gases, and has no irritating odor such as acetic acid, and has high stability over a long period of time. It is an object of the present invention to provide a method for producing a rare earth oxide sol or hydroxide sol.

本発明は、一価の無機酸根で安定化されていたため、その用途が限定されていた希土類元素の酸化物ゾルまたは水酸化物ゾルの改良に係り、特定範囲のメジアン径を有する希土類元素の酸化物ゾルまたは水酸化物ゾルに、ヒドロキシカルボン酸を用いて分散安定化させることにより、一価の無機酸根を実質的に含有せず、極めて安定で広範な用途に適合しうる希土類元素の酸化物ゾルまたは水酸化物ゾルが得られることを見出し、係る知見に基づき本発明を完成したものである。   Since the present invention is stabilized by monovalent inorganic acid radicals, the present invention relates to the improvement of rare earth element oxide sols or hydroxide sols whose use has been limited, and oxidation of rare earth elements having a median diameter in a specific range. Oxides of rare earth elements that do not contain any monovalent inorganic acid radicals and are extremely stable and suitable for a wide range of applications, by dispersing and stabilizing the product sol or hydroxide sol using hydroxycarboxylic acid The present inventors have found that a sol or hydroxide sol can be obtained, and have completed the present invention based on such knowledge.

即ち、本発明は、メジアン径が10〜300nmであり、ヒドロキシカルボン酸を希土類元素M(但し、Mは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選ばれた希土類元素を示す)に対し、ヒドロキシカルボン酸/M(モル比)として0.05〜0.5の範囲で含有する希土類元素の酸化物ゾルまたは水酸化物ゾルの製造方法に関する。



That is, in the present invention, the median diameter is 10 to 300 nm, and hydroxycarboxylic acid is a rare earth element M (where M is Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Oxidation of rare earth elements contained in the range of 0.05 to 0.5 as hydroxycarboxylic acid / M 2 O 3 (molar ratio) with respect to rare earth elements selected from Ho, Er, Tm, Yb and Lu) The present invention relates to a method for producing a product sol or a hydroxide sol.



本発明で得られる希土類元素の酸化物ゾルまたは水酸化物ゾル中には、一価の無機酸根を実質的に含有せず、或いは含有しても極めて少量であることから、セラミックス材料等の焼結時に発生する不要なガスの生成もなく、炉体あるいは環境に対する悪影響のないゾルである。
また、ゾルとして頗る安定なゾルが得られるため、希土類元素を用いる製品の性能向上に極めて有効である。
The rare earth element oxide sol or hydroxide sol obtained in the present invention contains substantially no monovalent inorganic acid radical or contains a very small amount. It is a sol that does not generate unnecessary gas generated during congealing and does not adversely affect the furnace body or the environment.
Further, since a stable sol that can be obtained as a sol can be obtained, it is extremely effective in improving the performance of products using rare earth elements.

以下本発明のゾルについて詳細に説明する。
本発明のゾルは、ゾルを構成する粒子のメジアン径が10〜300nmであることが第一の特徴であり、更にヒドロキシカルボン酸を希土類元素M(但し、Mは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選ばれた希土類元素を示す)に対し、ヒドロキシカルボン酸/M(モル比)として0.05〜0.5の範囲で含有していることが特徴である。
Hereinafter, the sol of the present invention will be described in detail.
The first feature of the sol of the present invention is that the median diameter of the particles constituting the sol is 10 to 300 nm. Further, the hydroxycarboxylic acid is a rare earth element M (where M is Sc, Y, La, Ce). , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu represents a rare earth element) and 0 as hydroxycarboxylic acid / M 2 O 3 (molar ratio) It is characterized by containing in the range of 0.05 to 0.5.

このメジアン径が10nm以下の粒子径の小さなゾルは、機能性物質を構成する希土類元素の酸化物原料としては好ましいものではあるが、きわめて増粘し易く、長期安定性に問題がある。そこで、このような微細な粒子を安定化させるには分散安定化剤の量が非常に多く必要となり、効果に対する経済性が損なわれるという欠点がある。
一方、メジアン径が300nm以上の大きな粒子のゾルでは、粒子が安定分散せず重力によって沈殿を生じるため好ましくない。
従って、更に好ましくはメジアン径は15〜150nmの範囲であることが推奨される。尚、本発明で云うメジアン径とは、動的光散乱法によって測定したゾル分散状態下でのゾル粒子の平均直径をいう。
Although a sol having a median diameter of 10 nm or less and having a small particle diameter is preferable as an oxide raw material for a rare earth element constituting a functional substance, it is very easy to thicken and has a problem in long-term stability. Therefore, in order to stabilize such fine particles, a very large amount of the dispersion stabilizer is required, and there is a drawback that the economic efficiency is impaired.
On the other hand, a sol of large particles having a median diameter of 300 nm or more is not preferable because the particles do not stably disperse and precipitate due to gravity.
Therefore, it is more preferable that the median diameter is in the range of 15 to 150 nm. The median diameter in the present invention refers to the average diameter of sol particles under a sol dispersion state measured by a dynamic light scattering method.

ゾルの分散安定化剤としては、ヒドロキシカルボン酸またはその塩類が最も適しており、これによって希土類元素の酸化物ゾルまたは水酸化物のゾルを長期にわたり安定に分散させることができる。
ヒドロキシカルボン酸の含有量については、ゾルが安定である範囲内で少ない方が好ましいが、実質的にはヒドロキシカルボン酸/M(モル比)で0.05〜0.5の範囲が望ましい。より好ましくはヒドロキシカルボン酸/M(モル比)で0.1〜0.45の範囲である。上記範囲を逸脱した場合は、ゾルが不安定になり、増粘、ゲル化するという問題を生じる。
As the sol dispersion stabilizer, hydroxycarboxylic acid or a salt thereof is most suitable, whereby the rare earth oxide sol or hydroxide sol can be stably dispersed over a long period of time.
The hydroxycarboxylic acid content is preferably as small as possible within the range in which the sol is stable, but the hydroxycarboxylic acid / M 2 O 3 (molar ratio) is substantially in the range of 0.05 to 0.5. desirable. More preferably in the range of 0.1 to 0.45 with a hydroxy carboxylic acid / M 2 O 3 (molar ratio). When deviating from the above range, the sol becomes unstable, causing the problem of thickening and gelling.

本発明のゾルに含有されるヒドロキシカルボン酸は、水酸基とカルボキシル基を分子内に有する化合物であれば特段限定されず、希土類元素の酸化物粒子または水酸化物粒子を分散安定化することができる。本発明の希土類元素の酸化物ゾルまたは水酸化物ゾルのように、非常に微細な粒子を液中で安定化させるためには、キレート性能に富んだものが好ましく、例えばクエン酸、リンゴ酸、酒石酸など、カルボキシル基を2以上有するものの使用が好ましく、最も好ましくはカルボキシル基を3つ有するクエン酸が推奨される。
カルボキシル基の数が多いものほど希土類元素の酸化物または水酸化物の微粒子を安定化させる効果が高く、しかも一価の無機酸根の含有量を低減させることができる。上記ヒドロキシカルボン酸は最終的に酸の状態でもアミンやアンモニアと反応した塩の形でゾル中に含有されていてもよい。
The hydroxycarboxylic acid contained in the sol of the present invention is not particularly limited as long as it is a compound having a hydroxyl group and a carboxyl group in the molecule, and can disperse and stabilize rare earth element oxide particles or hydroxide particles. . In order to stabilize very fine particles in the liquid, like the rare earth oxide sol or hydroxide sol of the present invention, those having a high chelating ability are preferable, such as citric acid, malic acid, Preference is given to using tartaric acid or the like having two or more carboxyl groups, most preferably citric acid having three carboxyl groups.
The larger the number of carboxyl groups, the higher the effect of stabilizing the rare earth element oxide or hydroxide fine particles, and the content of monovalent inorganic acid radicals can be reduced. The hydroxycarboxylic acid may be finally contained in the sol in the form of a salt reacted with amine or ammonia even in the acid state.

本発明のメジアン径が10〜300nmを有するゾルの製造法については、特許文献1に記載しているような従来法に示されるように、希土類元素の塩化物をアルカリで中和することによって得た沈降性のゲルを、洗浄、熱処理してゾル化して製造することができ、無機酸根を含むものの、元素の種類に応じて経済的で再現性よくゾルを得ることができる。また、特許文献2に示すような方法により、酢酸を含むゾルを得ることによっても上記範囲の粒子を有するゾルが得られる。
本発明のゾルは、これらのゾルの分散剤をヒドロキシカルボン酸で置換することにより最も簡単に製造することができる。
The method for producing a sol having a median diameter of 10 to 300 nm according to the present invention is obtained by neutralizing a rare earth element chloride with an alkali as shown in the conventional method described in Patent Document 1. The precipitated gel can be produced by washing and heat treatment to form a sol. Although it contains an inorganic acid radical, the sol can be obtained economically and reproducibly depending on the type of element. A sol having particles in the above range can also be obtained by obtaining a sol containing acetic acid by a method as shown in Patent Document 2.
The sol of the present invention can be most easily produced by replacing the dispersant of these sols with hydroxycarboxylic acid.

以下に、従来法による無機酸根を含むゾルの製法についてより詳細に説明し、更に一価の無機酸根の除去とヒドロキシカルボン酸による安定化法について詳述する。
本発明によるゾル構成元素は、希土類元素として、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選ばれた希土類元素であり、本発明のゾル製造に用いる希土類元素の水酸化物ゲルは公知方法によって得られるゲルを使用することができる。
例えば、水溶性の希土類元素の塩とアルカリ剤を反応させた後、副生する塩を洗浄除去して得られるゲルを使用することができる。
水溶性の希土類元素の塩としては、希土類元素の塩化物、硝酸塩等が例示でき、これらは市販の材料から入手することができるが、希土類元素の酸化物を塩酸、硝酸等の無機酸に溶解させて得ることもできる。
また使用するアルカリ剤としては、アンモニア、水酸化ナトリウム等をはじめ、有機アミン類や水酸化カリウム、水酸化リチウム等も使用することができる。上述のごとくして得られる希土類元素のゲルは、含有する酸根により自然にゾル化する場合も有るが、必要に応じて熱処理等により解膠してゾルとすることができる。
このとき含有する一価の酸根は、希土類元素のうち、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、TbおよびDyに関しては、一価の酸根/M(モル比)=0.04〜0.6の範囲で含有するものが、所望するメジアン径で安定であり、希土類元素のうち、Ho、Er、Tm、YbおよびLuに関しては、一価の酸根を一価の酸根/M(モル比)=0.3〜1.5の範囲で含有するものが安定である。
一価の酸根が、上記所定範囲内にないときは、別途無機酸をゲルに所定量となるように添加すればよい。
いずれの場合も、一価の酸根が下限を下廻ると解膠が充分でなくなり、透明で安定なゾルを得ることができない。一方、上限を超えると酸に対する溶解度が大きくなり、収率が低下する。
Below, the manufacturing method of the sol containing the inorganic acid radical by the conventional method is demonstrated in detail, Furthermore, the removal method of a monovalent | monohydric inorganic acid radical and the stabilization method by hydroxycarboxylic acid are explained in full detail.
The sol constituent elements according to the present invention are rare earth elements selected from Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu as rare earth elements. In addition, the rare earth element hydroxide gel used in the sol production of the present invention may be a gel obtained by a known method.
For example, it is possible to use a gel obtained by reacting a salt of a water-soluble rare earth element with an alkali agent and then washing and removing the by-product salt.
Examples of water-soluble rare earth element salts include rare earth element chlorides and nitrates, which can be obtained from commercially available materials, but rare earth element oxides are dissolved in inorganic acids such as hydrochloric acid and nitric acid. It can also be obtained.
Moreover, as an alkaline agent to be used, ammonia, sodium hydroxide, etc., organic amines, potassium hydroxide, lithium hydroxide, etc. can be used. The rare earth element gel obtained as described above may be naturally solated by the acid radicals contained therein, but if necessary, it can be peptized by heat treatment or the like to form a sol.
The monovalent acid radicals contained at this time are Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb and Dy among the rare earth elements, and are monovalent acid radicals / M 2 O 3 (moles). Ratio) = 0.04 to 0.6 is stable in the desired median diameter. Among rare earth elements, Ho, Er, Tm, Yb and Lu are monovalent acid radicals. it is stable those containing in a range of valence of acid radical / M 2 O 3 (molar ratio) = 0.3 to 1.5.
When the monovalent acid radical is not within the predetermined range, an inorganic acid may be separately added to the gel so as to have a predetermined amount.
In either case, when the monovalent acid radical is below the lower limit, peptization is not sufficient, and a transparent and stable sol cannot be obtained. On the other hand, when the upper limit is exceeded, the acid solubility increases and the yield decreases.

解膠時の希土類元素の水酸化物ゾルの濃度に関しては、特段限定されないが、Mとして大略1〜10質量%の範囲が好ましい。
熱処理条件に関しては、通常の100℃までの加熱処理だけでなく、100℃以上の水熱処理を用いることもできる。本発明のゾルの種類、用途に応じてこの加熱条件を設定し、メジアン径10〜300nmで安定な希土類元素の酸化物ゾルまたは水酸化物ゾルを製造することができる。
The concentration of the rare earth element hydroxide sol at the time of peptization is not particularly limited, but is preferably in the range of about 1 to 10% by mass as M 2 O 3 .
Regarding heat treatment conditions, not only normal heat treatment up to 100 ° C. but also hydrothermal treatment at 100 ° C. or higher can be used. This heating condition is set according to the kind and use of the sol of the present invention, and a stable rare earth oxide sol or hydroxide sol having a median diameter of 10 to 300 nm can be produced.

次いで得られたゾルに、所定量のヒドロキシカルボン酸を添加し、アルカリ剤によりpHを9〜12に調整した後、限外濾過する工程に供する。
本発明で使用するヒドロキシカルボン酸の添加量は、希土類元素の酸化物1モルに対し0.3〜0.7モルの範囲が好ましい。この範囲以下では、残存している酸根を後述する操作によって充分除去することができず、本発明の一価の無機酸根含有量の極めて少ないゾルが得られないため好ましくない。
一方、添加量がこの範囲以上になるとアルカリ剤の添加時にゾルが溶解し、限外濾過による洗浄中に濾過漏れを生じる可能性があり、その場合には収率が極端に低下し好ましくない。その態様に関しては、固体、水溶液いずれの状態で投入してもよいが、最終的にゾル中に全てのヒドロキシカルボン酸が溶解していることが必要である。
Next, a predetermined amount of hydroxycarboxylic acid is added to the obtained sol, and the pH is adjusted to 9 to 12 with an alkali agent, followed by ultrafiltration.
The amount of the hydroxycarboxylic acid used in the present invention is preferably in the range of 0.3 to 0.7 mol with respect to 1 mol of the rare earth element oxide. Below this range, the remaining acid radicals cannot be sufficiently removed by the operation described later, and a sol with an extremely low monovalent inorganic acid radical content of the present invention cannot be obtained.
On the other hand, if the amount added exceeds this range, the sol dissolves when the alkaline agent is added, and filtration leakage may occur during washing by ultrafiltration. In this case, the yield is extremely lowered, which is not preferable. With regard to the embodiment, it may be charged in either a solid state or an aqueous solution, but it is necessary that all hydroxycarboxylic acids are finally dissolved in the sol.

例えば、撹拌下にある解膠したゾルに1〜10質量%のヒドロキシカルボン酸水溶液をゆっくり添加すれば、安定に添加することができる。ヒドロキシカルボン酸の添加によってゾルは一時的に濁るか、または増粘する場合があるが、後段の工程でのアルカリ剤の添加によって溶液は再びゾルの外観を呈するようになる。添加時の増粘が著しい場合は原料ゾルの濃度を低下させれば良い。一価の無機酸根は、ヒドロキシカルボン酸の存在下でのアルカリ剤の添加によって、ヒドロキシカルボン酸と置換して遊離し、続いて行われる限外濾過による洗浄により系外に取り除かれる。   For example, if a 1-10 mass% hydroxycarboxylic acid aqueous solution is slowly added to the peptized sol under stirring, it can be added stably. Although the sol may become temporarily turbid or thickened by the addition of hydroxycarboxylic acid, the solution again becomes sol-like by the addition of the alkaline agent in the subsequent step. If the thickening at the time of addition is significant, the concentration of the raw material sol may be lowered. Monovalent inorganic acid radicals are liberated by replacement with hydroxycarboxylic acid by the addition of an alkaline agent in the presence of hydroxycarboxylic acid, and then removed out of the system by washing by subsequent ultrafiltration.

本発明で使用するアルカリ剤の種類としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア、アミン類などを用いることができるが、経済性、作業性の点から水酸化ナトリウムおよびアンモニア水が好ましい。アルカリ剤添加時の濃度に関しては特段制限はないが、アルカリ剤の添加量に関しては、ゾルのpHが9〜12となる様に添加すれば良い。このpH範囲を逸脱すると一価の無機酸根を充分除去することができない。
ところでオキシカルボン酸、アルカリ剤の添加時の温度に関しては、10〜90℃の範囲内であれば特段制限はなく、温度によって性能が大きく異なることはないが、本発明で重要な点は、ヒドロキシカルボン酸の添加の後にアルカリ剤を添加することであり、この添加順序を逆にすると安定なゾルを得ることはできない。
ヒドロキシカルボン酸およびアルカリ剤を添加した後のゾルは、限外濾過による洗浄を行い濾液の電気伝導度が5S/m以下となるまで洗浄することが好ましい。
この洗浄が不十分な場合は、一価の酸根やヒドロキシカルボン酸の残存量が多くなり、ゾルの安定性が低下するため好ましくない。
また、洗浄後に限外濾過または加熱により濃縮することもでき、M濃度として5〜50質量%のゾルを得ることができる。
As the kind of alkaline agent used in the present invention, sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, amines and the like can be used. From the viewpoint of economy and workability, sodium hydroxide and aqueous ammonia are used. Is preferred. There is no particular restriction on the concentration when the alkali agent is added, but the amount of the alkali agent added may be added so that the sol has a pH of 9-12. When deviating from this pH range, monovalent inorganic acid radicals cannot be sufficiently removed.
By the way, the temperature at the time of addition of the oxycarboxylic acid and the alkali agent is not particularly limited as long as it is within the range of 10 to 90 ° C., and the performance does not vary greatly depending on the temperature. An alkaline agent is added after the addition of the carboxylic acid. If the order of addition is reversed, a stable sol cannot be obtained.
The sol after the addition of the hydroxycarboxylic acid and the alkaline agent is preferably washed by ultrafiltration until the electrical conductivity of the filtrate is 5 S / m or less.
Insufficient washing is not preferable because the residual amount of monovalent acid radicals and hydroxycarboxylic acid increases, and the stability of the sol decreases.
It is also possible to concentrate by ultrafiltration or heating after washing, it is possible to obtain a 5 to 50 wt% of sol as M 2 O 3 concentration.

この様にして得られる希土類元素の水酸化物ゾルは、ゾル中に残存していた一価の無機酸根が除去され、希土類元素のうち、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dyに関しては、希土類元素の酸化物1モルに対する一価の酸根は0.05以下となる。
また、希土類元素のうち、Ho、Er、Tm、Yb、Luに関しては、希土類酸化物1モルに対する一価の酸根は0.1以下となる。希土類元素の水酸化物ゾルは、実質的にヒドロキシカルボン酸で分散安定化されたゾルとなる。希土類元素の水酸化物ゾル中のオキシカルボン酸量に関しては、希土類元素の酸化物のモル数に対して0.05〜0.5の範囲内となる。本発明の希土類元素の水酸化物ゾルのpHに関しては、その製造条件によって異なるが、概ね6〜10の範囲内にあり、必要に応じてヒドロキシカルボン酸塩あるいはアンモニア、アミン類を添加することで所望のpHに調整することができ、その状態で長期にわたり安定となる。
In the rare earth element hydroxide sol thus obtained, the monovalent inorganic acid radicals remaining in the sol are removed, and among the rare earth elements, Sc, Y, La, Ce, Pr, Nd, Sm, Regarding Eu, Gd, Tb, and Dy, the monovalent acid radical with respect to 1 mol of the rare earth element oxide is 0.05 or less.
Of the rare earth elements, Ho, Er, Tm, Yb, and Lu have a monovalent acid radical of 0.1 or less with respect to 1 mol of the rare earth oxide. The rare earth element hydroxide sol is substantially a dispersion-stabilized sol with hydroxycarboxylic acid. The amount of oxycarboxylic acid in the rare earth element hydroxide sol is in the range of 0.05 to 0.5 with respect to the number of moles of the rare earth element oxide. The pH of the rare earth element hydroxide sol of the present invention varies depending on the production conditions, but is generally in the range of 6 to 10, and by adding a hydroxycarboxylate, ammonia, or amines as necessary. It can be adjusted to a desired pH and is stable for a long time in that state.

以下に、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例において%は、特に断らない限り全て質量%を示す。
また、実施例中の限外濾過装置は、限外濾過膜として「ラボモジュール」型式SLP−1053(旭化成(株)製)を用いた。更に、保存安定性の試験は、試料を50cc容サンプル瓶に入れて封入し、35℃の恒温槽で行なった。
本発明の希土類元素の酸化物ゾルまたは水酸化物ゾルの物性は、以下の方法で測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In Examples, “%” means “% by mass” unless otherwise specified.
Moreover, the ultrafiltration apparatus in an Example used "lab module" model SLP-1053 (made by Asahi Kasei Co., Ltd.) as an ultrafiltration membrane. Furthermore, the storage stability test was performed by placing the sample in a 50 cc sample bottle and sealing it in a thermostatic chamber at 35 ° C.
The physical properties of the rare earth oxide sol or hydroxide sol of the present invention were measured by the following methods.

(1)メジアン径の測定
メジアン径は、動的光散乱色粒度分布測定装置LB-500(堀場製作所(株)製)を用いて測定した。
(1) Measurement of median diameter The median diameter was measured using a dynamic light scattering color particle size distribution analyzer LB-500 (manufactured by Horiba, Ltd.).

(2)ヘイズ率の測定
ヘイズ率は、色差計COH-300A(日本電色工業(株)製)を用いて測定した。測定条件としては、試料を光路長1cmのガラスセルに入れて測定した。
(2) Measurement of haze ratio The haze ratio was measured using a color difference meter COH-300A (manufactured by Nippon Denshoku Industries Co., Ltd.). As measurement conditions, the sample was placed in a glass cell having an optical path length of 1 cm and measured.

(3)電気伝導度の測定
電気伝導度は、電気伝導度計CM-14P(TOA ELECTRON Ltd.製)を用いて測定した。
(3) Measurement of electric conductivity The electric conductivity was measured using an electric conductivity meter CM-14P (manufactured by TOA ELECTRON Ltd.).

1%アンモニア水溶液1878gに酸化ツリウム(3N、日本イットリウム(株)製)50gを塩酸に溶解させた0.5%溶液10000gを撹拌下で添加し、ツリウムゲルを生成させた。これを限外濾過装置を用いてゲル中の塩化アンモニウムを除去し、塩素根がCl/Tm(モル比)として0.7を含有するTm濃度2%のツリウムゲル溶液を得た。
次いで、これをオートクレーブに入れ、110℃で3時間水熱処理を行ない、Tm濃度2%のツリウムゾルを得た。次いでこのゾルにTm1モルに対して0.5モルの10%クエン酸溶液を添加し、更に3%アンモニア水を用いてpH9.5に調整した後、限外濾過装置を用いて濾液の電気伝導度が5S/m以下になるまで濾過・濃縮を行い、Tmとして10%のツリウムゾルを得た。
得られた10%のツリウムゾルは、メジアン径124nm、Cl/Tm(モル比)=0.06、クエン酸/Tm(モル比)=0.4、ヘイズ率24.9%、電気伝導度2.1S/m、pH6.9であった。また1ヶ月間でのゾルの保存安定性は増粘や沈殿物の発生もなく良好であった。更に、この溶液に28%アンモニア水を添加しゾルのpHを10に調整し、3ヶ月後の保存安定性の試験を行なった結果、安定状態を維持していた。
To 1878 g of a 1% aqueous ammonia solution, 10000 g of a 0.5% solution prepared by dissolving 50 g of thulium oxide (3N, manufactured by Nippon Yttrium Co., Ltd.) in hydrochloric acid was added with stirring to produce a thulium gel. This was used to remove ammonium chloride in the gel using an ultrafiltration device, and a thulium gel solution with a Tm 2 O 3 concentration of 2% containing 0.7 as Cl / Tm 2 O 3 (molar ratio) of chlorine roots was obtained. It was.
Next, this was put in an autoclave and hydrothermally treated at 110 ° C. for 3 hours to obtain a thulium sol having a Tm 2 O 3 concentration of 2%. Next, 0.5 mol of 10% citric acid solution was added to this sol with respect to 1 mol of Tm 2 O 3, and the pH was adjusted to 9.5 using 3% aqueous ammonia, and then an ultrafiltration device was used. Filtration and concentration were performed until the electrical conductivity of the filtrate was 5 S / m or less, and 10% thulium sol was obtained as Tm 2 O 3 .
The obtained 10% thulium sol had a median diameter of 124 nm, Cl / Tm 2 O 3 (molar ratio) = 0.06, citric acid / Tm 2 O 3 (molar ratio) = 0.4, and a haze ratio of 24.9%. The electrical conductivity was 2.1 S / m and the pH was 6.9. Also, the storage stability of the sol within one month was good without thickening or generation of precipitates. Further, 28% ammonia water was added to this solution to adjust the pH of the sol to 10 and a storage stability test was conducted after 3 months. As a result, the stable state was maintained.

比較例として特公平7−61,864号公報に従い、2N酢酸溶液1Lと酸化ツリウム(3N、日本イットリウム(株)製)290gを混合し、機械的に撹拌して分散させた。さらに、70℃で3時間30分間加熱を行い、得られた溶液を遠心分離機により350rpmで20分間遠心分離を行った。次いで、上澄みを5C濾紙で濾過し、希釈調整してTmとして10%のツリウムゾルを得た。得られた酢酸で安定化されたツリウムゾルは、電気伝導度33.5S/m、pH7.2であった。また、1ヶ月間での保存安定性は、増粘後、沈殿を生成した。更に、この溶液に28%アンモニア水を添加し、ゾルのpHを10に調整したところ、直ちにゲル化した。 As a comparative example, according to Japanese Patent Publication No. 7-61,864, 1 L of 2N acetic acid solution and 290 g of thulium oxide (3N, manufactured by Nippon Yttrium Co., Ltd.) were mixed and dispersed by mechanical stirring. Furthermore, heating was performed at 70 ° C. for 3 hours and 30 minutes, and the obtained solution was centrifuged at 350 rpm for 20 minutes using a centrifuge. Next, the supernatant was filtered with 5C filter paper and diluted to obtain 10% thulium sol as Tm 2 O 3 . The obtained thulium sol stabilized with acetic acid had an electric conductivity of 33.5 S / m and a pH of 7.2. Moreover, the storage stability within one month produced a precipitate after thickening. Furthermore, when 28% ammonia water was added to this solution and the pH of the sol was adjusted to 10, gelation occurred immediately.

1%水酸化ナトリウム水溶液5585gに酸化ランタン(3N、稀産金属(株)製)50gを塩酸に溶解させた0.5%溶液10000gを撹拌下で添加し、ランタンゲルを生成させた。これを限外濾過装置を用いてランタンゲル溶液中の塩化ナトリウムを除去し、塩素根がCl/La(モル比)として0.08含有するLa濃度5%のランタンゲル溶液を得た。
次いで、これをオートクレーブに入れ、90℃で5時間水熱処理を行ない、La濃度5%のランタンゾルを得た。次に、このゾルにLa1モルに対して0.5モルの10%クエン酸溶液を添加し、更に3%アンモニア水を用いてゾルpH9.5に調整した後、限外濾過装置を用いて濾液の電気伝導度が5S/m以下になるまで濾過・濃縮を行い、Laとして10%のランタンゾルを得た。
得られた10%のランタンゾルは、メジアン径39.4nm、Cl/La(モル比)=0.01、クエン酸/La(モル比)=0.2、ヘイズ率12.3%、電気伝導度1.2S/m、pH8.0であった。また、1ヶ月間でのゾルの保存安定性は、増粘や沈殿物の発生もなく良好であった。
To 5585 g of a 1% sodium hydroxide aqueous solution, 10000 g of a 0.5% solution obtained by dissolving 50 g of lanthanum oxide (3N, manufactured by Rare Metal Co., Ltd.) in hydrochloric acid was added with stirring to produce a lanthanum gel. This was used to remove sodium chloride in the lanthanum gel solution using an ultrafiltration device, and the lanthanum gel solution containing 5% La 2 O 3 in which the chlorine root contained 0.08 as Cl / La 2 O 3 (molar ratio). Got.
Next, this was put in an autoclave and hydrothermally treated at 90 ° C. for 5 hours to obtain a lanthanum sol having a La 2 O 3 concentration of 5%. Next, after adding 0.5 mol of 10% citric acid solution to 1 mol of La 2 O 3 and adjusting the sol to sol pH 9.5 using 3% ammonia water, an ultrafiltration device was added. The solution was filtered and concentrated until the electric conductivity of the filtrate was 5 S / m or less, to obtain 10% lanthanum sol as La 2 O 3 .
The obtained 10% lanthanum sol had a median diameter of 39.4 nm, Cl / La 2 O 3 (molar ratio) = 0.01, citric acid / La 2 O 3 (molar ratio) = 0.2, and a haze ratio of 12 The electrical conductivity was 1.2 S / m, and the pH was 8.0. Also, the storage stability of the sol within one month was good without thickening and generation of precipitates.

1%水酸化ナトリウム水溶液5409gに酸化ネオジウム(3N、稀産金属(株)製)50gを塩酸に溶解させた0.5%溶液10000gを撹拌下で添加し、ネオジウムゲルを生成させた。これを限外濾過装置を用いてゲル中の塩化アンモニウムを除去し、塩素根がCl/Nd(モル比)として0.07を含有するNd濃度5%のネオジウムゲル溶液を得た。
次いで、これをオートクレーブに入れ、100℃で3時間水熱処理を行ない、Nd濃度5%のネオジウムゾルを得た。次にこのゾルにNd1モルに対して0.5モルの10%リンゴ酸溶液を添加し、更に3%アンモニア水を用いてゾルpH10に調整した後、限外濾過装置を用いて濾液の電気伝導度が5S/m以下になるまで濾過・濃縮を行い、Ndとして10%のネオジウムゾルを得た。
得られた10%のネオジウムゾルは、メジアン径16.7nm、Cl/Nd(モル比)=0.02、リンゴ酸/Nd(モル比)=0.1、ヘイズ率21.1%、電気伝導度1.8S/m、pH8.4であった。また、1ヶ月間でのゾルの保存安定性は、増粘や沈殿物の発生もなく良好であった。
To 5409 g of a 1% sodium hydroxide aqueous solution, 10000 g of a 0.5% solution in which 50 g of neodymium oxide (3N, manufactured by Rare Metal Co., Ltd.) was dissolved in hydrochloric acid was added with stirring to produce a neodymium gel. Using an ultrafiltration device, the ammonium chloride in the gel was removed, and a Nd 2 O 3 concentration 5% neodymium gel solution containing 0.07 as the chlorine root Cl / Nd 2 O 3 (molar ratio) was prepared. Obtained.
Next, this was put in an autoclave and hydrothermally treated at 100 ° C. for 3 hours to obtain a neodymium sol having an Nd 2 O 3 concentration of 5%. Next, 0.5 mol of 10% malic acid solution is added to this sol with respect to 1 mol of Nd 2 O 3, and the sol pH is adjusted to 10 using 3% ammonia water, and then using an ultrafiltration device. Filtration and concentration were performed until the electrical conductivity of the filtrate was 5 S / m or less, and a 10% neodymium sol was obtained as Nd 2 O 3 .
The obtained 10% neodymium sol had a median diameter of 16.7 nm, Cl / Nd 2 O 3 (molar ratio) = 0.02, malic acid / Nd 2 O 3 (molar ratio) = 0.1, haze ratio 21 The electrical conductivity was 1.8 S / m and the pH was 8.4. Also, the storage stability of the sol within one month was good without thickening and generation of precipitates.

1%アンモニア水溶液1823gに酸化イッテルビウム(3N、信越化学(株)製)50gを塩酸に溶解させた0.5%溶液10000gを撹拌下で添加し、イッテルビウムゲルを生成させた。これを限外濾過装置を用いてゲル中の塩化アンモニウムを除去し、塩素根がCl/Yb(モル比)として0.6含むYb濃度5%のイッテルビウムゲル溶液を得た。
次いで、これをオートクレーブに入れ、110℃で3時間水熱処理を行ない、Yb濃度5%のイッテルビウムゾルを得た。次にこのゾルにYb1モルに対して0.5モルの10%クエン酸溶液を添加し、更に3%アンモニア水を用いてゾルpH9.5にした後、限外濾過装置を用いて濾液の電気伝導度が5S/m以下になるまで濾過・濃縮を行い、Ybとして10%のイッテルビウムゾルを得た。
得られた10%のイッテルビウムゾルは、メジアン径139nm、Cl/Yb(モル比)=0.03、クエン酸/Yb(モル比)=0.4、ヘイズ率35.2%、電気伝導度1.5S/m、pH7.0であった。
また、1ヶ月間でのゾルの保存安定性は、増粘や沈殿物の発生もなく良好であった。
To 1823 g of a 1% aqueous ammonia solution, 10000 g of a 0.5% solution in which 50 g of ytterbium oxide (3N, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in hydrochloric acid was added with stirring to produce an ytterbium gel. This was used to remove ammonium chloride in the gel using an ultrafiltration device to obtain an ytterbium gel solution having a chlorine root of 0.6 as Cl / Yb 2 O 3 (molar ratio) and having a Yb 2 O 3 concentration of 5%. .
This was then placed in an autoclave and hydrothermally treated at 110 ° C. for 3 hours to obtain a ytterbium sol having a Yb 2 O 3 concentration of 5%. Next, after adding 0.5 mol of 10% citric acid solution to 1 mol of Yb 2 O 3 to this sol, and further adjusting the sol pH to 9.5 using 3% ammonia water, an ultrafiltration device was used. Then, filtration and concentration were performed until the electric conductivity of the filtrate became 5 S / m or less, and 10% ytterbium sol was obtained as Yb 2 O 3 .
The obtained 10% ytterbium sol had a median diameter of 139 nm, Cl / Yb 2 O 3 (molar ratio) = 0.03, citric acid / Yb 2 O 3 (molar ratio) = 0.4, and a haze ratio of 35.2. %, Electric conductivity 1.5 S / m, pH 7.0.
Also, the storage stability of the sol within one month was good without thickening and generation of precipitates.

1%アンモニア水溶液2082gに酸化ルテチウム(3N、信越化学(株)製)50gを塩酸に溶解させた0.5%溶液10000gを撹拌下で添加し、ルテチウムゲルを生成させた。これを限外濾過装置を用いてゲル中の塩化アンモニウムを除去し、塩素根がCl/Lu(モル比)として1.1含有するLu濃度2%のルテチウムゲル溶液を得た。
次いで、これをオートクレーブに入れ、110℃で3時間水熱処理を行ない、Lu濃度2%のルテチウムゾルを得た。次にこのゾルにLu1モルに対して0.5モルの10%リンゴ酸溶液を添加し、更に3%アンモニア水を用いてゾルpH10に調整した後、限外濾過装置を用いて濾液の電気伝導度が5S/m以下になるまで濾過・濃縮を行い、Luとして10%のルテチウムゾルを得た。
得られた10%のルテチウムゾルは、メジアン径111nm、Cl/Lu(モル比)=0.07、リンゴ酸/Lu(モル比)=0.4、ヘイズ率54.0%、電気伝導度1.6S/m、pH6.5であった。
また、1ヶ月間でのゾルの保存安定性は、増粘や沈殿物の発生もなく良好であった。
To 2082 g of 1% aqueous ammonia solution, 10000 g of a 0.5% solution in which 50 g of lutetium oxide (3N, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in hydrochloric acid was added with stirring to produce a lutetium gel. This was used to remove ammonium chloride in the gel using an ultrafiltration device to obtain a lutetium gel solution containing 2% of Lu 2 O 3 concentration containing 1.1 as Cl / Lu 2 O 3 (molar ratio) of chlorine radicals. It was.
Next, this was put in an autoclave and hydrothermally treated at 110 ° C. for 3 hours to obtain a lutetium sol having a Lu 2 O 3 concentration of 2%. Next, 0.5 mol of 10% malic acid solution is added to this sol with respect to 1 mol of Lu 2 O 3, and the sol pH is adjusted to 10 using 3% ammonia water, and then using an ultrafiltration device. Filtration and concentration were performed until the electrical conductivity of the filtrate was 5 S / m or less, and 10% lutetium sol was obtained as Lu 2 O 3 .
The obtained 10% lutetium sol had a median diameter of 111 nm, Cl / Lu 2 O 3 (molar ratio) = 0.07, malic acid / Lu 2 O 3 (molar ratio) = 0.4, and a haze ratio of 54.0. %, Electric conductivity 1.6 S / m, pH 6.5.
Also, the storage stability of the sol within one month was good without thickening and generation of precipitates.

1%アンモニア水溶液1878gに酸化エルビウム(3N、信越化学(株)製)50gを塩酸に溶解させた0.5%溶液10000gを撹拌下で添加し、エルビウムゲルを生成させた。これを限外濾過装置を用いて塩化アンモニウムを除去し、塩素根がCl/Er(モル比)として0.6含有するEr濃度2%のエルビウムゲル溶液を得た。
次いで、これをオートクレーブに入れ、90℃で8時間水熱処理を行ない、Er濃度2%のエルビウムゾルを得た。次にこのゾルにEr1モルに対して0.5モルの10%酒石酸水溶液を添加し、更に3%アンモニア水を用いてゾルpH10にした後、限外濾過装置を用いて濾液の電気伝導度が5S/m以下になるまで濾過・濃縮を行い、Erとして10%のエルビウムゾルを得た。
得られた10%のエルビウムゾルは、メジアン径135nm、Cl/Er(モル比)=0.07、酒石酸/Er(モル比)=0.4、ヘイズ率26.6%、電気伝導度3.5S/m、pH7.9であった。
また1ヶ月間でのゾルの保存安定性は、増粘や沈殿物の発生もなく良好であった。
An erbium gel was produced by adding 10000 g of a 0.5% solution prepared by dissolving 50 g of erbium oxide (3N, manufactured by Shin-Etsu Chemical Co., Ltd.) in hydrochloric acid to 1878 g of a 1% aqueous ammonia solution. From this, ammonium chloride was removed using an ultrafiltration device to obtain an Er 2 O 3 concentration 2% erbium gel solution containing 0.6 as Cl / Er 2 O 3 (molar ratio) of chlorine roots.
Next, this was put in an autoclave and hydrothermally treated at 90 ° C. for 8 hours to obtain an erbium sol having an Er 2 O 3 concentration of 2%. Next, 0.5 mol of 10% tartaric acid aqueous solution was added to 1 mol of Er 2 O 3 to this sol, and the sol pH was adjusted to 10 using 3% aqueous ammonia, and the filtrate was filtered using an ultrafiltration device. Filtration and concentration were performed until the electric conductivity became 5 S / m or less, and 10% erbium sol was obtained as Er 2 O 3 .
The obtained 10% erbium sol had a median diameter of 135 nm, Cl / Er 2 O 3 (molar ratio) = 0.07, tartaric acid / Er 2 O 3 (molar ratio) = 0.4, and a haze ratio of 26.6%. The electrical conductivity was 3.5 S / m and the pH was 7.9.
Also, the storage stability of the sol within one month was good without thickening and generation of precipitates.

実施例2と同様にして、希土類元素種 Y、Ce、Pr、Sm、Eu、Gd、Dy及びHoについて各々Y(4N、阿南化成(株)製)、Ce(CO(3N、新日本金属工業(株)製)、Pr11(3N、日本イットリウム(株)製)、Sm(3N、信越化学工業(株)製)、Eu(3N、信越化学工業(株)製)、Gd(3N、日本イットリウム(株)製)、Dy(3N、日本イットリウム(株)製)及びHo(3N、日本イットリウム(株)製)を用いてゾルを製造した。
これらのゾルについて各種物性を測定した。その結果を表1に示した。
In the same manner as in Example 2, for rare earth element species Y, Ce, Pr, Sm, Eu, Gd, Dy, and Ho, Y 2 O 3 (4N, manufactured by Anan Kasei Co., Ltd.), Ce 2 (CO 3 ) 3 (3N, manufactured by Shin Nippon Metal Industry Co., Ltd.), Pr 6 O 11 (3N, manufactured by Nippon Yttrium Co., Ltd.), Sm 2 O 3 (3N, manufactured by Shin-Etsu Chemical Co., Ltd.), Eu 2 O 3 (3N , Shin-Etsu Chemical Co., Ltd.), Gd 2 O 3 (3N, manufactured by Nippon Yttrium Co., Ltd.), Dy 2 O 3 (3N, manufactured by Nippon Yttrium Co., Ltd.) and Ho 2 O 3 (3N, Japanese Yttrium ( A sol was produced using a
Various physical properties of these sols were measured. The results are shown in Table 1.

Figure 0004488831
Figure 0004488831


Claims (3)

希土類元素と一価の無機酸根からなる塩とアルカリ剤を中和させて得られた、希土類元素の水酸化物ゲルを洗浄、熱処理してゾル化した後、これにヒドロキシカルボン酸を添加し、アルカリ剤によってpHを9〜12に調整した後、ろ液の電気伝導度が5S/m以下となるまで限外ろ過することを特徴とするメジアン径が10〜300nmであり、ヒドロキシカルボン酸を希土類元素M(但し、Mは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選ばれた希土類元素を示す)に対し、ヒドロキシカルボン酸/M(モル比)として0.05〜0.5の範囲で含有する希土類元素の酸化物ゾルまたは水酸化物ゾルの製造方法。 A rare earth element hydroxide gel obtained by neutralizing a salt composed of a rare earth element and a monovalent inorganic acid radical and an alkali agent is washed, heat-treated to form a sol, and then a hydroxycarboxylic acid is added thereto . After adjusting the pH to 9 to 12 with an alkali agent, the filtrate is ultrafiltered until the electric conductivity of the filtrate becomes 5 S / m or less. The median diameter is 10 to 300 nm, and the hydroxycarboxylic acid is rare earth. For the element M (wherein M represents a rare earth element selected from Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) , method of manufacturing an oxide sol or hydroxide sol of a rare earth element contained in the range of 0.05 to 0.5 as the hydroxycarboxylic acid / M 2 O 3 (molar ratio). ヒドロキシカルボン酸が、クエン酸、リンゴ酸及び酒石酸から選ばれた一種またはそれ以上である請求項1記載の希土類元素の酸化物ゾルまたは水酸化物ゾルの製造方法。 The method for producing an oxide sol or hydroxide sol of a rare earth element according to claim 1, wherein the hydroxycarboxylic acid is one or more selected from citric acid, malic acid and tartaric acid. ゾル中の一価の無機酸根が一価の無機酸根/M(モル比)として0.1以下である請求項1または2記載の希土類元素の酸化物ゾルまたは水酸化物ゾルの製造方法。 Preparation of an oxide sol or hydroxide sol of a rare earth element according to claim 1 or 2, wherein monovalent inorganic acid radical in the sol is 0.1 or less as the inorganic acid radical / M 2 O 3 (molar ratio) monovalent Method.
JP2004230059A 2004-08-06 2004-08-06 Method for producing rare earth oxide sol or hydroxide sol Active JP4488831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230059A JP4488831B2 (en) 2004-08-06 2004-08-06 Method for producing rare earth oxide sol or hydroxide sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230059A JP4488831B2 (en) 2004-08-06 2004-08-06 Method for producing rare earth oxide sol or hydroxide sol

Publications (2)

Publication Number Publication Date
JP2006045015A JP2006045015A (en) 2006-02-16
JP4488831B2 true JP4488831B2 (en) 2010-06-23

Family

ID=36024021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230059A Active JP4488831B2 (en) 2004-08-06 2004-08-06 Method for producing rare earth oxide sol or hydroxide sol

Country Status (1)

Country Link
JP (1) JP4488831B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513053A (en) * 2004-09-14 2008-05-01 オプトクリツト・アー・ベー Superparamagnetic gadolinium oxide nanoscale particles and compositions comprising such particles
JP4646055B2 (en) * 2004-10-20 2011-03-09 多木化学株式会社 Tantalum oxide sol and method for producing the same
JP4731220B2 (en) * 2005-06-01 2011-07-20 第一稀元素化学工業株式会社 Method for producing ceria sol
JP4836532B2 (en) * 2005-08-26 2011-12-14 第一稀元素化学工業株式会社 Method for producing neodymium oxide sol
JP5674083B2 (en) * 2009-09-02 2015-02-25 多木化学株式会社 Iron oxyhydroxide sol and method for producing the same
JP5562162B2 (en) * 2009-10-29 2014-07-30 三井金属鉱業株式会社 Aqueous dispersion containing oxide of lanthanoid element
JP5570011B2 (en) * 2010-05-31 2014-08-13 国立大学法人岐阜大学 Method for producing yttrium oxide precursor aqueous sol and yttrium oxide precursor aqueous sol
JP6696711B2 (en) * 2015-12-28 2020-05-20 多木化学株式会社 Nickel sol

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232721A (en) * 1989-12-15 1991-10-16 Rhone Poulenc Chim Preparation of colloidal dispersing element of cerium iv compound in aqueous medium and dispersing element thus obtained
JPH0431307A (en) * 1990-05-28 1992-02-03 Teika Corp Production of fine-grain metal oxide
JPH07284651A (en) * 1994-02-18 1995-10-31 Rhone Poulenc Chim Organosol of quadrivalent metal oxide and use thereof as additive for hydrocarbon compound
JP2003034526A (en) * 2001-07-18 2003-02-07 Kinya Adachi Method for manufacturing nanoparticles of rare earth metal oxide
JP2003529516A (en) * 1999-11-23 2003-10-07 ロディア テレ ラレ Aqueous colloidal dispersion based on at least a lanthanide compound and a complex forming compound, a method for producing the same and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232721A (en) * 1989-12-15 1991-10-16 Rhone Poulenc Chim Preparation of colloidal dispersing element of cerium iv compound in aqueous medium and dispersing element thus obtained
JPH0431307A (en) * 1990-05-28 1992-02-03 Teika Corp Production of fine-grain metal oxide
JPH07284651A (en) * 1994-02-18 1995-10-31 Rhone Poulenc Chim Organosol of quadrivalent metal oxide and use thereof as additive for hydrocarbon compound
JP2003529516A (en) * 1999-11-23 2003-10-07 ロディア テレ ラレ Aqueous colloidal dispersion based on at least a lanthanide compound and a complex forming compound, a method for producing the same and use thereof
JP2003034526A (en) * 2001-07-18 2003-02-07 Kinya Adachi Method for manufacturing nanoparticles of rare earth metal oxide

Also Published As

Publication number Publication date
JP2006045015A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4918880B2 (en) Method for producing zirconia sol
JP5035545B2 (en) Method for producing alkaline zirconia sol
WO2010074105A1 (en) Zirconium oxide dispersion and manufacturing method therefor
US20090215614A1 (en) Colloidal dispersions of compounds of cerium and at least one of zirconium, rare earths, titanium and/or tin and preparation/applications thereof
JP2008031023A (en) Zirconia sol and method for producing the same
JP4488831B2 (en) Method for producing rare earth oxide sol or hydroxide sol
JP5582999B2 (en) Method for producing aqueous solution containing alumina colloid and aqueous solution containing alumina colloid obtained by the production method
JP6933976B2 (en) Silica-based particle dispersion and its manufacturing method
JP7342227B2 (en) Tantalum acid dispersion and tantalate compound
JP5674083B2 (en) Iron oxyhydroxide sol and method for producing the same
EP3502060B1 (en) Zirconia sol and method for manufacturing same
CN114735744A (en) Low-temperature synthesis method of semiconductor cerium dioxide nanocrystalline
JP4836532B2 (en) Method for producing neodymium oxide sol
JP2004505173A (en) Aqueous colloidal dispersion based on at least one metal compound and complexing agent, production method
JP4646055B2 (en) Tantalum oxide sol and method for producing the same
JP6598377B2 (en) Alumina colloid-containing aqueous solution
JP2005306641A (en) Method of preparing organic solvent dispersion type oxalic acid-citric acid stabilized niobium oxide sol
JP4645826B2 (en) Cerium ion-containing solution and corrosion inhibitor
JP7405078B2 (en) Method for producing ceria-zirconia complex oxide dispersion
JP2018145046A (en) Rare earth organosol and rare earth organosol precursor
WO2022196726A1 (en) Method for producing liquid dispersion of metal oxide containing zirconium element, and liquid dispersion of metal oxide containing zirconium element
JPH05132311A (en) Production of sol of ceric oxide
JP4651000B2 (en) Method for producing niobium oxide sol
JP2012140252A (en) Metal oxide sol, and method for producing the same
KR20220016087A (en) Manufacturing method of rare earth carbonate fine particles and rare earth carbonate fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160409

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250