US4115144A - Method of preparing metal oxide slurries - Google Patents

Method of preparing metal oxide slurries Download PDF

Info

Publication number
US4115144A
US4115144A US05/746,674 US74667476A US4115144A US 4115144 A US4115144 A US 4115144A US 74667476 A US74667476 A US 74667476A US 4115144 A US4115144 A US 4115144A
Authority
US
United States
Prior art keywords
titanium dioxide
slurry
coated
metal oxide
isoelectric point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/746,674
Inventor
Hubert Harold Chambers
Brian John Tear
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tronox Pigment UK Ltd
Original Assignee
Laporte Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laporte Industries Ltd filed Critical Laporte Industries Ltd
Application granted granted Critical
Publication of US4115144A publication Critical patent/US4115144A/en
Assigned to SCM CHEMICALS LIMITED , 77 SOUTH AUDLEY STREET, LONDON W1Y 6AD, ENGLAND A CORP. OF ENGLAND reassignment SCM CHEMICALS LIMITED , 77 SOUTH AUDLEY STREET, LONDON W1Y 6AD, ENGLAND A CORP. OF ENGLAND ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: LAPORTE INDUSTRIES LIMITED, A BRITISH COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • C09D17/008Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • This invention relates to aqueous metal oxide slurries and particularly to aqueous titanium dioxide slurries.
  • Stable high solids concentration aqueous titanium dioxide slurries suitable for direct incorporation into aqueous paint or paper media represent the possibility of large savings in costs to the paint manufacture in comparison with the use of dry titanium dioxide powder. These slurries must have a solids content greater than 60% and a low viscosity which does not change substantially on storage. Such slurries have been produced by pigment manufacturers from dry titanium dioxide powder with the aid of a wide variety of dispersing agents and viscosity stabilisers and give sufficient dispersion stability for use after transport and storage.
  • Titanium dioxide produced either by the vapour phase oxidation of titanium tetrachloride, or by the hydrolysis of aqueous solutions containing titanium sulphate to produce hydrous titanium dioxide followed by calcination hereafter referred to as the "sulphate process", is generally treated by forming a dispersion of the titanium dioxide in water and precipitating hydrous metal oxides in the dispersion to form a coating thereof on the titanium dioxide which is then recovered and dried to produce a final pigmentary product.
  • Aqueous paint media are usually alkaline and negatively charged and it is for this reason that the titanium dioxide slurry, to be compatible with such media, requires a negative charge.
  • the slurry should have as high a negative charge and as high a pH as practicable, preferably a pH of at least 9.2 although at above a pH of about 10.5 any alumina present on the titanium dioxide particles may dissolve.
  • the negative charge of the slurry at a given pH is related to the isoelectric point of the slurry, that is, the pH at which the charge is zero, and the lower the isoelectric point the higher the negative charge at a given alkaline pH.
  • the isoelectric point is a property of the surface of the particles of the titanium dioxide in the slurry and may be controlled by coating the surface with metal oxides.
  • a coating of alumina gives an isoelectric point at a pH of 9.2 and a coating of titania gives an isoelectric point at a pH of 4.2.
  • a homogeneous mixed alumina/titania coating gives an intermediate isoelectric point.
  • the composition of the metal oxide coating also affects the physical nature of a slurry of the coated titanium dioxide in other ways and, for example, a dispersion of titanium dioxide having a coating substantially consisting of hydrous titania is very difficult to filter and wash.
  • the ease of filtering improves if a larger proportion of hydrous alumina is incorporated in the coating but at higher proportions of alumina the isoelectric point increases so that the pigment is less negatively charged at a given pH and is less suitable for incorporation in aqueous paint media.
  • the manufacture of titanium dioxide slurries suitable for incorporation in aqueous paint media by processes involving coating the titanium dioxide with metal oxides is, therefore, subject to a combination of problems and an attempt to alleviate one only serves to exacerbate the others.
  • a metal oxide coated titanium dioxide can be altered after precipitation by ageing at an elevated temperature so as to produce in at least some circumstances, titanium dioxide which is capable of forming a slurry more suitable for incorporation in aqueous paint media than might have been expected. Without being so limited we believe that this may be due to an alteration in the isoelectric point of the slurry as a result of the effect of the hot ageing step on the surface properties of the coated titanium dioxide particles.
  • the present invention provides a process for the production of an aqueous high solids concentration titanium dioxide slurry comprising precipitating a mixed metal oxide coating onto particles of titanium dioxide dispersed in water to produce a filterable dispersion of coated titanium dioxide, raising the concentration of the coated titanium dioxide to at least that required in the product and forming an aqueous slurry of the coated titanium dioxide at the desired product concentration, the coated titanium dioxide being subjected after at least a first filtration and washing step to a "hot ageing" step, the proportion and composition of the metal oxides in the coating being such that a slurry of the aged titanium dioxide has a negative charge.
  • titanium dioxide coated may be undried product recovered directly from wet milling or hydroclassification processes.
  • metal oxide is used herein to include hydrous oxides and hydroxides of the metal. Suitable metals may be selected from aluminium, antimony, beryllium, cerium, hafnium, lead, niobium, silicon, tantalum, tin, titanium, zinc and zirconium. It is preferred that, if the slurry is to be incorporated in aqueous paint media, to select at least one metal oxide from the class of metal oxides giving an isoelectric point greater than 7 and at least one from the class of metal oxides giving an isoelectric point less than 7, examples of which are shown in Table 1.
  • a combination of aluminium and titanium is used, and the metal oxides, hydroxides or hydrous oxides precipitated as titania and alumina.
  • a molar ratio of aluminium to titanium of from 0.5 to 1.25 and preferably from 0.6 to 1.2 for example is substantially equal quantities on a molar basis gives a suitable combination of properties.
  • suitable relative proportions of the metal oxides may be determined by experimental optimisation bearing in mind the factors discussed above.
  • the precipitation of the mixed metal oxide coating may be conducted by known means.
  • Suitable metal compounds precipitatable as oxides, hydrous oxides or hydroxides, or as compounds convertible to such under the conditions used, may be mixed by dissolving them in water, adding the solution to an aqueous dispersion of the titanium dioxide and precipitating the metal oxides, hydrous oxides or hydroxides.
  • Suitable metal compounds are therefore soluble in water and, since final alkaline precipitation conditions are required, they suitably lend themselves to this by being precipitatable by addition of alkali, or by, for example, hydrolysis.
  • Aluminium sulphate is a suitable aluminium compound from which alumina is precipitatable by the addition of suitable alkali such as sodium hydroxide.
  • Titanium tetrachloride is a suitable titanium compound from which titania is precipitatable by hydrolysis.
  • the concentration of the solution of suitable metal compounds is preferably such as to provide a mixed metal oxide coating on the titanium dioxide of from 0.5% to 15% and, particularly from 1.0% to 10% by weight.
  • the particular pH at which the mixed metal oxides are hot aged has a bearing on the effectiveness of the hot ageing step.
  • a final precipitation pH as possible, bearing in mind the tendency of alumina to dissolve at a pH above 10.5, should be used.
  • the precipitation is conducted to a final pH of from 9 to 10.5. It is important that the precipitation of the mixed metal oxides be conducted in such a manner as to produce a coated pigment which may be filtered and washed. If the mixed metal oxide coating is aged to any substantial extent before the post-precipitation filtration and washing steps have been completed this may render the coated titanium dioxide extremely difficult to process further.
  • the precipitation is therefore preferably conducted under conditions under which little or no ageing can occur and, in particular, at a relatively low temperature.
  • the precipitation and at least the first post-precipitation filtration and washing steps is conducted at a temperature not above 40° C and, particularly preferably, at a temperature of from 10° C to 30° C.
  • the hot ageing step according to the invention is conducted after the post precipitation filtration and washing steps have been completed
  • the coated titanium dioxide resulting from the mixed metal oxide precipitation step may be recovered by filtration and washed. It may then be in the form of a filter cake having a solids content of up to about 55% by weight and giving an alkaline reaction.
  • the addition of any substances to the washed titanium dioxide which might reduce its alkalinity should be avoided.
  • the solids content of the slurry product should be above 60% and desirably from 65% to 75% by weight. It is therefore necessary to raise the concentration of the solids and this may be accomplished by any of a variety of known means such as by high pressure filtration, by blending in a portion of suitably coated pigment which has been dried or by allowing some of the water present to evaporate either under reduced pressure at relatively low temperatures or in the course of the hot ageing step.
  • the hot ageing of the coated and washed titanium dioxide may be performed after raising the solids concentration to the desired product concentration or above or, if this does not interfere with the process of raising the concentration, for example by causing filtration problems, before the solids concentration has been raised to, or after it has been raised part of the way towards, the desired product concentration.
  • the washed titanium dioxide is "hot aged" by which we mean that it is maintained for a time at an elevated temperature in the presence of water under alkaline conditions.
  • the hot ageing step is preferably conducted at a temperature from 40° C to 100° C for a duration of at least 20 minutes and particularly preferably of at least 30 minutes. Since the duration of the hot ageing step may be decreased if a relatively higher temperature is used and, since, if the temperature is not above the boiling point of water, the precautions required to prevent drying out are less onerous, the hot ageing step is suitably conducted at a temperature of from 80° C to 100° C. At such temperatures a duration of from about 30 minutes to about 2 hours may suffice. At lower temperatures it may be necessary to conduct the ageing step for a longer duration for example, for from 2 hours to 24 hours. Preferably the hot ageing step is conducted so as to reduce the isoelectric point of a slurry of the coated titanium dioxide by at least 1.0.
  • the aged titanium dioxide if it has a concentration above the required product concentration may be adjusted to, the desired product concentration by the addition of water and redispersed by means of high shear mixing and, possibly, wet milling. Although this addition of water aids redispersion, it may not be essential.
  • the isoelectric point of a slurry of the aged titanium dioxide is from 4.5 to 5.9.
  • Titanium dioxide produced by the sulphate process was dispersed in water with the aid of sodium silicate dissolved in the water at a concentration equivalent to 0.3% silica by weight of the titanium dioxide and the dispersion was wet milled to a particle size range of 93 - 97% ⁇ 0.5 microns and the milled pigment was subjected to hydroclassification to take material above 0.5 microns out.
  • 3400 mls of the classified dispersion containing 1000 g titanium dioxide was subjected to surface coating with mixed metal oxides.
  • An aluminium sulphate/titanium tetrachloride mixed electrolyte was produced by mixing 175 mls of an aqueous solution of titanium tetrachloride having a concentration equivalent to 163 g/l titanium dioxide with 347 mls of an aqueous solution of aluminium sulphate having a concentration equivalent to 105 g/l alumina. The electrolyte was added to the titanium dioxide dispersion over a period of 5 minutes with stirring, and was then allowed to equilibrate over a further period of 30 minutes, with stirring, at a temperature of 25° C.
  • aqueous solution of sodium hydroxide having a concentration of 100 g/l was then added to the dispersion over a period of 10 minutes, with stirring, until the pH of the dispersion was 10.5, and the dispersion was then stirred for a further 30 minutes during which time it was still maintained at a temperature of 25° C.
  • the titanium dioxide particles in the dispersion were coated in a 1:1 molar ratio with alumina and titania in a quantity sufficient to give a total loading of alumina and titania of 6.5 g on every 100 g titanium dioxide.
  • the dispersion of coated titanium dioxide particles was filtered and the filter cake was washed with 1600 mls of demineralised water after which it was repulped in 1600 mls of demineralised water, filtered once more, and washed once more with 1600 mls of demineralised water. The repulping, filtering and washing cycle was then repeated in the same manner. No filtration or wash problems were encountered.
  • the filter cake thus produced had a solids content of 52% and liquified easily on agitation or under mild shear to produce a suspension having a pH of 10.5 and a specific conductance of 450 micromhos/cm at 25° C.
  • the 52% suspension was filtered under high pressure to give a filter cake having a solids content of 70% by weight.
  • This filter cake was broken up, and ballmilled in the presence of sufficient added demineralised water to lower the concentration of the suspension to 65% by weight so as to break up any lumps of cake.
  • the milled suspension having a stiff consistency was aged by heating at 98° to 100° C for 1 hour while avoiding the loss of evaporated water.
  • the resulting aged slurry had the consistency of thin cream and was still stable at the end of 3 months. It has a negative charge.
  • Example 4 The hot aged product of Example 4 was a stiff gel. Comments on the hot aged product of each of the examples are as follows:
  • Example 2 Initially -- creamy consistency -- flowed freely when container was inverted. After storage -- had set to a thixotropic gell which could be liquified by gentle stirring -- No sign of hard settlement.
  • Example 3 initially as Example 2.
  • Example 4 initially -- creamy and free flowing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A high solids metal oxides coated titanium dioxide aqueous slurry requires a negative charge and a high pH for use in aqueous paint media. A hot ageing of the coated titanium dioxide can alter the isoelectric point of the slurry and make practicable the avoidance of mixtures of metal oxide coating agents which give rise to processing difficulties and the use of mixtures of metal oxides which would not without the hot ageing step give suitable charge and pH characteristics. An example of a suitable mixture of metal oxide coating agents is a 1:1 molar Al2 O3 : TiO2 mixture. An example of hot ageing conditions is the use of a temperature of 98° C - 100° C for 1 hour while avoiding loss of water and under alkaline conditions.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to aqueous metal oxide slurries and particularly to aqueous titanium dioxide slurries.
2. Brief Description of the Prior Art
Stable high solids concentration aqueous titanium dioxide slurries suitable for direct incorporation into aqueous paint or paper media represent the possibility of large savings in costs to the paint manufacture in comparison with the use of dry titanium dioxide powder. These slurries must have a solids content greater than 60% and a low viscosity which does not change substantially on storage. Such slurries have been produced by pigment manufacturers from dry titanium dioxide powder with the aid of a wide variety of dispersing agents and viscosity stabilisers and give sufficient dispersion stability for use after transport and storage.
The production of these slurries has transferred the step of dispersion from the paint manufacturer to the pigment manufacturer so that the cost of manufacturing the pigment is necessarily increased.
Titanium dioxide, produced either by the vapour phase oxidation of titanium tetrachloride, or by the hydrolysis of aqueous solutions containing titanium sulphate to produce hydrous titanium dioxide followed by calcination hereafter referred to as the "sulphate process", is generally treated by forming a dispersion of the titanium dioxide in water and precipitating hydrous metal oxides in the dispersion to form a coating thereof on the titanium dioxide which is then recovered and dried to produce a final pigmentary product. A considerable reduction of energy consumption could be achieved if it were possible to produce a high solids concentration titanium dioxide slurry or a proportion thereof directly from the wet treated pigment, omitting or minimising the drying step, and it would also be a considerable advance in the art if the use of dispersing agents could be avoided or minimised.
Aqueous paint media are usually alkaline and negatively charged and it is for this reason that the titanium dioxide slurry, to be compatible with such media, requires a negative charge. In practice the slurry should have as high a negative charge and as high a pH as practicable, preferably a pH of at least 9.2 although at above a pH of about 10.5 any alumina present on the titanium dioxide particles may dissolve. The negative charge of the slurry at a given pH is related to the isoelectric point of the slurry, that is, the pH at which the charge is zero, and the lower the isoelectric point the higher the negative charge at a given alkaline pH. The isoelectric point is a property of the surface of the particles of the titanium dioxide in the slurry and may be controlled by coating the surface with metal oxides. For example, a coating of alumina gives an isoelectric point at a pH of 9.2 and a coating of titania gives an isoelectric point at a pH of 4.2. A homogeneous mixed alumina/titania coating gives an intermediate isoelectric point.
The composition of the metal oxide coating also affects the physical nature of a slurry of the coated titanium dioxide in other ways and, for example, a dispersion of titanium dioxide having a coating substantially consisting of hydrous titania is very difficult to filter and wash. The ease of filtering improves if a larger proportion of hydrous alumina is incorporated in the coating but at higher proportions of alumina the isoelectric point increases so that the pigment is less negatively charged at a given pH and is less suitable for incorporation in aqueous paint media. The manufacture of titanium dioxide slurries suitable for incorporation in aqueous paint media by processes involving coating the titanium dioxide with metal oxides is, therefore, subject to a combination of problems and an attempt to alleviate one only serves to exacerbate the others.
We have found that the properties of a metal oxide coated titanium dioxide can be altered after precipitation by ageing at an elevated temperature so as to produce in at least some circumstances, titanium dioxide which is capable of forming a slurry more suitable for incorporation in aqueous paint media than might have been expected. Without being so limited we believe that this may be due to an alteration in the isoelectric point of the slurry as a result of the effect of the hot ageing step on the surface properties of the coated titanium dioxide particles.
SUMMARY OF THE INVENTION
According to one aspect, the present invention provides a process for the production of an aqueous high solids concentration titanium dioxide slurry comprising precipitating a mixed metal oxide coating onto particles of titanium dioxide dispersed in water to produce a filterable dispersion of coated titanium dioxide, raising the concentration of the coated titanium dioxide to at least that required in the product and forming an aqueous slurry of the coated titanium dioxide at the desired product concentration, the coated titanium dioxide being subjected after at least a first filtration and washing step to a "hot ageing" step, the proportion and composition of the metal oxides in the coating being such that a slurry of the aged titanium dioxide has a negative charge.
DETAILED DESCRIPTION OF THE INVENTION
In the practice of this invention the titanium dioxide coated may be undried product recovered directly from wet milling or hydroclassification processes.
The term "metal oxide" is used herein to include hydrous oxides and hydroxides of the metal. Suitable metals may be selected from aluminium, antimony, beryllium, cerium, hafnium, lead, niobium, silicon, tantalum, tin, titanium, zinc and zirconium. It is preferred that, if the slurry is to be incorporated in aqueous paint media, to select at least one metal oxide from the class of metal oxides giving an isoelectric point greater than 7 and at least one from the class of metal oxides giving an isoelectric point less than 7, examples of which are shown in Table 1.
              TABLE 1                                                     
______________________________________                                    
Isoelectric Point                                                         
______________________________________                                    
>7 pH              <7 pH                                                  
aluminum           Cerium                                                 
Beryllium          Antimony                                               
Lead               Silicon                                                
Zinc               Titanium                                               
                   Zirconium                                              
                   Tin                                                    
______________________________________                                    
Very suitably a combination of aluminium and titanium is used, and the metal oxides, hydroxides or hydrous oxides precipitated as titania and alumina.
Where a combination of alumina and titania are used to coat the titanium dioxide particles, a molar ratio of aluminium to titanium of from 0.5 to 1.25 and preferably from 0.6 to 1.2 for example is substantially equal quantities on a molar basis gives a suitable combination of properties. For other combinations of metal oxides suitable relative proportions of the metal oxides may be determined by experimental optimisation bearing in mind the factors discussed above.
Since the function of the use of a mixed metal oxide coating is to control a surface property of the titanium dioxide it is necessary to ensure that the theoretically desired combination of metal oxides is present on that surface. If the metal oxides are deposited on the titanium dioxide successively the first metal oxide would tend to be masked by the second. To achieve the theoretically required ratio of metal oxides on the surface it will generally be necessary to coprecipitate the oxides from a solution containing them in admixture.
The precipitation of the mixed metal oxide coating may be conducted by known means. Suitable metal compounds precipitatable as oxides, hydrous oxides or hydroxides, or as compounds convertible to such under the conditions used, may be mixed by dissolving them in water, adding the solution to an aqueous dispersion of the titanium dioxide and precipitating the metal oxides, hydrous oxides or hydroxides. Suitable metal compounds are therefore soluble in water and, since final alkaline precipitation conditions are required, they suitably lend themselves to this by being precipitatable by addition of alkali, or by, for example, hydrolysis. Aluminium sulphate is a suitable aluminium compound from which alumina is precipitatable by the addition of suitable alkali such as sodium hydroxide. Titanium tetrachloride is a suitable titanium compound from which titania is precipitatable by hydrolysis.
The concentration of the solution of suitable metal compounds is preferably such as to provide a mixed metal oxide coating on the titanium dioxide of from 0.5% to 15% and, particularly from 1.0% to 10% by weight.
The particular pH at which the mixed metal oxides are hot aged has a bearing on the effectiveness of the hot ageing step. Preferably as high a final precipitation pH as possible, bearing in mind the tendency of alumina to dissolve at a pH above 10.5, should be used. Suitably the precipitation is conducted to a final pH of from 9 to 10.5. It is important that the precipitation of the mixed metal oxides be conducted in such a manner as to produce a coated pigment which may be filtered and washed. If the mixed metal oxide coating is aged to any substantial extent before the post-precipitation filtration and washing steps have been completed this may render the coated titanium dioxide extremely difficult to process further. The precipitation is therefore preferably conducted under conditions under which little or no ageing can occur and, in particular, at a relatively low temperature. Preferably the precipitation and at least the first post-precipitation filtration and washing steps is conducted at a temperature not above 40° C and, particularly preferably, at a temperature of from 10° C to 30° C. Preferably the hot ageing step according to the invention is conducted after the post precipitation filtration and washing steps have been completed
The coated titanium dioxide resulting from the mixed metal oxide precipitation step may be recovered by filtration and washed. It may then be in the form of a filter cake having a solids content of up to about 55% by weight and giving an alkaline reaction. The addition of any substances to the washed titanium dioxide which might reduce its alkalinity should be avoided. The solids content of the slurry product should be above 60% and desirably from 65% to 75% by weight. It is therefore necessary to raise the concentration of the solids and this may be accomplished by any of a variety of known means such as by high pressure filtration, by blending in a portion of suitably coated pigment which has been dried or by allowing some of the water present to evaporate either under reduced pressure at relatively low temperatures or in the course of the hot ageing step.
The hot ageing of the coated and washed titanium dioxide may be performed after raising the solids concentration to the desired product concentration or above or, if this does not interfere with the process of raising the concentration, for example by causing filtration problems, before the solids concentration has been raised to, or after it has been raised part of the way towards, the desired product concentration.
The washed titanium dioxide is "hot aged" by which we mean that it is maintained for a time at an elevated temperature in the presence of water under alkaline conditions.
The hot ageing step is preferably conducted at a temperature from 40° C to 100° C for a duration of at least 20 minutes and particularly preferably of at least 30 minutes. Since the duration of the hot ageing step may be decreased if a relatively higher temperature is used and, since, if the temperature is not above the boiling point of water, the precautions required to prevent drying out are less onerous, the hot ageing step is suitably conducted at a temperature of from 80° C to 100° C. At such temperatures a duration of from about 30 minutes to about 2 hours may suffice. At lower temperatures it may be necessary to conduct the ageing step for a longer duration for example, for from 2 hours to 24 hours. Preferably the hot ageing step is conducted so as to reduce the isoelectric point of a slurry of the coated titanium dioxide by at least 1.0.
The aged titanium dioxide, if it has a concentration above the required product concentration may be adjusted to, the desired product concentration by the addition of water and redispersed by means of high shear mixing and, possibly, wet milling. Although this addition of water aids redispersion, it may not be essential. Preferably the isoelectric point of a slurry of the aged titanium dioxide is from 4.5 to 5.9.
The invention will now be illustrated by means of the following examples.
EXAMPLE 1
Titanium dioxide produced by the sulphate process was dispersed in water with the aid of sodium silicate dissolved in the water at a concentration equivalent to 0.3% silica by weight of the titanium dioxide and the dispersion was wet milled to a particle size range of 93 - 97% < 0.5 microns and the milled pigment was subjected to hydroclassification to take material above 0.5 microns out.
3400 mls of the classified dispersion containing 1000 g titanium dioxide was subjected to surface coating with mixed metal oxides. An aluminium sulphate/titanium tetrachloride mixed electrolyte was produced by mixing 175 mls of an aqueous solution of titanium tetrachloride having a concentration equivalent to 163 g/l titanium dioxide with 347 mls of an aqueous solution of aluminium sulphate having a concentration equivalent to 105 g/l alumina. The electrolyte was added to the titanium dioxide dispersion over a period of 5 minutes with stirring, and was then allowed to equilibrate over a further period of 30 minutes, with stirring, at a temperature of 25° C. An aqueous solution of sodium hydroxide having a concentration of 100 g/l was then added to the dispersion over a period of 10 minutes, with stirring, until the pH of the dispersion was 10.5, and the dispersion was then stirred for a further 30 minutes during which time it was still maintained at a temperature of 25° C.
As a result of this treatment the titanium dioxide particles in the dispersion were coated in a 1:1 molar ratio with alumina and titania in a quantity sufficient to give a total loading of alumina and titania of 6.5 g on every 100 g titanium dioxide.
The dispersion of coated titanium dioxide particles was filtered and the filter cake was washed with 1600 mls of demineralised water after which it was repulped in 1600 mls of demineralised water, filtered once more, and washed once more with 1600 mls of demineralised water. The repulping, filtering and washing cycle was then repeated in the same manner. No filtration or wash problems were encountered.
The filter cake thus produced had a solids content of 52% and liquified easily on agitation or under mild shear to produce a suspension having a pH of 10.5 and a specific conductance of 450 micromhos/cm at 25° C.
The 52% suspension was filtered under high pressure to give a filter cake having a solids content of 70% by weight. This filter cake was broken up, and ballmilled in the presence of sufficient added demineralised water to lower the concentration of the suspension to 65% by weight so as to break up any lumps of cake. The milled suspension having a stiff consistency was aged by heating at 98° to 100° C for 1 hour while avoiding the loss of evaporated water. The resulting aged slurry had the consistency of thin cream and was still stable at the end of 3 months. It has a negative charge.
EXAMPLES 2 to 7
These examples were conducted using the procedure of Example 1 except as noted specifically hereunder (line references are to the lines in Table II). The quantities of aluminium sulphate and aluminium chloride were varied in each example to give the same total coating weight but a different ratio Al2 O3 to TiO2 in the coating as summarised in line (a). The total time taken to filter and wash the coated titanium dioxide and the solids content of the filter cake so obtained are indicated in lines (b) and (c) and certain properties of this filter cake are indicated in lines (d) - (f). This filter cake was liquified by stirring and the apparent viscosity was measured on a Brookfield and the results are indicated is line (g). A high pressure filter cake was produced-line (h) and with high shear mixing, the minimum quantity of water added. to achieve disintegration of the cake and the disintegrated cake had the concentration indicated in line (i). The resulting slurry was hot aged as in Example 1 and the isoelectric point after ageing is indicated in line (j). The apparent viscosity of the hot aged slurry adjusted to 65% w/w solids was measured at various shear rates, initially and after 7 months storage in a stoppered bottle, with no agitation and the results are indicated in lines (k). Any change in the isoelectric point, and the pH of the stored slurry are indicated in lines (l) and (m). In certain instances it was not possible to measure the Weisenberg viscosity. The stored product of Example 4 was a stiff gel. Comments on the hot aged product of each of the examples are as follows:
Example 2: Initially -- creamy consistency -- flowed freely when container was inverted. After storage -- had set to a thixotropic gell which could be liquified by gentle stirring -- No sign of hard settlement.
Example 3: initially as Example 2.
After storage -- set to stronger gel than Example 2 product but could still be liquified by stirring.
Example 4: initially -- creamy and free flowing.
After 7 months -- set to a stiff gel which was not easily liquified. No hard settlement.
              TABLE II                                                    
______________________________________                                    
PART A                                                                    
Example No.          4         3                                          
______________________________________                                    
a) Al.sub.2 O.sub.3 /TiO.sub.2 molar ratio : 1                            
                     0.393     0.61                                       
b) Total time for filtration and                                          
washing (mins)       157       76                                         
c) Solids content of filtercake %                                         
                     53.4      46.6                                       
d) Specific conductance of filter                                         
cake (micromhos cm.sup.-1)                                                
                     650       520                                        
e) pH of filtercake  10.75     10.75                                      
f) Isoelectric point of filter                                            
cake                 5.0       6.7                                        
g) Apparent Brookfield Viscosity                                          
of liquified filtercake (poises)                                          
                     0.2       0.3                                        
h) High pressure filtercake                                               
(solids %)           70        70                                         
i) Disintegrated filtercake                                               
(solids %)           70        68.5                                       
j) Isoelectric point after heat                                           
treatment            4.2       4.8                                        
EXAMPLE NUMBER                                                            
______________________________________                                    
a    2          5          6        7                                     
______________________________________                                    
a    1.0        1.5        2        ∞                               
b    79         79         89       288                                   
c    47         44.8       44.9     45.2                                  
d    440        300        470      450                                   
e    10.65      10.4       10.3     9.1                                   
f    7.1        7.7        8.0      9.2                                   
g    1.6        2.7        12.5     50                                    
h    70         70         70       just less                             
                                    than 70                               
i    65         58         49.5     40                                    
j    5.6        5.95       6.6      8.6                                   
______________________________________                                    
              TABLE II                                                    
______________________________________                                    
PART B                                                                    
Example          4           3                                            
No.              Init.  7 mths.  Init.                                    
                                      7 mths.                             
______________________________________                                    
     Apparent Weissenberg                                                 
     Viscosity (Poises)                                                   
     of 65% slurry                                                        
k)   initially and after                                                  
     7 months, at shear                                                   
     rate of 1125 sec..sup.-1                                             
                     1.29          0.36 0.66                              
k)   "895.5 sec..sup.-1                                                   
                     0.33   gel    0.43 0.80                              
k)   "710 sec..sup.-1                                                     
                     0.37   not    0.50 1.18                              
k)   "564 sec..sup.-1                                                     
                     0.44   mea-   0.61 1.77                              
k)   "449 sec..sup.-1                                                     
                     0.52   sure-  0.73 2.43                              
k)   "356 sec..sup.-1                                                     
                     0.61   able   0.88 3.00                              
k)   "225 sec..sup.-1                                                     
                     0.83          1.18 4.80                              
k)   "112.5 sec..sup.-1                                                   
                     1.39          2.1  11.1                              
l)   Isoelectric point                                                    
after 7 months   no change                                                
storage                                                                   
m)   pH after 7 months                                                    
                     9.0         9.2                                      
     storage                                                              
EXAMPLE NUMBER                                                            
     2          5          6        7                                     
Init.   7 mths. Init.  7 mths.                                            
                             Init.                                        
                                  7 mths.                                 
                                        Init.                             
                                             7 mths                       
______________________________________                                    
 k)  0.33   0.47    not measured since it was not                         
     0.40   0.56    possible to produce a slurry by                       
     0.48   0.70    disintegrating the filtercake                         
     0.58   1.00    having a solids content of the                        
     0.69   1.25    desired minimum level of 60%.                         
     0.79   1.57                                                          
     1.31   2.63                                                          
     2.35   2.77                                                          
1)              no change                                                 
m)   9.55       9.2        9.0      --                                    
______________________________________                                    

Claims (13)

We claim:
1. A process for the production of an alkaline aqueous slurry having a negative charge and a solids content of at least 60% by weight, of a coated pigmentary titanium dioxide, which comprises;
(a) providing an aqueous dispersion of pigmentary particles of titanium dioxide;
(b) forming a coating on said particles by simultaneously precipitating in the dispersion at an alkaline pH, at least two different metal oxides, at least one of said metal oxides being selected from those giving an isoelectric point at a pH below 7 and at least one of said metal oxides being selected from those giving an isoelectric point at a pH above 7, under conditions such that a filterable, washable slurry is obtained;
(c) filtering and washing the coated particles in the slurry to obtain a washed filter cake;
(d) raising the concentration of the washed filter cake to at least 60% by weight of coated particles;
(e) redispersing the particles of the raised concentration filter cake; and
(f) maintaining the filtered, washed, coated particles at a temperature of from 40° C to 100° C for a duration of at least 20 minutes.
2. A process as claimed in claim 1 wherein the precipitation of the metal oxide coating is conducted to a final pH of from 9.0 to 10.5.
3. A process as claimed in claim 1 wherein the coating comprises at least one oxide of aluminium, beryllium, lead or zinc and at least one oxide of cerium, antimony, silicon, titanium, zirconium or tin.
4. A process as claimed in claim 3 wherein the mixed metal oxide coating comprises alumina and titania in a molar ratio of from 0.5:1 to 1.25:1.
5. A process as claimed in claim 4 wherein the mixed metal oxide coating comprises alumina and titania in substantially equal quantities on a molar basis.
6. A process as claimed in claim 1 wherein the mixed metal oxide coating comprises from 0.5 to 15% of the weight of the titanium dioxide.
7. A process as claimed in claim 1 wherein the mixed metal oxide coating is precipitated onto the titanium dioxide particles at a temperature of from 10° C to 40° C.
8. A process as claimed in claim 1 wherein the concentration of the washed titanium dioxide is raised to at least the desired product concentration by filtering the coated titanium dioxide, drying a proportion of the coated titanium dioxide and blending the dried titanium dioxide with at least a portion of the remainder of the coated titanium dioxide.
9. A process as claimed in claim 1 wherein the desired product concentration is from 60% to 75% by weight solids.
10. A process as claimed in claim 1 wherein said temperature is from 80° C to 100° C for at least 30 minutes without allowing the coated titanium dioxide to dry out.
11. A process as claimed in claim 1 wherein said maintaining is conducted so as to reduce the isoelectric point of the slurry by at least 1.0.
12. A process as claimed in claim 11 wherein the isoelectric point of the maintained slurry is from 4.5 to 5.9.
13. A process for preparing a high solids content, alkaline, negatively charged, aqueous slurry of a metal oxide coated titanium dioxide pigment suitable for direct incorporation into an aqueous paint or paper media, which comprises;
providing an alkaline, filtered, washed aqueous slurry of at least 60 percent by weight of a pigmentary titanium dioxide coated by precipitation of a mixture of hydrous metal oxides, at least one of said oxides being selected from those giving an isoelectric point at a pH above 7 and one being selected from those giving an isoelectric point at a pH below 7; and
heating said slurry to a temperature of from 40° C to 100° C for a period of at least 20 minutes.
US05/746,674 1975-12-23 1976-12-02 Method of preparing metal oxide slurries Expired - Lifetime US4115144A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB52512/75 1975-12-23
GB52512/75A GB1560944A (en) 1975-12-23 1975-12-23 Slurries of titanium dioxide

Publications (1)

Publication Number Publication Date
US4115144A true US4115144A (en) 1978-09-19

Family

ID=10464203

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/746,674 Expired - Lifetime US4115144A (en) 1975-12-23 1976-12-02 Method of preparing metal oxide slurries

Country Status (4)

Country Link
US (1) US4115144A (en)
AU (1) AU503276B2 (en)
FR (1) FR2336169A1 (en)
GB (1) GB1560944A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227935A (en) * 1979-02-16 1980-10-14 American Cyanamid Company High dry hide TiO2 slurries
EP0025583A1 (en) * 1979-09-14 1981-03-25 Mitsubishi Materials Corporation Electroconductive powder and process for production thereof
US4450012A (en) * 1981-09-19 1984-05-22 Bayer Aktiengesellschaft Flocculation-resistant, mixed phase pigments having a rutile structure, process for their preparation, and their use
US4978396A (en) * 1989-05-12 1990-12-18 Kerr-Mcgee Chemical Corporation Process for preparing high solids slurries
WO1992001518A1 (en) * 1990-07-19 1992-02-06 Aluminum Company Of America Alumina trihydrate, methods of manufacture, and applications
US5342485A (en) * 1992-08-05 1994-08-30 Reynolds Metals Company Process for preparing ultra-white alumina trihydrate
WO1996006225A1 (en) * 1992-08-05 1996-02-29 Reynolds Metals Company Process for preparing ultra-white alumina trihydrate
US5702519A (en) * 1995-09-14 1997-12-30 Merck Patent Gesellschaft Mit Ceschrankter Haftung Flaky aluminum oxide and pearlescent pigment, and production thereof
WO1998015183A1 (en) * 1996-10-07 1998-04-16 E.I. Du Pont De Nemours And Company A process for coating biological pesticides and compositions therefrom
AU706596B2 (en) * 1994-08-23 1999-06-17 Reynolds Metals Company Process for preparing ultra-white alumina trihydrate
US6699317B1 (en) 2003-03-27 2004-03-02 Kerr-Mcgee Chemical, Llc Titanium dioxide slurries
US20050059547A1 (en) * 2003-09-15 2005-03-17 Toyota Jidosha Kabushiki Kaisha Cerium-zirconium composite metal oxide
US20080271642A1 (en) * 2007-05-03 2008-11-06 Tronox Llc Making co-precipitated mixed oxide-treated titanium dioxide pigments
US20170198148A1 (en) * 2016-01-08 2017-07-13 Kronos International, Inc. Method for Coating the Surface of a Substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410708A (en) * 1964-08-05 1968-11-12 Du Pont Porous silica coated titanium dioxide pigment
US3459575A (en) * 1965-05-05 1969-08-05 Du Pont Titanium pigment manufacture
US3510334A (en) * 1964-05-26 1970-05-05 Ppg Industries Inc Process of treating pigmentary titanium dioxide
US3847640A (en) * 1973-03-26 1974-11-12 A L Ind Inc Titanium pigment slurries for preparation of latex-base coating compositions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1017475A (en) * 1963-11-28 1966-01-19 British Titan Products Aqueous titanium dioxide suspensions
FR2061604A1 (en) * 1969-09-08 1971-06-25 Du Pont Stabilised aqueous anatase suspension
US3758322A (en) * 1971-07-21 1973-09-11 American Cyanamid Co Rutile tio2 slurries
US3702773A (en) * 1971-07-21 1972-11-14 Du Pont Alkanolamine stabilized high solids titanium dioxide slurry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510334A (en) * 1964-05-26 1970-05-05 Ppg Industries Inc Process of treating pigmentary titanium dioxide
US3410708A (en) * 1964-08-05 1968-11-12 Du Pont Porous silica coated titanium dioxide pigment
US3459575A (en) * 1965-05-05 1969-08-05 Du Pont Titanium pigment manufacture
US3847640A (en) * 1973-03-26 1974-11-12 A L Ind Inc Titanium pigment slurries for preparation of latex-base coating compositions

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227935A (en) * 1979-02-16 1980-10-14 American Cyanamid Company High dry hide TiO2 slurries
EP0025583A1 (en) * 1979-09-14 1981-03-25 Mitsubishi Materials Corporation Electroconductive powder and process for production thereof
US4450012A (en) * 1981-09-19 1984-05-22 Bayer Aktiengesellschaft Flocculation-resistant, mixed phase pigments having a rutile structure, process for their preparation, and their use
US4978396A (en) * 1989-05-12 1990-12-18 Kerr-Mcgee Chemical Corporation Process for preparing high solids slurries
WO1992001518A1 (en) * 1990-07-19 1992-02-06 Aluminum Company Of America Alumina trihydrate, methods of manufacture, and applications
US5342485A (en) * 1992-08-05 1994-08-30 Reynolds Metals Company Process for preparing ultra-white alumina trihydrate
WO1996006225A1 (en) * 1992-08-05 1996-02-29 Reynolds Metals Company Process for preparing ultra-white alumina trihydrate
AU706596B2 (en) * 1994-08-23 1999-06-17 Reynolds Metals Company Process for preparing ultra-white alumina trihydrate
US5702519A (en) * 1995-09-14 1997-12-30 Merck Patent Gesellschaft Mit Ceschrankter Haftung Flaky aluminum oxide and pearlescent pigment, and production thereof
US6113950A (en) * 1996-10-07 2000-09-05 E. I. Du Pont De Nemours And Company Process for coating biological pesticides and compositions therefrom
WO1998015183A1 (en) * 1996-10-07 1998-04-16 E.I. Du Pont De Nemours And Company A process for coating biological pesticides and compositions therefrom
US6699317B1 (en) 2003-03-27 2004-03-02 Kerr-Mcgee Chemical, Llc Titanium dioxide slurries
US20050074379A1 (en) * 2003-03-27 2005-04-07 Brownbridge Thomas Ian Titanium dioxide slurries
US6981666B2 (en) 2003-03-27 2006-01-03 Kerr-Mcgee Chemical, Llc Titanium dioxide slurries
USRE44802E1 (en) 2003-09-15 2014-03-11 Toyota Jidosha Kabushiki Kaisha Cerium-zirconium composite metal oxide
US20050059547A1 (en) * 2003-09-15 2005-03-17 Toyota Jidosha Kabushiki Kaisha Cerium-zirconium composite metal oxide
US7384888B2 (en) * 2003-09-15 2008-06-10 Toyota Jidosha Kabushiki Kaisha Cerium-zirconium composite metal oxide
US20080271642A1 (en) * 2007-05-03 2008-11-06 Tronox Llc Making co-precipitated mixed oxide-treated titanium dioxide pigments
US8951607B2 (en) 2007-05-03 2015-02-10 Tronox, Llc Making co-precipitated mixed oxide-treated titanium dioxide pigments
US20170198148A1 (en) * 2016-01-08 2017-07-13 Kronos International, Inc. Method for Coating the Surface of a Substrate
CN108137942A (en) * 2016-01-08 2018-06-08 克洛诺斯国际有限公司 For coating the method on the surface of base material
US10487214B2 (en) * 2016-01-08 2019-11-26 Kronos International Inc Method for coating the surface of a substrate
AU2017205246B2 (en) * 2016-01-08 2021-01-21 Kronos International, Inc. Method for coating the surface of a substrate

Also Published As

Publication number Publication date
AU503276B2 (en) 1979-08-30
GB1560944A (en) 1980-02-13
FR2336169A1 (en) 1977-07-22
AU2064176A (en) 1978-06-22
FR2336169B1 (en) 1982-04-16

Similar Documents

Publication Publication Date Title
US4115144A (en) Method of preparing metal oxide slurries
US4224080A (en) Method of treating inorganic oxide pigments
US3437502A (en) Titanium dioxide pigment coated with silica and alumina
USRE27818E (en) Titanium dioxide pigment coated with silica and alumina
US3767455A (en) Treatment of oxide pigments
JP3307667B2 (en) Process for producing particulate titanium dioxide, particulate titanium dioxide and aqueous suspension thereof
US4737194A (en) Titanium dioxide pigment coated with cerium cations, selected acid anions, and alumina
US5049309A (en) Titania sol
JPH02255532A (en) Production of rutile type titanium oxide sol
JPS602338B2 (en) TiO↓2 pigment coated with porous alumina/silica and dense silica
JPH10120934A (en) Production of titanium dioxide pigment having hydrated oxide coating material by using media mill
JPH032914B2 (en)
CA1168805A (en) Metal oxide slurries
JPH10158015A (en) Production of surface-treated titanium dioxide sol
US3337300A (en) Process for the production of pigment from conditioned and calcined titanium dioxideparticles
US3212911A (en) Titanium dioxide pigments
CA2013224A1 (en) Particulate material
US3804655A (en) Pigments
US2296618A (en) Silicate treated titanium pigment
JPS6345123A (en) Fine powder titanium dioxide composition
JPS6149250B2 (en)
US3876442A (en) Process of treating titanium dioxide pigment
US3522079A (en) Precipitation coating process for coating metal oxide particles with a hydrous metal oxide
US1766592A (en) Production of composite pigments containing titanium dioxide
US3434853A (en) Titanium dioxide granules and their use in a molten glass batch

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCM CHEMICALS LIMITED , 77 SOUTH AUDLEY STREET, L

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LAPORTE INDUSTRIES LIMITED, A BRITISH COMPANY;REEL/FRAME:004672/0543

Effective date: 19860204

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)