JP2009179521A - Method for producing rutile type titanium oxide fine particle - Google Patents

Method for producing rutile type titanium oxide fine particle Download PDF

Info

Publication number
JP2009179521A
JP2009179521A JP2008020596A JP2008020596A JP2009179521A JP 2009179521 A JP2009179521 A JP 2009179521A JP 2008020596 A JP2008020596 A JP 2008020596A JP 2008020596 A JP2008020596 A JP 2008020596A JP 2009179521 A JP2009179521 A JP 2009179521A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide fine
type titanium
rutile
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008020596A
Other languages
Japanese (ja)
Other versions
JP5317486B2 (en
Inventor
Kazuteru Tsuji
和輝 辻
Tsuguo Koyanagi
嗣雄 小柳
Yuji Kayama
勇治 香山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2008020596A priority Critical patent/JP5317486B2/en
Publication of JP2009179521A publication Critical patent/JP2009179521A/en
Application granted granted Critical
Publication of JP5317486B2 publication Critical patent/JP5317486B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing rutile type titanium oxide fine particles having high purity and a high refractive index without using a tin compound or without firing at a high temperature. <P>SOLUTION: The method for producing rutile type titanium oxide fine particles includes steps of: (a) mixing and reacting titanium alkoxide and hydrogen peroxide in a 2 to 50 molar ratio (M<SB>HP</SB>)/(M<SB>Ti</SB>) of the molar number of hydrogen peroxide (M<SB>HP</SB>, in terms of H<SB>2</SB>O<SB>2</SB>) to the molar number of titanium alkoxide (M<SB>Ti</SB>, in terms of TiO<SB>2</SB>); and (c) subjecting the mixture to hydrothermal treatment at 100 to 350°C, wherein the method includes a step of (b) ageing the mixture at 50 to 100°C, subsequent to the step (a). The obtained rutile type titanium oxide fine particles have an average particle width (W) ranging from 2 to 50 nm, an average length (L) ranging from 2 to 500 nm and an aspect ratio (W)/(L) ranging from 1 to 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規なルチル型酸化チタン微粒子の製造方法に関する。   The present invention relates to a method for producing novel rutile-type titanium oxide fine particles.

従来、ルチル型酸化チタンは、無定型の酸化チタン、あるいはアナタース型酸化チタンを高温で焼成することに得られることが知られている。しかしながら、高温で焼成すると、ルチル型酸化チタン粒子が凝集したり、粒子径の大きな粒子が生成するため透明被膜等に用いるには問題があった。   Conventionally, it is known that rutile type titanium oxide can be obtained by baking amorphous titanium oxide or anatase type titanium oxide at a high temperature. However, when fired at a high temperature, the rutile type titanium oxide particles are aggregated or particles having a large particle size are produced, and thus there is a problem in using them for transparent coatings.

このため、本願出願人は、特開平2−255532号公報(特許文献1)において、水和酸化チタンのゲルまたはゾルを過酸化水素にて溶解し、スズ酸カリウム水溶液を陽イオン交換樹脂で脱アルカリしたスズ化合物であるスズ酸水溶液の共存下で水熱処理することによってルチル型酸化チタンゾルが得られることを開示している。すなわち、高温で焼成することなくルチル型酸化チタンが得られることを開示している。
特開平2−255532号公報
For this reason, the applicant of the present application disclosed in JP-A-2-255532 (Patent Document 1), a gel or sol of hydrated titanium oxide was dissolved in hydrogen peroxide, and the aqueous potassium stannate solution was removed with a cation exchange resin. It discloses that a rutile-type titanium oxide sol can be obtained by hydrothermal treatment in the presence of an aqueous stannic acid solution that is an alkali tin compound. That is, it discloses that a rutile type titanium oxide can be obtained without firing at a high temperature.
JP-A-2-255532

しかしながら、特許文献1では、水和酸化チタンのゲルまたはゾルの比表面積は、大きくないとルチル型の結晶性が不十分となることがあり、また水和酸化チタンのゲルまたはゾルにアルカリ等の不純物が残存し、これが、得られるルチル型酸化チタン微粒子に残存して、光触媒活性等を損なう場合があった。また、不純物を除去するには、酸で処理したり、イオン交換樹脂等で処理する必要があるがアルカリが実質的に残存しない程度に洗浄することは困難であり、できたとしても生産性、経済性が低下する問題があった。   However, in Patent Document 1, the rutile-type crystallinity may be insufficient unless the specific surface area of the hydrated titanium oxide gel or sol is large. Impurities may remain, which may remain in the resulting rutile-type titanium oxide fine particles and impair the photocatalytic activity and the like. Moreover, in order to remove impurities, it is necessary to treat with an acid or an ion exchange resin, but it is difficult to wash to such an extent that the alkali does not substantially remain. There was a problem that the economy was lowered.

また、特許文献1では、スズ化合物を用いることから得られるルチル型酸化チタン微粒子にはスズ酸化物が存在し、屈折率、光触媒活性等が不十分となることがあった。   In Patent Document 1, tin oxide is present in rutile titanium oxide fine particles obtained from the use of a tin compound, and the refractive index, photocatalytic activity, and the like may be insufficient.

本発明者らは、上記問題点に鑑み鋭意検討した結果、チタンアルコキシドと過酸化水素とを反応させて得たペルオキソチタン酸を水熱処理すると、スズ化合物を用いることなく、かつ、高温で焼成することなく、ルチル型酸化チタン微粒子が得られることを見いだして本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the inventors of the present invention hydrothermally treat peroxotitanic acid obtained by reacting titanium alkoxide and hydrogen peroxide without using a tin compound and firing at a high temperature. Thus, the inventors have found that rutile-type titanium oxide fine particles can be obtained and have completed the present invention.

本発明の構成は以下の通りである。
[1]下記の工程を含むことを特徴とするルチル型酸化チタン微粒子の製造方法;
(a)チタンアルコキシドと過酸化水素とを、過酸化水素モル数(H22換算、MHP)と
チタンアルコキシドモル数(TiO2換算、MTi)とモル比(MHP)/(MTi)が2〜50の範囲で
混合して反応させる工程、
(c)100〜350℃で水熱処理する工程。
[2]前記工程(a)についで、(b)50〜100℃で熟成する工程を含む[1]のルチル型酸化チタン微粒子の製造方法。
[3]得られたルチル型酸化チタン微粒子の平均粒子幅(W)が2〜50nmの範囲にあり、平均長さ(L)が2〜500nmの範囲にあり、アスペクト比(W)/(L)が1〜10の範囲にあ
る[1]または[2]のルチル型酸化チタン微粒子の製造方法。
The configuration of the present invention is as follows.
[1] A method for producing rutile-type titanium oxide fine particles, comprising the following steps;
(A) Titanium alkoxide and hydrogen peroxide are converted into hydrogen peroxide moles (H 2 O 2 equivalent, M HP ), titanium alkoxide moles (TiO 2 equivalent, M Ti ), and molar ratio (M HP ) / (M Ti ) is mixed and reacted in the range of 2-50,
(C) A step of hydrothermal treatment at 100 to 350 ° C.
[2] The method for producing rutile-type titanium oxide fine particles according to [1], which comprises the step (a) followed by (b) aging at 50 to 100 ° C.
[3] The average particle width (W) of the obtained rutile-type titanium oxide fine particles is in the range of 2 to 50 nm, the average length (L) is in the range of 2 to 500 nm, and the aspect ratio (W) / (L ) Is in the range of 1 to 10, [1] or [2] rutile type titanium oxide fine particle production method.

本発明によれば、スズ化合物を用いることなく、かつ、高温で焼成することなく、高純度で高屈折率のルチル型酸化チタン微粒子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a high purity and high refractive index rutile type titanium oxide fine particle can be provided, without using a tin compound and baking at high temperature.

以下、本発明に係るルチル型酸化チタン微粒子の製造方法について具体的に説明する。
本発明に係るルチル型酸化チタン微粒子の製造方法は、下記の工程を含む。
(a)チタンアルコキシドと過酸化水素とを反応させる工程
(c)100〜350℃で水熱処理する工程
Hereinafter, the method for producing rutile-type titanium oxide fine particles according to the present invention will be specifically described.
The method for producing rutile-type titanium oxide fine particles according to the present invention includes the following steps.
(A) Step of reacting titanium alkoxide and hydrogen peroxide (c) Step of hydrothermal treatment at 100 to 350 ° C.

工程(a)
本発明に用いるチタンアルコキシドとしては、Ti(OR)4(R:炭化水素基)で表されるチタンアルコキシドが好適に用いられ、例えば、テトライソプロピルチタネート、テトラノルマルブチルチタネート、テトラ(2−エチルヘキシル)チタネート等が挙げられる。チタンアルコキシドはそのまま用いてもよく、アルコール溶液として用いることもできる。また過酸化水素は通常過酸化水素水が使用される。過酸化水素水の濃度は特に制限されないが、後述するような濃度に調整する。
Step (a)
As the titanium alkoxide used in the present invention, a titanium alkoxide represented by Ti (OR) 4 (R: hydrocarbon group) is preferably used. For example, tetraisopropyl titanate, tetranormal butyl titanate, tetra (2-ethylhexyl) Examples include titanate. Titanium alkoxide may be used as it is or as an alcohol solution. Hydrogen peroxide is usually used as hydrogen peroxide. The concentration of the hydrogen peroxide solution is not particularly limited, but is adjusted to a concentration as described later.

チタンアルコキシドと過酸化水素を反応させるが、このとき、過酸化水素のH22としてのモル数(MHP)とチタンアルコキシドのTiO2としてのモル数(MTi)とモル比(MHP)/(MTi)が2〜50、さらには5〜40の範囲にあることが好ましい。 The titanium alkoxide and hydrogen peroxide are reacted. At this time, the mole number of hydrogen peroxide as H 2 O 2 (M HP ) and the mole number of titanium alkoxide as TiO 2 (M Ti ) and the mole ratio (M HP). ) / (M Ti ) is preferably in the range of 2 to 50, more preferably 5 to 40.

モル比(MHP)/(MTi)が小さい場合は、得られるペルオキソチタン酸が不透明で、最終的に得られるルチル型酸化チタン微粒子の結晶性が不十分であったり、ルチル型以外の結晶が混在する場合がある。モル比(MHP)/(MTi)が高すぎても、ルチル型の結晶性がさらに向上することもなく、経済的でない。 When the molar ratio (M HP ) / (M Ti ) is small, the resulting peroxotitanic acid is opaque and the final obtained rutile titanium oxide fine particles have insufficient crystallinity, or crystals other than the rutile type May be mixed. If the molar ratio (M HP ) / (M Ti ) is too high, the rutile-type crystallinity is not further improved and it is not economical.

添加順序は、特に制限はないが、過酸化水素水にチタンアルコキシド、チタンアルコキシドアルコール溶液を加える方法が簡便である。
チタンアルコキシドと過酸化水素を混合して反応させるが、混合した時のTiO2の濃度は0.1〜5重量%、さらには0.2〜4重量%の範囲にあることが好ましい。また、このようなTiO2濃度になる範囲で、過酸化水素水の添加量を調整するとともに、必要に応じて水を添加しても濃度調整してもよい。
The order of addition is not particularly limited, but a method of adding a titanium alkoxide or titanium alkoxide alcohol solution to the hydrogen peroxide solution is simple.
Although titanium alkoxide and hydrogen peroxide are mixed and reacted, the concentration of TiO 2 when mixed is preferably in the range of 0.1 to 5% by weight, more preferably 0.2 to 4% by weight. Moreover, while adjusting the addition amount of hydrogen peroxide water within such a range of TiO 2 concentration, water may be added or the concentration may be adjusted as necessary.

混合時のTiO2濃度が低すぎると、次工程で、水熱処理する際に、ルチル型酸化チタン微粒子の収率が低下することがあるとともに、当然のことながら、生産効率が低下し、経済的でない。 If the TiO 2 concentration at the time of mixing is too low, the yield of rutile-type titanium oxide fine particles may be reduced during hydrothermal treatment in the next step. Not.

TiO2濃度が高すぎると、ルチル型酸化チタン微粒子は得られるものの、凝集しやくす、用途に制限がある。例えば、ルチル酸化チタンを透明性被膜に用いる場合、透明性がなくなったり、膜の強度が不十分になる場合がある。 If the TiO 2 concentration is too high, rutile-type titanium oxide fine particles can be obtained, but they tend to aggregate and have limited applications. For example, when rutile titanium oxide is used for the transparent film, the transparency may be lost or the strength of the film may be insufficient.

本発明では、過酸化水素水溶液に、あるいは過酸化水素とチタンアルコキシドとを混合する際、あるいは混合後に、酸、好ましくは硝酸を加えることが好ましい。
酸を加えると、過酸化水素水溶液とチタンアルコキシドとを混合した際に生成するゲルを抑制することができ、透明性のペルオキソチタン酸が得られ、最終的に得られるルチル型酸化チタン微粒子の結晶性に優れる傾向がある。なお、酸を加えない場合は、最終的に得られるルチル型酸化チタン微粒子の粒子径が小さくなる傾向がある。
In the present invention, it is preferable to add an acid, preferably nitric acid, to an aqueous hydrogen peroxide solution, or when mixing hydrogen peroxide and titanium alkoxide, or after mixing.
When an acid is added, the gel formed when the aqueous hydrogen peroxide solution and titanium alkoxide are mixed can be suppressed, and transparent peroxotitanic acid is obtained. Finally, crystals of rutile-type titanium oxide fine particles are obtained. There is a tendency to be superior. In addition, when an acid is not added, there exists a tendency for the particle diameter of the rutile type titanium oxide fine particle finally obtained to become small.

必要に応じて加える酸の量は、酸のモル数(MA)とチタンアルコキシドのモル数(MTi)とのモル比(MA)/(MTi)が0.01〜0.3、さらには0.02〜0.2の範囲
にあることが好ましい。
The amount of acid added if necessary, the molar ratio of moles of acid and (M A) titanium moles of alkoxide (M Ti) (M A) / (M Ti) is between 0.01 and 0.3, Furthermore, it is preferable that it exists in the range of 0.02-0.2.

前記モル比(MA)/(MTi)が0.01未満の場合は前記酸を加える効果が不十分と
なることがあり、0.3を越えてもさらに前記酸を加える効果が増すこともない。
なお、本願出願人は、特開2000−335919号公報にて、ブッルカイト型酸化チタンの製造方法を提案している。かかる製造方法によれば、チタンアルコキシドの水および/または有機溶媒に酸またはアルカリを加えて加水分解することによってオルソチタン酸を調製し、このオルソチタン酸に過酸化水素水を添加している、すなわち、ブルッカイト型酸化チタンでは、オルソチタン酸を経由している。一方、ルチル型酸化チタンの製造方法では、チタンアルコキシドと過酸化水素を反応させており、この製造方法の違いが、結晶型に影響すると本発明者らは考えている。
If the molar ratio (M A ) / (M Ti ) is less than 0.01, the effect of adding the acid may be insufficient, and even if it exceeds 0.3, the effect of adding the acid further increases. Nor.
Note that the applicant of the present application has proposed a method for producing a blankite type titanium oxide in Japanese Patent Application Laid-Open No. 2000-335919. According to this production method, orthotitanic acid is prepared by adding acid or alkali to water and / or an organic solvent of titanium alkoxide to hydrolyze, and hydrogen peroxide water is added to this orthotitanic acid. That is, brookite-type titanium oxide passes through orthotitanic acid. On the other hand, in the manufacturing method of rutile type titanium oxide, titanium alkoxide and hydrogen peroxide are reacted, and the present inventors consider that the difference in this manufacturing method affects the crystal type.

工程(b)
工程(a)で得られたペルオキソチタン酸溶液は、ついで、熟成することが好ましい。熟成温度は50〜100℃、さらには60〜95℃の範囲にあることが好ましい。熟成温度が低いと、最終的に得られるルチル型酸化チタン微粒子の粒子径分布が不均一になる傾向があり、また、所定温度範囲で熟成した場合に比して結晶性が低い傾向がある。熟成温度が高すぎると熟成の効果が十分に発現できず、最終的に得られるルチル型酸化チタン微粒子の粒子径分布が不均一になる傾向がある。
熟成時間は、特に制限はないが、通常0.5〜48時間であればよい。
Step (b)
The peroxotitanic acid solution obtained in step (a) is then preferably aged. The aging temperature is preferably 50 to 100 ° C, more preferably 60 to 95 ° C. When the ripening temperature is low, the particle size distribution of the finally obtained rutile-type titanium oxide fine particles tends to be non-uniform, and the crystallinity tends to be lower than when ripening in a predetermined temperature range. If the aging temperature is too high, the effect of aging cannot be sufficiently exhibited, and the particle size distribution of the rutile-type titanium oxide fine particles finally obtained tends to be non-uniform.
The aging time is not particularly limited, but is usually 0.5 to 48 hours.

工程(c)
工程(a)または工程(b)についで、100〜350℃、好ましくは120〜250℃で水熱処理する。水熱処理温度が低すぎると、結晶性が不十分であり、水熱処理温度が高すぎても、さらに結晶性が高まることもなく、経済的でない。
Step (c)
Following the step (a) or the step (b), hydrothermal treatment is performed at 100 to 350 ° C., preferably 120 to 250 ° C. If the hydrothermal treatment temperature is too low, the crystallinity is insufficient, and if the hydrothermal treatment temperature is too high, the crystallinity is not further increased, which is not economical.

水熱処理時間は、水熱処理温度によっても異なるが、1〜96時間、さらには2〜48時間の範囲にあることが好ましい。水熱処理時間が短いと、結晶性が不十分となり、水熱処理時間が長すぎてもさらに結晶性が向上することもなく、経済的でない。   The hydrothermal treatment time varies depending on the hydrothermal treatment temperature, but is preferably in the range of 1 to 96 hours, more preferably 2 to 48 hours. If the hydrothermal treatment time is short, the crystallinity becomes insufficient, and even if the hydrothermal treatment time is too long, the crystallinity is not further improved and it is not economical.

水熱処理後、得られたルチル型酸化チタン微粒子分散液は洗浄、必要に応じて濃縮または希釈することができる。洗浄方法としては限外濾過膜法、イオン交換樹脂法等従来公知の方法を採用することができる。また、濃縮は限外濾過膜法、蒸発法等従来公知の方法を採用することができる。   After the hydrothermal treatment, the obtained rutile-type titanium oxide fine particle dispersion can be washed and concentrated or diluted as necessary. As the washing method, a conventionally known method such as an ultrafiltration membrane method or an ion exchange resin method can be employed. For the concentration, a conventionally known method such as an ultrafiltration membrane method or an evaporation method can be employed.

得られたルチル型酸化チタン微粒子分散液は有機溶媒に溶媒置換して用いることもできる。溶媒置換する方法としては限外濾過膜法、蒸留法等従来公知の方法を採用することができる。   The obtained rutile-type titanium oxide fine particle dispersion can also be used after solvent substitution with an organic solvent. As a method for solvent replacement, a conventionally known method such as an ultrafiltration membrane method or a distillation method can be employed.

得られたルチル型酸化チタン微粒子は、必要に応じて、従来公知の方法によってシランカップリング剤で表面処理してもよい。
このようにして得られたルチル型酸化チタン微粒子は、通常、平均粒子幅(W)が2〜5
0nmの範囲にあり、平均長さ(L)が2〜500nmの範囲にあり、アスペクト比(W)/(L)が1〜10の範囲にある。
The obtained rutile-type titanium oxide fine particles may be surface-treated with a silane coupling agent by a conventionally known method, if necessary.
The rutile-type titanium oxide fine particles thus obtained usually have an average particle width (W) of 2 to 5
It is in the range of 0 nm, the average length (L) is in the range of 2 to 500 nm, and the aspect ratio (W) / (L) is in the range of 1 to 10.

本発明での、平均粒子幅(W)、平均粒子長(L)の測定は、透過型電子顕微鏡写真を撮影し50個の粒子について粒子幅、粒子長を求め、その平均値として示した。
本発明の方法によって得られるルチル型酸化チタン微粒子は実質的にアルカリを含有してない。
In the present invention, the average particle width (W) and average particle length (L) were measured by taking transmission electron micrographs, obtaining the particle width and particle length of 50 particles, and showing the average values.
The rutile-type titanium oxide fine particles obtained by the method of the present invention contain substantially no alkali.

[実施例]
以下、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to these Examples.

[実施例1]
ルチル型酸化チタン微粒子(1)の調製
濃度35重量%の過酸化水素水1425gを純水7122gで希釈した過酸化水素水溶液に濃度63重量%の硝酸6.3gを加え、これにテトライソプロピルチタネート143gを添加し黄褐色のペルオキソチタン酸水溶液を得た。ついで、ペルオキソチタン酸水溶液を90℃で2時間、95℃で12時間熟成した。溶液は、最初黄褐色であったが、熟成後には乳白色の透明性液体(コロイド液)となった。
[Example 1]
Preparation of Rutile Type Titanium Oxide Fine Particles (1) 6.3 g of 63 wt% nitric acid was added to hydrogen peroxide aqueous solution obtained by diluting 1425 g of 35 wt% hydrogen peroxide water with 7122 g of pure water, and 143 g of tetraisopropyl titanate was added thereto. Was added to obtain a yellowish brown peroxotitanic acid aqueous solution. Then, the peroxotitanic acid aqueous solution was aged at 90 ° C. for 2 hours and at 95 ° C. for 12 hours. The solution was initially yellowish brown, but became a milky white transparent liquid (colloidal liquid) after aging.

得られた透明性液体(コロイド液)に濃度63重量%の硝酸3.2g添加し、180℃で16時間水熱処理(加熱)してルチル型酸化チタン微粒子(1)分散液を調製した。
得られたルチル型酸化チタン微粒子(1)分散液を限外濾過膜法により、洗浄し、ついで
濃縮し、これにテトラメチルアンモニウムハイドロオキサイド(TMAH)(16g)を加えて高分散し、安定なpH11.3のルチル型酸化チタン微粒子(1)分散ゾルを得た。
To the obtained transparent liquid (colloidal liquid), 3.2 g of nitric acid having a concentration of 63% by weight was added and hydrothermally treated (heated) at 180 ° C. for 16 hours to prepare a rutile type titanium oxide fine particle (1) dispersion.
The obtained rutile-type titanium oxide fine particle (1) dispersion was washed by an ultrafiltration membrane method, then concentrated, and tetramethylammonium hydroxide (TMAH) (16 g) was added to this dispersion to highly disperse it. A rutile type titanium oxide fine particle (1) dispersion sol having a pH of 11.3 was obtained.

乾燥したルチル型酸化チタン微粒子(1)について、平均粒子幅(W)、平均粒子長(L)を測
定し、BET法により比表面積を測定し、X線回折法(理学電機製:LAD−IIC型、Cu管球、35kV、12.5mA)により結晶形および結晶性を測定し結果を表に示した

また、アルカリの含有量を測定し、結果を表に示した。
なお、結晶性は以下の方法により評価した。
For the dried rutile-type titanium oxide fine particles (1), the average particle width (W) and average particle length (L) were measured, the specific surface area was measured by the BET method, and the X-ray diffraction method (manufactured by Rigaku Corporation: LAD-IIC) The crystal form and crystallinity were measured with a mold, Cu tube, 35 kV, 12.5 mA), and the results are shown in the table.
Further, the alkali content was measured, and the results are shown in the table.
The crystallinity was evaluated by the following method.

結晶性
X線回折スペクトルにおいて、格子常数=3.25、面指数(1.1.0)、2θ=約27°のピークの高さ(H1)を、後述する比較例1のルチル型酸化チタン微粒子(R1)の
ピークの高さ(HR1)と対比し、(H1)/(HR1)の相対値として示した。
In the crystalline X-ray diffraction spectrum, the lattice constant = 3.25, the plane index (1.1.0), the peak height (H 1 ) of 2θ = about 27 ° is the rutile oxidation of Comparative Example 1 described later. It was shown as a relative value of (H 1 ) / (H R1 ) in comparison with the peak height (H R1 ) of the titanium fine particles (R1).

[実施例2]
ルチル型酸化チタン微粒子(2)の調製
実施例1において、濃度35重量%の過酸化水素水713gを用いた以外は同様にしてルチル型酸化チタン微粒子(2)分散ゾルを得た。
ルチル型酸化チタン微粒子(2)について平均粒子幅(W)、平均粒子長(L)、比表面積、結
晶形、結晶性およびアルカリ含有量を測定し、結果を表に示した。
[Example 2]
Preparation of Rutile Titanium Oxide Fine Particles (2) A rusol type titanium oxide fine particle (2) -dispersed sol was obtained in the same manner as in Example 1 except that 713 g of hydrogen peroxide solution having a concentration of 35% by weight was used.
The average particle width (W), average particle length (L), specific surface area, crystal form, crystallinity and alkali content of the rutile titanium oxide fine particles (2) were measured, and the results are shown in the table.

[実施例3]
ルチル型酸化チタン微粒子(3)の調製
実施例1において、濃度35重量%の過酸化水素水2138gを用いた以外は同様にしてルチル型酸化チタン微粒子(3)分散ゾルを得た。
ルチル型酸化チタン微粒子(3)について平均粒子幅(W)、平均粒子長(L)、比表面積、結
晶形、結晶性およびアルカリ含有量を測定し、結果を表に示した。
[Example 3]
Preparation of Rutile Type Titanium Oxide Fine Particles (3) A rutile type titanium oxide fine particle (3) -dispersed sol was obtained in the same manner as in Example 1 except that 2138 g of hydrogen peroxide solution having a concentration of 35% by weight was used.
The average particle width (W), average particle length (L), specific surface area, crystal form, crystallinity and alkali content of the rutile-type titanium oxide fine particles (3) were measured, and the results are shown in the table.

[実施例4]
ルチル型酸化チタン微粒子(4)の調製
実施例1において、150℃で16時間水熱処理した以外は同様にしてルチル型酸化チタン微粒子(4)分散ゾルを得た。ルチル型酸化チタン微粒子(4)について平均粒子幅(W)、
平均粒子長(L)、比表面積、結晶形、結晶性およびアルカリ含有量を測定し、結果を表に
示した。
[Example 4]
Preparation of Rutile Titanium Oxide Fine Particles (4) A rusol type titanium oxide fine particle (4) -dispersed sol was obtained in the same manner as in Example 1 except that hydrothermal treatment was performed at 150 ° C. for 16 hours. The average particle width (W) for the rutile-type titanium oxide fine particles (4),
The average particle length (L), specific surface area, crystal form, crystallinity and alkali content were measured, and the results are shown in the table.

[実施例5]
ルチル型酸化チタン微粒子(5)の調製
実施例1において、220℃で16時間水熱処理した以外は同様にしてルチル型酸化チタン微粒子(5)分散ゾルを得た。
ルチル型酸化チタン微粒子(5)について平均粒子幅(W)、平均粒子長(L)、比表面積、結
晶形、結晶性およびアルカリ含有量を測定し、結果を表に示した。
[Example 5]
Preparation of Rutile Titanium Oxide Fine Particles (5) A rusol type titanium oxide fine particle (5) -dispersed sol was obtained in the same manner as in Example 1 except that hydrothermal treatment was performed at 220 ° C. for 16 hours.
The rutile titanium oxide fine particles (5) were measured for average particle width (W), average particle length (L), specific surface area, crystal form, crystallinity and alkali content, and the results are shown in the table.

[実施例6]
ルチル型酸化チタン微粒子(6)の調製
実施例1において、濃度63重量%の硝酸2.5gを用いた以外は同様にしてルチル型酸
化チタン微粒子(6)分散ゾルを得た。ルチル型酸化チタン微粒子(6)について平均粒子幅(W)、平均粒子長(L)、比表面積、結晶形、結晶性およびアルカリ含有量を測定し、結果を表に示した。
[Example 6]
Preparation of Rutile Type Titanium Oxide Fine Particles (6) A rusol type titanium oxide fine particle (6) -dispersed sol was obtained in the same manner as in Example 1 except that 2.5 g of nitric acid having a concentration of 63% by weight was used. The rutile titanium oxide fine particles (6) were measured for average particle width (W), average particle length (L), specific surface area, crystal form, crystallinity and alkali content, and the results are shown in the table.

[実施例7]
ルチル型酸化チタン微粒子(7)の調製
実施例1において、硝酸を用いなかった以外は同様にしてルチル型酸化チタン微粒子(7)分散ゾルを得た。
ルチル型酸化チタン微粒子(7)について平均粒子幅(W)、平均粒子長(L)、比表面積、結
晶形、結晶性およびアルカリ含有量を測定し、結果を表に示した。
[Example 7]
Preparation of Rutile Type Titanium Oxide Fine Particles (7) In Example 1, rutile type titanium oxide fine particle (7) -dispersed sol was obtained in the same manner except that nitric acid was not used.
The rutile titanium oxide fine particles (7) were measured for average particle width (W), average particle length (L), specific surface area, crystal form, crystallinity and alkali content, and the results are shown in the table.

[実施例8]
ルチル型酸化チタン微粒子(8)の調製
実施例1において、テトライソプロピルチタネート143gに代えてテトラノルマルブチ
ルチタネート172gを用いた以外は同様にしてルチル型酸化チタン微粒子(7)分散ゾルを得た。
ルチル型酸化チタン微粒子(8)について平均粒子幅(W)、平均粒子長(L)、比表面積、結
晶形、結晶性およびアルカリ含有量を測定し、結果を表に示した。
[Example 8]
Preparation of Rutile Type Titanium Oxide Fine Particles (8) In Example 1, rutile type titanium oxide fine particle (7) dispersed sol was obtained in the same manner except that 172 g of tetranormal butyl titanate was used instead of 143 g of tetraisopropyl titanate.
The rutile titanium oxide fine particles (8) were measured for average particle width (W), average particle length (L), specific surface area, crystal form, crystallinity and alkali content, and the results are shown in the table.

[比較例1]
ルチル型酸化チタン微粒子(R1)の調製
硫酸チタニル溶液を純水で希釈してTiO2として1.0重量%の硫酸チタニル水溶液を調整した。この水溶液を10℃に維持しつつ、撹拌しながら濃度15重量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄し、固形分濃度が10.2重量%の水和酸化チタンゲルのケーキを得た。この水和酸化チタンゲルの比表面積は295m2/gであった。このケーキ882gに濃度35重量%の過酸化水素水7
71gと純水597gとを加えた後、83℃で3時間加熱してTiO2として濃度4.0重量%のチタン酸水溶液2250gを得た。このチタン酸水溶液は、黄褐色透明でpH8.8であった。
[Comparative Example 1]
Preparation of Rutile Type Titanium Oxide Fine Particles (R1) A titanyl sulfate solution was diluted with pure water to prepare a 1.0% by weight titanyl sulfate aqueous solution as TiO 2 . While maintaining this aqueous solution at 10 ° C., ammonia water having a concentration of 15% by weight was added with stirring to obtain a white slurry having a pH of 9.5. The slurry was washed by filtration to obtain a hydrated titanium oxide gel cake having a solid content of 10.2% by weight. The specific surface area of this hydrated titanium oxide gel was 295 m 2 / g. Hydrogen peroxide solution 7 with a concentration of 35% by weight was added to 882 g of this cake.
After adding 71 g and 597 g of pure water, the mixture was heated at 83 ° C. for 3 hours to obtain 2250 g of titanic acid aqueous solution having a concentration of 4.0% by weight as TiO 2 . This aqueous titanic acid solution was yellowish brown transparent and had a pH of 8.8.

つぎに、スズ酸カリウム水溶液を陽イオン交換樹脂で脱アルカリしたSnO2として濃
度1.6重量%のスズ酸水溶液626gと、上記チタン酸水溶液2250gと純水6020gとを混合した。さらに、平均粒子径が7nmであり、SiO2としての濃度が15重量%であるシリカゾル94.6gを上記混合液に混合した後、150℃で18時間水熱処理してルチル型酸化チタン微粒子(R1)分散液を調製した。ルチル型酸化チタン微粒子(R1)について平均粒子幅(W)、平均粒子長(L)、比表面積、結晶形、結晶性およびアルカリ含有量を測定し、結果を表に示した。
Next, 626 g of a stannic acid aqueous solution having a concentration of 1.6% by weight as SnO 2 obtained by dealkalizing a potassium stannate aqueous solution with a cation exchange resin, 2250 g of the titanic acid aqueous solution, and 6020 g of pure water were mixed. Further, 94.6 g of silica sol having an average particle diameter of 7 nm and an SiO 2 concentration of 15% by weight was mixed with the above mixture, and then hydrothermally treated at 150 ° C. for 18 hours to obtain rutile-type titanium oxide fine particles (R1 ) A dispersion was prepared. The average particle width (W), average particle length (L), specific surface area, crystal form, crystallinity and alkali content of the rutile-type titanium oxide fine particles (R1) were measured, and the results are shown in the table.

[比較例2]
ルチル型酸化チタン微粒子(R2)の調製
実施例7において、テトライソプロピルチタネート143gに代えて四塩化チタン95.8g
を用いた以外は同様にしてルチル型酸化チタン微粒子(R2)分散ゾルを得た。
ルチル型酸化チタン微粒子(R2)について平均粒子幅(W)、平均粒子長(L)、比表面積、結晶形、結晶性およびアルカリ含有量を測定し、結果を表に示した。
[Comparative Example 2]
Preparation of rutile titanium oxide fine particles (R2) In Example 7, 95.8 g of titanium tetrachloride was substituted for 143 g of tetraisopropyl titanate.
A rutile-type titanium oxide fine particle (R2) -dispersed sol was obtained in the same manner except that was used.
The average particle width (W), average particle length (L), specific surface area, crystal form, crystallinity and alkali content of the rutile-type titanium oxide fine particles (R2) were measured, and the results are shown in the table.

[比較例3]
ルチル型酸化チタン微粒子(R3)の調製
実施例1において、濃度35重量%の過酸化水素水20gを用いた以外は同様にしてルチル型酸化チタン微粒子(R3)分散ゾルを得た。ルチル型酸化チタン微粒子(R3)について平均粒子幅(W)、平均粒子長(L)、比表面積、結晶形、結晶性およびアルカリ含有量を測定し、結果を表に示した。
[Comparative Example 3]
Preparation of Rutile Type Titanium Oxide Fine Particles (R3) In Example 1, rutile type titanium oxide fine particle (R3) -dispersed sol was obtained in the same manner except that 20 g of hydrogen peroxide solution having a concentration of 35% by weight was used. The average particle width (W), average particle length (L), specific surface area, crystal form, crystallinity and alkali content of the rutile titanium oxide fine particles (R3) were measured, and the results are shown in the table.

Figure 2009179521
Figure 2009179521

Claims (3)

下記の工程を含むことを特徴とするルチル型酸化チタン微粒子の製造方法;
(a)チタンアルコキシドと過酸化水素とを、過酸化水素モル数(H22換算、MHP)と
チタンアルコキシドモル数(TiO2換算、MTi)とモル比(MHP)/(MTi)が2〜50の範囲で
混合して反応させる工程、
(c)100〜350℃で水熱処理する工程。
A method for producing rutile-type titanium oxide fine particles comprising the following steps;
(A) Titanium alkoxide and hydrogen peroxide are converted into hydrogen peroxide moles (H 2 O 2 equivalent, M HP ), titanium alkoxide moles (TiO 2 equivalent, M Ti ), and molar ratio (M HP ) / (M Ti ) is mixed and reacted in the range of 2-50,
(C) A step of hydrothermal treatment at 100 to 350 ° C.
前記工程(a)についで、(b)50〜100℃で熟成する工程を含むことを特徴とする請求項1に記載のルチル型酸化チタン微粒子の製造方法。   2. The method for producing rutile-type titanium oxide fine particles according to claim 1, further comprising the step of (b) aging at 50 to 100 ° C. following the step (a). 得られたルチル型酸化チタン微粒子の平均粒子幅(W)が2〜50nmの範囲にあり、平
均長さ(L)が2〜500nmの範囲にあり、アスペクト比(W)/(L)が1〜10の範囲にあ
ることを特徴とする請求項1または2に記載のルチル型酸化チタン微粒子の製造方法。
The obtained rutile-type titanium oxide fine particles have an average particle width (W) in the range of 2 to 50 nm, an average length (L) in the range of 2 to 500 nm, and an aspect ratio (W) / (L) of 1. The method for producing rutile-type titanium oxide fine particles according to claim 1 or 2, wherein the production method is in the range of -10.
JP2008020596A 2008-01-31 2008-01-31 Method for producing rutile type titanium oxide fine particles Expired - Fee Related JP5317486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020596A JP5317486B2 (en) 2008-01-31 2008-01-31 Method for producing rutile type titanium oxide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020596A JP5317486B2 (en) 2008-01-31 2008-01-31 Method for producing rutile type titanium oxide fine particles

Publications (2)

Publication Number Publication Date
JP2009179521A true JP2009179521A (en) 2009-08-13
JP5317486B2 JP5317486B2 (en) 2013-10-16

Family

ID=41033780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020596A Expired - Fee Related JP5317486B2 (en) 2008-01-31 2008-01-31 Method for producing rutile type titanium oxide fine particles

Country Status (1)

Country Link
JP (1) JP5317486B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227519A (en) * 2008-03-24 2009-10-08 Jgc Catalysts & Chemicals Ltd Method for producing rutile-type titanium dioxide fine particles
JP2013091594A (en) * 2011-10-06 2013-05-16 Taki Chem Co Ltd Alkaline rutile type titanium oxide sol
WO2014046020A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide
JP2014105150A (en) * 2012-11-29 2014-06-09 Taki Chem Co Ltd Method for manufacturing transition metal-supported alkaline rutile-type titanium oxide sol
CN106186053A (en) * 2015-05-04 2016-12-07 中国石油化工股份有限公司 A kind of synthetic method of self-assembled nanometer titanium dioxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255532A (en) * 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd Production of rutile type titanium oxide sol
JP2000335919A (en) * 1999-05-27 2000-12-05 Catalysts & Chem Ind Co Ltd Production of titanium oxide fine particle containing brookite type crystal
JP2001172019A (en) * 1999-12-14 2001-06-26 Fm Giken Kk Dispersed gel and solution of titanium oxide fine particle and method for producing the gel and solution
JP2007230809A (en) * 2006-02-28 2007-09-13 National Institute For Materials Science Method for producing titanium dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255532A (en) * 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd Production of rutile type titanium oxide sol
JP2000335919A (en) * 1999-05-27 2000-12-05 Catalysts & Chem Ind Co Ltd Production of titanium oxide fine particle containing brookite type crystal
JP2001172019A (en) * 1999-12-14 2001-06-26 Fm Giken Kk Dispersed gel and solution of titanium oxide fine particle and method for producing the gel and solution
JP2007230809A (en) * 2006-02-28 2007-09-13 National Institute For Materials Science Method for producing titanium dioxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227519A (en) * 2008-03-24 2009-10-08 Jgc Catalysts & Chemicals Ltd Method for producing rutile-type titanium dioxide fine particles
JP2013091594A (en) * 2011-10-06 2013-05-16 Taki Chem Co Ltd Alkaline rutile type titanium oxide sol
WO2014046020A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide
JPWO2014046020A1 (en) * 2012-09-19 2016-08-18 株式会社ダイセル Transition metal compound-supported titanium oxide
JP2014105150A (en) * 2012-11-29 2014-06-09 Taki Chem Co Ltd Method for manufacturing transition metal-supported alkaline rutile-type titanium oxide sol
CN106186053A (en) * 2015-05-04 2016-12-07 中国石油化工股份有限公司 A kind of synthetic method of self-assembled nanometer titanium dioxide

Also Published As

Publication number Publication date
JP5317486B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5126783B2 (en) Method for producing rutile type titanium oxide fine particles
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
KR101233703B1 (en) Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
US8932556B2 (en) Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same
JP3898792B2 (en) Method for producing surface-treated titanium oxide sol
JP6607407B2 (en) Fine particle titanium oxide and method for producing the same
JP5657197B2 (en) Titanium oxide particles and method for producing the same
JP5317486B2 (en) Method for producing rutile type titanium oxide fine particles
JP5253095B2 (en) Method for producing zirconia sol
JP5835589B2 (en) Method for producing rutile type titanium oxide sol
JP2007320821A (en) Electroconductive titanium oxide and its manufacture method
US8268203B2 (en) Method for producing microcrystalline titanium oxide
JP6149039B2 (en) Ultrafine titanium dioxide and method for producing the same
JP6300313B2 (en) Rutile-type titanium oxide sol and method for producing the same
JP2006176392A (en) Process for producing modified stannic oxide sol and stannic oxide/zirconium oxide composite sol
JP3970603B2 (en) Method for producing organic solvent-dispersed titanium oxide sol
JP5625929B2 (en) Method for producing silica-containing hydrous titanium oxide and silica-containing anatase-type titanium oxide
JP4521801B2 (en) Organic solvent-dispersed titanium oxide sol and method for producing the same
JP5889261B2 (en) Zirconium oxide-titanium oxide composite sol and method for producing the same
JP2006124243A (en) Method for manufacturing brookite titanium oxide and photocatalytic coating agent
KR100500305B1 (en) Method for preparing nano-size anatase titania powder and sol by glycol process
KR101971724B1 (en) Method for producing rutile-type titanium oxide sol
JP2010030789A (en) Method for producing anatase type titanium dioxide
US20160023917A1 (en) Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5317486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees