JP4851685B2 - Method for producing rutile type titanium oxide ultrafine particles - Google Patents

Method for producing rutile type titanium oxide ultrafine particles Download PDF

Info

Publication number
JP4851685B2
JP4851685B2 JP2003373256A JP2003373256A JP4851685B2 JP 4851685 B2 JP4851685 B2 JP 4851685B2 JP 2003373256 A JP2003373256 A JP 2003373256A JP 2003373256 A JP2003373256 A JP 2003373256A JP 4851685 B2 JP4851685 B2 JP 4851685B2
Authority
JP
Japan
Prior art keywords
titanium oxide
rutile
tin
ultrafine particles
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003373256A
Other languages
Japanese (ja)
Other versions
JP2005132706A (en
Inventor
朋範 飯島
徳夫 中山
豊治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003373256A priority Critical patent/JP4851685B2/en
Publication of JP2005132706A publication Critical patent/JP2005132706A/en
Application granted granted Critical
Publication of JP4851685B2 publication Critical patent/JP4851685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、透明性、分散性に優れた高屈折率の平均粒子径が1〜100nmのルチル型酸化チタン超微粒子の製造方法に関する。
The present invention relates to a method for producing rutile titanium oxide ultrafine particles having a high refractive index and an average particle diameter of 1 to 100 nm, which are excellent in transparency and dispersibility.

最近のプラスチックレンズの高屈折率化に対応して、この上に施されるハードコート膜は高屈折率のものでなければ、縞模様が生じるという欠点があり、充填無機酸化物の高屈折率化が求められている。同様に、分散安定性、耐擦傷性、表面硬度、耐磨耗性、透明性、耐熱性、耐光性、耐候性、紫外線遮蔽などに優れた高屈折率超微粒子、そのゾル液が反射防止膜、プラスチック劣化防止添加剤、化粧品添加剤、カメラ用レンズ、自動車用窓ガラス、プラズマディスプレイ、液晶ディスプレイ、ELディスプレイ、光学フィルター等の光学部材、金属材料、セラミックス材料、ガラス材料、プラスチック材料等の表面処理剤、誘電体材料、圧電体材料などの電子材、光触媒、撥水剤などの製品分野でも求められている。このような種々の用途に用いるためには高分散性や透明性が要求されるため、無機酸化物は超微粒子であることが望ましい。   Corresponding to the recent increase in the refractive index of plastic lenses, the hard coat film applied on the plastic lens has the disadvantage that a striped pattern occurs unless it has a high refractive index. Is required. Similarly, high refractive index ultrafine particles with excellent dispersion stability, scratch resistance, surface hardness, abrasion resistance, transparency, heat resistance, light resistance, weather resistance, UV shielding, etc., and the sol solution is an antireflection film , Plastic deterioration prevention additive, cosmetic additive, camera lens, automotive window glass, plasma display, liquid crystal display, EL display, optical filter and other optical members, metal materials, ceramic materials, glass materials, plastic materials, etc. There are also demands in the field of products such as electronic materials such as treatment agents, dielectric materials, and piezoelectric materials, photocatalysts, and water repellents. Since high dispersibility and transparency are required for use in such various applications, the inorganic oxide is desirably ultrafine particles.

ところで、酸化チタンには代表的な結晶型としてルチル型とアナターゼ型とがあるが、これまで高屈折率用の金属酸化物超微粒子ゾル液として、アナターゼ型酸化チタンを主成分とした材料が主に用いられている。ルチル型酸化チタンはアナターゼ型に比べて高屈折率、紫外線吸収といった光学特性などに優れていることが知られており、工業的に生産することが可能な製造法が望まれている。しかしながら、従来、ルチル型超微粒子を製造する際、アスペクト比の大きい針状のルチル型超微粒子が生成すると共に、それらが凝集してしまい、粒子径の大きい多結晶が得られ、粒子径が1〜100 nmの超微粒子を得ることが困難であった。例えば、チタン塩水溶液を長時間、ペプチゼーションすることによりルチル型ナノ結晶が得られるが、二次凝集により、200-400nmの凝集体になってしまうことが報告されている。(J. Phys. Chem. B, 101, 8052, 1997年)この問題点を解決する目的で、特許第2783417号公報(特許文献1)の記載にあるように、水和酸化チタンを経由し、スズ化合物を添加し、過酸化水素で比較的高温で熟成することにより、ルチル酸化チタンを製造しようとする方法が知られている。しかし、該方法は本来アナターゼ型酸化チタンの生成を阻止するためにスズを添加するために、スズ化合物の添加量が制限され、少な過ぎればアナターゼ型酸化チタン結晶を生成し、多ければ酸化スズ結晶の生成や固溶体の形成に至り、ルチル型酸化チタンが得られないという点に加えて、高価な過酸化水素使用を要件とすると共に水和酸化チタンを一旦生成させるという工程の複雑さがあった。   By the way, there are rutile type and anatase type as typical crystal types of titanium oxide, but so far, the material mainly composed of anatase type titanium oxide is used as the metal oxide ultrafine particle sol solution for high refractive index. It is used for. Rutile type titanium oxide is known to be superior in optical properties such as high refractive index and ultraviolet absorption as compared with anatase type, and a production method capable of industrial production is desired. However, conventionally, when producing rutile ultrafine particles, acicular rutile ultrafine particles having a large aspect ratio are produced, and they are aggregated to obtain a polycrystal having a large particle diameter, and the particle diameter is 1 It was difficult to obtain ultrafine particles of ˜100 nm. For example, rutile type nanocrystals can be obtained by peptization of an aqueous solution of titanium salt for a long time, but it has been reported that it becomes an aggregate of 200 to 400 nm due to secondary aggregation. (J. Phys. Chem. B, 101, 8052, 1997) In order to solve this problem, as described in Japanese Patent No. 2783417 (Patent Document 1), via hydrated titanium oxide, A method for producing rutile titanium oxide by adding a tin compound and aging with hydrogen peroxide at a relatively high temperature is known. However, this method inherently adds tin in order to prevent the formation of anatase-type titanium oxide, so that the amount of tin compound added is limited, and if it is too small, anatase-type titanium oxide crystals are produced, and if more, tin oxide crystals are produced. In addition to the fact that rutile-type titanium oxide cannot be obtained due to the formation of solid solution and the formation of a solid solution, there was a complicated process that required the use of expensive hydrogen peroxide and once produced hydrated titanium oxide. .

一方、無機結晶の成長は結晶軸の方向依存性があることが知られており、ルチル型酸化チタン結晶においては微結晶のC軸方向への成長は著しく、アスペクト比が異常に大きな結晶が得られる。(J. Am. Ceram. Soc., 82, 927, 1999年)この問題を解決するために、クエン酸などの有機リガンドを添加する方法が報告されているが、満足のゆくものは依然として得られていないのが実情である。(J. Mater. Chem., 10, 2338,2000年)
特許第2783417号公報
On the other hand, it is known that the growth of inorganic crystals is dependent on the direction of the crystal axis. In rutile titanium oxide crystals, the growth of microcrystals in the C-axis direction is remarkable, and crystals with an unusually large aspect ratio are obtained. It is done. (J. Am. Ceram. Soc., 82, 927, 1999) To solve this problem, methods of adding organic ligands such as citric acid have been reported, but satisfactory ones are still available. The fact is not. (J. Mater. Chem., 10, 2338, 2000)
Japanese Patent No. 2783417

本発明の目的は、透明性、分散性に優れた高屈折率の粒子径が1〜100 nmで、ゾル液としては分散性にも優れたルチル型酸化チタンの効率よい製造法を提供することにある。   An object of the present invention is to provide an efficient production method of rutile titanium oxide having a high refractive index particle diameter of 1 to 100 nm excellent in transparency and dispersibility and excellent dispersibility as a sol liquid. It is in.

本発明者らは結晶成長の異方性に関する研究の観点からルチル型酸化チタンの溶液中の生成過程について検討したところ、ルチル型酸化チタン結晶のC軸方向の成長がスズ金属塩の添加によって顕著に抑止され、酸化スズが生成しないということが判明し、これにより透明性、分散性に優れた粒子径が1〜100nmのルチル型酸化チタン超微粒子の効率よい製造法を見出した。   The present inventors examined the formation process of rutile-type titanium oxide in solution from the viewpoint of research on the anisotropy of crystal growth, and the growth in the C-axis direction of rutile-type titanium oxide crystals was noticeable by the addition of tin metal salt. Thus, it was found that tin oxide was not produced, and as a result, an efficient method for producing rutile titanium oxide ultrafine particles having a particle diameter of 1 to 100 nm excellent in transparency and dispersibility was found.

本発明者らは前述したルチル型酸化チタン超微粒子製造過程における問題点を解決するため、鋭意検討を行った結果、本来ルチル型酸化チタン超微粒子の二次凝集体合成条件において、スズ化合物を共存させてC軸方向への結晶成長を有効に防止し、酸化スズの生成を防止することにより、分散性に優れたルチル型酸化チタン超微粒子の合成法を見出し、本発明を完成するに至った。   As a result of intensive investigations to solve the problems in the process of producing the rutile titanium oxide ultrafine particles described above, the present inventors coexisted with a tin compound under the conditions for synthesizing secondary agglomerates of rutile titanium oxide ultrafine particles. By effectively preventing crystal growth in the C-axis direction and preventing the formation of tin oxide, a synthesis method of rutile-type titanium oxide ultrafine particles having excellent dispersibility was found and the present invention was completed. .

即ち、本発明は、
チタンに対するスズのモル比(Sn/Ti)が0.001〜2の塩化スズ共存下、Ti濃度が0.07〜5mol/lのチタン化合物溶液をpHが−0.2の範囲で反応させることを特徴とする透明性を有するルチル型酸化チタン超微粒子の製造方法、に関する。
That is, the present invention
In the presence of tin chloride having a tin to titanium molar ratio (Sn / Ti) of 0.001 to 2, a titanium compound solution having a Ti concentration of 0.07 to 5 mol / l is reacted in a pH range of -0.2 to 1. It is related with the manufacturing method of the rutile type | mold titanium oxide ultrafine particle which has transparency characterized by making it make it let it be made.

本発明によれば、高屈折率化剤、光線反射剤、紫外線吸収剤などとして、プラスチックレンズ、フィルム、プラスチック成形品の高屈折率ハードコート膜、反射防止膜、プラスチック劣化防止添加剤、化粧品添加剤、カメラ用レンズ、自動車用窓ガラス、プラズマディスプレイ、液晶ディスプレイ、ELディスプレイ、光学フィルター等の光学部材、金属材料、セラミックス材料、ガラス材料、プラスチック材料等の表面処理剤、誘電体材料、圧電体材料などの電子材、光触媒、撥水剤などに有効に用いられる、透明性、分散性に優れた高屈折率の平均粒子径が1〜100nmのルチル型酸化チタン超微粒子の製造法を提供することができる。
According to the present invention, as a high refractive index agent, a light reflecting agent, an ultraviolet absorber, etc., a plastic lens, a film, a high refractive index hard coat film of a plastic molded product, an antireflection film, a plastic deterioration preventing additive, a cosmetic additive Agent, camera lens, automotive window glass, plasma display, liquid crystal display, EL display, optical member such as optical filter, surface treatment agent such as metal material, ceramic material, glass material, plastic material, dielectric material, piezoelectric body Provided is a method for producing ultrafine rutile titanium oxide particles having a high refractive index and an average particle diameter of 1 to 100 nm, which is effectively used for electronic materials such as materials, photocatalysts, and water repellents. be able to.

以下本発明に係るルチル型酸化チタン超微粒子の製造法について説明する。   Hereinafter, a method for producing rutile-type titanium oxide ultrafine particles according to the present invention will be described.

本発明のルチル型酸化チタン超微粒子の製造方法とは、チタンに対するスズのモル比(Sn/Ti)が0.001〜2のスズ化合物共存下、Ti濃度が0.07〜5mol/lのチタン化合物溶液をpHが−1〜3の範囲で反応させる。   The method for producing rutile-type titanium oxide ultrafine particles of the present invention is a titanium having a Ti concentration of 0.07 to 5 mol / l in the presence of a tin compound having a molar ratio of tin to titanium (Sn / Ti) of 0.001 to 2. The compound solution is reacted in a pH range of −1 to 3.

本発明において用いられるスズ化合物としては、特に限定されるものではないが、具体的には例えば塩化スズ、硝酸スズ、硫酸スズ、スズ酸塩などのスズ塩化合物あるいは酸化物、水酸化物、金属スズ等から選ばれるスズ化合物等が好ましいものとして挙げられる。   The tin compound used in the present invention is not particularly limited, but specifically, for example, a tin salt compound such as tin chloride, tin nitrate, tin sulfate, stannate, or an oxide, hydroxide, metal Preferred examples include tin compounds selected from tin and the like.

本発明において用いられるチタン化合物としては、特に限定されるものではないが、具体的には例えば、塩化酸化チタン、硫酸チタン、硝酸チタン、チタンアルコキシド、水和酸化チタン(あらかじめチタン化合物をアルカリ条件で加水分解させたものも含む)などから選ばれるチタン化合物等が好ましいものとして挙げられる。   The titanium compound used in the present invention is not particularly limited. Specifically, for example, titanium chloride oxide, titanium sulfate, titanium nitrate, titanium alkoxide, hydrated titanium oxide (a titanium compound in advance under alkaline conditions). Preferred examples include titanium compounds selected from such as hydrolyzed ones).

本発明における反応について、以下に説明する。   The reaction in the present invention will be described below.

反応容器に塩化スズ、硝酸スズ、硫酸スズ、スズ酸塩などのスズ塩化合物あるいは酸化物、水酸化物、金属スズ等から選ばれるスズ化合物を水溶液に添加しておき、これに、塩化酸化チタン、硫酸チタン、硝酸チタン、チタンアルコキシド、水和酸化チタン(あらかじめチタン化合物をアルカリ条件で加水分解させたものも含む)などから選ばれるチタン化合物を加える。スズ化合物とチタン化合物は同時にくわえてもよいし、どちらが先であってもよい。また、混合化合物の形態であってもよい。   A tin compound selected from tin chloride compounds such as tin chloride, tin nitrate, tin sulfate, stannate or oxides, hydroxides, metal tin, etc. is added to the aqueous solution in the reaction vessel, and titanium chloride oxide is added thereto. A titanium compound selected from titanium sulfate, titanium nitrate, titanium alkoxide, hydrated titanium oxide (including those obtained by previously hydrolyzing a titanium compound under alkaline conditions), and the like are added. The tin compound and the titanium compound may be added at the same time, and either one may be first. Moreover, the form of a mixed compound may be sufficient.

本発明においてpHは4未満、好ましくは−1から3、更に好ましくは−0.2から1の範囲に設定する。必要に応じて塩酸や硝酸などで調節する。反応媒体は水が望ましいが、アルコール等の有機溶剤あるいは水と有機溶剤の混合媒体でもよい。
In the present invention, the pH is set to be less than 4, preferably from -1 to 3, more preferably from -0.2 to 1. Adjust with hydrochloric acid or nitric acid as necessary. The reaction medium is preferably water, but may be an organic solvent such as alcohol or a mixed medium of water and an organic solvent.

チタン化合物に対するスズ化合物の添加量はSn/Ti(モル比)として0.001〜2の範囲内であれば、ルチル型酸化チタン超微粒子が得られる。好ましくは、0.01〜1であり、さらに好ましくは0.01から0.1である。スズ量を上記範囲より少なくしていくとルチル型酸化チタン超微粒子は生成するが、粒子径が大きくなり、したがってまた分散性も悪くなる可能性がある。また、上記範囲より多くしていってもルチル型を有する酸化チタン超微粒子の合成は可能であるが反応に要する時間が長くなり、この場合はルチル型酸化チタン超微粒子に多量のスズが付着したものが得られる可能性がある。   If the addition amount of the tin compound with respect to the titanium compound is within the range of 0.001 to 2 as Sn / Ti (molar ratio), rutile type titanium oxide ultrafine particles can be obtained. Preferably, it is 0.01 to 1, more preferably 0.01 to 0.1. If the amount of tin is less than the above range, rutile-type titanium oxide ultrafine particles are produced, but the particle size is increased, and therefore, the dispersibility may be deteriorated. In addition, it is possible to synthesize rutile-type titanium oxide ultrafine particles even if the amount is larger than the above range, but the reaction takes a long time. In this case, a large amount of tin adheres to the rutile-type titanium oxide ultrafine particles. There is a possibility that things will be obtained.

本発明において、反応液中のTi濃度は0.07mol/lから5mol/l、好ましくは0.1mol/lから1mol/lが望ましい。上記範囲より低いTi濃度では、Sn/Ti(モル比)として0.01〜0.03の範囲でスズ化合物を添加してもアナターゼ型とルチル型の混合酸化チタン超微粒子が生成する可能性がある。同様に上記範囲より低いTi濃度では、Sn/Ti(モル比)として0.03より大きい範囲でスズ化合物を添加すると、SnO2ルチル型を有する酸化チタン-酸化スズ混合超微粒子が生成する可能性がある。   In the present invention, the Ti concentration in the reaction solution is 0.07 mol / l to 5 mol / l, preferably 0.1 mol / l to 1 mol / l. When the Ti concentration is lower than the above range, there is a possibility that anatase-type and rutile-type mixed titanium oxide ultrafine particles may be produced even if a tin compound is added in the range of 0.01 to 0.03 as Sn / Ti (molar ratio). is there. Similarly, at a Ti concentration lower than the above range, if a tin compound is added in a range larger than 0.03 as Sn / Ti (molar ratio), there is a possibility that a titanium oxide-tin oxide mixed ultrafine particle having SnO2 rutile type is generated. is there.

反応は低温でも進行するが、温度上昇と共に反応速度は増大する。それゆえ反応温度は室温から100℃が推奨されるが、必要に応じて変え得る。反応温度に応じて反応完了時間が決定されるが、通常は0.5〜10時間で実施する。   The reaction proceeds even at low temperatures, but the reaction rate increases with increasing temperature. Therefore, the reaction temperature is recommended from room temperature to 100 ° C., but can be varied as required. Although the reaction completion time is determined depending on the reaction temperature, it is usually carried out in 0.5 to 10 hours.

反応生成物はそのままルチル型酸化チタンゾル液として用いてもよいし、所望の後処理を施してもよい。すなわち、エバポレーターによる減圧濃縮、限外ろ過などの公知の方法で精製、適当な濃度に濃縮することも可能である。遠心分離して白色沈殿物を得、水、その他所望の媒体に対して再分散させることも可能である。ルチル型酸化チタン超微粒子を分散させた水性ゾル液は、メタノールなどのアルコール類、2-メトキシエタノールなどのセロソルブ類といった有機溶媒に溶媒置換して、有機溶媒分散ルチル型酸化チタン超微粒子のゾル液(有機ゾル)として用いることも可能である。   The reaction product may be used as it is as a rutile-type titanium oxide sol solution or may be subjected to a desired post-treatment. That is, it can be purified by a known method such as vacuum concentration using an evaporator or ultrafiltration, and concentrated to an appropriate concentration. Centrifugation can yield a white precipitate that can be redispersed in water or other desired media. The aqueous sol solution in which the rutile titanium oxide ultrafine particles are dispersed is replaced with an organic solvent such as alcohols such as methanol and cellosolves such as 2-methoxyethanol, and the sol solution of organic solvent-dispersed rutile titanium oxide ultrafine particles. It can also be used as (organic sol).

本発明により得られたルチル型酸化チタン超微粒子の表面をアクリル酸、グリコール酸などのカルボン酸、ヒドロキシカルボン酸、アミン、γ-グリシドキシプロピルトリメトキシシランなどのシランカップリング剤などにより修飾することにより、表面修飾されたルチル型酸化チタン超微粒子のゾル液として用いることも可能である。また、ジルコニウム塩、亜鉛塩、スズ塩他の金属塩やアルコキシ化合物を添加し、表面を無機物層で被覆することにより、分散性や耐光性を所望するところに処理することも可能である。   The surface of the rutile titanium oxide ultrafine particles obtained by the present invention is modified with a silane coupling agent such as carboxylic acid such as acrylic acid or glycolic acid, hydroxycarboxylic acid, amine, or γ-glycidoxypropyltrimethoxysilane. Thus, it can be used as a sol solution of surface-modified rutile-type titanium oxide ultrafine particles. Further, by adding a zirconium salt, zinc salt, tin salt or other metal salt or an alkoxy compound, and covering the surface with an inorganic layer, it is possible to treat where dispersibility or light resistance is desired.

本発明においては、特にTi濃度と合成反応液のpHが重要である。記述した望ましい範囲を超えた低濃度TiやpHで反応させるとそのままではアナターゼ型酸化チタンになってしまう可能性が高く、これを避けるためにスズ化合物を添加してルチル構造を得ようとすると、酸化スズなどのルチル型酸化チタンではない異種物質が生成してしまう可能性がある。   In the present invention, the Ti concentration and the pH of the synthesis reaction solution are particularly important. If it is reacted at a low concentration Ti or pH exceeding the desired range described, it is highly likely that it will become anatase type titanium oxide as it is, and in order to avoid this, when trying to obtain a rutile structure by adding a tin compound, There is a possibility that a foreign substance that is not a rutile type titanium oxide such as tin oxide may be generated.

本発明の方法でルチル型超微粒子酸化チタンが得られる反応機構は現在十分明らかではないが、スズ化合物をTiに対してモル比で0.001以上の範囲で添加することにより、スズイオン、あるいはスズ化合物がルチル型酸化チタン種結晶のC軸方向に垂直な面に配位し、従来のルチル型酸化チタン結晶生成におけるC軸方向への成長を阻害するために、高度に分散したルチル型酸化チタン超微粒子が形成されるものと推測される。あるいはチタンイオンないしは酸化チタン種結晶に配位し、ルチル型結晶の前駆体様のものの形成を促進しているのではないかと考えられる。また、低pHで反応させることが、酸化スズ結晶の生成を抑止するという効果を併せ果たしていると考えられる。   Although the reaction mechanism for obtaining rutile-type ultrafine particle titanium oxide by the method of the present invention is not sufficiently clear at present, tin ions or tin ions can be added by adding a tin compound in a molar ratio of 0.001 or more with respect to Ti. Highly dispersed rutile type titanium oxide in order for the compound to coordinate to the plane perpendicular to the C axis direction of the rutile type titanium oxide seed crystal and inhibit growth in the C axis direction in the formation of conventional rutile type titanium oxide crystals. Presumably, ultrafine particles are formed. Or it may be coordinated to a titanium ion or a titanium oxide seed crystal to promote the formation of a precursor-like rutile crystal. Moreover, it is thought that making it react at low pH has played the effect of suppressing the production | generation of a tin oxide crystal | crystallization together.

本発明による製造方法では、従来行われてきたように水和酸化チタンゾルを過酸化水素でしかも比較的高温に限られる温度で反応させる場合とは全く異なる前駆体、反応機構であることが推測される。(前記特許文献1の記載によれば、Sn/Ti(モル比)が0.03のようにSn分が少ないとアナターゼ型酸化チタンになったり、Sn/Ti(モル比)が0.5のようにSn分が多いと酸化スズが生成するというような問題が起こるが、本発明ではこのようなことは発生しない。)   The production method according to the present invention is presumed to have a completely different precursor and reaction mechanism from the case where the hydrated titanium oxide sol is reacted with hydrogen peroxide at a temperature limited to a relatively high temperature as has been conventionally performed. The (According to the description in Patent Document 1, if the Sn content is small such that Sn / Ti (molar ratio) is 0.03, anatase-type titanium oxide is formed, or Sn / Ti (molar ratio) is 0.5. (For example, if the Sn content is large, tin oxide is generated. However, in the present invention, this does not occur.)

以下本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

四塩化スズ五水和物0.09gを100ccナス型フラスコに仕込み、イオン交換水50mlに溶解し、酸化塩化チタンの塩酸水溶液(Ti15wt%含有)5mlを加えた。溶液のpHは-0.1であった。(仕込みTi濃度=0.45、Sn/Tiモル比=0.01)マグネチックスターラーで攪拌し、50℃で1時間加熱したところ、白色の沈殿を得た。遠心分離を行い、白色沈殿を回収、イオン交換水に再分散させた。限外ろ過を行い、固形分3wt%のゾル液を得た。この固形分の粉末X線回折測定、電子顕微鏡観察を行った。粉末X線回折は120℃で2時間熱風乾燥を行った後に測定した。電子顕微鏡観察は透過型電子顕微鏡を用い、メッシュに希薄ゾル液を滴下したものを倍率20万倍、200万倍で観察した。その結果、一次粒子径が短軸5nm、長軸(c軸)8nmで多結晶粒子短軸15nm、長軸75nmのルチル型酸化チタンであった。誘導結合プラズマ法分析によるSn/Tiの元素モル比は0.01であった。上記固形分の3wt%ゾル液1gをとり、ポリビニルピロリドン30mgを加え、さらに水1gを加えたものを石英基板にスピンコートし、120℃で乾燥後、すみやかにエリプソメーターで屈折率を測定した。含有される固形分の体積分率から固形分の屈折率(n)を評価し、n=2.75を得た。
0.09 g of tin tetrachloride pentahydrate was charged into a 100 cc eggplant type flask, dissolved in 50 ml of ion-exchanged water, and 5 ml of a hydrochloric acid aqueous solution of titanium oxide chloride (containing Ti 15 wt%) was added. The pH of the solution was -0.1. (Ti concentration = 0.45, Sn / Ti molar ratio = 0.01) The mixture was stirred with a magnetic stirrer and heated at 50 ° C. for 1 hour to obtain a white precipitate. Centrifugation was performed, and the white precipitate was collected and redispersed in ion-exchanged water. Ultrafiltration was performed to obtain a sol solution having a solid content of 3 wt%. This solid was subjected to powder X-ray diffraction measurement and electron microscope observation. Powder X-ray diffraction was measured after hot air drying at 120 ° C. for 2 hours. The observation with an electron microscope was performed using a transmission electron microscope, and a thin sol solution dropped onto a mesh was observed at a magnification of 200,000 times and 2 million times. As a result, it was a rutile type titanium oxide having a primary particle diameter of 5 nm in the short axis, 8 nm in the long axis (c axis), 15 nm in the short axis of the polycrystalline particles, and 75 nm in the long axis. The elemental molar ratio of Sn / Ti by inductively coupled plasma analysis was 0.01. 1 g of 3 wt% sol solution of the above solid content was added, 30 mg of polyvinylpyrrolidone was added, and 1 g of water was further spin-coated on a quartz substrate, dried at 120 ° C., and immediately measured for refractive index with an ellipsometer. The refractive index (n) of the solid content was evaluated from the volume fraction of the solid content contained, and n = 2.75 was obtained.

実施例1で四塩化スズ五水和物を0.27g用いた以外は実施例1と同様に実施した。(仕込みTi濃度=0.45、Sn/Ti=0.03)得られたゾル液の固形分を実施例1と同様に分析したところ、一次粒子径が短軸5nm、長軸(c軸)8nmで多結晶粒子短軸10nm、長軸35nmのルチル型酸化チタンであった。Sn/Tiの元素モル比は0.02であった。実施例1と同様に固形分の屈折率を評価し、n=2.72を得た。
The same operation as in Example 1 was carried out except that 0.27 g of tin tetrachloride pentahydrate was used in Example 1. (Ti concentration: 0.45, Sn / Ti = 0.03) The solid content of the obtained sol solution was analyzed in the same manner as in Example 1. As a result, the primary particle size was 5 nm short axis and 8 nm long axis (c axis). The particle was a rutile type titanium oxide having a minor axis of 10 nm and a major axis of 35 nm. The element molar ratio of Sn / Ti was 0.02. The refractive index of the solid content was evaluated in the same manner as in Example 1 to obtain n = 2.72.

実施例1で四塩化スズ五水和物を0.9g用いた以外は実施例1と同様に実施した。(仕込みTi濃度=0.45、Sn/Ti=0.1))得られたゾル液の固形分を実施例1と同様に分析したところ、一次粒子径が短軸5nm、長軸(c軸)8nmで多結晶粒子短軸10nm、長軸30nmのルチル型酸化チタンであった。Sn/Tiの元素モル比は0.06であった。実施例1と同様に固形分の屈折率を評価し、n=2.65を得た。
The same operation as in Example 1 was carried out except that 0.9 g of tin tetrachloride pentahydrate was used in Example 1. (Ti concentration = 0.45, Sn / Ti = 0.1)) When the solid content of the obtained sol solution was analyzed in the same manner as in Example 1, the primary particle diameter was 5 nm for the short axis and 8 nm for the long axis (c axis). The crystal grain was a rutile type titanium oxide having a minor axis of 10 nm and a major axis of 30 nm. The element molar ratio of Sn / Ti was 0.06. The refractive index of the solid content was evaluated in the same manner as in Example 1 to obtain n = 2.65.

実施例1で四塩化スズ五水和物を4.3g用いた以外は実施例1と同様に実施した。(仕込みTi濃度=0.45、Sn/Ti=0.5)得られたゾル液の固形分を実施例1と同様に分析したところ、一次粒子径が短軸4nm、長軸(c軸)6nmで多結晶粒子短軸10nm、長軸20nmのルチル型酸化チタンであった。Sn/Tiの元素モル比は0.18であった。実施例1と同様に固形分の屈折率を評価し、n=2.47を得た。
The same procedure as in Example 1 was performed except that 4.3 g of tin tetrachloride pentahydrate was used in Example 1. (Ti concentration: 0.45, Sn / Ti = 0.5) The solid content of the obtained sol solution was analyzed in the same manner as in Example 1. As a result, the primary particle diameter was 4 nm for the short axis and 6 nm for the long axis (c axis). The particle was a rutile type titanium oxide having a minor axis of 10 nm and a major axis of 20 nm. The element molar ratio of Sn / Ti was 0.18. The refractive index of the solid content was evaluated in the same manner as in Example 1 to obtain n = 2.47.

実施例1で四塩化スズ五水和物を8.6g用いた以外は実施例1と同様に実施した。(仕込みTi濃度=0.45、Sn/Ti=1)得られたゾル液の固形分を実施例1と同様に分析したところ、一次粒子径が短軸5nm、長軸(c軸)6nmで多結晶粒子短軸10nm、長軸20nmのルチル型酸化チタンであった。Sn/Tiの元素モル比は0.18であった。
The same operation as in Example 1 was carried out except that 8.6 g of tin tetrachloride pentahydrate was used in Example 1. (Ti concentration = 0.45, Sn / Ti = 1) The solid content of the obtained sol solution was analyzed in the same manner as in Example 1. As a result, the primary particle size was 5 nm short axis and 6 nm long axis (c axis) was polycrystalline. The particle was a rutile type titanium oxide having a minor axis of 10 nm and a major axis of 20 nm. The element molar ratio of Sn / Ti was 0.18.

実施例1で反応温度を100℃に設定する以外は実施例1と同様に実施した。(仕込みTi濃度=0.45、Sn/Ti=1)得られたゾル液の固形分を実施例1と同様に分析したところ、一次粒子径が短軸6nm、長軸(c軸)9nmであった。   The same operation as in Example 1 was carried out except that the reaction temperature was set to 100 ° C. in Example 1. (Ti concentration = 0.45, Sn / Ti = 1) The solid content of the obtained sol solution was analyzed in the same manner as in Example 1. As a result, the primary particle size was 6 nm short axis and 9 nm long axis (c axis). .

[比較例1]
実施例1で四塩化スズ五水和物を添加しない以外は実施例1と同様に実施した。(仕込みTi濃度=0.45、Sn/Ti=0)得られたゾル液の固形分を実施例1と同様に分析したところ、一次粒子径が短軸7nm、長軸(c軸)9nmで多結晶粒子200nm以上のルチル型酸化チタンであった。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that tin tetrachloride pentahydrate was not added in Example 1. (Ti concentration = 0.45, Sn / Ti = 0) The solid content of the obtained sol solution was analyzed in the same manner as in Example 1. As a result, the primary particle size was 7 nm short axis and 9 nm long axis (c axis) was polycrystalline. It was a rutile type titanium oxide having particles of 200 nm or more.

[比較例2]
実施例5で添加するイオン交換水を500mlにする以外は実施例5と同様に実施した。(仕込みTi濃度=0.05、Sn/Ti=1)得られたゾル液の固形分を実施例1と同様に分析したところ、粉末X線回折測定結果から、酸化スズのルチル型結晶を生成し、ルチル型酸化チタンは得られなかった。
[Comparative Example 2]
The same procedure as in Example 5 was performed except that the amount of ion-exchanged water added in Example 5 was changed to 500 ml. (Ti concentration = 0.05, Sn / Ti = 1) The solid content of the obtained sol solution was analyzed in the same manner as in Example 1. As a result of the powder X-ray diffraction measurement, a rutile crystal of tin oxide was produced. A rutile type titanium oxide was not obtained.

[比較例3]
実施例1で四塩化スズ五水和物と塩化酸化チタンの水溶液にアンモニア水を添加し、pH=4に調整した溶液を反応させる以外は実施例1と同様に実施した。反応液は濁りを生じ、またルチル型酸化チタンの生成は見られなかった。
[Comparative Example 3]
The same procedure as in Example 1 was conducted except that ammonia water was added to the aqueous solution of tin tetrachloride pentahydrate and titanium chloride oxide in Example 1 to react with the solution adjusted to pH = 4. The reaction solution was turbid, and no rutile titanium oxide was produced.

本発明により得られたルチル型酸化チタン超微粒子は高屈折率化剤、光線反射剤、紫外線吸収剤などとして、プラスチックレンズ、フィルム、プラスチック成形品の高屈折率ハードコート膜、反射防止膜、プラスチック劣化防止添加剤、化粧品添加剤、カメラ用レンズ、自動車用窓ガラス、プラズマディスプレイ、液晶ディスプレイ、ELディスプレイ、光学フィルター等の光学部材、金属材料、セラミックス材料、ガラス材料、プラスチック材料等の表面処理剤、誘電体材料、圧電体材料などの電子材、光触媒、撥水剤などに用いられる。
The rutile-type titanium oxide ultrafine particles obtained by the present invention are used as a high refractive index agent, a light reflector, an ultraviolet absorber, etc., as a plastic lens, a film, a high refractive index hard coat film of a plastic molded product, an antireflection film, a plastic. Anti-degradation additive, cosmetic additive, camera lens, automotive window glass, plasma display, liquid crystal display, EL display, optical member such as optical filter, surface treatment agent such as metal material, ceramic material, glass material, plastic material It is used for electronic materials such as dielectric materials and piezoelectric materials, photocatalysts, water repellents and the like.

実施例1の粉末X線回折結果を示す。The powder X-ray-diffraction result of Example 1 is shown. 実施例2の粉末X線回折結果を示す。The powder X-ray-diffraction result of Example 2 is shown. 実施例3の粉末X線回折結果を示す。The powder X-ray-diffraction result of Example 3 is shown. 実施例4の粉末X線回折結果を示す。The powder X-ray-diffraction result of Example 4 is shown. 実施例5の粉末X線回折結果を示す。The powder X-ray-diffraction result of Example 5 is shown. 比較例2の粉末X線回折結果を示す。The powder X-ray-diffraction result of the comparative example 2 is shown.

Claims (2)

チタンに対するスズのモル比(Sn/Ti)が0.001〜2の塩化スズ共存下、Ti濃度が0.07〜5mol/lのチタン化合物溶液をpHが−0.2の範囲で反応させることを特徴とする透明性を有するルチル型酸化チタン超微粒子の製造方法。 In the presence of tin chloride having a tin to titanium molar ratio (Sn / Ti) of 0.001 to 2, a titanium compound solution having a Ti concentration of 0.07 to 5 mol / l is reacted in a pH range of -0.2 to 1. A method for producing rutile-type titanium oxide ultrafine particles having transparency, characterized in that: 請求項1記載の透明性を有するルチル型酸化チタン超微粒子の製造方法において、
前記チタンに対するスズのモル比(Sn/Ti)が0.01〜0.1であることを特徴とする透明性を有するルチル型酸化チタン超微粒子の製造方法。
In the manufacturing method of the rutile type titanium oxide ultrafine particles having transparency according to claim 1,
A method for producing transparent rutile-type titanium oxide ultrafine particles, wherein the molar ratio of tin to titanium (Sn / Ti) is 0.01 to 0.1 .
JP2003373256A 2003-10-31 2003-10-31 Method for producing rutile type titanium oxide ultrafine particles Expired - Fee Related JP4851685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373256A JP4851685B2 (en) 2003-10-31 2003-10-31 Method for producing rutile type titanium oxide ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373256A JP4851685B2 (en) 2003-10-31 2003-10-31 Method for producing rutile type titanium oxide ultrafine particles

Publications (2)

Publication Number Publication Date
JP2005132706A JP2005132706A (en) 2005-05-26
JP4851685B2 true JP4851685B2 (en) 2012-01-11

Family

ID=34649397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373256A Expired - Fee Related JP4851685B2 (en) 2003-10-31 2003-10-31 Method for producing rutile type titanium oxide ultrafine particles

Country Status (1)

Country Link
JP (1) JP4851685B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641212B2 (en) * 2005-04-25 2011-03-02 三井化学株式会社 Composite oxide ultrafine particles and process for producing the same
JP4673664B2 (en) * 2005-04-27 2011-04-20 三井化学株式会社 High refractive index resin composition for coating
JP2006342311A (en) * 2005-06-10 2006-12-21 Mitsui Chemicals Inc High refractive index thin film
JP2007069093A (en) * 2005-09-06 2007-03-22 Mitsui Chemicals Inc Rutile type titanium dioxide ultrafine particle photocatalyst
WO2007052580A1 (en) * 2005-11-02 2007-05-10 Mitsui Chemicals, Inc. Resin composition containing ultrafine particle of oxide
JP4619964B2 (en) * 2006-02-17 2011-01-26 住友大阪セメント株式会社 Rutile type titanium oxide fine particles, high refractive index material and high refractive index member
JP4749200B2 (en) * 2006-03-31 2011-08-17 三井化学株式会社 High refractive index resin composition
JP4749201B2 (en) * 2006-03-31 2011-08-17 三井化学株式会社 Composition for sealing a semiconductor light emitting device
JP4952051B2 (en) * 2006-05-10 2012-06-13 ソニー株式会社 METAL OXIDE NANOPARTICLE, ITS MANUFACTURING METHOD, LIGHT EMITTING ELEMENT ASSEMBLY AND OPTICAL MATERIAL
JP4925935B2 (en) * 2007-06-18 2012-05-09 住友大阪セメント株式会社 Composite rutile fine particles, composite rutile fine particle dispersion, high refractive index material, high refractive index member, and method for producing composite rutile fine particles
JP5070180B2 (en) * 2008-10-14 2012-11-07 三井化学株式会社 Organosiloxane oligomer modified inorganic oxide ultrafine particles
JP5228980B2 (en) * 2009-02-17 2013-07-03 住友大阪セメント株式会社 Rutile composite fine particles, rutile composite fine particle dispersion, and method for producing rutile composite fine particles
WO2012046493A1 (en) * 2010-10-08 2012-04-12 信越化学工業株式会社 Rutile-titanium-dioxide microparticle dispersion liquid, manufacturing method therefor, and member having rutile-titanium-dioxide thin film on surface thereof
US8747542B2 (en) 2011-02-15 2014-06-10 Nissan Chemical Industries, Ltd. Method for producing rutile titanium oxide sol
JP5995009B2 (en) * 2011-12-02 2016-09-21 日産化学工業株式会社 Method for producing rutile type titanium oxide sol

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190716A (en) * 1987-02-02 1988-08-08 Takeda Chem Ind Ltd Production of spherical particles of oxide
JP2783417B2 (en) * 1989-03-30 1998-08-06 触媒化成工業株式会社 Manufacturing method of rutile type titanium oxide sol
DE4105345A1 (en) * 1991-02-21 1992-08-27 Kronos Int Inc METHOD FOR PRODUCING FINE PARTICLE TITANIUM DIOXIDE AND FINE PARTICLE TITANIUM DIOXIDE
JP4069330B2 (en) * 1997-03-03 2008-04-02 日産化学工業株式会社 Method for producing titanium oxide-tin oxide composite sol
JP4078660B2 (en) * 1997-05-12 2008-04-23 株式会社ジェムコ Conductive titanium oxide, process for producing the same, and plastic composition containing the same
JP4103293B2 (en) * 1999-05-14 2008-06-18 日本板硝子株式会社 Method for producing rutile titanium dioxide

Also Published As

Publication number Publication date
JP2005132706A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4851685B2 (en) Method for producing rutile type titanium oxide ultrafine particles
JP4550753B2 (en) Method for producing surface-treated titanium oxide sol
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
Garnweitner et al. Nonaqueous and surfactant‐free synthesis routes to metal oxide nanoparticles
Park et al. Understanding of homogeneous spontaneous precipitation for monodispersed TiO2 ultrafine powders with rutile phase around room temperature
JP2972752B1 (en) Method for producing ultrafine crystalline titanium oxide monodispersed powder
KR101437200B1 (en) Surface-coated titanium dioxide, process for producing the same, and coating compositions containing the same
US7611688B2 (en) Rutile titania nano sols and process for manufacturing the same
JP2008515747A (en) Nanoparticles with custom surface chemistry and corresponding colloid production methods
WO2006001487A1 (en) Fine particles of tin-modified rutile-type titanium dioxide
KR0139437B1 (en) A process for preparine crystalling titania powder from a solution of titanium salt in mixde solvent of water and alcohol
JP5421293B2 (en) Method for producing titanium dioxide having nanometer size and controlled shape
JP2005528309A (en) Nanoscale rutile or nanoscale oxides and methods for their production
JP3713077B2 (en) Method for producing metal oxide or hydroxide sol
JP2012180241A (en) Nanoparticles of rutile type titanium oxide and method for producing the same
KR101813190B1 (en) Process for the preparation of titanium dioxide having nanometric dimensions and controlled shape
JP4891021B2 (en) Method for producing niobium oxide fine particles
JP4210785B2 (en) Method for producing transparent coating agent for optical element containing rutile type titanium oxide sol
KR101763357B1 (en) Preparation method of rutile titanium dioxide powder
JP2009029645A (en) Flake-like hydrous titanium oxide, production method of the same and flake-like titanium oxide
JP2007246334A (en) Titanium dioxide-alkaline earth metal titanate composite fine particle, method for producing the same and high-refractive-index material
Kolen'ko et al. Phase composition of nanocrystalline titania synthesized under hydrothermal conditions from different titanyl compounds
JP4139090B2 (en) Method for producing spherical particles with crystalline titanium oxide coating layer
JP4641212B2 (en) Composite oxide ultrafine particles and process for producing the same
KR100343395B1 (en) Method for production of titanium dioxide ultrafine powders with rutile phase from titanium sulfate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees