WO2012046493A1 - Rutile-titanium-dioxide microparticle dispersion liquid, manufacturing method therefor, and member having rutile-titanium-dioxide thin film on surface thereof - Google Patents
Rutile-titanium-dioxide microparticle dispersion liquid, manufacturing method therefor, and member having rutile-titanium-dioxide thin film on surface thereof Download PDFInfo
- Publication number
- WO2012046493A1 WO2012046493A1 PCT/JP2011/067205 JP2011067205W WO2012046493A1 WO 2012046493 A1 WO2012046493 A1 WO 2012046493A1 JP 2011067205 W JP2011067205 W JP 2011067205W WO 2012046493 A1 WO2012046493 A1 WO 2012046493A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium oxide
- rutile
- oxide fine
- fine particle
- particle dispersion
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 234
- 239000006185 dispersion Substances 0.000 title claims abstract description 146
- 239000010409 thin film Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000007788 liquid Substances 0.000 title claims abstract description 14
- 239000011859 microparticle Substances 0.000 title abstract description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 43
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000002612 dispersion medium Substances 0.000 claims abstract description 30
- 229910052742 iron Inorganic materials 0.000 claims abstract description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052802 copper Inorganic materials 0.000 claims abstract description 18
- 239000010949 copper Substances 0.000 claims abstract description 18
- 239000005749 Copper compound Substances 0.000 claims abstract description 15
- 150000001880 copper compounds Chemical class 0.000 claims abstract description 15
- 150000002506 iron compounds Chemical class 0.000 claims abstract description 15
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 191
- 239000010419 fine particle Substances 0.000 claims description 149
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 70
- 239000002253 acid Substances 0.000 claims description 66
- 229910052718 tin Inorganic materials 0.000 claims description 45
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims description 35
- 150000003609 titanium compounds Chemical class 0.000 claims description 34
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 150000003606 tin compounds Chemical class 0.000 claims description 28
- 239000000126 substance Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 25
- 239000010936 titanium Substances 0.000 claims description 14
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 10
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 7
- 230000035484 reaction time Effects 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 5
- 230000001186 cumulative effect Effects 0.000 claims description 4
- 238000000790 scattering method Methods 0.000 claims description 4
- 230000001699 photocatalysis Effects 0.000 abstract description 38
- 229960005196 titanium dioxide Drugs 0.000 abstract 3
- 235000010215 titanium dioxide Nutrition 0.000 abstract 3
- 239000004408 titanium dioxide Substances 0.000 abstract 3
- 239000000243 solution Substances 0.000 description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 36
- 239000007864 aqueous solution Substances 0.000 description 26
- 239000002245 particle Substances 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 20
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 18
- 239000002244 precipitate Substances 0.000 description 15
- -1 for example Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 239000011941 photocatalyst Substances 0.000 description 10
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 229910010272 inorganic material Inorganic materials 0.000 description 9
- 239000011147 inorganic material Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 238000005070 sampling Methods 0.000 description 7
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000010335 hydrothermal treatment Methods 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 230000004043 responsiveness Effects 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 238000002242 deionisation method Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- 239000005642 Oleic acid Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 229910000365 copper sulfate Inorganic materials 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910000358 iron sulfate Inorganic materials 0.000 description 3
- 239000004310 lactic acid Substances 0.000 description 3
- 235000014655 lactic acid Nutrition 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000007603 infrared drying Methods 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- SYRHIZPPCHMRIT-UHFFFAOYSA-N tin(4+) Chemical compound [Sn+4] SYRHIZPPCHMRIT-UHFFFAOYSA-N 0.000 description 1
- BAKALPNAEUOCDL-UHFFFAOYSA-N titanium hydrochloride Chemical compound Cl.[Ti] BAKALPNAEUOCDL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/14—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/835—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/22—Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
Definitions
- the present invention relates to a rutile-type titanium oxide fine particle dispersion excellent in dispersion stability, a production method thereof, and a member having a rutile-type titanium oxide thin film formed on the surface using the dispersion.
- Titanium oxide is used in various applications, such as pigments, ultraviolet shielding agents, catalysts, photocatalysts, catalyst carriers, adsorbents, ion exchangers, fillers, reinforcing agents, raw materials for ceramics, complex oxides such as perovskite complex oxides. Are used as precursors for magnetic tapes, and as a primer for magnetic tape.
- photocatalytic titanium oxide fine particles are based on the photocatalytic coating film formed by coating the dispersion on the surface of various substrates, which decomposes organic substances and makes the film surface hydrophilic by photocatalytic action of titanium oxide. It is widely used for cleaning the surface of materials, deodorizing, antibacterial and so on.
- the primary particle diameter of the particles is required to be 50 nm or less.
- the transparency of the film is also required so as not to lose the design properties of the substrate.
- a titanium oxide fine particle dispersion for example, a titanium oxide fine powder synthesized by a gas phase method or a liquid phase method is used as a dispersion medium using a dispersion aid such as an organic polymer dispersant.
- a dispersion aid such as an organic polymer dispersant.
- examples thereof include a method of dispersing in (Patent Documents 1 to 3).
- Patent Documents 1 to 3 the problem with these production methods is that ultrafine particles having an average particle diameter of 50 nm or less are likely to agglomerate, so that a great deal of labor is required to disperse to the primary particles, and in some cases, even the primary particles may be dispersed. It is impossible.
- Patent Document 4 a hydrothermal treatment of a peroxotitanic acid aqueous solution in which titanium hydroxide is dissolved in hydrogen peroxide to produce a long-term stable anatase-type titanium oxide dispersion
- Patent Document 5 a method for producing a long-term stable rutile-type titanium oxide fine particle dispersion by hydrothermal treatment of a tin-added peroxotitanic acid aqueous solution to which a tin compound is added before or after being dissolved in.
- the crystal phase of titanium oxide is a rutile type, it has a problem that its crystallinity is low because it contains a large amount of impurities.
- the obtained titanium oxide is used for a photocatalyst, there is a problem that if the crystallinity is low, the recombination establishment of electrons and holes is increased, so that the activity as a photocatalyst is lowered.
- titanium oxide shows a good photocatalytic action when irradiated with light in the ultraviolet region with a relatively short wavelength such as sunlight, it is an indoor space illuminated by a light source that occupies most of the visible light, such as a fluorescent lamp. Then, it may be difficult to exhibit sufficient photocatalytic action.
- a tungsten oxide photocatalyst (Patent Document 6) has attracted attention as a visible light responsive photocatalyst.
- tungsten is a rare element, an improvement in the visible light activity of a photocatalyst using titanium which is a general-purpose element is desired. It is rare.
- Japanese Patent Laid-Open No. 01-003020 Japanese Patent Laid-Open No. 06-279725 JP 07-247119 A Japanese Patent Laid-Open No. 10-067516 JP-A-2-255532 JP 2009-148700 A
- the present invention has been made in view of the above circumstances, and has a rutile-type titanium oxide fine particle dispersion excellent in dispersion stability, a method for producing the same, and a member having a rutile-type titanium oxide thin film formed on the surface using the dispersion.
- the purpose is to provide.
- the present inventors produced peroxotitanic acid containing a tin compound from a raw material titanium compound, tin compound, basic substance, hydrogen peroxide and an aqueous dispersion medium, Rutile-type titanium oxide fine particles with excellent dispersion stability by adding a rutile-type titanium oxide fine particle dispersion obtained by hydrothermal reaction under high pressure to another peroxotitanic acid solution and reacting again with hydrothermal reaction. It was found that a dispersion was obtained.
- rutile-type titanium oxide fine particle dispersion excellent in dispersion stability by the above hydrothermal reaction a peroxotitanium component, a copper component or an iron component is added and reacted. , A rutile-type titanium oxide fine particle dispersion containing a tin component is obtained.
- This titanium oxide fine particle dispersion has excellent dispersion stability of the titanium oxide fine particles, and has transparency that has visible light responsiveness from the titanium oxide fine particle dispersion. It has been found that a photocatalytic thin film having a high thickness can be easily produced, and has led to the present invention.
- the rutile-type titanium oxide fine particles are dispersed in the aqueous dispersion medium, the tin component is contained, and the molar ratio of the tin component to titanium oxide in terms of tin oxide (TiO 2 / SnO). 2 )
- the titanium oxide fine particles have a volume-based 50% cumulative distribution diameter (D 50 ) measured by a dynamic scattering method using laser light of 50 nm or less.
- the rutile-type titanium oxide fine particle dispersion may contain a copper component or an iron component.
- the present invention also provides: (1) a step of producing a peroxotitanic acid solution containing a tin compound from a titanium compound, a tin compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium; (2) heating the peroxotitanic acid solution containing the tin compound obtained in the above step (1) at 80 to 250 ° C.
- a rutile-type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component; (3) Separately from the step (1), the rutile type obtained in the step (2) is added to a peroxotitanic acid solution prepared from a solution containing a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium.
- a method for producing a rutile type titanium oxide fine particle dispersion characterized by comprising a step of adding a titanium oxide fine particle dispersion and heating again at 80 to 250 ° C. to obtain a rutile type titanium oxide fine particle dispersion.
- the step of adding (4) the copper compound or the iron compound to the rutile-type titanium oxide fine particle dispersion obtained in the above step (3) and reacting it can be carried out.
- the amount is preferably 0.01 to 5% by mass with respect to titanium oxide fine particles in terms of metallic copper or iron.
- a titanium compound is dissolved in an aqueous dispersion medium, a basic substance is added to the titanium compound to form titanium hydroxide, and hydrogen peroxide is added to the titanium compound to form peroxotitanic acid.
- the step of adding a tin compound later to obtain a solution of tin-containing peroxotitanic acid, or the step (1) involves dissolving the titanium compound in an aqueous dispersion medium and adding the tin compound to the basic substance.
- a step of adding tin to form titanium-containing titanium hydroxide and adding hydrogen peroxide thereto to obtain a solution of tin-containing peroxotitanic acid is preferable.
- the addition ratio of the tin compound is preferably 40 to 10,000 as the molar ratio of TiO 2 / SnO 2 with respect to the titanium compound, and the addition amount of hydrogen peroxide is Ti and Sn.
- the reaction temperature of the reaction to form peroxotitanic acid is 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours.
- the hydrothermal reaction (2) is preferably performed at a pressure of 0.01 to 4.5 MPa.
- the titanium compound is dissolved in an aqueous dispersion medium, a basic substance is added to the titanium compound to form titanium hydroxide, and hydrogen peroxide is added thereto to form a peroxotitanic acid solution.
- the ratio of the solid content X 2 of the peroxotitanic acid solution produced in step (3) and the solid content X 1 of the titanium oxide fine particle dispersion obtained in step (2) [X 2 / (X 1 + X 2 )] ⁇ 100 is preferably 0.1 to 80% by mass. Furthermore, the present invention provides a member having on its surface a rutile-type titanium oxide thin film formed using a titanium oxide fine particle dispersion.
- a rutile-type titanium oxide fine particle dispersion excellent in dispersion stability of titanium oxide fine particles a method for producing the same, and a member having on its surface a rutile-type titanium oxide thin film formed using the dispersion. be able to. Further, in this case, after the step (3), a copper compound or an iron compound is added and reacted, and the titanium oxide fine particle dispersion is made to contain a copper component or an iron component, so that the visible light responsiveness is highly transparent. A photocatalytic thin film can be easily produced.
- the present invention will be described in more detail.
- the rutile type titanium oxide fine particles are highly dispersed in an aqueous solvent and further contain a peroxotitanium component and a tin component.
- a copper component or an iron component can be contained.
- An aqueous solvent is used as the aqueous dispersion medium.
- the aqueous solvent include a mixed solvent of water and a hydrophilic organic solvent mixed with water at an arbitrary ratio.
- water for example, deionized water, distilled water, pure water and the like are preferable.
- hydrophilic organic solvent for example, alcohols such as methanol, ethanol, and isopropanol are preferable.
- the mixing ratio of the hydrophilic organic solvent is preferably 0 to 50% by mass in the aqueous dispersion medium. Among these, pure water is most preferable in terms of productivity, cost, and the like.
- the rutile-type titanium oxide fine particles dispersed in the aqueous dispersion medium have a volume-based 50% cumulative distribution diameter (D 50 ) (hereinafter referred to as “average particle diameter”) measured by a dynamic scattering method using laser light. ) Is preferably 50 nm or less, more preferably 30 nm or less. Usually, the lower limit is not particularly limited, but is preferably 5 nm or more.
- the concentration of the rutile-type titanium oxide fine particles is preferably from 0.01 to 20% by mass, particularly preferably from 0.5 to 10% by mass, in the dispersion, from the viewpoint that the stability of the liquid can be easily maintained.
- Peroxotitanium component means a titanium oxide compound containing a Ti—O—O—Ti bond, and a peroxotitanium complex formed by the reaction of peroxotitanic acid and Ti (VI) with hydrogen peroxide. Include.
- the peroxotitanium component has a function of satisfactorily dispersing the rutile-type titanium oxide.
- the concentration of the peroxotitanium component is 0.1 to 20% by mass, preferably 0.01 to 5% by mass, based on the rutile-type titanium oxide fine particles.
- concentration is less than 0.01% by mass, the rutile-type titanium oxide fine particles tend to aggregate.
- conversion rate to a rutile type titanium oxide is inadequate.
- a tin component has the effect
- the presence state of the tin component is not limited, and may be, for example, any of metal tin, oxide, hydroxide, nitrate, sulfate, halide, and complex compound. It is preferable that at least a part of the tin component is doped inside the titanium oxide fine particles or supported on the surface of the titanium oxide fine particles, and the other part is preferably dissolved and / or dispersed in the dispersion.
- the tin component is preferably contained in a molar ratio with respect to titanium oxide (TiO 2 / SnO 2 ) in a ratio of 40 to 10,000 in terms of tin oxide, particularly preferably in a ratio of 100 to 10,000. . If the molar ratio is less than 40, the crystallinity of the resulting titanium oxide may be insufficient. On the other hand, if it exceeds 10,000, the content ratio of rutile-type titanium oxide decreases.
- the rutile-type titanium oxide fine particle dispersion of the present invention can contain a copper component or an iron component. This makes it possible to obtain a visible light responsive titanium oxide fine particle dispersion that is excellent in dispersion stability of titanium oxide fine particles and that can easily produce a highly transparent photocatalytic thin film having visible light responsiveness.
- the copper component and the iron component are present in the form of a compound insoluble in water, and at least a part of the copper component or the iron component is supported on the surface of the titanium oxide fine particles.
- the other part is preferably dissolved and / or dispersed in the dispersion.
- the copper component or iron component is preferably contained in an amount of 0.01 to 5% by mass, particularly 0.1 to 2% by mass, based on titanium oxide fine particles, in terms of metallic copper or iron. When the content is less than 0.1% by mass or exceeds 2% by mass, the decomposition activity of the photocatalytic thin film may not be sufficiently exhibited.
- the titanium oxide fine particle dispersion is (1) a step of producing a peroxotitanic acid solution containing a tin compound from a titanium compound, a tin compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium; (2) heating the peroxotitanic acid solution containing the tin compound obtained in the above step (1) at 80 to 250 ° C.
- the rutile-type titanium oxide fine particles dispersed in the step (2) are dispersed in a peroxotitanic acid solution produced from a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium. Adding a liquid and heating again at 80 to 250 ° C. to obtain a rutile-type titanium oxide fine particle dispersion, If necessary, (4) It can manufacture with the manufacturing method which has the process of adding a copper compound or an iron compound to the rutile type titanium oxide fine particle dispersion liquid obtained at the said process (3), and making it react.
- step (1) peroxotitanic acid containing a tin compound is produced by reacting a titanium compound, a tin compound, a basic substance, and hydrogen peroxide in an aqueous dispersion medium.
- a basic substance is added to titanium compound in an aqueous dispersion medium to form titanium hydroxide, impurity ions contained are removed, hydrogen peroxide is added to form peroxotitanic acid, and then a tin compound is added.
- the titanium compound for example, inorganic acid salts such as titanium hydrochloride, nitrate and sulfate, organic acid salts such as formic acid, citric acid, succinic acid, lactic acid and glycolic acid, alkalis are added to these aqueous solutions.
- inorganic acid salts such as titanium hydrochloride, nitrate and sulfate
- organic acid salts such as formic acid, citric acid, succinic acid, lactic acid and glycolic acid, alkalis are added to these aqueous solutions.
- examples thereof include titanium hydroxide precipitated by hydrolysis, and one or more of these may be used in combination.
- the concentration of the raw material titanium compound aqueous solution formed from such a titanium compound and the aqueous dispersion medium is preferably 60% by mass or less, particularly preferably 30% by mass or less. In addition, although the minimum of a density
- the basic substance added to make the titanium compound titanium hydroxide is for making the titanium compound smoothly titanium hydroxide and stabilizing the peroxotitanium component in the aqueous dispersion medium.
- examples include alkali metal or alkaline earth metal hydroxides such as sodium oxide and potassium hydroxide, and amine compounds such as ammonia, alkanolamines and alkylamines.
- the pH of the aqueous solution of the raw material titanium compound is 7 or more, particularly pH 7 to 10 It is added and used in such an amount.
- the basic substance may be used in the form of an aqueous solution having an appropriate concentration together with the aqueous dispersion medium.
- the tin compound is for enhancing the visible light responsiveness of the photocatalytic thin film, and examples thereof include tin metal, oxide, hydroxide, nitrate, sulfate, halide, complex compound, and the like. Alternatively, two or more types may be used in combination. As described above, it is preferable that at least a part of the tin component is supported on the surface of the titanium oxide fine particle or on the surface of the titanium oxide fine particle, and the other part is dissolved and dispersed in the dispersion liquid. It is preferable that they are dispersed.
- Hydrogen peroxide is used to convert the above raw material titanium compound or titanium hydroxide into peroxo titanium, that is, a titanium compound containing a Ti—O—O—Ti bond, and is usually used in the form of hydrogen peroxide water.
- the amount of hydrogen peroxide added is preferably 1.5 to 5 times the total number of moles of Ti and Sn.
- the reaction temperature in the reaction of adding hydrogen peroxide to convert the raw material titanium compound or titanium hydroxide to peroxotitanic acid is preferably 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours. It is preferable.
- the tin compound-containing peroxotitanic acid aqueous solution thus obtained may contain an alkaline or acidic substance for pH adjustment or the like.
- the alkaline substance herein include ammonia, sodium hydroxide, and calcium hydroxide.
- the acidic substance include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, phosphoric acid, and hydrogen peroxide. And organic acids such as formic acid, citric acid, succinic acid, lactic acid and glycolic acid.
- the pH of the obtained tin compound-containing peroxotitanic acid aqueous solution is preferably 1 to 7, particularly 4 to 7 from the viewpoint of handling safety.
- step (2) the peroxotitanic acid solution containing the tin compound obtained in step (1) is subjected to a hydrothermal reaction at a temperature of 80 to 250 ° C., preferably 120 to 250 ° C.
- the reaction temperature is suitably 80 to 250 ° C. from the viewpoint of reaction efficiency and reaction controllability, and as a result, peroxotitanic acid is converted into rutile-type titanium oxide fine particles.
- the pressure is preferably about 0.01 to 4.5 MPa, particularly about 0.15 to 4.5 MPa, and the reaction time is preferably 1 minute to 24 hours.
- a rutile-type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component is obtained.
- the peroxotitanium component means a titanium compound containing a Ti—O—O—Ti bond, as described above, and is a peroxotitanium produced by reaction of peroxotitanic acid and Ti (VI) with hydrogen peroxide.
- the titanium complex is included.
- a tin component means the tin-type compound containing metal tin, and includes the above-mentioned tin compound.
- the rutile titanium oxide obtained in the step (2) is added to a peroxotitanic acid solution produced from a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium.
- the fine particle dispersion is added and again subjected to a hydrothermal reaction at a temperature of 80 to 250 ° C., preferably 120 to 250 ° C.
- the reaction temperature is suitably 80 to 250 ° C. from the viewpoint of reaction efficiency and reaction controllability, and as a result, rutile-type titanium oxide fine particles having the above crystallinity can be obtained.
- the method for producing the peroxotitanic acid solution in this step (3) does not use a tin compound, and the addition amount of hydrogen peroxide is 1.5 to 5 times the number of moles of Ti. It can carry out similarly to the said process (1). That is, the reaction temperature in the reaction of adding hydrogen peroxide to convert the raw material titanium compound or titanium hydroxide to peroxotitanic acid is preferably 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours. Is preferred.
- the addition amount of the titanium oxide fine particle dispersion obtained in the step (2) to the peroxotitanic acid solution produced in the step (3) is 0.1 to 80% by mass, preferably 1 to 50% by mass. The content is preferably 2 to 20% by mass.
- the hydrothermal reaction in this process (3) can also be performed similarly to the said process (2). That is, the pressure is preferably about 0.01 to 4.5 MPa, particularly about 0.15 to 4.5 MPa, and the reaction time is preferably 1 minute to 24 hours.
- the pressure is preferably about 0.01 to 4.5 MPa, particularly about 0.15 to 4.5 MPa, and the reaction time is preferably 1 minute to 24 hours.
- a rutile type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component obtained by hydrothermal reaction in the above step (2) is further added to a peroxotitanium containing no tin component. Since the hydrothermal reaction is carried out in an acid solution, the depth of conversion of titanium oxide to the rutile type is advanced, and the amount of tin component is reduced with respect to the total titanium oxide fine particles, but thin, wide and uniform.
- the tin component can be doped into the titanium oxide fine particles or supported on the surface of the titanium oxide fine particles, and as a result, excellent visible light responsiveness of the photocatalytic thin film can be imparted.
- step (4) a copper compound or an iron compound is added to the rutile-type titanium oxide fine particle dispersion obtained in the above step (3) and reacted.
- a reaction method a method of adding a copper compound or an iron compound to a rutile type titanium oxide fine particle dispersion and stirring at room temperature, or adding a copper compound or an iron compound to a rutile type titanium oxide fine particle dispersion and a temperature of 80 to 250 ° C.
- a hydrothermal treatment method may be used.
- the reaction time is preferably 1 minute to 3 hours.
- the copper compound or iron compound is for enhancing the decomposition activity of the photocatalytic thin film, for example, an inorganic acid salt such as hydrochloride, nitrate, sulfate, etc. of copper compound or iron compound, formic acid, citric acid, oxalic acid , Organic acid salts such as lactic acid and glycolic acid, copper hydroxide or iron hydroxide precipitated by adding an alkali to these aqueous solutions and hydrolyzing, and complexes such as a copper tetraammine complex or an iron tetraammine complex. One or two or more of these may be used in combination.
- an inorganic acid salt such as hydrochloride, nitrate, sulfate, etc. of copper compound or iron compound, formic acid, citric acid, oxalic acid , Organic acid salts such as lactic acid and glycolic acid, copper hydroxide or iron hydroxide precipitated by adding an alkali to these aqueous solutions and hydrolyzing, and
- the copper compound or iron compound may be used in the form of an aqueous solution having an appropriate concentration together with the aqueous dispersion medium.
- the copper compound or iron compound is preferably contained in an amount of 0.01 to 5% by mass, particularly 0.1 to 2% by mass, based on titanium oxide fine particles, in terms of metallic copper or metallic iron. When the content is less than 0.1% by mass or exceeds 2% by mass, the decomposition activity of the photocatalytic thin film may not be sufficiently exhibited.
- the presence state of the copper component or the iron component is preferably at least partially supported on the surface of the titanium oxide fine particles, and the other portion is preferably dissolved and / or dispersed in the dispersion. .
- the visible light responsive titanium oxide fine particle dispersion containing the peroxotitanium component, the copper component or the iron component, and the tin component can be obtained by the above steps (1) to (4).
- the titanium oxide in the dispersion is obtained.
- the fine particles preferably have a volume-based 50% cumulative distribution diameter (D 50 ) (hereinafter referred to as “average particle diameter”) measured by a dynamic scattering method using laser light of 50 nm or less. Preferably it is 30 nm or less.
- the lower limit is not particularly limited, but is preferably 5 nm or more.
- the concentration of the titanium oxide fine particles is preferably 0.01 to 20% by mass, and particularly preferably 0.5 to 10% by mass in the dispersion from the viewpoint that a photocatalytic thin film having a required thickness can be easily produced.
- the peroxotitanium component has a function of satisfactorily dispersing titanium oxide, and the concentration of the peroxotitanium component is 0.1 to 20% by mass with respect to the titanium oxide fine particles, preferably 0.1 to 5% by mass.
- concentration is less than 0.1% by mass, the titanium oxide fine particles may easily aggregate, and when it exceeds 20% by mass, the photocatalytic effect of the photocatalytic thin film obtained from the dispersion may be insufficient. .
- the rutile type titanium oxide fine particle dispersion obtained as described above can be used for forming a rutile type titanium oxide thin film on the surface of various members.
- various members are not particularly limited, and examples of the material include organic materials and inorganic materials, and the inorganic materials include, for example, non-metallic inorganic materials and metallic inorganic materials. These can have various shapes according to their purposes and applications.
- organic material examples include vinyl chloride resin, polyethylene, polypropylene, polycarbonate, acrylic resin, polyacetal, fluorine resin, silicone resin, ethylene-vinyl acetate copolymer (EVA), acrylonitrile-butadiene rubber (NBR), polyethylene terephthalate ( PET), polyethylene naphthalate (PEN), polyvinyl butyral (PVB), ethylene-vinyl alcohol copolymer (EVOH), polyimide resin, polyphenylene sulfide (PPS), polyetherimide (PEI), polyetheretherimide (PEEI) , Synthetic ether materials such as polyetheretherketone (PEEK), melamine resin, phenol resin, acrylonitrile-butadiene-styrene (ABS) resin, natural rubber, etc.
- EVA ethylene-vinyl acetate copolymer
- NBR acrylonitrile-butadiene rubber
- PET polyethylene terephthalate
- PEN polyethylene
- Fee, or semi-synthetic materials include the above-mentioned synthetic resin material and natural material. These may be commercialized into a required shape and configuration such as a film, a sheet, a fiber material, a fiber product, other molded products, and a laminate.
- non-metallic inorganic materials include glass, ceramics, stones and the like. These may be commercialized in various forms such as tiles, glass, mirrors, and design materials.
- metal inorganic material examples include cast iron, steel, iron, iron alloy, aluminum, aluminum alloy, nickel, nickel alloy, and zinc die cast. These may be plated with the metal inorganic material, may be coated with the organic material, or may be plated on the surface of the organic material or non-metallic inorganic material.
- the titanium oxide-based fine particle dispersion of the present invention is particularly useful for producing a transparent photocatalytic thin film on a polymer film such as PET among the above-mentioned various members.
- a method for forming a rutile-type titanium oxide thin film on the surface of various members for example, after applying the rutile-type titanium oxide fine particle dispersion on the surface of the member by a known application method such as spray coating or dip coating, What is necessary is just to dry by well-known drying methods, such as far-infrared drying, IH drying, hot air drying, and natural drying, and the thickness of a rutile type titanium oxide thin film can also be selected variously, However, Usually, the range of 50 nm-10 micrometers is preferable. It should be noted that a binder such as silica or silicone may be added to the rutile-type titanium oxide fine particle dispersion in a mixing ratio of 1:99 to 99: 1.
- the rutile-type titanium oxide thin film thus formed gives good photocatalytic action in the ultraviolet region as in the past, and has excellent visible light responsiveness.
- Various members on which the photocatalytic film is formed Since the organic substance is decomposed by the photocatalytic action of titanium oxide to make the film surface hydrophilic, the surface of the member can be cleaned, deodorized, antibacterial and the like.
- Average particle diameter of fine titanium oxide particles in the dispersion (D 50 ) The average particle size (D 50 ) of the titanium oxide fine particles in the dispersion was measured using a particle size distribution analyzer (trade name “Nanotrack particle size analyzer UPA-EX”, Nikkiso Co., Ltd.).
- Crystal phase of the obtained rutile-type titanium oxide fine particles was measured using a powder X-ray diffractometer (trade name “MultiFlex”, Rigaku Co., Ltd.). Crystallinity was evaluated based on the peak height of the strongest diffraction peak (about 27.45 °) of rutile titanium oxide in the obtained X-ray diffraction spectrum. The peak height of the rutile type titanium oxide of Example 1 described later was set as 1, and the relative values were compared.
- Acetaldehyde gas decomposition performance test of photocatalytic thin film (under visible light irradiation) The activity of the photocatalyst thin film produced by applying and drying the dispersion was evaluated by the decomposition reaction of acetaldehyde gas. The evaluation was performed by a flow-type gas decomposition performance evaluation method. Specifically, a sample for evaluation in which a photocatalytic thin film is formed on a substrate made of 5 cm square glass is placed in a quartz glass cell having a volume of 12.5 cm 3 , and the concentration is adjusted to 250% in the cell at a concentration of 250 ppm.
- the acetaldehyde gas was circulated at a flow rate of 5 mL ⁇ s ⁇ 1 , and light was irradiated with a fluorescent lamp installed at the top of the cell so that the illuminance was 8,000 LUX.
- a fluorescent lamp installed at the top of the cell so that the illuminance was 8,000 LUX.
- the concentration of acetaldehyde gas in the gas flowing out from the cell decreases. Therefore, the amount of acetaldehyde gas decomposition can be determined by measuring the concentration.
- the acetaldehyde gas concentration was measured using a gas chromatograph (trade name “GC-8A”, Shimadzu Corporation).
- Example 1 (1) After adding tin (IV) to a 36 mass% titanium chloride (IV) aqueous solution so that the molar ratio is 20 in terms of TiO 2 / SnO 2 and diluting it 10 times with pure water, By gradually adding 10% by mass of ammonia water to this aqueous solution to neutralize and hydrolyze, a precipitate of titanium hydroxide was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting.
- the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (A). It was. (3) After diluting a 36 mass% titanium chloride (IV) aqueous solution 10 times with pure water, 10 mass% ammonia water is gradually added to the aqueous solution to neutralize and hydrolyze the titanium hydroxide. A precipitate was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting.
- Example 2 A titanium oxide fine particle dispersion (C) was obtained in the same manner as in Example 1 except that 200 mL of the peroxotitanic acid solution (b) and 200 mL of the titanium oxide fine particle dispersion (A) were charged.
- Example 3 An autoclave having a volume of 500 mL was charged with 360 mL of a peroxotitanic acid aqueous solution (b) and 40 mL of a titanium oxide fine particle dispersion (B), and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (D). It was.
- Table 1 summarizes the crystallinity of the reaction conditions, average particle diameter, crystal phase, and rutile-type titanium oxide fine particles produced in Examples 1 to 3 and Comparative Examples 1 to 3.
- a rutile-type titanium oxide having stable crystallinity cannot be obtained unless the production method of the present invention is employed.
- the rutile-type titanium oxide fine particles cannot be obtained unless a tin component is added.
- a highly crystalline rutile-type titanium oxide cannot be obtained.
- Example 4 Tin (IV) chloride is added to a 36 mass% titanium chloride (IV) aqueous solution so that the Ti / Sn (molar ratio) is 20, and this is diluted 10 times with pure water, and then the aqueous solution. 10% by mass of ammonia water was gradually added to neutralize and hydrolyze to obtain a precipitate of titanium hydroxide. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting.
- the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (A). It was. (3) After diluting a 36 mass% titanium chloride (IV) aqueous solution 10 times with pure water, 10 mass% ammonia water is gradually added to the aqueous solution to neutralize and hydrolyze the titanium hydroxide. A precipitate was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting.
- the reaction mixture in the autoclave is discharged into a container held in a water bath at 25 ° C. via a sampling tube, and the reaction is stopped by rapidly cooling, so that the titanium oxide fine particle dispersion (B) Obtained.
- Copper sulfate was dissolved in pure water to obtain a 1% by mass copper sulfate aqueous solution (i).
- a copper sulfate aqueous solution (i) is added to the titanium oxide-based fine particle dispersion (B) so that the metal copper is 0.15% by mass with respect to titanium oxide, and hydrothermally treated at 130 ° C. for 30 minutes.
- the visible light responsive titanium oxide fine particle dispersion (C) of the present invention containing 1% by mass of titanium oxide and 1% by mass of the peroxotitanium component with respect to titanium oxide was obtained.
- the average particle size of the titanium oxide fine particles in the obtained dispersion was measured (trade name “Nanotrack particle size analyzer UPA-EX”, Nikkiso Co., Ltd.) and found to be 18 nm.
- Example 5 (7) In the same manner as in Example 4 (4), except that 200 mL of the peroxotitanic acid solution (b) and 200 mL of the titanium oxide fine particle dispersion (A) were charged, visible light responsive titanium oxide-based fine particle dispersion A liquid (D) was obtained. It was 21 nm when the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above.
- a titanium oxide fine particle dispersion (E) was obtained in the same manner as in Example 4 except that the titanium oxide dispersion (A) was not added to the peroxotitanic acid solution (b).
- the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above, it was 25 nm.
- Example 6 (11) Through the same steps as (1) to (4) of Example 4, a titanium oxide-based fine particle dispersion (B) was obtained. (12) Iron sulfate was dissolved in pure water to obtain a 1% by mass iron sulfate aqueous solution (ii). (13) An aqueous solution of iron sulfate (ii) is added to the titanium oxide-based fine particle dispersion (B) so that the amount of metal iron is 0.15% by mass with respect to titanium oxide, and hydrothermally treated at 130 ° C.
- the visible light responsive titanium oxide fine particle dispersion (H) of the present invention containing 1% by mass of titanium oxide and 1% by mass of the peroxotitanium component with respect to titanium oxide was obtained. It was 21 nm when the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above.
- Example 7 (14) In the process of Example 6 (4) (same as the process of (4) of Example 4), except that 200 mL of the peroxotitanic acid solution (b) and 200 mL of the titanium oxide fine particle dispersion (A) were charged. Similarly, a visible light responsive titanium oxide fine particle dispersion (I) was obtained. When the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above, it was 25 nm.
- Example 6 A titanium oxide fine particle dispersion (J) was obtained in the same manner as in Example 6 except that the titanium oxide dispersion (A) was not added to the peroxotitanic acid solution (b). It was 30 nm when the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above.
- Example 7 Titanium oxide fine particles in the same manner as in Example 6, except that the peroxotitanic acid solution (a) not hydrothermally treated was added to the peroxotitanic acid solution (b) instead of the titanium oxide dispersion (A). A dispersion (K) was obtained. The average particle size of the titanium oxide fine particles in the obtained dispersion was measured and found to be 28 nm.
- a silica-based binder (colloidal silica, trade name: Snowtex 20 (manufactured by Nissan Chemical Industries, Ltd.)) was added at a TiO 2 / SiO 2 ratio of 1.5. After adding, the sample was applied to a glass plate with a dip coater and dried to form a photocatalyst thin film having a film thickness of 150 nm to obtain a sample for evaluation.
- Table 2 shows the reaction conditions and average particle diameters of Examples 4 to 7 and Comparative Examples 4 to 9, the transparency of the photocatalytic thin film, and the water contact angle measurement results after 5 hours of irradiation with a fluorescent lamp in the self-cleaning performance test of the photocatalytic thin film.
- the gas decomposition rate 90 minutes after irradiation with a fluorescent lamp in the acetaldehyde gas decomposition performance test of the photocatalytic thin film is shown collectively.
- the results of Comparative Examples 4 and 6 sufficient visible light activity cannot be obtained unless the titanium oxide fine particle dispersion is added to the peroxotitanic acid solution.
- the titanium oxide-based fine particle dispersions of Examples 4 to 7 are applied to various substrates made of an inorganic material such as glass and metal, and an organic material such as a polymer film (PET film or the like) to form a photocatalytic thin film. It is useful for producing, and particularly useful for producing a transparent photocatalytic thin film on a polymer film.
- an inorganic material such as glass and metal
- an organic material such as a polymer film (PET film or the like) to form a photocatalytic thin film. It is useful for producing, and particularly useful for producing a transparent photocatalytic thin film on a polymer film.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
A rutile-titanium-dioxide microparticle dispersion liquid characterized in that rutile-titanium-dioxide microparticles are dispersed in an aqueous dispersion medium, a tin component is included, and the ratio (TiO2/SnO2) of the number of moles of the tin component, in tin-oxide equivalent, to the number of moles of titanium dioxide is between 40 and 10,000, inclusive. The present invention makes it possible to provide: a rutile-titanium-dioxide microparticle dispersion liquid wherein said titanium dioxide microparticles exhibit excellent dispersion stability; a manufacturing method therefor; and a member that has, on the surface thereof, a rutile-titanium-dioxide thin film formed using the aforementioned dispersion liquid. Also, by adding and reacting a copper compound or an iron compound after step (3), thereby including a copper component or an iron component in the titanium-dioxide microparticle dispersion liquid, a highly transparent photocatalytic thin film sensitive to visible light can be fabricated in a convenient manner.
Description
本発明は、分散安定性に優れたルチル型酸化チタン微粒子分散液、その製造方法及び該分散液を用いて形成されるルチル型酸化チタン薄膜を表面に有する部材に関する。
The present invention relates to a rutile-type titanium oxide fine particle dispersion excellent in dispersion stability, a production method thereof, and a member having a rutile-type titanium oxide thin film formed on the surface using the dispersion.
酸化チタンは、種々の用途、例えば、顔料、紫外線遮蔽剤、触媒、光触媒、触媒担体、吸着剤、イオン交換剤、充填剤、補強剤、セラミックス用原料、ペロブスカイト型複合酸化物等の複合酸化物の前駆体、及び磁気テープの下塗り剤等に使用されている。
Titanium oxide is used in various applications, such as pigments, ultraviolet shielding agents, catalysts, photocatalysts, catalyst carriers, adsorbents, ion exchangers, fillers, reinforcing agents, raw materials for ceramics, complex oxides such as perovskite complex oxides. Are used as precursors for magnetic tapes, and as a primer for magnetic tape.
中でも光触媒性酸化チタン微粒子は、その分散液を種々の基材表面にコーティングして形成した光触媒性コーティング膜が、酸化チタンの光触媒作用により有機物を分解し膜表面を親水性にすることから、基材表面の清浄化、脱臭、抗菌等の用途に多用されている。しかし、その光触媒活性を高めるためには、光触媒粒子と分解対象物質との接触面積を広くすることが必要であり、そのため粒子の一次粒子径が50nm以下であることが要求されている。また、基材の意匠性を失わないよう、膜の透明性も要求されている。
Among these, photocatalytic titanium oxide fine particles are based on the photocatalytic coating film formed by coating the dispersion on the surface of various substrates, which decomposes organic substances and makes the film surface hydrophilic by photocatalytic action of titanium oxide. It is widely used for cleaning the surface of materials, deodorizing, antibacterial and so on. However, in order to increase the photocatalytic activity, it is necessary to increase the contact area between the photocatalyst particles and the substance to be decomposed, and therefore the primary particle diameter of the particles is required to be 50 nm or less. Moreover, the transparency of the film is also required so as not to lose the design properties of the substrate.
酸化チタン微粒子分散液の一般的な製造方法としては、例えば、気相法もしくは液相法で合成した酸化チタン微粉末を有機高分子分散剤等の分散助剤を用い、湿式分散機により分散媒中に分散する方法(特許文献1~3)が挙げられる。しかし、これらの製法の問題点は、平均粒子径50nm以下の超微粒子が凝集を起こし易いため、一次粒子まで分散するためには多大な労力を必要とし、場合によっては一次粒子まで分散することが不可能な点である。
As a general method for producing a titanium oxide fine particle dispersion, for example, a titanium oxide fine powder synthesized by a gas phase method or a liquid phase method is used as a dispersion medium using a dispersion aid such as an organic polymer dispersant. Examples thereof include a method of dispersing in (Patent Documents 1 to 3). However, the problem with these production methods is that ultrafine particles having an average particle diameter of 50 nm or less are likely to agglomerate, so that a great deal of labor is required to disperse to the primary particles, and in some cases, even the primary particles may be dispersed. It is impossible.
また、水酸化チタンを過酸化水素で溶解したペルオキソチタン酸水溶液を水熱処理することで、長期安定なアナターゼ型酸化チタン分散液を製造する方法(特許文献4)や、水酸化チタンを過酸化水素で溶解する前、又は溶解した後にスズ化合物を添加した、スズ添加ペルオキソチタン酸水溶液を水熱処理することで、長期安定なルチル型酸化チタン微粒子分散液を製造する方法(特許文献5)が開示されている。しかし、前者の方法では、得られる酸化チタンの結晶相はアナターゼ型であり、後者の方法では、TiO2/SnO2=1.5~14(重量比)となるような量のスズ化合物を添加する必要があり、酸化チタンの結晶相はルチル型であるものの、不純物が多量に含まれているため、その結晶性が低いという問題があった。例えば、得られた酸化チタンを光触媒の用途に供する場合、結晶性が低いと電子と正孔の再結合確立が高まるため、光触媒としての活性が低くなるという問題点がある。
In addition, a hydrothermal treatment of a peroxotitanic acid aqueous solution in which titanium hydroxide is dissolved in hydrogen peroxide to produce a long-term stable anatase-type titanium oxide dispersion (Patent Document 4); Disclosed is a method for producing a long-term stable rutile-type titanium oxide fine particle dispersion by hydrothermal treatment of a tin-added peroxotitanic acid aqueous solution to which a tin compound is added before or after being dissolved in (Patent Document 5). ing. However, in the former method, the crystal phase of the obtained titanium oxide is anatase type, and in the latter method, an amount of tin compound is added so that TiO 2 / SnO 2 = 1.5 to 14 (weight ratio). Although the crystal phase of titanium oxide is a rutile type, it has a problem that its crystallinity is low because it contains a large amount of impurities. For example, when the obtained titanium oxide is used for a photocatalyst, there is a problem that if the crystallinity is low, the recombination establishment of electrons and holes is increased, so that the activity as a photocatalyst is lowered.
更に、酸化チタンは、太陽光等の比較的波長の短い紫外領域の光の照射下では良好な光触媒作用を示すものの、蛍光灯のように可視光が大部分を占める光源で照らされた室内空間では、十分な光触媒作用を発現しにくい場合がある。近年では、可視光応答型光触媒として、酸化タングステン光触媒体(特許文献6)が注目されているが、タングステンは希少元素であるため、汎用元素であるチタンを利用した光触媒の可視光活性向上が望まれている。
Furthermore, although titanium oxide shows a good photocatalytic action when irradiated with light in the ultraviolet region with a relatively short wavelength such as sunlight, it is an indoor space illuminated by a light source that occupies most of the visible light, such as a fluorescent lamp. Then, it may be difficult to exhibit sufficient photocatalytic action. In recent years, a tungsten oxide photocatalyst (Patent Document 6) has attracted attention as a visible light responsive photocatalyst. However, since tungsten is a rare element, an improvement in the visible light activity of a photocatalyst using titanium which is a general-purpose element is desired. It is rare.
本発明は上記事情に鑑みなされたもので、分散安定性に優れたルチル型酸化チタン微粒子分散液、その製造方法及び該分散液を用いて形成されるルチル型酸化チタン薄膜を表面に有する部材を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has a rutile-type titanium oxide fine particle dispersion excellent in dispersion stability, a method for producing the same, and a member having a rutile-type titanium oxide thin film formed on the surface using the dispersion. The purpose is to provide.
本発明者らは、上記目的を達成するため鋭意検討を行った結果、原料チタン化合物、スズ化合物、塩基性物質、過酸化水素及び水性分散媒からスズ化合物を含有したペルオキソチタン酸を製造し、これを高圧下に水熱反応させて得たルチル型酸化チタン微粒子分散液を、別のペルオキソチタン酸溶液に添加し、再度水熱反応させることにより、分散安定性に優れたルチル型酸化チタン微粒子分散液が得られることを知見した。
また、上記再度の水熱反応させて分散安定性に優れたルチル型酸化チタン微粒子分散液を得た後、銅化合物又は鉄化合物を添加、反応させることにより、ペルオキソチタン成分、銅成分又は鉄成分、スズ成分を含むルチル型酸化チタン微粒子分散液が得られ、この酸化チタン微粒子分散液が、酸化チタン微粒子の分散安定性に優れ、またこの酸化チタン微粒子分散液から可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができることを知見し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventors produced peroxotitanic acid containing a tin compound from a raw material titanium compound, tin compound, basic substance, hydrogen peroxide and an aqueous dispersion medium, Rutile-type titanium oxide fine particles with excellent dispersion stability by adding a rutile-type titanium oxide fine particle dispersion obtained by hydrothermal reaction under high pressure to another peroxotitanic acid solution and reacting again with hydrothermal reaction. It was found that a dispersion was obtained.
Further, after obtaining the rutile-type titanium oxide fine particle dispersion excellent in dispersion stability by the above hydrothermal reaction, a peroxotitanium component, a copper component or an iron component is added and reacted. , A rutile-type titanium oxide fine particle dispersion containing a tin component is obtained. This titanium oxide fine particle dispersion has excellent dispersion stability of the titanium oxide fine particles, and has transparency that has visible light responsiveness from the titanium oxide fine particle dispersion. It has been found that a photocatalytic thin film having a high thickness can be easily produced, and has led to the present invention.
また、上記再度の水熱反応させて分散安定性に優れたルチル型酸化チタン微粒子分散液を得た後、銅化合物又は鉄化合物を添加、反応させることにより、ペルオキソチタン成分、銅成分又は鉄成分、スズ成分を含むルチル型酸化チタン微粒子分散液が得られ、この酸化チタン微粒子分散液が、酸化チタン微粒子の分散安定性に優れ、またこの酸化チタン微粒子分散液から可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができることを知見し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventors produced peroxotitanic acid containing a tin compound from a raw material titanium compound, tin compound, basic substance, hydrogen peroxide and an aqueous dispersion medium, Rutile-type titanium oxide fine particles with excellent dispersion stability by adding a rutile-type titanium oxide fine particle dispersion obtained by hydrothermal reaction under high pressure to another peroxotitanic acid solution and reacting again with hydrothermal reaction. It was found that a dispersion was obtained.
Further, after obtaining the rutile-type titanium oxide fine particle dispersion excellent in dispersion stability by the above hydrothermal reaction, a peroxotitanium component, a copper component or an iron component is added and reacted. , A rutile-type titanium oxide fine particle dispersion containing a tin component is obtained. This titanium oxide fine particle dispersion has excellent dispersion stability of the titanium oxide fine particles, and has transparency that has visible light responsiveness from the titanium oxide fine particle dispersion. It has been found that a photocatalytic thin film having a high thickness can be easily produced, and has led to the present invention.
従って、本発明は、水性分散媒中に、ルチル型酸化チタン微粒子が分散していると共に、スズ成分が含有され、且つ該スズ成分が酸化スズ換算で酸化チタンとのモル比(TiO2/SnO2)が40~10,000であることを特徴とするルチル型酸化チタン微粒子分散液を提供する。
この場合、前記酸化チタン微粒子が、レーザー光を用いた動的散乱法により測定される体積基準の50%累計分布径(D50)で50nm以下であることが好ましい。更に、上記ルチル型酸化チタン微粒子分散液は、銅成分又は鉄成分を含有していてもよい。
また、本発明は、
(1)チタン化合物、スズ化合物、塩基性物質、過酸化水素及び水性分散媒から、スズ化合物を含有したペルオキソチタン酸溶液を製造する工程、
(2)上記工程(1)で得られたスズ化合物を含有したペルオキソチタン酸溶液を80~250℃で加熱し、ペルオキソチタン成分及びスズ成分を含むルチル型酸化チタン微粒子分散液を得る工程、及び
(3)上記工程(1)とは別に、チタン化合物、塩基性物質、過酸化水素及び水性分散媒を含有する溶液から製造したペルオキソチタン酸溶液に、上記工程(2)で得られたルチル型酸化チタン微粒子分散液を添加し、再び80~250℃で加熱し、ルチル型酸化チタン微粒子分散液を得る工程
を有することを特徴とするルチル型酸化チタン微粒子分散液の製造方法を提供する。
この場合、更に
(4)上記工程(3)で得られたルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加し、反応させる工程を行うことができるが、銅化合物又は鉄化合物の添加量が、金属銅又は鉄換算で酸化チタン微粒子に対し0.01~5質量%であることが好ましい。
ここで、工程(1)が、チタン化合物を水性分散媒に溶解し、これに塩基性物質を添加してチタン化合物を水酸化チタンとし、これに過酸化水素を添加してペルオキソチタン酸とした後にスズ化合物を添加してスズ含有ペルオキソチタン酸の溶液を得る工程であること、あるいは工程(1)が、チタン化合物を水性分散媒に溶解し、これにスズ化合物を添加した後に塩基性物質を添加してスズ含有水酸化チタンとし、これに過酸化水素を添加してスズ含有ペルオキソチタン酸の溶液を得る工程であることが好ましい。
また、スズ化合物の添加割合が、チタン化合物に対し、それぞれ酸化物換算でモル比がTiO2/SnO2として40~10,000であることが好ましく、過酸化水素の添加量が、TiとSnの合計モル数の1.5~5倍モルであることが好ましく、ペルオキソチタン酸にする反応の反応温度が5~60℃であり、反応時間が30分~24時間であることが好ましく、工程(2)の水熱反応を0.01~4.5MPaの圧力にて行うことが好ましい。
更に、工程(3)が、チタン化合物を水性分散媒に溶解し、これに塩基性物質を添加してチタン化合物を水酸化チタンとし、これに過酸化水素を添加してペルオキソチタン酸の溶液を得る工程であることが好ましく、工程(3)で製造したペルオキソチタン酸溶液の固形分X2と工程(2)で得られた酸化チタン微粒子分散液の固形分X1との割合[X2/(X1+X2)]×100が0.1~80質量%であることが好ましい。
更に、本発明は、酸化チタン微粒子分散液を用いて形成されるルチル型酸化チタン薄膜を表面に有する部材を提供する。 Therefore, in the present invention, the rutile-type titanium oxide fine particles are dispersed in the aqueous dispersion medium, the tin component is contained, and the molar ratio of the tin component to titanium oxide in terms of tin oxide (TiO 2 / SnO). 2 ) A rutile-type titanium oxide fine particle dispersion characterized by having 40 to 10,000.
In this case, it is preferable that the titanium oxide fine particles have a volume-based 50% cumulative distribution diameter (D 50 ) measured by a dynamic scattering method using laser light of 50 nm or less. Furthermore, the rutile-type titanium oxide fine particle dispersion may contain a copper component or an iron component.
The present invention also provides:
(1) a step of producing a peroxotitanic acid solution containing a tin compound from a titanium compound, a tin compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium;
(2) heating the peroxotitanic acid solution containing the tin compound obtained in the above step (1) at 80 to 250 ° C. to obtain a rutile-type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component; (3) Separately from the step (1), the rutile type obtained in the step (2) is added to a peroxotitanic acid solution prepared from a solution containing a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium. There is provided a method for producing a rutile type titanium oxide fine particle dispersion characterized by comprising a step of adding a titanium oxide fine particle dispersion and heating again at 80 to 250 ° C. to obtain a rutile type titanium oxide fine particle dispersion.
In this case, the step of adding (4) the copper compound or the iron compound to the rutile-type titanium oxide fine particle dispersion obtained in the above step (3) and reacting it can be carried out. The amount is preferably 0.01 to 5% by mass with respect to titanium oxide fine particles in terms of metallic copper or iron.
Here, in the step (1), a titanium compound is dissolved in an aqueous dispersion medium, a basic substance is added to the titanium compound to form titanium hydroxide, and hydrogen peroxide is added to the titanium compound to form peroxotitanic acid. The step of adding a tin compound later to obtain a solution of tin-containing peroxotitanic acid, or the step (1) involves dissolving the titanium compound in an aqueous dispersion medium and adding the tin compound to the basic substance. A step of adding tin to form titanium-containing titanium hydroxide and adding hydrogen peroxide thereto to obtain a solution of tin-containing peroxotitanic acid is preferable.
Further, the addition ratio of the tin compound is preferably 40 to 10,000 as the molar ratio of TiO 2 / SnO 2 with respect to the titanium compound, and the addition amount of hydrogen peroxide is Ti and Sn. Preferably, the reaction temperature of the reaction to form peroxotitanic acid is 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours. The hydrothermal reaction (2) is preferably performed at a pressure of 0.01 to 4.5 MPa.
Further, in the step (3), the titanium compound is dissolved in an aqueous dispersion medium, a basic substance is added to the titanium compound to form titanium hydroxide, and hydrogen peroxide is added thereto to form a peroxotitanic acid solution. The ratio of the solid content X 2 of the peroxotitanic acid solution produced in step (3) and the solid content X 1 of the titanium oxide fine particle dispersion obtained in step (2) [X 2 / (X 1 + X 2 )] × 100 is preferably 0.1 to 80% by mass.
Furthermore, the present invention provides a member having on its surface a rutile-type titanium oxide thin film formed using a titanium oxide fine particle dispersion.
この場合、前記酸化チタン微粒子が、レーザー光を用いた動的散乱法により測定される体積基準の50%累計分布径(D50)で50nm以下であることが好ましい。更に、上記ルチル型酸化チタン微粒子分散液は、銅成分又は鉄成分を含有していてもよい。
また、本発明は、
(1)チタン化合物、スズ化合物、塩基性物質、過酸化水素及び水性分散媒から、スズ化合物を含有したペルオキソチタン酸溶液を製造する工程、
(2)上記工程(1)で得られたスズ化合物を含有したペルオキソチタン酸溶液を80~250℃で加熱し、ペルオキソチタン成分及びスズ成分を含むルチル型酸化チタン微粒子分散液を得る工程、及び
(3)上記工程(1)とは別に、チタン化合物、塩基性物質、過酸化水素及び水性分散媒を含有する溶液から製造したペルオキソチタン酸溶液に、上記工程(2)で得られたルチル型酸化チタン微粒子分散液を添加し、再び80~250℃で加熱し、ルチル型酸化チタン微粒子分散液を得る工程
を有することを特徴とするルチル型酸化チタン微粒子分散液の製造方法を提供する。
この場合、更に
(4)上記工程(3)で得られたルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加し、反応させる工程を行うことができるが、銅化合物又は鉄化合物の添加量が、金属銅又は鉄換算で酸化チタン微粒子に対し0.01~5質量%であることが好ましい。
ここで、工程(1)が、チタン化合物を水性分散媒に溶解し、これに塩基性物質を添加してチタン化合物を水酸化チタンとし、これに過酸化水素を添加してペルオキソチタン酸とした後にスズ化合物を添加してスズ含有ペルオキソチタン酸の溶液を得る工程であること、あるいは工程(1)が、チタン化合物を水性分散媒に溶解し、これにスズ化合物を添加した後に塩基性物質を添加してスズ含有水酸化チタンとし、これに過酸化水素を添加してスズ含有ペルオキソチタン酸の溶液を得る工程であることが好ましい。
また、スズ化合物の添加割合が、チタン化合物に対し、それぞれ酸化物換算でモル比がTiO2/SnO2として40~10,000であることが好ましく、過酸化水素の添加量が、TiとSnの合計モル数の1.5~5倍モルであることが好ましく、ペルオキソチタン酸にする反応の反応温度が5~60℃であり、反応時間が30分~24時間であることが好ましく、工程(2)の水熱反応を0.01~4.5MPaの圧力にて行うことが好ましい。
更に、工程(3)が、チタン化合物を水性分散媒に溶解し、これに塩基性物質を添加してチタン化合物を水酸化チタンとし、これに過酸化水素を添加してペルオキソチタン酸の溶液を得る工程であることが好ましく、工程(3)で製造したペルオキソチタン酸溶液の固形分X2と工程(2)で得られた酸化チタン微粒子分散液の固形分X1との割合[X2/(X1+X2)]×100が0.1~80質量%であることが好ましい。
更に、本発明は、酸化チタン微粒子分散液を用いて形成されるルチル型酸化チタン薄膜を表面に有する部材を提供する。 Therefore, in the present invention, the rutile-type titanium oxide fine particles are dispersed in the aqueous dispersion medium, the tin component is contained, and the molar ratio of the tin component to titanium oxide in terms of tin oxide (TiO 2 / SnO). 2 ) A rutile-type titanium oxide fine particle dispersion characterized by having 40 to 10,000.
In this case, it is preferable that the titanium oxide fine particles have a volume-based 50% cumulative distribution diameter (D 50 ) measured by a dynamic scattering method using laser light of 50 nm or less. Furthermore, the rutile-type titanium oxide fine particle dispersion may contain a copper component or an iron component.
The present invention also provides:
(1) a step of producing a peroxotitanic acid solution containing a tin compound from a titanium compound, a tin compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium;
(2) heating the peroxotitanic acid solution containing the tin compound obtained in the above step (1) at 80 to 250 ° C. to obtain a rutile-type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component; (3) Separately from the step (1), the rutile type obtained in the step (2) is added to a peroxotitanic acid solution prepared from a solution containing a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium. There is provided a method for producing a rutile type titanium oxide fine particle dispersion characterized by comprising a step of adding a titanium oxide fine particle dispersion and heating again at 80 to 250 ° C. to obtain a rutile type titanium oxide fine particle dispersion.
In this case, the step of adding (4) the copper compound or the iron compound to the rutile-type titanium oxide fine particle dispersion obtained in the above step (3) and reacting it can be carried out. The amount is preferably 0.01 to 5% by mass with respect to titanium oxide fine particles in terms of metallic copper or iron.
Here, in the step (1), a titanium compound is dissolved in an aqueous dispersion medium, a basic substance is added to the titanium compound to form titanium hydroxide, and hydrogen peroxide is added to the titanium compound to form peroxotitanic acid. The step of adding a tin compound later to obtain a solution of tin-containing peroxotitanic acid, or the step (1) involves dissolving the titanium compound in an aqueous dispersion medium and adding the tin compound to the basic substance. A step of adding tin to form titanium-containing titanium hydroxide and adding hydrogen peroxide thereto to obtain a solution of tin-containing peroxotitanic acid is preferable.
Further, the addition ratio of the tin compound is preferably 40 to 10,000 as the molar ratio of TiO 2 / SnO 2 with respect to the titanium compound, and the addition amount of hydrogen peroxide is Ti and Sn. Preferably, the reaction temperature of the reaction to form peroxotitanic acid is 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours. The hydrothermal reaction (2) is preferably performed at a pressure of 0.01 to 4.5 MPa.
Further, in the step (3), the titanium compound is dissolved in an aqueous dispersion medium, a basic substance is added to the titanium compound to form titanium hydroxide, and hydrogen peroxide is added thereto to form a peroxotitanic acid solution. The ratio of the solid content X 2 of the peroxotitanic acid solution produced in step (3) and the solid content X 1 of the titanium oxide fine particle dispersion obtained in step (2) [X 2 / (X 1 + X 2 )] × 100 is preferably 0.1 to 80% by mass.
Furthermore, the present invention provides a member having on its surface a rutile-type titanium oxide thin film formed using a titanium oxide fine particle dispersion.
本発明によれば、酸化チタン微粒子の分散安定性に優れたルチル型酸化チタン微粒子分散液、その製造方法及び該分散液を用いて形成されるルチル型酸化チタン薄膜を表面に有する部材を提供することができる。
またこの場合、上記工程(3)の後に、銅化合物又は鉄化合物を添加、反応させ、酸化チタン微粒子分散液に銅成分又は鉄成分を含有させることで、可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができる。 According to the present invention, there are provided a rutile-type titanium oxide fine particle dispersion excellent in dispersion stability of titanium oxide fine particles, a method for producing the same, and a member having on its surface a rutile-type titanium oxide thin film formed using the dispersion. be able to.
Further, in this case, after the step (3), a copper compound or an iron compound is added and reacted, and the titanium oxide fine particle dispersion is made to contain a copper component or an iron component, so that the visible light responsiveness is highly transparent. A photocatalytic thin film can be easily produced.
またこの場合、上記工程(3)の後に、銅化合物又は鉄化合物を添加、反応させ、酸化チタン微粒子分散液に銅成分又は鉄成分を含有させることで、可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができる。 According to the present invention, there are provided a rutile-type titanium oxide fine particle dispersion excellent in dispersion stability of titanium oxide fine particles, a method for producing the same, and a member having on its surface a rutile-type titanium oxide thin film formed using the dispersion. be able to.
Further, in this case, after the step (3), a copper compound or an iron compound is added and reacted, and the titanium oxide fine particle dispersion is made to contain a copper component or an iron component, so that the visible light responsiveness is highly transparent. A photocatalytic thin film can be easily produced.
以下、本発明について更に詳細に説明する。
<ルチル型酸化チタン微粒子分散液>
本発明のルチル型酸化チタン微粒子分散液においては、水性溶媒中に、ルチル型酸化チタン微粒子が高度に分散し、更にペルオキソチタン成分及びスズ成分が含まれているものである。この場合、銅成分又は鉄成分を含有させることができる。 Hereinafter, the present invention will be described in more detail.
<Rutyl type titanium oxide fine particle dispersion>
In the rutile type titanium oxide fine particle dispersion of the present invention, the rutile type titanium oxide fine particles are highly dispersed in an aqueous solvent and further contain a peroxotitanium component and a tin component. In this case, a copper component or an iron component can be contained.
<ルチル型酸化チタン微粒子分散液>
本発明のルチル型酸化チタン微粒子分散液においては、水性溶媒中に、ルチル型酸化チタン微粒子が高度に分散し、更にペルオキソチタン成分及びスズ成分が含まれているものである。この場合、銅成分又は鉄成分を含有させることができる。 Hereinafter, the present invention will be described in more detail.
<Rutyl type titanium oxide fine particle dispersion>
In the rutile type titanium oxide fine particle dispersion of the present invention, the rutile type titanium oxide fine particles are highly dispersed in an aqueous solvent and further contain a peroxotitanium component and a tin component. In this case, a copper component or an iron component can be contained.
・水性分散媒:
水性分散媒としては水性溶媒が使用される。水性溶媒としては、水、及び水と任意の割合で混合される親水性有機溶媒との混合溶媒が挙げられる。水としては、例えば脱イオン水、蒸留水、純水等が好ましい。親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコールが好ましい。この場合、親水性有機溶媒の混合割合は、水性分散媒中0~50質量%であることが好ましい。中でも、生産性、コスト等の点から純水が最も好ましい。 ・ Aqueous dispersion medium:
An aqueous solvent is used as the aqueous dispersion medium. Examples of the aqueous solvent include a mixed solvent of water and a hydrophilic organic solvent mixed with water at an arbitrary ratio. As water, for example, deionized water, distilled water, pure water and the like are preferable. As the hydrophilic organic solvent, for example, alcohols such as methanol, ethanol, and isopropanol are preferable. In this case, the mixing ratio of the hydrophilic organic solvent is preferably 0 to 50% by mass in the aqueous dispersion medium. Among these, pure water is most preferable in terms of productivity, cost, and the like.
水性分散媒としては水性溶媒が使用される。水性溶媒としては、水、及び水と任意の割合で混合される親水性有機溶媒との混合溶媒が挙げられる。水としては、例えば脱イオン水、蒸留水、純水等が好ましい。親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコールが好ましい。この場合、親水性有機溶媒の混合割合は、水性分散媒中0~50質量%であることが好ましい。中でも、生産性、コスト等の点から純水が最も好ましい。 ・ Aqueous dispersion medium:
An aqueous solvent is used as the aqueous dispersion medium. Examples of the aqueous solvent include a mixed solvent of water and a hydrophilic organic solvent mixed with water at an arbitrary ratio. As water, for example, deionized water, distilled water, pure water and the like are preferable. As the hydrophilic organic solvent, for example, alcohols such as methanol, ethanol, and isopropanol are preferable. In this case, the mixing ratio of the hydrophilic organic solvent is preferably 0 to 50% by mass in the aqueous dispersion medium. Among these, pure water is most preferable in terms of productivity, cost, and the like.
・ルチル型酸化チタン微粒子:
水性分散媒に分散されるルチル型酸化チタン微粒子は、レーザー光を用いた動的散乱法により測定される体積基準の50%累積分布径(D50)(以下、「平均粒子径」とする。)が50nm以下であることが好ましく、より好ましくは30nm以下である。通常、その下限値は特に限定されないが、5nm以上であることが好ましい。 -Rutile type titanium oxide fine particles:
The rutile-type titanium oxide fine particles dispersed in the aqueous dispersion medium have a volume-based 50% cumulative distribution diameter (D 50 ) (hereinafter referred to as “average particle diameter”) measured by a dynamic scattering method using laser light. ) Is preferably 50 nm or less, more preferably 30 nm or less. Usually, the lower limit is not particularly limited, but is preferably 5 nm or more.
水性分散媒に分散されるルチル型酸化チタン微粒子は、レーザー光を用いた動的散乱法により測定される体積基準の50%累積分布径(D50)(以下、「平均粒子径」とする。)が50nm以下であることが好ましく、より好ましくは30nm以下である。通常、その下限値は特に限定されないが、5nm以上であることが好ましい。 -Rutile type titanium oxide fine particles:
The rutile-type titanium oxide fine particles dispersed in the aqueous dispersion medium have a volume-based 50% cumulative distribution diameter (D 50 ) (hereinafter referred to as “average particle diameter”) measured by a dynamic scattering method using laser light. ) Is preferably 50 nm or less, more preferably 30 nm or less. Usually, the lower limit is not particularly limited, but is preferably 5 nm or more.
ルチル型酸化チタン微粒子の濃度は、液の安定性を保ち易い点で、分散液中、0.01~20質量%が好ましく、特に0.5~10質量%が好ましい。
The concentration of the rutile-type titanium oxide fine particles is preferably from 0.01 to 20% by mass, particularly preferably from 0.5 to 10% by mass, in the dispersion, from the viewpoint that the stability of the liquid can be easily maintained.
・ペルオキソチタン成分:
ここで、「ペルオキソチタン成分」とは、Ti-O-O-Ti結合を含む酸化チタン化合物を意味し、ペルオキソチタン酸及びTi(VI)と過酸化水素との反応によって生成するペルオキソチタン錯体を含包する。 Peroxotitanium component:
Here, the “peroxotitanium component” means a titanium oxide compound containing a Ti—O—O—Ti bond, and a peroxotitanium complex formed by the reaction of peroxotitanic acid and Ti (VI) with hydrogen peroxide. Include.
ここで、「ペルオキソチタン成分」とは、Ti-O-O-Ti結合を含む酸化チタン化合物を意味し、ペルオキソチタン酸及びTi(VI)と過酸化水素との反応によって生成するペルオキソチタン錯体を含包する。 Peroxotitanium component:
Here, the “peroxotitanium component” means a titanium oxide compound containing a Ti—O—O—Ti bond, and a peroxotitanium complex formed by the reaction of peroxotitanic acid and Ti (VI) with hydrogen peroxide. Include.
本発明のルチル型酸化チタン微粒子分散液において、ペルオキソチタン成分はルチル型酸化チタンを良好に分散させる作用を有する。ペルオキソチタン成分の濃度は、ルチル型酸化チタン微粒子に対して0.1~20質量%であり、好ましくは0.01~5質量%である。該濃度が0.01質量%未満ではルチル型酸化チタン微粒子が凝集し易くなる。一方、20質量%を超えると、ルチル型酸化チタンへの転化率が不十分である。
In the rutile-type titanium oxide fine particle dispersion of the present invention, the peroxotitanium component has a function of satisfactorily dispersing the rutile-type titanium oxide. The concentration of the peroxotitanium component is 0.1 to 20% by mass, preferably 0.01 to 5% by mass, based on the rutile-type titanium oxide fine particles. When the concentration is less than 0.01% by mass, the rutile-type titanium oxide fine particles tend to aggregate. On the other hand, when it exceeds 20 mass%, the conversion rate to a rutile type titanium oxide is inadequate.
・スズ成分:
スズ成分は、得られる酸化チタンの結晶相をアナターゼ型からルチル型へと転移させる作用を有する。該スズ成分の存在状態は限定されず、例えば、金属スズ、酸化物、水酸化物、硝酸塩、硫酸塩、ハロゲン化物、及び錯化合物のいずれであってもよい。該スズ成分は少なくともその一部は酸化チタン微粒子内部にドープ、もしくは酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。 -Tin component:
A tin component has the effect | action which transfers the crystal phase of the titanium oxide obtained from an anatase type to a rutile type. The presence state of the tin component is not limited, and may be, for example, any of metal tin, oxide, hydroxide, nitrate, sulfate, halide, and complex compound. It is preferable that at least a part of the tin component is doped inside the titanium oxide fine particles or supported on the surface of the titanium oxide fine particles, and the other part is preferably dissolved and / or dispersed in the dispersion.
スズ成分は、得られる酸化チタンの結晶相をアナターゼ型からルチル型へと転移させる作用を有する。該スズ成分の存在状態は限定されず、例えば、金属スズ、酸化物、水酸化物、硝酸塩、硫酸塩、ハロゲン化物、及び錯化合物のいずれであってもよい。該スズ成分は少なくともその一部は酸化チタン微粒子内部にドープ、もしくは酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。 -Tin component:
A tin component has the effect | action which transfers the crystal phase of the titanium oxide obtained from an anatase type to a rutile type. The presence state of the tin component is not limited, and may be, for example, any of metal tin, oxide, hydroxide, nitrate, sulfate, halide, and complex compound. It is preferable that at least a part of the tin component is doped inside the titanium oxide fine particles or supported on the surface of the titanium oxide fine particles, and the other part is preferably dissolved and / or dispersed in the dispersion.
該スズ成分は、酸化スズ換算で酸化チタンとのモル比(TiO2/SnO2)が40~10,000の割合で含有されていることが好ましく、特には100~10,000の割合が好ましい。該モル比が40未満では、得られる酸化チタンの結晶性が不十分となることがある。一方、10,000を超えると、ルチル型酸化チタンの含有割合が低下する。
The tin component is preferably contained in a molar ratio with respect to titanium oxide (TiO 2 / SnO 2 ) in a ratio of 40 to 10,000 in terms of tin oxide, particularly preferably in a ratio of 100 to 10,000. . If the molar ratio is less than 40, the crystallinity of the resulting titanium oxide may be insufficient. On the other hand, if it exceeds 10,000, the content ratio of rutile-type titanium oxide decreases.
・銅成分・鉄成分:
本発明のルチル型酸化チタン微粒子分散液には、銅成分又は鉄成分を含有させることができる。これにより、酸化チタン微粒子の分散安定性に優れ、また、可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができる可視光応答型酸化チタン微粒子分散液を得ることができる。
この場合、銅成分、鉄成分は、水に不溶な化合物の形態で存在しており、上記銅成分又は鉄成分の存在状態は、少なくともその一部は酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。 ・ Copper component ・ Iron component:
The rutile-type titanium oxide fine particle dispersion of the present invention can contain a copper component or an iron component. This makes it possible to obtain a visible light responsive titanium oxide fine particle dispersion that is excellent in dispersion stability of titanium oxide fine particles and that can easily produce a highly transparent photocatalytic thin film having visible light responsiveness.
In this case, the copper component and the iron component are present in the form of a compound insoluble in water, and at least a part of the copper component or the iron component is supported on the surface of the titanium oxide fine particles. Preferably, the other part is preferably dissolved and / or dispersed in the dispersion.
本発明のルチル型酸化チタン微粒子分散液には、銅成分又は鉄成分を含有させることができる。これにより、酸化チタン微粒子の分散安定性に優れ、また、可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができる可視光応答型酸化チタン微粒子分散液を得ることができる。
この場合、銅成分、鉄成分は、水に不溶な化合物の形態で存在しており、上記銅成分又は鉄成分の存在状態は、少なくともその一部は酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。 ・ Copper component ・ Iron component:
The rutile-type titanium oxide fine particle dispersion of the present invention can contain a copper component or an iron component. This makes it possible to obtain a visible light responsive titanium oxide fine particle dispersion that is excellent in dispersion stability of titanium oxide fine particles and that can easily produce a highly transparent photocatalytic thin film having visible light responsiveness.
In this case, the copper component and the iron component are present in the form of a compound insoluble in water, and at least a part of the copper component or the iron component is supported on the surface of the titanium oxide fine particles. Preferably, the other part is preferably dissolved and / or dispersed in the dispersion.
銅成分又は鉄成分は、金属銅又は鉄換算で、酸化チタン微粒子に対して0.01~5質量%含有されていることが好ましく、特には0.1~2質量%が好ましい。上記含有量が、0.1質量%未満の場合又は2質量%超過の場合、光触媒薄膜の分解活性が十分に発揮されないことがある。
The copper component or iron component is preferably contained in an amount of 0.01 to 5% by mass, particularly 0.1 to 2% by mass, based on titanium oxide fine particles, in terms of metallic copper or iron. When the content is less than 0.1% by mass or exceeds 2% by mass, the decomposition activity of the photocatalytic thin film may not be sufficiently exhibited.
<ルチル型酸化チタン微粒子分散液の製造方法>
上記の酸化チタン微粒子分散液は、
(1)チタン化合物、スズ化合物、塩基性物質、過酸化水素及び水性分散媒から、スズ化合物を含有したペルオキソチタン酸溶液を製造する工程、
(2)上記工程(1)で得られたスズ化合物を含有したペルオキソチタン酸溶液を80~250℃で加熱し、ペルオキソチタン成分及びスズ成分を含むルチル型酸化チタン微粒子分散液を得る工程、及び
(3)上記工程(1)とは別に、チタン化合物、塩基性物質、過酸化水素及び水性分散媒から製造したペルオキソチタン酸溶液に、上記工程(2)で得られたルチル型酸化チタン微粒子分散液を添加し、再び80~250℃で加熱し、ルチル型酸化チタン微粒子分散液を得る工程、
更に必要により、
(4)上記工程(3)で得られたルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加し、反応させる工程
を有する製造方法により製造することができる。 <Method for producing rutile-type titanium oxide fine particle dispersion>
The titanium oxide fine particle dispersion is
(1) a step of producing a peroxotitanic acid solution containing a tin compound from a titanium compound, a tin compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium;
(2) heating the peroxotitanic acid solution containing the tin compound obtained in the above step (1) at 80 to 250 ° C. to obtain a rutile-type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component; (3) Separately from the step (1), the rutile-type titanium oxide fine particles dispersed in the step (2) are dispersed in a peroxotitanic acid solution produced from a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium. Adding a liquid and heating again at 80 to 250 ° C. to obtain a rutile-type titanium oxide fine particle dispersion,
If necessary,
(4) It can manufacture with the manufacturing method which has the process of adding a copper compound or an iron compound to the rutile type titanium oxide fine particle dispersion liquid obtained at the said process (3), and making it react.
上記の酸化チタン微粒子分散液は、
(1)チタン化合物、スズ化合物、塩基性物質、過酸化水素及び水性分散媒から、スズ化合物を含有したペルオキソチタン酸溶液を製造する工程、
(2)上記工程(1)で得られたスズ化合物を含有したペルオキソチタン酸溶液を80~250℃で加熱し、ペルオキソチタン成分及びスズ成分を含むルチル型酸化チタン微粒子分散液を得る工程、及び
(3)上記工程(1)とは別に、チタン化合物、塩基性物質、過酸化水素及び水性分散媒から製造したペルオキソチタン酸溶液に、上記工程(2)で得られたルチル型酸化チタン微粒子分散液を添加し、再び80~250℃で加熱し、ルチル型酸化チタン微粒子分散液を得る工程、
更に必要により、
(4)上記工程(3)で得られたルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加し、反応させる工程
を有する製造方法により製造することができる。 <Method for producing rutile-type titanium oxide fine particle dispersion>
The titanium oxide fine particle dispersion is
(1) a step of producing a peroxotitanic acid solution containing a tin compound from a titanium compound, a tin compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium;
(2) heating the peroxotitanic acid solution containing the tin compound obtained in the above step (1) at 80 to 250 ° C. to obtain a rutile-type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component; (3) Separately from the step (1), the rutile-type titanium oxide fine particles dispersed in the step (2) are dispersed in a peroxotitanic acid solution produced from a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium. Adding a liquid and heating again at 80 to 250 ° C. to obtain a rutile-type titanium oxide fine particle dispersion,
If necessary,
(4) It can manufacture with the manufacturing method which has the process of adding a copper compound or an iron compound to the rutile type titanium oxide fine particle dispersion liquid obtained at the said process (3), and making it react.
・工程(1):
工程(1)では、チタン化合物、スズ化合物、塩基性物質及び過酸化水素を水性分散媒中で反応させることにより、スズ化合物を含有したペルオキソチタン酸を製造する。
反応方法としては、水性分散媒中のチタン化合物に塩基性物質を添加して水酸化チタンとし、含有する不純物イオンを除去し、過酸化水素を添加してペルオキソチタン酸とした後にスズ化合物を添加して、スズ含有ペルオキソチタン酸とする方法でも、水性分散媒中の原料チタン化合物にスズ化合物を添加した後に塩基性物質を添加してスズ含有水酸化チタンとし、含有する不純物イオンを除去し、過酸化水素を添加してスズ含有ペルオキソチタン酸とする方法でもよい。 -Process (1):
In step (1), peroxotitanic acid containing a tin compound is produced by reacting a titanium compound, a tin compound, a basic substance, and hydrogen peroxide in an aqueous dispersion medium.
As a reaction method, a basic substance is added to titanium compound in an aqueous dispersion medium to form titanium hydroxide, impurity ions contained are removed, hydrogen peroxide is added to form peroxotitanic acid, and then a tin compound is added. Even in the method of making tin-containing peroxotitanic acid, after adding the tin compound to the raw material titanium compound in the aqueous dispersion medium, a basic substance is added to form tin-containing titanium hydroxide, and the impurity ions contained are removed, A method of adding hydrogen peroxide to form tin-containing peroxotitanic acid may be used.
工程(1)では、チタン化合物、スズ化合物、塩基性物質及び過酸化水素を水性分散媒中で反応させることにより、スズ化合物を含有したペルオキソチタン酸を製造する。
反応方法としては、水性分散媒中のチタン化合物に塩基性物質を添加して水酸化チタンとし、含有する不純物イオンを除去し、過酸化水素を添加してペルオキソチタン酸とした後にスズ化合物を添加して、スズ含有ペルオキソチタン酸とする方法でも、水性分散媒中の原料チタン化合物にスズ化合物を添加した後に塩基性物質を添加してスズ含有水酸化チタンとし、含有する不純物イオンを除去し、過酸化水素を添加してスズ含有ペルオキソチタン酸とする方法でもよい。 -Process (1):
In step (1), peroxotitanic acid containing a tin compound is produced by reacting a titanium compound, a tin compound, a basic substance, and hydrogen peroxide in an aqueous dispersion medium.
As a reaction method, a basic substance is added to titanium compound in an aqueous dispersion medium to form titanium hydroxide, impurity ions contained are removed, hydrogen peroxide is added to form peroxotitanic acid, and then a tin compound is added. Even in the method of making tin-containing peroxotitanic acid, after adding the tin compound to the raw material titanium compound in the aqueous dispersion medium, a basic substance is added to form tin-containing titanium hydroxide, and the impurity ions contained are removed, A method of adding hydrogen peroxide to form tin-containing peroxotitanic acid may be used.
ここで、チタン化合物としては、例えば、チタンの塩酸塩、硝酸塩、硫酸塩等の無機酸塩、蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸塩、これらの水溶液にアルカリを添加して加水分解することにより析出させた水酸化チタンなどが挙げられ、これらの1種又は2種類以上を組み合わせて使用してもよい。
このようなチタン化合物と上記水性分散媒とから形成される原料チタン化合物水溶液の濃度は、60質量%以下、特に30質量%以下であることが好ましい。なお、濃度の下限は適宜選定されるが、1質量%以上であることが好ましい。なお、水性分散媒については、上述した通りである。 Here, as the titanium compound, for example, inorganic acid salts such as titanium hydrochloride, nitrate and sulfate, organic acid salts such as formic acid, citric acid, succinic acid, lactic acid and glycolic acid, alkalis are added to these aqueous solutions. Examples thereof include titanium hydroxide precipitated by hydrolysis, and one or more of these may be used in combination.
The concentration of the raw material titanium compound aqueous solution formed from such a titanium compound and the aqueous dispersion medium is preferably 60% by mass or less, particularly preferably 30% by mass or less. In addition, although the minimum of a density | concentration is selected suitably, it is preferable that it is 1 mass% or more. The aqueous dispersion medium is as described above.
このようなチタン化合物と上記水性分散媒とから形成される原料チタン化合物水溶液の濃度は、60質量%以下、特に30質量%以下であることが好ましい。なお、濃度の下限は適宜選定されるが、1質量%以上であることが好ましい。なお、水性分散媒については、上述した通りである。 Here, as the titanium compound, for example, inorganic acid salts such as titanium hydrochloride, nitrate and sulfate, organic acid salts such as formic acid, citric acid, succinic acid, lactic acid and glycolic acid, alkalis are added to these aqueous solutions. Examples thereof include titanium hydroxide precipitated by hydrolysis, and one or more of these may be used in combination.
The concentration of the raw material titanium compound aqueous solution formed from such a titanium compound and the aqueous dispersion medium is preferably 60% by mass or less, particularly preferably 30% by mass or less. In addition, although the minimum of a density | concentration is selected suitably, it is preferable that it is 1 mass% or more. The aqueous dispersion medium is as described above.
チタン化合物を水酸化チタンにするために添加する塩基性物質としては、チタン化合物をスムーズに水酸化チタンにすると共に、ペルオキソチタン成分を水性分散媒中で安定化させるためのもので、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属の水酸化物、アンモニア、アルカノールアミン、アルキルアミン等のアミン化合物が挙げられ、原料チタン化合物の水溶液のpHを7以上、特にpH7~10になるような量で添加、使用される。
塩基性物質は、上記水性分散媒と共に適当な濃度の水溶液にして使用してもよい。 The basic substance added to make the titanium compound titanium hydroxide is for making the titanium compound smoothly titanium hydroxide and stabilizing the peroxotitanium component in the aqueous dispersion medium. Examples include alkali metal or alkaline earth metal hydroxides such as sodium oxide and potassium hydroxide, and amine compounds such as ammonia, alkanolamines and alkylamines. The pH of the aqueous solution of the raw material titanium compound is 7 or more, particularly pH 7 to 10 It is added and used in such an amount.
The basic substance may be used in the form of an aqueous solution having an appropriate concentration together with the aqueous dispersion medium.
塩基性物質は、上記水性分散媒と共に適当な濃度の水溶液にして使用してもよい。 The basic substance added to make the titanium compound titanium hydroxide is for making the titanium compound smoothly titanium hydroxide and stabilizing the peroxotitanium component in the aqueous dispersion medium. Examples include alkali metal or alkaline earth metal hydroxides such as sodium oxide and potassium hydroxide, and amine compounds such as ammonia, alkanolamines and alkylamines. The pH of the aqueous solution of the raw material titanium compound is 7 or more, particularly pH 7 to 10 It is added and used in such an amount.
The basic substance may be used in the form of an aqueous solution having an appropriate concentration together with the aqueous dispersion medium.
スズ化合物は、光触媒薄膜の可視光応答性を高めるためのもので、例えば、スズの金属、酸化物、水酸化物、硝酸塩、硫酸塩、ハロゲン化物、錯化合物等が挙げられ、これらの1種又は2種類以上を組み合わせて使用してもよい。
なお、上記スズ成分の存在状態は、上述したように、少なくともその一部は酸化チタン微粒子内部にドープもしくは酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。 The tin compound is for enhancing the visible light responsiveness of the photocatalytic thin film, and examples thereof include tin metal, oxide, hydroxide, nitrate, sulfate, halide, complex compound, and the like. Alternatively, two or more types may be used in combination.
As described above, it is preferable that at least a part of the tin component is supported on the surface of the titanium oxide fine particle or on the surface of the titanium oxide fine particle, and the other part is dissolved and dispersed in the dispersion liquid. It is preferable that they are dispersed.
なお、上記スズ成分の存在状態は、上述したように、少なくともその一部は酸化チタン微粒子内部にドープもしくは酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。 The tin compound is for enhancing the visible light responsiveness of the photocatalytic thin film, and examples thereof include tin metal, oxide, hydroxide, nitrate, sulfate, halide, complex compound, and the like. Alternatively, two or more types may be used in combination.
As described above, it is preferable that at least a part of the tin component is supported on the surface of the titanium oxide fine particle or on the surface of the titanium oxide fine particle, and the other part is dissolved and dispersed in the dispersion liquid. It is preferable that they are dispersed.
過酸化水素は、上記原料チタン化合物又は水酸化チタンをペルオキソチタン、つまりTi-O-O-Ti結合を含むチタン化合物に変換させるためのものであり、通常、過酸化水素水の形態で使用される。
過酸化水素の添加量は、TiとSnの合計モル数の1.5~5倍モルとすることが好ましい。また、この過酸化水素を添加して原料チタン化合物又は水酸化チタンをペルオキソチタン酸にする反応における反応温度は、5~60℃とすることが好ましく、反応時間は、30分~24時間とすることが好ましい。 Hydrogen peroxide is used to convert the above raw material titanium compound or titanium hydroxide into peroxo titanium, that is, a titanium compound containing a Ti—O—O—Ti bond, and is usually used in the form of hydrogen peroxide water. The
The amount of hydrogen peroxide added is preferably 1.5 to 5 times the total number of moles of Ti and Sn. The reaction temperature in the reaction of adding hydrogen peroxide to convert the raw material titanium compound or titanium hydroxide to peroxotitanic acid is preferably 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours. It is preferable.
過酸化水素の添加量は、TiとSnの合計モル数の1.5~5倍モルとすることが好ましい。また、この過酸化水素を添加して原料チタン化合物又は水酸化チタンをペルオキソチタン酸にする反応における反応温度は、5~60℃とすることが好ましく、反応時間は、30分~24時間とすることが好ましい。 Hydrogen peroxide is used to convert the above raw material titanium compound or titanium hydroxide into peroxo titanium, that is, a titanium compound containing a Ti—O—O—Ti bond, and is usually used in the form of hydrogen peroxide water. The
The amount of hydrogen peroxide added is preferably 1.5 to 5 times the total number of moles of Ti and Sn. The reaction temperature in the reaction of adding hydrogen peroxide to convert the raw material titanium compound or titanium hydroxide to peroxotitanic acid is preferably 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours. It is preferable.
こうして得られるスズ化合物含有ペルオキソチタン酸水溶液は、pH調整等のために、アルカリ性又は酸性物質を含んでいてよい。
ここでいう、アルカリ性物質としては、例えば、アンモニア、水酸化ナトリウム、水酸化カルシウム等が挙げられ、酸性物質としては、例えば、硫酸、硝酸、塩酸、炭酸、リン酸、過酸化水素等の無機酸及び蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸が挙げられる。
この場合、得られたスズ化合物含有ペルオキソチタン酸水溶液のpHは、1~7、特に4~7であることが取り扱いの安全性の点で好ましい。 The tin compound-containing peroxotitanic acid aqueous solution thus obtained may contain an alkaline or acidic substance for pH adjustment or the like.
Examples of the alkaline substance herein include ammonia, sodium hydroxide, and calcium hydroxide. Examples of the acidic substance include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, phosphoric acid, and hydrogen peroxide. And organic acids such as formic acid, citric acid, succinic acid, lactic acid and glycolic acid.
In this case, the pH of the obtained tin compound-containing peroxotitanic acid aqueous solution is preferably 1 to 7, particularly 4 to 7 from the viewpoint of handling safety.
ここでいう、アルカリ性物質としては、例えば、アンモニア、水酸化ナトリウム、水酸化カルシウム等が挙げられ、酸性物質としては、例えば、硫酸、硝酸、塩酸、炭酸、リン酸、過酸化水素等の無機酸及び蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸が挙げられる。
この場合、得られたスズ化合物含有ペルオキソチタン酸水溶液のpHは、1~7、特に4~7であることが取り扱いの安全性の点で好ましい。 The tin compound-containing peroxotitanic acid aqueous solution thus obtained may contain an alkaline or acidic substance for pH adjustment or the like.
Examples of the alkaline substance herein include ammonia, sodium hydroxide, and calcium hydroxide. Examples of the acidic substance include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, phosphoric acid, and hydrogen peroxide. And organic acids such as formic acid, citric acid, succinic acid, lactic acid and glycolic acid.
In this case, the pH of the obtained tin compound-containing peroxotitanic acid aqueous solution is preferably 1 to 7, particularly 4 to 7 from the viewpoint of handling safety.
・工程(2):
工程(2)では、上記工程(1)で得られたスズ化合物を含有したペルオキソチタン酸溶液を、80~250℃、好ましくは120~250℃の温度において水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80~250℃が適切であり、その結果、ペルオキソチタン酸は、ルチル型酸化チタン微粒子に変換されていく。
この場合、圧力は、0.01~4.5MPa程度、特に0.15~4.5MPa程度の高圧であることが好ましく、反応時間は、1分~24時間であることが好ましい。
この工程(2)により、ペルオキソチタン成分及びスズ成分を含むルチル型酸化チタン微粒子分散液が得られる。
なお、ここで、ペルオキソチタン成分とは、上述した通り、Ti-O-O-Ti結合を含むチタン化合物を意味し、ペルオキソチタン酸及びTi(VI)と過酸化水素との反応によって生成するペルオキソチタン錯体を含包するものである。また、スズ成分とは、金属スズを含むスズ系化合物を意味し、上述のスズ化合物を包含するものである。 -Process (2):
In step (2), the peroxotitanic acid solution containing the tin compound obtained in step (1) is subjected to a hydrothermal reaction at a temperature of 80 to 250 ° C., preferably 120 to 250 ° C. The reaction temperature is suitably 80 to 250 ° C. from the viewpoint of reaction efficiency and reaction controllability, and as a result, peroxotitanic acid is converted into rutile-type titanium oxide fine particles.
In this case, the pressure is preferably about 0.01 to 4.5 MPa, particularly about 0.15 to 4.5 MPa, and the reaction time is preferably 1 minute to 24 hours.
By this step (2), a rutile-type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component is obtained.
Here, the peroxotitanium component means a titanium compound containing a Ti—O—O—Ti bond, as described above, and is a peroxotitanium produced by reaction of peroxotitanic acid and Ti (VI) with hydrogen peroxide. The titanium complex is included. Moreover, a tin component means the tin-type compound containing metal tin, and includes the above-mentioned tin compound.
工程(2)では、上記工程(1)で得られたスズ化合物を含有したペルオキソチタン酸溶液を、80~250℃、好ましくは120~250℃の温度において水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80~250℃が適切であり、その結果、ペルオキソチタン酸は、ルチル型酸化チタン微粒子に変換されていく。
この場合、圧力は、0.01~4.5MPa程度、特に0.15~4.5MPa程度の高圧であることが好ましく、反応時間は、1分~24時間であることが好ましい。
この工程(2)により、ペルオキソチタン成分及びスズ成分を含むルチル型酸化チタン微粒子分散液が得られる。
なお、ここで、ペルオキソチタン成分とは、上述した通り、Ti-O-O-Ti結合を含むチタン化合物を意味し、ペルオキソチタン酸及びTi(VI)と過酸化水素との反応によって生成するペルオキソチタン錯体を含包するものである。また、スズ成分とは、金属スズを含むスズ系化合物を意味し、上述のスズ化合物を包含するものである。 -Process (2):
In step (2), the peroxotitanic acid solution containing the tin compound obtained in step (1) is subjected to a hydrothermal reaction at a temperature of 80 to 250 ° C., preferably 120 to 250 ° C. The reaction temperature is suitably 80 to 250 ° C. from the viewpoint of reaction efficiency and reaction controllability, and as a result, peroxotitanic acid is converted into rutile-type titanium oxide fine particles.
In this case, the pressure is preferably about 0.01 to 4.5 MPa, particularly about 0.15 to 4.5 MPa, and the reaction time is preferably 1 minute to 24 hours.
By this step (2), a rutile-type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component is obtained.
Here, the peroxotitanium component means a titanium compound containing a Ti—O—O—Ti bond, as described above, and is a peroxotitanium produced by reaction of peroxotitanic acid and Ti (VI) with hydrogen peroxide. The titanium complex is included. Moreover, a tin component means the tin-type compound containing metal tin, and includes the above-mentioned tin compound.
・工程(3):
工程(3)では、上記工程(1)とは別に、チタン化合物、塩基性物質、過酸化水素及び水性分散媒から製造したペルオキソチタン酸溶液に、工程(2)で得られたルチル型酸化チタン微粒子分散液を添加し、再び80~250℃、好ましくは120~250℃の温度において水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80~250℃が適切であり、その結果、上記結晶性を有するルチル型酸化チタン微粒子を得ることができる。
この場合、本工程(3)におけるペルオキソチタン酸溶液の製造方法は、スズ化合物を使用せず、過酸化水素の添加量を、Tiのモル数の1.5~5倍モルとすること以外は上記工程(1)と同様に行うことができる。即ち、過酸化水素を添加して原料チタン化合物又は水酸化チタンをペルオキソチタン酸にする反応における反応温度は、5~60℃とすることが好ましく、反応時間は、30分~24時間とすることが好ましい。
本工程(3)で製造したペルオキソチタン酸溶液への上記工程(2)で得られた酸化チタン微粒子分散液の添加量は、0.1~80質量%、好ましくは1~50質量%、より好ましくは2~20質量%である。上記添加量が、0.1質量%未満の場合、水熱処理後のルチル型酸化チタンの転化が不十分になることがあり、80質量%超過の場合、水熱処理後の酸化チタン分散状態が不安定になることがある。
また、本工程(3)における水熱反応も、上記工程(2)と同様に行うことができる。即ち、圧力は、0.01~4.5MPa程度、特に0.15~4.5MPa程度の高圧であることが好ましく、反応時間は、1分~24時間であることが好ましい。
この工程(3)により、ペルオキソチタン成分及びスズ成分を含む上記結晶性を有する分散安定性に優れたルチル型酸化チタン微粒子分散液が得られる。
このような工程(3)を設けることにより、上記工程(2)で水熱反応させて得たペルオキソチタン成分及びスズ成分を含むルチル型酸化チタン微粒子分散液を、更にスズ成分を含まないペルオキソチタン酸溶液中で水熱反応させることになるので、酸化チタンのルチル型への変換深度を進めると共に、生成する酸化チタン微粒子全体に対して、スズ成分の量を減じながらも、薄く、広く、均一にスズ成分を酸化チタン微粒子内部にドープもしくは酸化チタン微粒子表面に担持させることができ、結果として優れた光触媒薄膜の可視光応答性を付与することができる。 -Process (3):
In the step (3), in addition to the step (1), the rutile titanium oxide obtained in the step (2) is added to a peroxotitanic acid solution produced from a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium. The fine particle dispersion is added and again subjected to a hydrothermal reaction at a temperature of 80 to 250 ° C., preferably 120 to 250 ° C. The reaction temperature is suitably 80 to 250 ° C. from the viewpoint of reaction efficiency and reaction controllability, and as a result, rutile-type titanium oxide fine particles having the above crystallinity can be obtained.
In this case, the method for producing the peroxotitanic acid solution in this step (3) does not use a tin compound, and the addition amount of hydrogen peroxide is 1.5 to 5 times the number of moles of Ti. It can carry out similarly to the said process (1). That is, the reaction temperature in the reaction of adding hydrogen peroxide to convert the raw material titanium compound or titanium hydroxide to peroxotitanic acid is preferably 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours. Is preferred.
The addition amount of the titanium oxide fine particle dispersion obtained in the step (2) to the peroxotitanic acid solution produced in the step (3) is 0.1 to 80% by mass, preferably 1 to 50% by mass. The content is preferably 2 to 20% by mass. If the amount added is less than 0.1% by mass, the conversion of rutile titanium oxide after hydrothermal treatment may be insufficient. If it exceeds 80% by mass, the dispersion state of titanium oxide after hydrothermal treatment is not good. May become stable.
Moreover, the hydrothermal reaction in this process (3) can also be performed similarly to the said process (2). That is, the pressure is preferably about 0.01 to 4.5 MPa, particularly about 0.15 to 4.5 MPa, and the reaction time is preferably 1 minute to 24 hours.
By this step (3), a rutile-type titanium oxide fine particle dispersion having excellent crystallinity and dispersion stability containing a peroxotitanium component and a tin component is obtained.
By providing such a step (3), a rutile type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component obtained by hydrothermal reaction in the above step (2) is further added to a peroxotitanium containing no tin component. Since the hydrothermal reaction is carried out in an acid solution, the depth of conversion of titanium oxide to the rutile type is advanced, and the amount of tin component is reduced with respect to the total titanium oxide fine particles, but thin, wide and uniform. In addition, the tin component can be doped into the titanium oxide fine particles or supported on the surface of the titanium oxide fine particles, and as a result, excellent visible light responsiveness of the photocatalytic thin film can be imparted.
工程(3)では、上記工程(1)とは別に、チタン化合物、塩基性物質、過酸化水素及び水性分散媒から製造したペルオキソチタン酸溶液に、工程(2)で得られたルチル型酸化チタン微粒子分散液を添加し、再び80~250℃、好ましくは120~250℃の温度において水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80~250℃が適切であり、その結果、上記結晶性を有するルチル型酸化チタン微粒子を得ることができる。
この場合、本工程(3)におけるペルオキソチタン酸溶液の製造方法は、スズ化合物を使用せず、過酸化水素の添加量を、Tiのモル数の1.5~5倍モルとすること以外は上記工程(1)と同様に行うことができる。即ち、過酸化水素を添加して原料チタン化合物又は水酸化チタンをペルオキソチタン酸にする反応における反応温度は、5~60℃とすることが好ましく、反応時間は、30分~24時間とすることが好ましい。
本工程(3)で製造したペルオキソチタン酸溶液への上記工程(2)で得られた酸化チタン微粒子分散液の添加量は、0.1~80質量%、好ましくは1~50質量%、より好ましくは2~20質量%である。上記添加量が、0.1質量%未満の場合、水熱処理後のルチル型酸化チタンの転化が不十分になることがあり、80質量%超過の場合、水熱処理後の酸化チタン分散状態が不安定になることがある。
また、本工程(3)における水熱反応も、上記工程(2)と同様に行うことができる。即ち、圧力は、0.01~4.5MPa程度、特に0.15~4.5MPa程度の高圧であることが好ましく、反応時間は、1分~24時間であることが好ましい。
この工程(3)により、ペルオキソチタン成分及びスズ成分を含む上記結晶性を有する分散安定性に優れたルチル型酸化チタン微粒子分散液が得られる。
このような工程(3)を設けることにより、上記工程(2)で水熱反応させて得たペルオキソチタン成分及びスズ成分を含むルチル型酸化チタン微粒子分散液を、更にスズ成分を含まないペルオキソチタン酸溶液中で水熱反応させることになるので、酸化チタンのルチル型への変換深度を進めると共に、生成する酸化チタン微粒子全体に対して、スズ成分の量を減じながらも、薄く、広く、均一にスズ成分を酸化チタン微粒子内部にドープもしくは酸化チタン微粒子表面に担持させることができ、結果として優れた光触媒薄膜の可視光応答性を付与することができる。 -Process (3):
In the step (3), in addition to the step (1), the rutile titanium oxide obtained in the step (2) is added to a peroxotitanic acid solution produced from a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium. The fine particle dispersion is added and again subjected to a hydrothermal reaction at a temperature of 80 to 250 ° C., preferably 120 to 250 ° C. The reaction temperature is suitably 80 to 250 ° C. from the viewpoint of reaction efficiency and reaction controllability, and as a result, rutile-type titanium oxide fine particles having the above crystallinity can be obtained.
In this case, the method for producing the peroxotitanic acid solution in this step (3) does not use a tin compound, and the addition amount of hydrogen peroxide is 1.5 to 5 times the number of moles of Ti. It can carry out similarly to the said process (1). That is, the reaction temperature in the reaction of adding hydrogen peroxide to convert the raw material titanium compound or titanium hydroxide to peroxotitanic acid is preferably 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours. Is preferred.
The addition amount of the titanium oxide fine particle dispersion obtained in the step (2) to the peroxotitanic acid solution produced in the step (3) is 0.1 to 80% by mass, preferably 1 to 50% by mass. The content is preferably 2 to 20% by mass. If the amount added is less than 0.1% by mass, the conversion of rutile titanium oxide after hydrothermal treatment may be insufficient. If it exceeds 80% by mass, the dispersion state of titanium oxide after hydrothermal treatment is not good. May become stable.
Moreover, the hydrothermal reaction in this process (3) can also be performed similarly to the said process (2). That is, the pressure is preferably about 0.01 to 4.5 MPa, particularly about 0.15 to 4.5 MPa, and the reaction time is preferably 1 minute to 24 hours.
By this step (3), a rutile-type titanium oxide fine particle dispersion having excellent crystallinity and dispersion stability containing a peroxotitanium component and a tin component is obtained.
By providing such a step (3), a rutile type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component obtained by hydrothermal reaction in the above step (2) is further added to a peroxotitanium containing no tin component. Since the hydrothermal reaction is carried out in an acid solution, the depth of conversion of titanium oxide to the rutile type is advanced, and the amount of tin component is reduced with respect to the total titanium oxide fine particles, but thin, wide and uniform. In addition, the tin component can be doped into the titanium oxide fine particles or supported on the surface of the titanium oxide fine particles, and as a result, excellent visible light responsiveness of the photocatalytic thin film can be imparted.
本発明においては、上記工程(3)に引き続き、下記の工程(4)を実施することができる。
・工程(4):
工程(4)では、上記工程(3)で得られたルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加し、反応させる。
反応方法としては、ルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加して常温で撹拌する方法でも、ルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加して80~250℃の温度において水熱処理する方法でもよい。この場合、反応時間は、1分~3時間であることが好ましい。 In the present invention, following the step (3), the following step (4) can be carried out.
-Process (4):
In the step (4), a copper compound or an iron compound is added to the rutile-type titanium oxide fine particle dispersion obtained in the above step (3) and reacted.
As a reaction method, a method of adding a copper compound or an iron compound to a rutile type titanium oxide fine particle dispersion and stirring at room temperature, or adding a copper compound or an iron compound to a rutile type titanium oxide fine particle dispersion and a temperature of 80 to 250 ° C. Alternatively, a hydrothermal treatment method may be used. In this case, the reaction time is preferably 1 minute to 3 hours.
・工程(4):
工程(4)では、上記工程(3)で得られたルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加し、反応させる。
反応方法としては、ルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加して常温で撹拌する方法でも、ルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加して80~250℃の温度において水熱処理する方法でもよい。この場合、反応時間は、1分~3時間であることが好ましい。 In the present invention, following the step (3), the following step (4) can be carried out.
-Process (4):
In the step (4), a copper compound or an iron compound is added to the rutile-type titanium oxide fine particle dispersion obtained in the above step (3) and reacted.
As a reaction method, a method of adding a copper compound or an iron compound to a rutile type titanium oxide fine particle dispersion and stirring at room temperature, or adding a copper compound or an iron compound to a rutile type titanium oxide fine particle dispersion and a temperature of 80 to 250 ° C. Alternatively, a hydrothermal treatment method may be used. In this case, the reaction time is preferably 1 minute to 3 hours.
ここで、銅化合物又は鉄化合物は、光触媒薄膜の分解活性を高めるためのものであり、例えば、銅化合物又は鉄化合物の塩酸塩、硝酸塩、硫酸塩等の無機酸塩、蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸塩、これらの水溶液にアルカリを添加して加水分解することにより析出させた水酸化銅又は水酸化鉄、銅テトラアンミン錯体又は鉄テトラアンミン錯体等の錯体が挙げられ、これらの1種又は2種類以上を組み合わせて使用してもよい。
銅化合物又は鉄化合物は、上記水性分散媒と共に適当な濃度の水溶液にして使用してもよい。
銅化合物又は鉄化合物は、金属銅又は金属鉄換算で、酸化チタン微粒子に対して0.01~5質量%含有されていることが好ましく、特には0.1~2質量%が好ましい。上記含有量が、0.1質量%未満の場合又は2質量%超過の場合、光触媒薄膜の分解活性が十分に発揮されないことがある。
なお、上記銅成分又は鉄成分の存在状態は、少なくともその一部は酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。 Here, the copper compound or iron compound is for enhancing the decomposition activity of the photocatalytic thin film, for example, an inorganic acid salt such as hydrochloride, nitrate, sulfate, etc. of copper compound or iron compound, formic acid, citric acid, oxalic acid , Organic acid salts such as lactic acid and glycolic acid, copper hydroxide or iron hydroxide precipitated by adding an alkali to these aqueous solutions and hydrolyzing, and complexes such as a copper tetraammine complex or an iron tetraammine complex. One or two or more of these may be used in combination.
The copper compound or iron compound may be used in the form of an aqueous solution having an appropriate concentration together with the aqueous dispersion medium.
The copper compound or iron compound is preferably contained in an amount of 0.01 to 5% by mass, particularly 0.1 to 2% by mass, based on titanium oxide fine particles, in terms of metallic copper or metallic iron. When the content is less than 0.1% by mass or exceeds 2% by mass, the decomposition activity of the photocatalytic thin film may not be sufficiently exhibited.
The presence state of the copper component or the iron component is preferably at least partially supported on the surface of the titanium oxide fine particles, and the other portion is preferably dissolved and / or dispersed in the dispersion. .
銅化合物又は鉄化合物は、上記水性分散媒と共に適当な濃度の水溶液にして使用してもよい。
銅化合物又は鉄化合物は、金属銅又は金属鉄換算で、酸化チタン微粒子に対して0.01~5質量%含有されていることが好ましく、特には0.1~2質量%が好ましい。上記含有量が、0.1質量%未満の場合又は2質量%超過の場合、光触媒薄膜の分解活性が十分に発揮されないことがある。
なお、上記銅成分又は鉄成分の存在状態は、少なくともその一部は酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。 Here, the copper compound or iron compound is for enhancing the decomposition activity of the photocatalytic thin film, for example, an inorganic acid salt such as hydrochloride, nitrate, sulfate, etc. of copper compound or iron compound, formic acid, citric acid, oxalic acid , Organic acid salts such as lactic acid and glycolic acid, copper hydroxide or iron hydroxide precipitated by adding an alkali to these aqueous solutions and hydrolyzing, and complexes such as a copper tetraammine complex or an iron tetraammine complex. One or two or more of these may be used in combination.
The copper compound or iron compound may be used in the form of an aqueous solution having an appropriate concentration together with the aqueous dispersion medium.
The copper compound or iron compound is preferably contained in an amount of 0.01 to 5% by mass, particularly 0.1 to 2% by mass, based on titanium oxide fine particles, in terms of metallic copper or metallic iron. When the content is less than 0.1% by mass or exceeds 2% by mass, the decomposition activity of the photocatalytic thin film may not be sufficiently exhibited.
The presence state of the copper component or the iron component is preferably at least partially supported on the surface of the titanium oxide fine particles, and the other portion is preferably dissolved and / or dispersed in the dispersion. .
このように上記工程(1)~(4)によって、ペルオキソチタン成分、銅成分又は鉄成分、スズ成分を含む可視光応答型酸化チタン系微粒子分散液が得られるが、該分散液中の酸化チタン微粒子は、レーザー光を用いた動的散乱法により測定される体積基準の50%累積分布径(D50)(以下、「平均粒子径」とする。)が50nm以下であることが好ましく、より好ましくは30nm以下である。通常、その下限値は特に限定されないが、5nm以上であることが好ましい。
また、酸化チタン微粒子の濃度は、所要の厚さの光触媒薄膜を作製し易い点で、該分散液中、0.01~20質量%が好ましく、特に0.5~10質量%が好ましい。 As described above, the visible light responsive titanium oxide fine particle dispersion containing the peroxotitanium component, the copper component or the iron component, and the tin component can be obtained by the above steps (1) to (4). The titanium oxide in the dispersion is obtained. The fine particles preferably have a volume-based 50% cumulative distribution diameter (D 50 ) (hereinafter referred to as “average particle diameter”) measured by a dynamic scattering method using laser light of 50 nm or less. Preferably it is 30 nm or less. Usually, the lower limit is not particularly limited, but is preferably 5 nm or more.
In addition, the concentration of the titanium oxide fine particles is preferably 0.01 to 20% by mass, and particularly preferably 0.5 to 10% by mass in the dispersion from the viewpoint that a photocatalytic thin film having a required thickness can be easily produced.
また、酸化チタン微粒子の濃度は、所要の厚さの光触媒薄膜を作製し易い点で、該分散液中、0.01~20質量%が好ましく、特に0.5~10質量%が好ましい。 As described above, the visible light responsive titanium oxide fine particle dispersion containing the peroxotitanium component, the copper component or the iron component, and the tin component can be obtained by the above steps (1) to (4). The titanium oxide in the dispersion is obtained. The fine particles preferably have a volume-based 50% cumulative distribution diameter (D 50 ) (hereinafter referred to as “average particle diameter”) measured by a dynamic scattering method using laser light of 50 nm or less. Preferably it is 30 nm or less. Usually, the lower limit is not particularly limited, but is preferably 5 nm or more.
In addition, the concentration of the titanium oxide fine particles is preferably 0.01 to 20% by mass, and particularly preferably 0.5 to 10% by mass in the dispersion from the viewpoint that a photocatalytic thin film having a required thickness can be easily produced.
更に、該分散液において、ペルオキソチタン成分は酸化チタンを良好に分散させる作用を有しており、ペルオキソチタン成分の濃度は、酸化チタン微粒子に対して0.1~20質量%であり、好ましくは0.1~5質量%である。該濃度が0.1質量%未満の場合、酸化チタン微粒子が凝集し易くなることがあり、20質量%超過の場合、該分散液から得られる光触媒薄膜の光触媒効果が不十分となることがある。
Further, in the dispersion, the peroxotitanium component has a function of satisfactorily dispersing titanium oxide, and the concentration of the peroxotitanium component is 0.1 to 20% by mass with respect to the titanium oxide fine particles, preferably 0.1 to 5% by mass. When the concentration is less than 0.1% by mass, the titanium oxide fine particles may easily aggregate, and when it exceeds 20% by mass, the photocatalytic effect of the photocatalytic thin film obtained from the dispersion may be insufficient. .
<ルチル型酸化チタン薄膜を表面に有する部材>
上記のようにして得られるルチル型酸化チタン微粒子分散液は、各種部材の表面にルチル型酸化チタン薄膜を形成させるために使用することができる。
ここで、各種部材は特に制限されないが、その材料としては、例えば、有機材料、無機材料が挙げられ、無機材料には、例えば、非金属無機材料、金属無機材料が含包される。これらはそれぞれの目的、用途に応じた様々な形状を有することができる。 <Member with rutile titanium oxide thin film on the surface>
The rutile type titanium oxide fine particle dispersion obtained as described above can be used for forming a rutile type titanium oxide thin film on the surface of various members.
Here, various members are not particularly limited, and examples of the material include organic materials and inorganic materials, and the inorganic materials include, for example, non-metallic inorganic materials and metallic inorganic materials. These can have various shapes according to their purposes and applications.
上記のようにして得られるルチル型酸化チタン微粒子分散液は、各種部材の表面にルチル型酸化チタン薄膜を形成させるために使用することができる。
ここで、各種部材は特に制限されないが、その材料としては、例えば、有機材料、無機材料が挙げられ、無機材料には、例えば、非金属無機材料、金属無機材料が含包される。これらはそれぞれの目的、用途に応じた様々な形状を有することができる。 <Member with rutile titanium oxide thin film on the surface>
The rutile type titanium oxide fine particle dispersion obtained as described above can be used for forming a rutile type titanium oxide thin film on the surface of various members.
Here, various members are not particularly limited, and examples of the material include organic materials and inorganic materials, and the inorganic materials include, for example, non-metallic inorganic materials and metallic inorganic materials. These can have various shapes according to their purposes and applications.
有機材料としては、例えば、塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート、アクリル樹脂、ポリアセタール、フッ素樹脂、シリコーン樹脂、エチレン-酢酸ビニル共重合体(EVA)、アクリロニトリル-ブタジエンゴム(NBR)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリビニルブチラール(PVB)、エチレン-ビニルアルコール共重合体(EVOH)、ポリイミド樹脂、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリエーテルエーテルイミド(PEEI)、ポリエーテルエーテルケトン(PEEK)、メラミン樹脂、フェノール樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂等の合成樹脂材料、天然ゴム等の天然材料、又は上記合成樹脂材料と天然材料との半合成材料が挙げられる。
これらは、フィルム、シート、繊維材料、繊維製品、その他の成型品、積層体等の所要の形状、構成に製品化されていてもよい。 Examples of the organic material include vinyl chloride resin, polyethylene, polypropylene, polycarbonate, acrylic resin, polyacetal, fluorine resin, silicone resin, ethylene-vinyl acetate copolymer (EVA), acrylonitrile-butadiene rubber (NBR), polyethylene terephthalate ( PET), polyethylene naphthalate (PEN), polyvinyl butyral (PVB), ethylene-vinyl alcohol copolymer (EVOH), polyimide resin, polyphenylene sulfide (PPS), polyetherimide (PEI), polyetheretherimide (PEEI) , Synthetic ether materials such as polyetheretherketone (PEEK), melamine resin, phenol resin, acrylonitrile-butadiene-styrene (ABS) resin, natural rubber, etc. Fee, or semi-synthetic materials include the above-mentioned synthetic resin material and natural material.
These may be commercialized into a required shape and configuration such as a film, a sheet, a fiber material, a fiber product, other molded products, and a laminate.
これらは、フィルム、シート、繊維材料、繊維製品、その他の成型品、積層体等の所要の形状、構成に製品化されていてもよい。 Examples of the organic material include vinyl chloride resin, polyethylene, polypropylene, polycarbonate, acrylic resin, polyacetal, fluorine resin, silicone resin, ethylene-vinyl acetate copolymer (EVA), acrylonitrile-butadiene rubber (NBR), polyethylene terephthalate ( PET), polyethylene naphthalate (PEN), polyvinyl butyral (PVB), ethylene-vinyl alcohol copolymer (EVOH), polyimide resin, polyphenylene sulfide (PPS), polyetherimide (PEI), polyetheretherimide (PEEI) , Synthetic ether materials such as polyetheretherketone (PEEK), melamine resin, phenol resin, acrylonitrile-butadiene-styrene (ABS) resin, natural rubber, etc. Fee, or semi-synthetic materials include the above-mentioned synthetic resin material and natural material.
These may be commercialized into a required shape and configuration such as a film, a sheet, a fiber material, a fiber product, other molded products, and a laminate.
非金属無機材料としては、例えば、ガラス、セラミック、石材等が挙げられる。これらは、タイル、硝子、ミラー、意匠材等の様々な形に製品化されていてもよい。
Examples of non-metallic inorganic materials include glass, ceramics, stones and the like. These may be commercialized in various forms such as tiles, glass, mirrors, and design materials.
金属無機材料としては、例えば、鋳鉄、鋼材、鉄、鉄合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、亜鉛ダイキャスト等が挙げられる。これらは、上記金属無機材料のメッキが施されていてもよいし、上記有機材料が塗布されていてもよいし、上記有機材料又は非金属無機材料の表面に施すメッキであってもよい。
Examples of the metal inorganic material include cast iron, steel, iron, iron alloy, aluminum, aluminum alloy, nickel, nickel alloy, and zinc die cast. These may be plated with the metal inorganic material, may be coated with the organic material, or may be plated on the surface of the organic material or non-metallic inorganic material.
本発明の酸化チタン系微粒子分散液は、上記各種部材の中でも、特に、PET等の高分子フィルム上に透明な光触媒薄膜を作製するのに有用である。
The titanium oxide-based fine particle dispersion of the present invention is particularly useful for producing a transparent photocatalytic thin film on a polymer film such as PET among the above-mentioned various members.
各種部材表面へのルチル型酸化チタン薄膜の形成方法としては、上記ルチル型酸化チタン系微粒子分散液を、例えば、上記部材表面に、スプレーコート、ディップコート等の公知の塗布方法により塗布した後、遠赤外線乾燥、IH乾燥、熱風乾燥、自然乾燥等の公知の乾燥方法により乾燥させればよく、ルチル型酸化チタン薄膜の厚さも種々選定され得るが、通常、50nm~10μmの範囲が好ましい。
なお、上記ルチル型酸化チタン系微粒子分散液に、シリカ、シリコーン等のバインダーを配合比1:99~99:1の範囲で添加して使用してもよい。
このようにして形成されるルチル型酸化チタン薄膜は、従来のように紫外領域において良好な光触媒作用を与えると共に、可視光応答性にも優れたものであり、該光触媒膜が形成された各種部材は、酸化チタンの光触媒作用により有機物を分解し膜表面を親水性にすることから、該部材表面の清浄化、脱臭、抗菌等の効果を発揮することができるものである。 As a method for forming a rutile-type titanium oxide thin film on the surface of various members, for example, after applying the rutile-type titanium oxide fine particle dispersion on the surface of the member by a known application method such as spray coating or dip coating, What is necessary is just to dry by well-known drying methods, such as far-infrared drying, IH drying, hot air drying, and natural drying, and the thickness of a rutile type titanium oxide thin film can also be selected variously, However, Usually, the range of 50 nm-10 micrometers is preferable.
It should be noted that a binder such as silica or silicone may be added to the rutile-type titanium oxide fine particle dispersion in a mixing ratio of 1:99 to 99: 1.
The rutile-type titanium oxide thin film thus formed gives good photocatalytic action in the ultraviolet region as in the past, and has excellent visible light responsiveness. Various members on which the photocatalytic film is formed Since the organic substance is decomposed by the photocatalytic action of titanium oxide to make the film surface hydrophilic, the surface of the member can be cleaned, deodorized, antibacterial and the like.
なお、上記ルチル型酸化チタン系微粒子分散液に、シリカ、シリコーン等のバインダーを配合比1:99~99:1の範囲で添加して使用してもよい。
このようにして形成されるルチル型酸化チタン薄膜は、従来のように紫外領域において良好な光触媒作用を与えると共に、可視光応答性にも優れたものであり、該光触媒膜が形成された各種部材は、酸化チタンの光触媒作用により有機物を分解し膜表面を親水性にすることから、該部材表面の清浄化、脱臭、抗菌等の効果を発揮することができるものである。 As a method for forming a rutile-type titanium oxide thin film on the surface of various members, for example, after applying the rutile-type titanium oxide fine particle dispersion on the surface of the member by a known application method such as spray coating or dip coating, What is necessary is just to dry by well-known drying methods, such as far-infrared drying, IH drying, hot air drying, and natural drying, and the thickness of a rutile type titanium oxide thin film can also be selected variously, However, Usually, the range of 50 nm-10 micrometers is preferable.
It should be noted that a binder such as silica or silicone may be added to the rutile-type titanium oxide fine particle dispersion in a mixing ratio of 1:99 to 99: 1.
The rutile-type titanium oxide thin film thus formed gives good photocatalytic action in the ultraviolet region as in the past, and has excellent visible light responsiveness. Various members on which the photocatalytic film is formed Since the organic substance is decomposed by the photocatalytic action of titanium oxide to make the film surface hydrophilic, the surface of the member can be cleaned, deodorized, antibacterial and the like.
以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、本発明における各種の測定は次のようにして行った。
Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the following examples. Various measurements in the present invention were performed as follows.
(1)分散液中の酸化チタン微粒子の平均粒子径(D50)
分散液中の酸化チタン微粒子の平均粒子径(D50)は、粒度分布測定装置(商品名“ナノトラック粒度分析計UPA-EX”、日機装(株))を用いて測定した。 (1) Average particle diameter of fine titanium oxide particles in the dispersion (D 50 )
The average particle size (D 50 ) of the titanium oxide fine particles in the dispersion was measured using a particle size distribution analyzer (trade name “Nanotrack particle size analyzer UPA-EX”, Nikkiso Co., Ltd.).
分散液中の酸化チタン微粒子の平均粒子径(D50)は、粒度分布測定装置(商品名“ナノトラック粒度分析計UPA-EX”、日機装(株))を用いて測定した。 (1) Average particle diameter of fine titanium oxide particles in the dispersion (D 50 )
The average particle size (D 50 ) of the titanium oxide fine particles in the dispersion was measured using a particle size distribution analyzer (trade name “Nanotrack particle size analyzer UPA-EX”, Nikkiso Co., Ltd.).
(2)結晶相の測定と結晶性の評価
得られたルチル型酸化チタン微粒子の結晶相は、粉末X線回折装置(商品名“MultiFlex”、(株)Rigaku)を用いて測定した。結晶性は得られたX線回折スペクトルにおいて、ルチル型酸化チタンの最強回折ピーク(約27.45°)のピーク高さで評価した。後述する実施例1のルチル型酸化チタンのピーク高さを1として、相対値で比較した。 (2) Measurement of crystal phase and evaluation of crystallinity The crystal phase of the obtained rutile-type titanium oxide fine particles was measured using a powder X-ray diffractometer (trade name “MultiFlex”, Rigaku Co., Ltd.). Crystallinity was evaluated based on the peak height of the strongest diffraction peak (about 27.45 °) of rutile titanium oxide in the obtained X-ray diffraction spectrum. The peak height of the rutile type titanium oxide of Example 1 described later was set as 1, and the relative values were compared.
得られたルチル型酸化チタン微粒子の結晶相は、粉末X線回折装置(商品名“MultiFlex”、(株)Rigaku)を用いて測定した。結晶性は得られたX線回折スペクトルにおいて、ルチル型酸化チタンの最強回折ピーク(約27.45°)のピーク高さで評価した。後述する実施例1のルチル型酸化チタンのピーク高さを1として、相対値で比較した。 (2) Measurement of crystal phase and evaluation of crystallinity The crystal phase of the obtained rutile-type titanium oxide fine particles was measured using a powder X-ray diffractometer (trade name “MultiFlex”, Rigaku Co., Ltd.). Crystallinity was evaluated based on the peak height of the strongest diffraction peak (about 27.45 °) of rutile titanium oxide in the obtained X-ray diffraction spectrum. The peak height of the rutile type titanium oxide of Example 1 described later was set as 1, and the relative values were compared.
(3)光触媒薄膜の透明性の評価
基材であるガラス板のHAZE値(%)を測定し、次に、分散液を該ガラス上に塗布、乾燥することで光触媒薄膜を作製し、該薄膜を作製した状態のガラス板のHAZE値を測定した。その差から光触媒薄膜のHAZE値を求めた。HAZE値の測定はHAZEメーター(商品名“デジタルヘイズメーターNDH-200”、日本電色工業(株))を用いた。光触媒薄膜の透明性を求められたHAZE値の差から次の基準で評価した。
良好(○と表示) ・・・・ 差が+1%以下
やや不良(△と表示)・・・・ 差が+1%を超え、+3%以下
不良(×と表示) ・・・・ 差が+3%を超える (3) Evaluation of transparency of photocatalytic thin film The HAZE value (%) of a glass plate as a base material is measured, and then a dispersion is applied onto the glass and dried to produce a photocatalytic thin film. The HAZE value of the glass plate in the state of producing was measured. From the difference, the HAZE value of the photocatalytic thin film was obtained. For the measurement of the HAZE value, a HAZE meter (trade name “Digital Haze Meter NDH-200”, Nippon Denshoku Industries Co., Ltd.) was used. The transparency of the photocatalytic thin film was evaluated according to the following criteria from the difference in the HAZE value obtained.
Good (displayed as ○) ··· Difference is slightly less than + 1% (displayed as △) ··· Difference is over + 1% and + 3% or less is defective (displayed as ×) ··· Difference is + 3% Over
基材であるガラス板のHAZE値(%)を測定し、次に、分散液を該ガラス上に塗布、乾燥することで光触媒薄膜を作製し、該薄膜を作製した状態のガラス板のHAZE値を測定した。その差から光触媒薄膜のHAZE値を求めた。HAZE値の測定はHAZEメーター(商品名“デジタルヘイズメーターNDH-200”、日本電色工業(株))を用いた。光触媒薄膜の透明性を求められたHAZE値の差から次の基準で評価した。
良好(○と表示) ・・・・ 差が+1%以下
やや不良(△と表示)・・・・ 差が+1%を超え、+3%以下
不良(×と表示) ・・・・ 差が+3%を超える (3) Evaluation of transparency of photocatalytic thin film The HAZE value (%) of a glass plate as a base material is measured, and then a dispersion is applied onto the glass and dried to produce a photocatalytic thin film. The HAZE value of the glass plate in the state of producing was measured. From the difference, the HAZE value of the photocatalytic thin film was obtained. For the measurement of the HAZE value, a HAZE meter (trade name “Digital Haze Meter NDH-200”, Nippon Denshoku Industries Co., Ltd.) was used. The transparency of the photocatalytic thin film was evaluated according to the following criteria from the difference in the HAZE value obtained.
Good (displayed as ○) ··· Difference is slightly less than + 1% (displayed as △) ··· Difference is over + 1% and + 3% or less is defective (displayed as ×) ··· Difference is + 3% Over
(4)光触媒薄膜のアセトアルデヒドガス分解性能試験(可視光照射下)
分散液を塗布、乾燥することで作製した光触媒薄膜の活性を、アセトアルデヒドガスの分解反応により評価した。評価は流通式ガス分解性能評価法により行った。具体的には、容積12.5cm3の石英ガラス製セル内に5cm角のガラスからなる基板上に光触媒薄膜を形成した評価用サンプルを設置し、該セルに湿度50%に調湿した濃度250ppmのアセトアルデヒドガスを流量5mL・s-1で流通させながら、セル上部に設置した蛍光灯で照度8,000LUXになるように光を照射した。薄膜上の光触媒によりアセトアルデヒドガスが分解すると、該セルから流出するガス中のアセトアルデヒドガス濃度が低下する。そこで、その濃度を測定することで、アセトアルデヒドガス分解量を求めることができる。アセトアルデヒドガス濃度はガスクロマトグラフ(商品名“GC-8A”、(株)島津製作所)を用いて測定した。 (4) Acetaldehyde gas decomposition performance test of photocatalytic thin film (under visible light irradiation)
The activity of the photocatalyst thin film produced by applying and drying the dispersion was evaluated by the decomposition reaction of acetaldehyde gas. The evaluation was performed by a flow-type gas decomposition performance evaluation method. Specifically, a sample for evaluation in which a photocatalytic thin film is formed on a substrate made of 5 cm square glass is placed in a quartz glass cell having a volume of 12.5 cm 3 , and the concentration is adjusted to 250% in the cell at a concentration of 250 ppm. The acetaldehyde gas was circulated at a flow rate of 5 mL · s −1 , and light was irradiated with a fluorescent lamp installed at the top of the cell so that the illuminance was 8,000 LUX. When the acetaldehyde gas is decomposed by the photocatalyst on the thin film, the concentration of acetaldehyde gas in the gas flowing out from the cell decreases. Therefore, the amount of acetaldehyde gas decomposition can be determined by measuring the concentration. The acetaldehyde gas concentration was measured using a gas chromatograph (trade name “GC-8A”, Shimadzu Corporation).
分散液を塗布、乾燥することで作製した光触媒薄膜の活性を、アセトアルデヒドガスの分解反応により評価した。評価は流通式ガス分解性能評価法により行った。具体的には、容積12.5cm3の石英ガラス製セル内に5cm角のガラスからなる基板上に光触媒薄膜を形成した評価用サンプルを設置し、該セルに湿度50%に調湿した濃度250ppmのアセトアルデヒドガスを流量5mL・s-1で流通させながら、セル上部に設置した蛍光灯で照度8,000LUXになるように光を照射した。薄膜上の光触媒によりアセトアルデヒドガスが分解すると、該セルから流出するガス中のアセトアルデヒドガス濃度が低下する。そこで、その濃度を測定することで、アセトアルデヒドガス分解量を求めることができる。アセトアルデヒドガス濃度はガスクロマトグラフ(商品名“GC-8A”、(株)島津製作所)を用いて測定した。 (4) Acetaldehyde gas decomposition performance test of photocatalytic thin film (under visible light irradiation)
The activity of the photocatalyst thin film produced by applying and drying the dispersion was evaluated by the decomposition reaction of acetaldehyde gas. The evaluation was performed by a flow-type gas decomposition performance evaluation method. Specifically, a sample for evaluation in which a photocatalytic thin film is formed on a substrate made of 5 cm square glass is placed in a quartz glass cell having a volume of 12.5 cm 3 , and the concentration is adjusted to 250% in the cell at a concentration of 250 ppm. The acetaldehyde gas was circulated at a flow rate of 5 mL · s −1 , and light was irradiated with a fluorescent lamp installed at the top of the cell so that the illuminance was 8,000 LUX. When the acetaldehyde gas is decomposed by the photocatalyst on the thin film, the concentration of acetaldehyde gas in the gas flowing out from the cell decreases. Therefore, the amount of acetaldehyde gas decomposition can be determined by measuring the concentration. The acetaldehyde gas concentration was measured using a gas chromatograph (trade name “GC-8A”, Shimadzu Corporation).
(5)光触媒薄膜のセルフクリーニング性能試験(可視光照射下)
スライドガラス上に分散液を塗布、乾燥することで作製した光触媒薄膜の活性を、オレイン酸の分解反応により評価した。
具体的には、薄膜表面にディップコーターで0.5質量%オレイン酸を塗布、乾燥させて光触媒活性評価用サンプルを得た。該サンプルに、蛍光灯の光を照度10,000LUXで照射した。薄膜表面上のオレイン酸が分解すると、それに伴って薄膜表面の親水化が起こり、水接触角が徐々に小さくなる。そこで、1時間おきにサンプル表面の水接触角を測定した。水接触角は接触角計(商品名“CA-A”、協和界面科学(株))を用いて測定した。 (5) Self-cleaning performance test of photocatalytic thin film (under visible light irradiation)
The activity of the photocatalytic thin film prepared by applying the dispersion liquid on a slide glass and drying was evaluated by the decomposition reaction of oleic acid.
Specifically, 0.5% by mass of oleic acid was applied to the thin film surface with a dip coater and dried to obtain a sample for photocatalytic activity evaluation. The sample was irradiated with light from a fluorescent lamp at an illuminance of 10,000 LUX. When the oleic acid on the surface of the thin film is decomposed, the thin film surface becomes hydrophilic and the water contact angle gradually decreases. Therefore, the water contact angle on the sample surface was measured every other hour. The water contact angle was measured using a contact angle meter (trade name “CA-A”, Kyowa Interface Science Co., Ltd.).
スライドガラス上に分散液を塗布、乾燥することで作製した光触媒薄膜の活性を、オレイン酸の分解反応により評価した。
具体的には、薄膜表面にディップコーターで0.5質量%オレイン酸を塗布、乾燥させて光触媒活性評価用サンプルを得た。該サンプルに、蛍光灯の光を照度10,000LUXで照射した。薄膜表面上のオレイン酸が分解すると、それに伴って薄膜表面の親水化が起こり、水接触角が徐々に小さくなる。そこで、1時間おきにサンプル表面の水接触角を測定した。水接触角は接触角計(商品名“CA-A”、協和界面科学(株))を用いて測定した。 (5) Self-cleaning performance test of photocatalytic thin film (under visible light irradiation)
The activity of the photocatalytic thin film prepared by applying the dispersion liquid on a slide glass and drying was evaluated by the decomposition reaction of oleic acid.
Specifically, 0.5% by mass of oleic acid was applied to the thin film surface with a dip coater and dried to obtain a sample for photocatalytic activity evaluation. The sample was irradiated with light from a fluorescent lamp at an illuminance of 10,000 LUX. When the oleic acid on the surface of the thin film is decomposed, the thin film surface becomes hydrophilic and the water contact angle gradually decreases. Therefore, the water contact angle on the sample surface was measured every other hour. The water contact angle was measured using a contact angle meter (trade name “CA-A”, Kyowa Interface Science Co., Ltd.).
[実施例1]
(1)36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTiO2/SnO2換算でモル比が20となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のスズ含有ペルオキソチタン酸溶液(a)(固形分濃度1質量%)を得た。
(2)容積500mLのオートクレーブに、スズ含有ペルオキソチタン酸溶液(a)400mLを仕込み、これを150℃、0.5MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(A)を得た。
(3)36質量%の塩化チタン(IV)水溶液を純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のペルオキソチタン酸溶液(b)(固形分濃度1質量%)を得た。
(4)容積500mLのオートクレーブに、ペルオキソチタン酸溶液(b)360mLと、酸化チタン微粒子分散液(A)40mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(B)を得た。 [Example 1]
(1) After adding tin (IV) to a 36 mass% titanium chloride (IV) aqueous solution so that the molar ratio is 20 in terms of TiO 2 / SnO 2 and diluting it 10 times with pure water, By gradually adding 10% by mass of ammonia water to this aqueous solution to neutralize and hydrolyze, a precipitate of titanium hydroxide was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. 30% by mass hydrogen peroxide solution was added to the titanium hydroxide precipitate after the deionization treatment so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and the mixture was sufficiently stirred at room temperature all day and night. To react. Thereafter, pure water was added to adjust the concentration, thereby obtaining a yellow transparent tin-containing peroxotitanic acid solution (a) (solid content concentration 1% by mass).
(2) 400 mL of a tin-containing peroxotitanic acid solution (a) was charged into an autoclave having a volume of 500 mL and hydrothermally treated for 120 minutes at 150 ° C. and 0.5 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (A). It was.
(3) After diluting a 36 mass% titanium chloride (IV) aqueous solution 10 times with pure water, 10 mass% ammonia water is gradually added to the aqueous solution to neutralize and hydrolyze the titanium hydroxide. A precipitate was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. 30% by mass hydrogen peroxide solution was added to the titanium hydroxide precipitate after the deionization treatment so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and the mixture was sufficiently stirred at room temperature all day and night. To react. Thereafter, pure water was added to adjust the concentration, whereby a yellow transparent peroxotitanic acid solution (b) (solid content concentration 1% by mass) was obtained.
(4) A peroxotitanic acid solution (b) (360 mL) and a titanium oxide fine particle dispersion (A) (40 mL) were charged into a 500 mL volume autoclave, and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapidly cooling to obtain a titanium oxide fine particle dispersion (B). It was.
(1)36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTiO2/SnO2換算でモル比が20となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のスズ含有ペルオキソチタン酸溶液(a)(固形分濃度1質量%)を得た。
(2)容積500mLのオートクレーブに、スズ含有ペルオキソチタン酸溶液(a)400mLを仕込み、これを150℃、0.5MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(A)を得た。
(3)36質量%の塩化チタン(IV)水溶液を純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のペルオキソチタン酸溶液(b)(固形分濃度1質量%)を得た。
(4)容積500mLのオートクレーブに、ペルオキソチタン酸溶液(b)360mLと、酸化チタン微粒子分散液(A)40mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(B)を得た。 [Example 1]
(1) After adding tin (IV) to a 36 mass% titanium chloride (IV) aqueous solution so that the molar ratio is 20 in terms of TiO 2 / SnO 2 and diluting it 10 times with pure water, By gradually adding 10% by mass of ammonia water to this aqueous solution to neutralize and hydrolyze, a precipitate of titanium hydroxide was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. 30% by mass hydrogen peroxide solution was added to the titanium hydroxide precipitate after the deionization treatment so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and the mixture was sufficiently stirred at room temperature all day and night. To react. Thereafter, pure water was added to adjust the concentration, thereby obtaining a yellow transparent tin-containing peroxotitanic acid solution (a) (solid content concentration 1% by mass).
(2) 400 mL of a tin-containing peroxotitanic acid solution (a) was charged into an autoclave having a volume of 500 mL and hydrothermally treated for 120 minutes at 150 ° C. and 0.5 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (A). It was.
(3) After diluting a 36 mass% titanium chloride (IV) aqueous solution 10 times with pure water, 10 mass% ammonia water is gradually added to the aqueous solution to neutralize and hydrolyze the titanium hydroxide. A precipitate was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. 30% by mass hydrogen peroxide solution was added to the titanium hydroxide precipitate after the deionization treatment so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and the mixture was sufficiently stirred at room temperature all day and night. To react. Thereafter, pure water was added to adjust the concentration, whereby a yellow transparent peroxotitanic acid solution (b) (solid content concentration 1% by mass) was obtained.
(4) A peroxotitanic acid solution (b) (360 mL) and a titanium oxide fine particle dispersion (A) (40 mL) were charged into a 500 mL volume autoclave, and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapidly cooling to obtain a titanium oxide fine particle dispersion (B). It was.
[実施例2]
ペルオキソチタン酸溶液(b)200mLと、酸化チタン微粒子分散液(A)を200mL仕込んだ以外は実施例1と同様にして酸化チタン微粒子分散液(C)を得た。 [Example 2]
A titanium oxide fine particle dispersion (C) was obtained in the same manner as in Example 1 except that 200 mL of the peroxotitanic acid solution (b) and 200 mL of the titanium oxide fine particle dispersion (A) were charged.
ペルオキソチタン酸溶液(b)200mLと、酸化チタン微粒子分散液(A)を200mL仕込んだ以外は実施例1と同様にして酸化チタン微粒子分散液(C)を得た。 [Example 2]
A titanium oxide fine particle dispersion (C) was obtained in the same manner as in Example 1 except that 200 mL of the peroxotitanic acid solution (b) and 200 mL of the titanium oxide fine particle dispersion (A) were charged.
[実施例3]
容積500mLのオートクレーブに、ペルオキソチタン酸水溶液(b)360mLと、酸化チタン微粒子分散液(B)40mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(D)を得た。 [Example 3]
An autoclave having a volume of 500 mL was charged with 360 mL of a peroxotitanic acid aqueous solution (b) and 40 mL of a titanium oxide fine particle dispersion (B), and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (D). It was.
容積500mLのオートクレーブに、ペルオキソチタン酸水溶液(b)360mLと、酸化チタン微粒子分散液(B)40mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(D)を得た。 [Example 3]
An autoclave having a volume of 500 mL was charged with 360 mL of a peroxotitanic acid aqueous solution (b) and 40 mL of a titanium oxide fine particle dispersion (B), and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (D). It was.
[比較例1]
実施例1の工程内で酸化チタン微粒子分散液(A)を得た。 [Comparative Example 1]
In the process of Example 1, a titanium oxide fine particle dispersion (A) was obtained.
実施例1の工程内で酸化チタン微粒子分散液(A)を得た。 [Comparative Example 1]
In the process of Example 1, a titanium oxide fine particle dispersion (A) was obtained.
[比較例2]
容積500mLのオートクレーブに、ペルオキソチタン酸水溶液(b)400mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(E)を得た。 [Comparative Example 2]
In a 500 mL autoclave, 400 mL of the peroxotitanic acid aqueous solution (b) was charged and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapidly cooling to obtain a titanium oxide fine particle dispersion (E). It was.
容積500mLのオートクレーブに、ペルオキソチタン酸水溶液(b)400mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(E)を得た。 [Comparative Example 2]
In a 500 mL autoclave, 400 mL of the peroxotitanic acid aqueous solution (b) was charged and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapidly cooling to obtain a titanium oxide fine particle dispersion (E). It was.
[比較例3]
36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTiO2/SnO2換算でモル比が200となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のスズ含有ペルオキソチタン酸溶液(c)(固形分濃度1質量%)を得た。
容積500mLのオートクレーブに、ペルオキソチタン酸水溶液(c)400mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(F)を得た。 [Comparative Example 3]
Tin (IV) chloride was added to a 36% by mass titanium chloride (IV) aqueous solution so that the molar ratio was 200 in terms of TiO 2 / SnO 2 , and this was diluted 10 times with pure water, By gradually adding 10% by mass of ammonia water to neutralize and hydrolyze, a precipitate of titanium hydroxide was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. To this titanium hydroxide precipitate after the deionization treatment, 30% by mass hydrogen peroxide water was added so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 5 or more, and the mixture was stirred at room temperature for a whole day and night. I let you. Thereafter, pure water was added to adjust the concentration to obtain a yellow transparent tin-containing peroxotitanic acid solution (c) (solid content concentration 1% by mass).
400 mL of peroxotitanic acid aqueous solution (c) was charged into an autoclave having a volume of 500 mL, and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (F). It was.
36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTiO2/SnO2換算でモル比が200となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のスズ含有ペルオキソチタン酸溶液(c)(固形分濃度1質量%)を得た。
容積500mLのオートクレーブに、ペルオキソチタン酸水溶液(c)400mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(F)を得た。 [Comparative Example 3]
Tin (IV) chloride was added to a 36% by mass titanium chloride (IV) aqueous solution so that the molar ratio was 200 in terms of TiO 2 / SnO 2 , and this was diluted 10 times with pure water, By gradually adding 10% by mass of ammonia water to neutralize and hydrolyze, a precipitate of titanium hydroxide was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. To this titanium hydroxide precipitate after the deionization treatment, 30% by mass hydrogen peroxide water was added so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 5 or more, and the mixture was stirred at room temperature for a whole day and night. I let you. Thereafter, pure water was added to adjust the concentration to obtain a yellow transparent tin-containing peroxotitanic acid solution (c) (solid content concentration 1% by mass).
400 mL of peroxotitanic acid aqueous solution (c) was charged into an autoclave having a volume of 500 mL, and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (F). It was.
表1に、実施例1~3、比較例1~3の反応条件、平均粒子径、結晶相及びルチル型酸化チタン微粒子が生成した場合は結晶性をまとめて示す。
比較例1の結果から分かるように、本発明の製造方法を取らないと安定な結晶性を有するルチル型酸化チタンを得ることはできない。
比較例2の結果から分かるように、スズ成分を添加しないとルチル型酸化チタン微粒子が得られない。
比較例3の結果から分かるように、スズ成分が多いと結晶性の高いルチル型酸化チタンが得られない。 Table 1 summarizes the crystallinity of the reaction conditions, average particle diameter, crystal phase, and rutile-type titanium oxide fine particles produced in Examples 1 to 3 and Comparative Examples 1 to 3.
As can be seen from the results of Comparative Example 1, a rutile-type titanium oxide having stable crystallinity cannot be obtained unless the production method of the present invention is employed.
As can be seen from the results of Comparative Example 2, the rutile-type titanium oxide fine particles cannot be obtained unless a tin component is added.
As can be seen from the results of Comparative Example 3, if the tin component is large, a highly crystalline rutile-type titanium oxide cannot be obtained.
比較例1の結果から分かるように、本発明の製造方法を取らないと安定な結晶性を有するルチル型酸化チタンを得ることはできない。
比較例2の結果から分かるように、スズ成分を添加しないとルチル型酸化チタン微粒子が得られない。
比較例3の結果から分かるように、スズ成分が多いと結晶性の高いルチル型酸化チタンが得られない。 Table 1 summarizes the crystallinity of the reaction conditions, average particle diameter, crystal phase, and rutile-type titanium oxide fine particles produced in Examples 1 to 3 and Comparative Examples 1 to 3.
As can be seen from the results of Comparative Example 1, a rutile-type titanium oxide having stable crystallinity cannot be obtained unless the production method of the present invention is employed.
As can be seen from the results of Comparative Example 2, the rutile-type titanium oxide fine particles cannot be obtained unless a tin component is added.
As can be seen from the results of Comparative Example 3, if the tin component is large, a highly crystalline rutile-type titanium oxide cannot be obtained.
[実施例4]
(1)36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が20となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のスズ含有ペルオキソチタン酸溶液(a)(固形分濃度1質量%)を得た。
(2)容積500mLのオートクレーブに、スズ含有ペルオキソチタン酸溶液(a)400mLを仕込み、これを150℃、0.5MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(A)を得た。
(3)36質量%の塩化チタン(IV)水溶液を純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のペルオキソチタン酸溶液(b)(固形分濃度1質量%)を得た。
(4)容積500mLのオートクレーブに、ペルオキソチタン酸溶液(b)360mLと、酸化チタン微粒子分散液(A)40mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン系微粒子分散液(B)を得た。
(5)硫酸銅を純水で溶解し、1質量%の硫酸銅水溶液(i)を得た。
(6)酸化チタン系微粒子分散液(B)に硫酸銅水溶液(i)を酸化チタンに対して金属銅が0.15質量%となるように添加混合して130℃で30分間水熱処理することにより、酸化チタンを1質量%含み、ペルオキソチタン成分を酸化チタンに対し1質量%含む本発明の可視光応答型酸化チタン系微粒子分散液(C)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定(商品名“ナノトラック粒度分析計UPA-EX”、日機装(株))したところ、18nmであった。 [Example 4]
(1) Tin (IV) chloride is added to a 36 mass% titanium chloride (IV) aqueous solution so that the Ti / Sn (molar ratio) is 20, and this is diluted 10 times with pure water, and then the aqueous solution. 10% by mass of ammonia water was gradually added to neutralize and hydrolyze to obtain a precipitate of titanium hydroxide. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. 30% by mass hydrogen peroxide solution was added to the titanium hydroxide precipitate after the deionization treatment so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and the mixture was sufficiently stirred at room temperature all day and night. To react. Thereafter, pure water was added to adjust the concentration, thereby obtaining a yellow transparent tin-containing peroxotitanic acid solution (a) (solid content concentration 1% by mass).
(2) 400 mL of a tin-containing peroxotitanic acid solution (a) was charged into an autoclave having a volume of 500 mL and hydrothermally treated for 120 minutes at 150 ° C. and 0.5 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (A). It was.
(3) After diluting a 36 mass% titanium chloride (IV) aqueous solution 10 times with pure water, 10 mass% ammonia water is gradually added to the aqueous solution to neutralize and hydrolyze the titanium hydroxide. A precipitate was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. 30% by mass hydrogen peroxide solution was added to the titanium hydroxide precipitate after the deionization treatment so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and the mixture was sufficiently stirred at room temperature all day and night. To react. Thereafter, pure water was added to adjust the concentration, whereby a yellow transparent peroxotitanic acid solution (b) (solid content concentration 1% by mass) was obtained.
(4) A peroxotitanic acid solution (b) (360 mL) and a titanium oxide fine particle dispersion (A) (40 mL) were charged into a 500 mL volume autoclave, and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged into a container held in a water bath at 25 ° C. via a sampling tube, and the reaction is stopped by rapidly cooling, so that the titanium oxide fine particle dispersion (B) Obtained.
(5) Copper sulfate was dissolved in pure water to obtain a 1% by mass copper sulfate aqueous solution (i).
(6) A copper sulfate aqueous solution (i) is added to the titanium oxide-based fine particle dispersion (B) so that the metal copper is 0.15% by mass with respect to titanium oxide, and hydrothermally treated at 130 ° C. for 30 minutes. As a result, the visible light responsive titanium oxide fine particle dispersion (C) of the present invention containing 1% by mass of titanium oxide and 1% by mass of the peroxotitanium component with respect to titanium oxide was obtained. The average particle size of the titanium oxide fine particles in the obtained dispersion was measured (trade name “Nanotrack particle size analyzer UPA-EX”, Nikkiso Co., Ltd.) and found to be 18 nm.
(1)36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が20となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のスズ含有ペルオキソチタン酸溶液(a)(固形分濃度1質量%)を得た。
(2)容積500mLのオートクレーブに、スズ含有ペルオキソチタン酸溶液(a)400mLを仕込み、これを150℃、0.5MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン微粒子分散液(A)を得た。
(3)36質量%の塩化チタン(IV)水溶液を純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のペルオキソチタン酸溶液(b)(固形分濃度1質量%)を得た。
(4)容積500mLのオートクレーブに、ペルオキソチタン酸溶液(b)360mLと、酸化チタン微粒子分散液(A)40mLを仕込み、これを130℃、0.3MPaの条件下、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン系微粒子分散液(B)を得た。
(5)硫酸銅を純水で溶解し、1質量%の硫酸銅水溶液(i)を得た。
(6)酸化チタン系微粒子分散液(B)に硫酸銅水溶液(i)を酸化チタンに対して金属銅が0.15質量%となるように添加混合して130℃で30分間水熱処理することにより、酸化チタンを1質量%含み、ペルオキソチタン成分を酸化チタンに対し1質量%含む本発明の可視光応答型酸化チタン系微粒子分散液(C)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定(商品名“ナノトラック粒度分析計UPA-EX”、日機装(株))したところ、18nmであった。 [Example 4]
(1) Tin (IV) chloride is added to a 36 mass% titanium chloride (IV) aqueous solution so that the Ti / Sn (molar ratio) is 20, and this is diluted 10 times with pure water, and then the aqueous solution. 10% by mass of ammonia water was gradually added to neutralize and hydrolyze to obtain a precipitate of titanium hydroxide. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. 30% by mass hydrogen peroxide solution was added to the titanium hydroxide precipitate after the deionization treatment so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and the mixture was sufficiently stirred at room temperature all day and night. To react. Thereafter, pure water was added to adjust the concentration, thereby obtaining a yellow transparent tin-containing peroxotitanic acid solution (a) (solid content concentration 1% by mass).
(2) 400 mL of a tin-containing peroxotitanic acid solution (a) was charged into an autoclave having a volume of 500 mL and hydrothermally treated for 120 minutes at 150 ° C. and 0.5 MPa. Thereafter, the reaction mixture in the autoclave is discharged through a sampling tube into a container held in a 25 ° C. water bath, and the reaction is stopped by rapid cooling to obtain a titanium oxide fine particle dispersion (A). It was.
(3) After diluting a 36 mass% titanium chloride (IV) aqueous solution 10 times with pure water, 10 mass% ammonia water is gradually added to the aqueous solution to neutralize and hydrolyze the titanium hydroxide. A precipitate was obtained. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. 30% by mass hydrogen peroxide solution was added to the titanium hydroxide precipitate after the deionization treatment so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and the mixture was sufficiently stirred at room temperature all day and night. To react. Thereafter, pure water was added to adjust the concentration, whereby a yellow transparent peroxotitanic acid solution (b) (solid content concentration 1% by mass) was obtained.
(4) A peroxotitanic acid solution (b) (360 mL) and a titanium oxide fine particle dispersion (A) (40 mL) were charged into a 500 mL volume autoclave, and hydrothermally treated for 120 minutes at 130 ° C. and 0.3 MPa. Thereafter, the reaction mixture in the autoclave is discharged into a container held in a water bath at 25 ° C. via a sampling tube, and the reaction is stopped by rapidly cooling, so that the titanium oxide fine particle dispersion (B) Obtained.
(5) Copper sulfate was dissolved in pure water to obtain a 1% by mass copper sulfate aqueous solution (i).
(6) A copper sulfate aqueous solution (i) is added to the titanium oxide-based fine particle dispersion (B) so that the metal copper is 0.15% by mass with respect to titanium oxide, and hydrothermally treated at 130 ° C. for 30 minutes. As a result, the visible light responsive titanium oxide fine particle dispersion (C) of the present invention containing 1% by mass of titanium oxide and 1% by mass of the peroxotitanium component with respect to titanium oxide was obtained. The average particle size of the titanium oxide fine particles in the obtained dispersion was measured (trade name “Nanotrack particle size analyzer UPA-EX”, Nikkiso Co., Ltd.) and found to be 18 nm.
[実施例5]
(7)実施例4(4)の工程において、ペルオキソチタン酸溶液(b)200mLと、酸化チタン微粒子分散液(A)を200mL仕込んだ以外は同様にして、可視光応答型酸化チタン系微粒子分散液(D)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、21nmであった。 [Example 5]
(7) In the same manner as in Example 4 (4), except that 200 mL of the peroxotitanic acid solution (b) and 200 mL of the titanium oxide fine particle dispersion (A) were charged, visible light responsive titanium oxide-based fine particle dispersion A liquid (D) was obtained. It was 21 nm when the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above.
(7)実施例4(4)の工程において、ペルオキソチタン酸溶液(b)200mLと、酸化チタン微粒子分散液(A)を200mL仕込んだ以外は同様にして、可視光応答型酸化チタン系微粒子分散液(D)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、21nmであった。 [Example 5]
(7) In the same manner as in Example 4 (4), except that 200 mL of the peroxotitanic acid solution (b) and 200 mL of the titanium oxide fine particle dispersion (A) were charged, visible light responsive titanium oxide-based fine particle dispersion A liquid (D) was obtained. It was 21 nm when the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above.
[比較例4]
(8)ペルオキソチタン酸溶液(b)に酸化チタン分散液(A)を添加しなかったこと以外は実施例4と同様にして、酸化チタン系微粒子分散液(E)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、25nmであった。 [Comparative Example 4]
(8) A titanium oxide fine particle dispersion (E) was obtained in the same manner as in Example 4 except that the titanium oxide dispersion (A) was not added to the peroxotitanic acid solution (b). When the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above, it was 25 nm.
(8)ペルオキソチタン酸溶液(b)に酸化チタン分散液(A)を添加しなかったこと以外は実施例4と同様にして、酸化チタン系微粒子分散液(E)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、25nmであった。 [Comparative Example 4]
(8) A titanium oxide fine particle dispersion (E) was obtained in the same manner as in Example 4 except that the titanium oxide dispersion (A) was not added to the peroxotitanic acid solution (b). When the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above, it was 25 nm.
[比較例5]
(10)ペルオキソチタン酸溶液(b)に酸化チタン分散液(A)ではなく、水熱処理していないペルオキソチタン酸溶液(a)を添加したこと以外は実施例4と同様にして、酸化チタン微粒子分散液(G)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、18nmであった。 [Comparative Example 5]
(10) Titanium oxide fine particles in the same manner as in Example 4 except that the peroxotitanic acid solution (a) not hydrothermally treated is added to the peroxotitanic acid solution (b) instead of the titanium oxide dispersion (A). A dispersion (G) was obtained. When the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above, it was 18 nm.
(10)ペルオキソチタン酸溶液(b)に酸化チタン分散液(A)ではなく、水熱処理していないペルオキソチタン酸溶液(a)を添加したこと以外は実施例4と同様にして、酸化チタン微粒子分散液(G)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、18nmであった。 [Comparative Example 5]
(10) Titanium oxide fine particles in the same manner as in Example 4 except that the peroxotitanic acid solution (a) not hydrothermally treated is added to the peroxotitanic acid solution (b) instead of the titanium oxide dispersion (A). A dispersion (G) was obtained. When the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above, it was 18 nm.
[実施例6]
(11)実施例4の(1)~(4)と同じ工程を経て、酸化チタン系微粒子分散液(B)を得た。
(12)硫酸鉄を純水で溶解し、1質量%の硫酸鉄水溶液(ii)を得た。
(13)酸化チタン系微粒子分散液(B)に硫酸鉄水溶液(ii)を酸化チタンに対して金属鉄が0.15質量%となるように添加混合して130℃で30分間水熱処理することにより、酸化チタンを1質量%含み、ペルオキソチタン成分を酸化チタンに対し1質量%含む本発明の可視光応答型酸化チタン系微粒子分散液(H)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、21nmであった。 [Example 6]
(11) Through the same steps as (1) to (4) of Example 4, a titanium oxide-based fine particle dispersion (B) was obtained.
(12) Iron sulfate was dissolved in pure water to obtain a 1% by mass iron sulfate aqueous solution (ii).
(13) An aqueous solution of iron sulfate (ii) is added to the titanium oxide-based fine particle dispersion (B) so that the amount of metal iron is 0.15% by mass with respect to titanium oxide, and hydrothermally treated at 130 ° C. for 30 minutes As a result, the visible light responsive titanium oxide fine particle dispersion (H) of the present invention containing 1% by mass of titanium oxide and 1% by mass of the peroxotitanium component with respect to titanium oxide was obtained. It was 21 nm when the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above.
(11)実施例4の(1)~(4)と同じ工程を経て、酸化チタン系微粒子分散液(B)を得た。
(12)硫酸鉄を純水で溶解し、1質量%の硫酸鉄水溶液(ii)を得た。
(13)酸化チタン系微粒子分散液(B)に硫酸鉄水溶液(ii)を酸化チタンに対して金属鉄が0.15質量%となるように添加混合して130℃で30分間水熱処理することにより、酸化チタンを1質量%含み、ペルオキソチタン成分を酸化チタンに対し1質量%含む本発明の可視光応答型酸化チタン系微粒子分散液(H)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、21nmであった。 [Example 6]
(11) Through the same steps as (1) to (4) of Example 4, a titanium oxide-based fine particle dispersion (B) was obtained.
(12) Iron sulfate was dissolved in pure water to obtain a 1% by mass iron sulfate aqueous solution (ii).
(13) An aqueous solution of iron sulfate (ii) is added to the titanium oxide-based fine particle dispersion (B) so that the amount of metal iron is 0.15% by mass with respect to titanium oxide, and hydrothermally treated at 130 ° C. for 30 minutes As a result, the visible light responsive titanium oxide fine particle dispersion (H) of the present invention containing 1% by mass of titanium oxide and 1% by mass of the peroxotitanium component with respect to titanium oxide was obtained. It was 21 nm when the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above.
[実施例7]
(14)実施例6(4)の工程(実施例4の(4)の工程と同じ)において、ペルオキソチタン酸溶液(b)200mLと、酸化チタン微粒子分散液(A)を200mL仕込んだ以外は同様にして、可視光応答型酸化チタン系微粒子分散液(I)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、25nmであった。 [Example 7]
(14) In the process of Example 6 (4) (same as the process of (4) of Example 4), except that 200 mL of the peroxotitanic acid solution (b) and 200 mL of the titanium oxide fine particle dispersion (A) were charged. Similarly, a visible light responsive titanium oxide fine particle dispersion (I) was obtained. When the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above, it was 25 nm.
(14)実施例6(4)の工程(実施例4の(4)の工程と同じ)において、ペルオキソチタン酸溶液(b)200mLと、酸化チタン微粒子分散液(A)を200mL仕込んだ以外は同様にして、可視光応答型酸化チタン系微粒子分散液(I)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、25nmであった。 [Example 7]
(14) In the process of Example 6 (4) (same as the process of (4) of Example 4), except that 200 mL of the peroxotitanic acid solution (b) and 200 mL of the titanium oxide fine particle dispersion (A) were charged. Similarly, a visible light responsive titanium oxide fine particle dispersion (I) was obtained. When the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above, it was 25 nm.
[比較例6]
(15)ペルオキソチタン酸溶液(b)に酸化チタン分散液(A)を添加しなかったこと以外は実施例6と同様にして、酸化チタン系微粒子分散液(J)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、30nmであった。 [Comparative Example 6]
(15) A titanium oxide fine particle dispersion (J) was obtained in the same manner as in Example 6 except that the titanium oxide dispersion (A) was not added to the peroxotitanic acid solution (b). It was 30 nm when the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above.
(15)ペルオキソチタン酸溶液(b)に酸化チタン分散液(A)を添加しなかったこと以外は実施例6と同様にして、酸化チタン系微粒子分散液(J)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を上記と同様に測定したところ、30nmであった。 [Comparative Example 6]
(15) A titanium oxide fine particle dispersion (J) was obtained in the same manner as in Example 6 except that the titanium oxide dispersion (A) was not added to the peroxotitanic acid solution (b). It was 30 nm when the average particle diameter of the titanium oxide fine particles in the obtained dispersion was measured in the same manner as described above.
[比較例7]
(16)ペルオキソチタン酸溶液(b)に酸化チタン分散液(A)ではなく、水熱処理していないペルオキソチタン酸溶液(a)を添加したこと以外は実施例6と同様にして、酸化チタン微粒子分散液(K)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、28nmであった。 [Comparative Example 7]
(16) Titanium oxide fine particles in the same manner as in Example 6, except that the peroxotitanic acid solution (a) not hydrothermally treated was added to the peroxotitanic acid solution (b) instead of the titanium oxide dispersion (A). A dispersion (K) was obtained. The average particle size of the titanium oxide fine particles in the obtained dispersion was measured and found to be 28 nm.
(16)ペルオキソチタン酸溶液(b)に酸化チタン分散液(A)ではなく、水熱処理していないペルオキソチタン酸溶液(a)を添加したこと以外は実施例6と同様にして、酸化チタン微粒子分散液(K)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、28nmであった。 [Comparative Example 7]
(16) Titanium oxide fine particles in the same manner as in Example 6, except that the peroxotitanic acid solution (a) not hydrothermally treated was added to the peroxotitanic acid solution (b) instead of the titanium oxide dispersion (A). A dispersion (K) was obtained. The average particle size of the titanium oxide fine particles in the obtained dispersion was measured and found to be 28 nm.
[比較例8]
ペルオキソチタン酸溶液(a)を水熱処理して酸化チタン微粒子分散液(L)を得た。得られた酸化チタン微粒子分散液(L)に実施例4と同様にして銅化合物による処理を行い、酸化チタン微粒子分散液(M)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、15nmであった。 [Comparative Example 8]
The peroxotitanic acid solution (a) was hydrothermally treated to obtain a titanium oxide fine particle dispersion (L). The obtained titanium oxide fine particle dispersion (L) was treated with a copper compound in the same manner as in Example 4 to obtain a titanium oxide fine particle dispersion (M). It was 15 nm when the average particle diameter of the titanium oxide microparticles | fine-particles in the obtained dispersion liquid was measured.
ペルオキソチタン酸溶液(a)を水熱処理して酸化チタン微粒子分散液(L)を得た。得られた酸化チタン微粒子分散液(L)に実施例4と同様にして銅化合物による処理を行い、酸化チタン微粒子分散液(M)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、15nmであった。 [Comparative Example 8]
The peroxotitanic acid solution (a) was hydrothermally treated to obtain a titanium oxide fine particle dispersion (L). The obtained titanium oxide fine particle dispersion (L) was treated with a copper compound in the same manner as in Example 4 to obtain a titanium oxide fine particle dispersion (M). It was 15 nm when the average particle diameter of the titanium oxide microparticles | fine-particles in the obtained dispersion liquid was measured.
[比較例9]
比較例8で得た酸化チタン微粒子分散液(L)に実施例6と同様にして鉄化合物による処理を行い、酸化チタン微粒子分散液(N)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、18nmであった。 [Comparative Example 9]
The titanium oxide fine particle dispersion (L) obtained in Comparative Example 8 was treated with an iron compound in the same manner as in Example 6 to obtain a titanium oxide fine particle dispersion (N). It was 18 nm when the average particle diameter of the titanium oxide microparticles | fine-particles in the obtained dispersion liquid was measured.
比較例8で得た酸化チタン微粒子分散液(L)に実施例6と同様にして鉄化合物による処理を行い、酸化チタン微粒子分散液(N)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、18nmであった。 [Comparative Example 9]
The titanium oxide fine particle dispersion (L) obtained in Comparative Example 8 was treated with an iron compound in the same manner as in Example 6 to obtain a titanium oxide fine particle dispersion (N). It was 18 nm when the average particle diameter of the titanium oxide microparticles | fine-particles in the obtained dispersion liquid was measured.
実施例4~7、比較例4~9で作製した分散液にシリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20(日産化学工業(株)製)をTiO2/SiO2比1.5で添加した後、ガラス板状にディップコーターで塗布、乾燥させ、膜厚が150nmの光触媒薄膜を形成し、評価用サンプルを得た。
In the dispersions prepared in Examples 4 to 7 and Comparative Examples 4 to 9, a silica-based binder (colloidal silica, trade name: Snowtex 20 (manufactured by Nissan Chemical Industries, Ltd.)) was added at a TiO 2 / SiO 2 ratio of 1.5. After adding, the sample was applied to a glass plate with a dip coater and dried to form a photocatalyst thin film having a film thickness of 150 nm to obtain a sample for evaluation.
表2に、実施例4~7、比較例4~9の反応条件及び平均粒子径、光触媒薄膜の透明性、光触媒薄膜のセルフクリーニング性能試験における蛍光灯による照射5時間後の水接触角測定結果、光触媒薄膜のアセトアルデヒドガス分解性能試験における蛍光灯による照射90分後のガス分解率をまとめて示す。
比較例4,6の結果から分かるように、ペルオキソチタン酸溶液に酸化チタン微粒子分散液を添加しないと十分な可視光活性が得られない。
比較例5,7の結果から分かるように、水熱処理をしないスズ添加ペルオキソチタン酸溶液を添加しても十分な可視光活性が得られない。
比較例8,9の結果から分かるように、結晶性の低い酸化チタン微粒子分散液は結晶性の高い酸化チタン微粒子分散液と比較して、光触媒活性が低い。
実施例4~7の結果から分かるように、ペルオキソチタン酸溶液に、スズ添加ペルオキソチタン酸溶液を水熱処理して製造した酸化チタン微粒子分散液を添加して、これを更に水熱処理して製造した酸化チタン系微粒子分散液に銅化合物又は鉄化合物を添加することにより、蛍光灯照射下でのアセトアルデヒド及びオレイン酸の分解(即ち、光触媒活性)が良好になることが分かる。 Table 2 shows the reaction conditions and average particle diameters of Examples 4 to 7 and Comparative Examples 4 to 9, the transparency of the photocatalytic thin film, and the water contact angle measurement results after 5 hours of irradiation with a fluorescent lamp in the self-cleaning performance test of the photocatalytic thin film. The gas decomposition rate 90 minutes after irradiation with a fluorescent lamp in the acetaldehyde gas decomposition performance test of the photocatalytic thin film is shown collectively.
As can be seen from the results of Comparative Examples 4 and 6, sufficient visible light activity cannot be obtained unless the titanium oxide fine particle dispersion is added to the peroxotitanic acid solution.
As can be seen from the results of Comparative Examples 5 and 7, even when a tin-added peroxotitanic acid solution without hydrothermal treatment is added, sufficient visible light activity cannot be obtained.
As can be seen from the results of Comparative Examples 8 and 9, the titanium oxide fine particle dispersion with low crystallinity has lower photocatalytic activity than the titanium oxide fine particle dispersion with high crystallinity.
As can be seen from the results of Examples 4 to 7, a titanium oxide fine particle dispersion produced by hydrothermally treating a tin-added peroxotitanic acid solution was added to the peroxotitanic acid solution, and this was further hydrothermally produced. It can be seen that by adding a copper compound or an iron compound to the titanium oxide-based fine particle dispersion, the decomposition (ie, photocatalytic activity) of acetaldehyde and oleic acid under fluorescent lamp irradiation is improved.
比較例4,6の結果から分かるように、ペルオキソチタン酸溶液に酸化チタン微粒子分散液を添加しないと十分な可視光活性が得られない。
比較例5,7の結果から分かるように、水熱処理をしないスズ添加ペルオキソチタン酸溶液を添加しても十分な可視光活性が得られない。
比較例8,9の結果から分かるように、結晶性の低い酸化チタン微粒子分散液は結晶性の高い酸化チタン微粒子分散液と比較して、光触媒活性が低い。
実施例4~7の結果から分かるように、ペルオキソチタン酸溶液に、スズ添加ペルオキソチタン酸溶液を水熱処理して製造した酸化チタン微粒子分散液を添加して、これを更に水熱処理して製造した酸化チタン系微粒子分散液に銅化合物又は鉄化合物を添加することにより、蛍光灯照射下でのアセトアルデヒド及びオレイン酸の分解(即ち、光触媒活性)が良好になることが分かる。 Table 2 shows the reaction conditions and average particle diameters of Examples 4 to 7 and Comparative Examples 4 to 9, the transparency of the photocatalytic thin film, and the water contact angle measurement results after 5 hours of irradiation with a fluorescent lamp in the self-cleaning performance test of the photocatalytic thin film. The gas decomposition rate 90 minutes after irradiation with a fluorescent lamp in the acetaldehyde gas decomposition performance test of the photocatalytic thin film is shown collectively.
As can be seen from the results of Comparative Examples 4 and 6, sufficient visible light activity cannot be obtained unless the titanium oxide fine particle dispersion is added to the peroxotitanic acid solution.
As can be seen from the results of Comparative Examples 5 and 7, even when a tin-added peroxotitanic acid solution without hydrothermal treatment is added, sufficient visible light activity cannot be obtained.
As can be seen from the results of Comparative Examples 8 and 9, the titanium oxide fine particle dispersion with low crystallinity has lower photocatalytic activity than the titanium oxide fine particle dispersion with high crystallinity.
As can be seen from the results of Examples 4 to 7, a titanium oxide fine particle dispersion produced by hydrothermally treating a tin-added peroxotitanic acid solution was added to the peroxotitanic acid solution, and this was further hydrothermally produced. It can be seen that by adding a copper compound or an iron compound to the titanium oxide-based fine particle dispersion, the decomposition (ie, photocatalytic activity) of acetaldehyde and oleic acid under fluorescent lamp irradiation is improved.
上記実施例4~7の酸化チタン系微粒子分散液は、ガラス、金属等の無機物質、及び高分子フィルム(PETフィルム等)等の有機物質からなる種々の基材に施与して光触媒薄膜を作製するのに有用であり、特に高分子フィルム上に透明な光触媒薄膜を作製するのに有用である。
The titanium oxide-based fine particle dispersions of Examples 4 to 7 are applied to various substrates made of an inorganic material such as glass and metal, and an organic material such as a polymer film (PET film or the like) to form a photocatalytic thin film. It is useful for producing, and particularly useful for producing a transparent photocatalytic thin film on a polymer film.
Claims (15)
- 水性分散媒中に、ルチル型酸化チタン微粒子が分散していると共に、スズ成分が含有され、且つ該スズ成分が酸化スズ換算で酸化チタンとのモル比(TiO2/SnO2)が40~10,000であることを特徴とするルチル型酸化チタン微粒子分散液。 In the aqueous dispersion medium, rutile-type titanium oxide fine particles are dispersed, a tin component is contained, and the tin component has a molar ratio (TiO 2 / SnO 2 ) with titanium oxide in terms of tin oxide of 40 to 10 Rutile-type titanium oxide fine particle dispersion,
- 前記酸化チタン微粒子が、レーザー光を用いた動的散乱法により測定される体積基準の50%累計分布径(D50)で50nm以下である請求項1に記載のルチル型酸化チタン微粒子分散液。 The rutile-type titanium oxide fine particle dispersion according to claim 1, wherein the titanium oxide fine particles have a volume-based 50% cumulative distribution diameter (D 50 ) of 50 nm or less as measured by a dynamic scattering method using laser light.
- 更に、銅成分又は鉄成分を含有している請求項1又は2に記載のルチル型酸化チタン微粒子分散液。 Furthermore, the rutile type titanium oxide fine particle dispersion liquid according to claim 1 or 2, further comprising a copper component or an iron component.
- (1)チタン化合物、スズ化合物、塩基性物質、過酸化水素及び水性分散媒から、スズ化合物を含有したペルオキソチタン酸溶液を製造する工程、
(2)上記工程(1)で得られたスズ化合物を含有したペルオキソチタン酸溶液を80~250℃で加熱し、ペルオキソチタン成分及びスズ成分を含むルチル型酸化チタン微粒子分散液を得る工程、及び
(3)上記工程(1)とは別に、チタン化合物、塩基性物質、過酸化水素及び水性分散媒を含有する溶液から製造したペルオキソチタン酸溶液に、上記工程(2)で得られたルチル型酸化チタン微粒子分散液を添加し、再び80~250℃で加熱し、ルチル型酸化チタン微粒子分散液を得る工程
を有することを特徴とするルチル型酸化チタン微粒子分散液の製造方法。 (1) a step of producing a peroxotitanic acid solution containing a tin compound from a titanium compound, a tin compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium;
(2) heating the peroxotitanic acid solution containing the tin compound obtained in the above step (1) at 80 to 250 ° C. to obtain a rutile-type titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component; (3) Separately from the step (1), the rutile type obtained in the step (2) is added to a peroxotitanic acid solution prepared from a solution containing a titanium compound, a basic substance, hydrogen peroxide and an aqueous dispersion medium. A method for producing a rutile type titanium oxide fine particle dispersion comprising the steps of adding a titanium oxide fine particle dispersion and heating again at 80 to 250 ° C. to obtain a rutile type titanium oxide fine particle dispersion. - 更に、(4)上記工程(3)で得られたルチル型酸化チタン微粒子分散液に銅化合物又は鉄化合物を添加し、反応させる工程
を有する請求項4に記載のルチル型酸化チタン微粒子分散液の製造方法。 The rutile type titanium oxide fine particle dispersion according to claim 4, further comprising the step of (4) adding and reacting a copper compound or an iron compound to the rutile type titanium oxide fine particle dispersion obtained in the step (3). Production method. - 銅化合物又は鉄化合物の添加量が、金属銅又は鉄換算で酸化チタン微粒子に対し0.01~5質量%である請求項5に記載のルチル型酸化チタン微粒子分散液の製造方法。 The method for producing a rutile-type titanium oxide fine particle dispersion according to claim 5, wherein the addition amount of the copper compound or the iron compound is 0.01 to 5 mass% with respect to the titanium oxide fine particles in terms of metallic copper or iron.
- 工程(1)が、チタン化合物を水性分散媒に溶解し、これに塩基性物質を添加してチタン化合物を水酸化チタンとし、これに過酸化水素を添加してペルオキソチタン酸とした後にスズ化合物を添加してスズ含有ペルオキソチタン酸の溶液を得る工程である請求項4、5又は6に記載のルチル型酸化チタン微粒子分散液の製造方法。 In step (1), a titanium compound is dissolved in an aqueous dispersion medium, a basic substance is added to the titanium compound to form titanium hydroxide, and hydrogen peroxide is added thereto to form peroxotitanic acid. The method for producing a rutile-type titanium oxide fine particle dispersion according to claim 4, 5 or 6, which is a step of obtaining a solution of tin-containing peroxotitanic acid by adding.
- 工程(1)が、チタン化合物を水性分散媒に溶解し、これにスズ化合物を添加した後に塩基性物質を添加してスズ含有水酸化チタンとし、これに過酸化水素を添加してスズ含有ペルオキソチタン酸の溶液を得る工程である請求項4、5又は6に記載のルチル型酸化チタン微粒子分散液の製造方法。 In step (1), a titanium compound is dissolved in an aqueous dispersion medium, a tin compound is added thereto, a basic substance is added to form tin-containing titanium hydroxide, and hydrogen peroxide is added thereto to add tin-containing peroxo. The method for producing a rutile-type titanium oxide fine particle dispersion according to claim 4, 5 or 6, which is a step of obtaining a titanic acid solution.
- スズ化合物の添加割合が、チタン化合物に対し、それぞれ酸化物換算でモル比がTiO2/SnO2として40~10,000である請求項4~8のいずれか1項に記載のルチル型酸化チタン微粒子分散液の製造方法。 The rutile-type titanium oxide according to any one of claims 4 to 8, wherein the addition ratio of the tin compound is 40 to 10,000 in terms of oxide, respectively, in terms of oxide with respect to the titanium compound as TiO 2 / SnO 2. A method for producing a fine particle dispersion.
- 過酸化水素の添加量が、TiとSnの合計モル数の1.5~5倍モルである請求項4~9のいずれか1項に記載のルチル型酸化チタン微粒子分散液の製造方法。 The method for producing a rutile-type titanium oxide fine particle dispersion according to any one of claims 4 to 9, wherein the amount of hydrogen peroxide added is 1.5 to 5 times the total number of moles of Ti and Sn.
- ペルオキソチタン酸にする反応の反応温度が5~60℃であり、反応時間が30分~24時間である請求項4~10のいずれか1項に記載のルチル型酸化チタン微粒子分散液の製造方法。 The process for producing a rutile-type titanium oxide fine particle dispersion according to any one of claims 4 to 10, wherein the reaction temperature of the reaction to form peroxotitanic acid is 5 to 60 ° C, and the reaction time is 30 minutes to 24 hours. .
- 工程(2)の水熱反応を0.01~4.5MPaの圧力にて行う請求項4~11のいずれか1項に記載のルチル型酸化チタン微粒子分散液の製造方法。 The method for producing a rutile-type titanium oxide fine particle dispersion according to any one of claims 4 to 11, wherein the hydrothermal reaction in the step (2) is performed at a pressure of 0.01 to 4.5 MPa.
- 工程(3)が、チタン化合物を水性分散媒に溶解し、これに塩基性物質を添加してチタン化合物を水酸化チタンとし、これに過酸化水素を添加してペルオキソチタン酸の溶液を得る工程である請求項4~12のいずれか1項に記載のルチル型酸化チタン微粒子分散液の製造方法。 Step (3) is a step of dissolving a titanium compound in an aqueous dispersion medium, adding a basic substance to the titanium compound to form titanium hydroxide, and adding hydrogen peroxide thereto to obtain a solution of peroxotitanic acid. The method for producing a rutile-type titanium oxide fine particle dispersion according to any one of claims 4 to 12.
- 工程(3)で製造したペルオキソチタン酸溶液の固形分X2と工程(2)で得られた酸化チタン微粒子分散液の固形分X1との割合[X2/(X1+X2)]×100が0.1~80質量%である請求項4~13のいずれか1項に記載のルチル型酸化チタン微粒子分散液の製造方法。 Ratio [X 2 / (X 1 + X 2 )] × solid content X 2 of the peroxotitanic acid solution produced in step (3) and solid content X 1 of the titanium oxide fine particle dispersion obtained in step (2) × The method for producing a rutile-type titanium oxide fine particle dispersion according to any one of claims 4 to 13, wherein 100 is 0.1 to 80% by mass.
- 請求項1、2又は3に記載の酸化チタン微粒子分散液を用いて形成されるルチル型酸化チタン薄膜を表面に有する部材。 A member having on its surface a rutile-type titanium oxide thin film formed using the titanium oxide fine particle dispersion according to claim 1, 2 or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012537604A JP5633571B2 (en) | 2010-10-08 | 2011-07-28 | Method for producing rutile type titanium oxide fine particle dispersion |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-228368 | 2010-10-08 | ||
JP2010228368 | 2010-10-08 | ||
JP2010-228372 | 2010-10-08 | ||
JP2010228372 | 2010-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012046493A1 true WO2012046493A1 (en) | 2012-04-12 |
Family
ID=45927492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067205 WO2012046493A1 (en) | 2010-10-08 | 2011-07-28 | Rutile-titanium-dioxide microparticle dispersion liquid, manufacturing method therefor, and member having rutile-titanium-dioxide thin film on surface thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5633571B2 (en) |
WO (1) | WO2012046493A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014177384A (en) * | 2013-03-15 | 2014-09-25 | Daicel Corp | Titanium oxide dispersion, titanium oxide coating liquid, and photocatalyst coating film |
WO2015106572A1 (en) * | 2014-01-15 | 2015-07-23 | 中国科学院理化技术研究所 | Chemical plating method for flexible oxide film |
JP2016041429A (en) * | 2012-09-19 | 2016-03-31 | 信越化学工業株式会社 | Method for producing visible light-responsive photocatalyst fine particle dispersion liquid |
TWI858147B (en) | 2019-10-02 | 2024-10-11 | 日商信越化學工業股份有限公司 | Titanium oxide particles, titanium oxide particle dispersion, and method for producing titanium oxide particle dispersion |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0352804A (en) * | 1989-07-19 | 1991-03-07 | Tomita Seiyaku Kk | Antibacterial titanium oxide and preparation thereof |
JPH05330825A (en) * | 1992-06-04 | 1993-12-14 | Ishihara Sangyo Kaisha Ltd | Iron containing superfine rutile titanium dioxide particle and its production |
JPH06345438A (en) * | 1993-06-04 | 1994-12-20 | Ishihara Sangyo Kaisha Ltd | Production of super-fine powdery titanium dioxide containing iron |
JP2001220141A (en) * | 2000-02-03 | 2001-08-14 | Toho Titanium Co Ltd | Titanium oxide dispersion |
JP2005132706A (en) * | 2003-10-31 | 2005-05-26 | Mitsui Chemicals Inc | Manufacturing method of rutile type titanium oxide superfine particle |
WO2006001487A1 (en) * | 2004-06-29 | 2006-01-05 | Mitsui Chemicals, Inc. | Fine particles of tin-modified rutile-type titanium dioxide |
JP2009227519A (en) * | 2008-03-24 | 2009-10-08 | Jgc Catalysts & Chemicals Ltd | Method for producing rutile-type titanium dioxide fine particles |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0733255B2 (en) * | 1986-09-22 | 1995-04-12 | 石原産業株式会社 | Titania sol and method for producing the same |
JP2783417B2 (en) * | 1989-03-30 | 1998-08-06 | 触媒化成工業株式会社 | Manufacturing method of rutile type titanium oxide sol |
JPH06279725A (en) * | 1993-03-24 | 1994-10-04 | Mitsubishi Paper Mills Ltd | Production of titanium oxide dispersion |
JP2852487B2 (en) * | 1994-03-15 | 1999-02-03 | 石原産業株式会社 | Titanium dioxide aqueous dispersion |
JP2875993B2 (en) * | 1996-05-07 | 1999-03-31 | 佐賀県 | Anatase dispersion and method for producing the same |
JP4240310B2 (en) * | 2004-09-22 | 2009-03-18 | 独立行政法人科学技術振興機構 | Visible light responsive photocatalyst and synthesis method thereof |
JP5161555B2 (en) * | 2007-12-20 | 2013-03-13 | 住友化学株式会社 | Method for producing tungsten oxide photocatalyst |
-
2011
- 2011-07-28 WO PCT/JP2011/067205 patent/WO2012046493A1/en active Application Filing
- 2011-07-28 JP JP2012537604A patent/JP5633571B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0352804A (en) * | 1989-07-19 | 1991-03-07 | Tomita Seiyaku Kk | Antibacterial titanium oxide and preparation thereof |
JPH05330825A (en) * | 1992-06-04 | 1993-12-14 | Ishihara Sangyo Kaisha Ltd | Iron containing superfine rutile titanium dioxide particle and its production |
JPH06345438A (en) * | 1993-06-04 | 1994-12-20 | Ishihara Sangyo Kaisha Ltd | Production of super-fine powdery titanium dioxide containing iron |
JP2001220141A (en) * | 2000-02-03 | 2001-08-14 | Toho Titanium Co Ltd | Titanium oxide dispersion |
JP2005132706A (en) * | 2003-10-31 | 2005-05-26 | Mitsui Chemicals Inc | Manufacturing method of rutile type titanium oxide superfine particle |
WO2006001487A1 (en) * | 2004-06-29 | 2006-01-05 | Mitsui Chemicals, Inc. | Fine particles of tin-modified rutile-type titanium dioxide |
JP2009227519A (en) * | 2008-03-24 | 2009-10-08 | Jgc Catalysts & Chemicals Ltd | Method for producing rutile-type titanium dioxide fine particles |
Non-Patent Citations (1)
Title |
---|
BIN QI ET AL.: "Low-temperature and one-step synthesis of rutile Ti02 aqueous sol by heterogeneous nucleation method", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 345, 15 May 2010 (2010-05-15), pages 181 - 186, XP055088653, DOI: doi:10.1016/j.jcis.2010.01.030 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016041429A (en) * | 2012-09-19 | 2016-03-31 | 信越化学工業株式会社 | Method for producing visible light-responsive photocatalyst fine particle dispersion liquid |
JP2014177384A (en) * | 2013-03-15 | 2014-09-25 | Daicel Corp | Titanium oxide dispersion, titanium oxide coating liquid, and photocatalyst coating film |
WO2015106572A1 (en) * | 2014-01-15 | 2015-07-23 | 中国科学院理化技术研究所 | Chemical plating method for flexible oxide film |
TWI858147B (en) | 2019-10-02 | 2024-10-11 | 日商信越化學工業股份有限公司 | Titanium oxide particles, titanium oxide particle dispersion, and method for producing titanium oxide particle dispersion |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012046493A1 (en) | 2014-02-24 |
JP5633571B2 (en) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6237780B2 (en) | Titanium oxide / tungsten oxide composite photocatalyst fine particle dispersion, production method thereof, and member having photocatalytic thin film on surface | |
US9604198B2 (en) | Visible light-responsive photocatalytic nanoparticle dispersion liquid, method for producing same, and member having photocatalytic thin film on surface | |
JP5447178B2 (en) | Visible light responsive titanium oxide fine particle dispersion and method for producing the same | |
TWI732752B (en) | Visible light response type photocatalyst titanium oxide microparticle dispersion liquid, its production method, and member having a photocatalyst film on the surface | |
US9555399B2 (en) | Visible-light-responsive titanium oxide microparticle dispersion, method for manufacturing same, and member having surficial photocatalyst thin film formed using same dispersion | |
US8986580B2 (en) | Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof | |
KR102436684B1 (en) | Visible light responsive photocatalyst titanium oxide fine particle mixture, dispersion thereof, method for producing dispersion, photocatalyst thin film, and member having photocatalyst thin film on the surface | |
JP5212353B2 (en) | Visible light responsive titanium oxide fine particle dispersion and method for producing the same | |
TW202102442A (en) | Titanium oxide fine particle mixture, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on surface, and method for producing titanium oxide fine particle dispersion | |
CN113544094B (en) | Titanium oxide fine particles, dispersion thereof, and method for producing the dispersion | |
JP5447177B2 (en) | Visible light responsive titanium oxide fine particle dispersion and method for producing the same | |
JP5282735B2 (en) | Visible light responsive titanium oxide fine particle dispersion and method for producing the same | |
JP5633571B2 (en) | Method for producing rutile type titanium oxide fine particle dispersion | |
WO2022059520A1 (en) | Titanium oxide particles and liquid dispersion thereof, photocatalyst thin film, member having photocatalyst thin film formed on surface thereof, and method for producing liquid dispersion of titanium oxide particles | |
JP7362224B2 (en) | Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion | |
JP2021175697A (en) | Titanium oxide particle, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on its surface, and method for producing titanium oxide particle dispersion | |
WO2012160986A1 (en) | Method for manufacturing microparticulate anatase or rutile titanium oxide dispersion and component having photocatalytic thin film on surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11830426 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012537604 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11830426 Country of ref document: EP Kind code of ref document: A1 |