JP7362224B2 - Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion - Google Patents

Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion Download PDF

Info

Publication number
JP7362224B2
JP7362224B2 JP2020081183A JP2020081183A JP7362224B2 JP 7362224 B2 JP7362224 B2 JP 7362224B2 JP 2020081183 A JP2020081183 A JP 2020081183A JP 2020081183 A JP2020081183 A JP 2020081183A JP 7362224 B2 JP7362224 B2 JP 7362224B2
Authority
JP
Japan
Prior art keywords
titanium oxide
particle dispersion
component
titanium
oxide particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020081183A
Other languages
Japanese (ja)
Other versions
JP2021175696A (en
Inventor
学 古舘
友博 井上
幹哉 樋上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020081183A priority Critical patent/JP7362224B2/en
Publication of JP2021175696A publication Critical patent/JP2021175696A/en
Application granted granted Critical
Publication of JP7362224B2 publication Critical patent/JP7362224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

本発明は、酸化チタン粒子、その分散液、分散液を用いて形成される光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法に関し、更に詳細には、光触媒活性及び透明性の高い光触媒薄膜を簡便に作製することができる光触媒酸化チタン粒子等に関する。 The present invention relates to titanium oxide particles, a dispersion thereof, a photocatalytic thin film formed using the dispersion, a member having a photocatalytic thin film on the surface, and a method for producing a titanium oxide particle dispersion. The present invention relates to photocatalytic titanium oxide particles and the like that can easily produce a photocatalytic thin film with high properties.

光触媒は、基材表面の清浄化、脱臭、抗菌等の用途に多用されている。光触媒反応とは、光触媒が光を吸収することによって生じた励起電子及び正孔が起こす反応のことをいう。光触媒による有機物の分解は、主として次の〔1〕、〔2〕の機構で起きていると考えられている。
〔1〕生成した励起電子及び正孔が光触媒表面に吸着している酸素や水と酸化還元反応を行い、該酸化還元反応により発生した活性種が有機物を分解する。
〔2〕生成した正孔が、光触媒表面に吸着している有機物を直接酸化して分解する。
Photocatalysts are widely used for purposes such as cleaning, deodorizing, and antibacterial purposes on substrate surfaces. A photocatalytic reaction is a reaction caused by excited electrons and holes generated when a photocatalyst absorbs light. The decomposition of organic substances by photocatalysts is thought to occur mainly through the following mechanisms [1] and [2].
[1] The generated excited electrons and holes undergo a redox reaction with oxygen and water adsorbed on the photocatalyst surface, and active species generated by the redox reaction decompose organic matter.
[2] The generated holes directly oxidize and decompose the organic matter adsorbed on the photocatalyst surface.

最近、上述のような光触媒作用の適用は、紫外線(波長10~400nm)が利用できる屋外での使用のみならず、蛍光灯のように可視領域の光(波長400~800nm)が大部分を占める光源で照らされた室内空間でも利用できるようにする検討が行われ、例えば、可視光応答型光触媒として、酸化タングステン光触媒体(特開2009-148700号公報:特許文献1)が開発されている。 Recently, the application of photocatalysis as described above is not limited to outdoor use where ultraviolet rays (wavelength 10 to 400 nm) can be used, but also to light in the visible region (wavelength 400 to 800 nm) such as fluorescent lamps. Studies have been conducted to make it usable even in indoor spaces illuminated by light sources, and for example, a tungsten oxide photocatalyst (Japanese Unexamined Patent Publication No. 2009-148700: Patent Document 1) has been developed as a visible light-responsive photocatalyst.

酸化チタンを利用した光触媒の可視光活性向上方法としては、酸化チタン微粒子や金属をドープした酸化チタン微粒子の表面に、鉄や銅を担持させる方法(例えば、特開2012-210632号公報:特許文献2、特開2010-104913号公報:特許文献3、特開2011-240247号公報:特許文献4、特開平7-303835号公報:特許文献5)、スズと可視光活性を高める遷移金属を固溶(ドープ)した酸化チタン微粒子と銅を固溶した酸化チタン微粒子とをそれぞれ準備した後混合して用いる方法(国際公開第2014/045861号:特許文献6)、スズと可視光応答性を高める遷移金属を固溶した酸化チタン微粒子と鉄族元素を固溶した酸化チタン微粒子とをそれぞれ準備した後混合して用いる方法(国際公開第2016/152487号:特許文献7)などが知られている。 As a method for improving the visible light activity of a photocatalyst using titanium oxide, a method of supporting iron or copper on the surface of titanium oxide fine particles or metal-doped titanium oxide fine particles (for example, Japanese Patent Laid-Open No. 2012-210632: Patent Document 2, JP 2010-104913: Patent Document 3, JP 2011-240247: Patent Document 4, JP 7-303835: Patent Document 5), solidifying tin and a transition metal that increases visible light activity. A method in which dissolved (doped) titanium oxide fine particles and titanium oxide fine particles containing copper as a solid solution are prepared and mixed together (International Publication No. 2014/045861: Patent Document 6), which improves tin and visible light responsiveness. A method is known in which titanium oxide fine particles containing a transition metal as a solid solution and titanium oxide fine particles containing an iron group element as a solid solution are prepared and then mixed together (International Publication No. 2016/152487: Patent Document 7). .

特許文献7のスズと可視光活性を高める遷移金属を固溶した酸化チタン微粒子と鉄族元素を固溶した酸化チタン微粒子とをそれぞれ準備した後、混合して得られる可視光応答型光触媒酸化チタン微粒子分散液を用いて製膜した光触媒膜を用いると、可視領域の光のみの条件下で高い分解活性が得られるものである。更に、スズと可視光活性を高める遷移金属を固溶した酸化チタン微粒子の表面に鉄成分を吸着(=担持)させた酸化チタン微粒子分散液を用いて製膜した光触媒膜を用いた場合にも可視光領域の光のみの条件下でアセトアルデヒドガスの分解が可能なことも示されているが、鉄成分によって酸化チタン微粒子が凝集・沈殿して得られる光触媒膜の品質が損なわれるために添加可能な鉄成分の量が制限され、得られる光触媒活性は低かった。 A visible light-responsive photocatalytic titanium oxide obtained by preparing and mixing titanium oxide fine particles containing tin and a transition metal that enhances visible light activity and titanium oxide fine particles containing an iron group element as a solid solution, respectively, as disclosed in Patent Document 7. When a photocatalytic film formed using a fine particle dispersion is used, high decomposition activity can be obtained under conditions of only light in the visible region. Furthermore, when using a photocatalytic film formed using a titanium oxide fine particle dispersion in which iron components are adsorbed (=supported) on the surface of titanium oxide fine particles containing tin and a transition metal that increases visible light activity as a solid solution, It has been shown that it is possible to decompose acetaldehyde gas under conditions of only light in the visible light range, but it cannot be added because the quality of the photocatalytic film obtained by coagulation and precipitation of titanium oxide fine particles due to the iron component is impaired. The amount of iron component was limited, and the photocatalytic activity obtained was low.

上述のように、光触媒活性を高める検討は盛んに行われているものの、実環境においては有害物質が可能な限り速やかに分解・除去されることが重要であるため、更なる光触媒活性の向上が求められている。 As mentioned above, although many studies are being carried out to increase photocatalytic activity, in actual environments it is important that harmful substances are decomposed and removed as quickly as possible, so further improvement of photocatalytic activity is necessary. It has been demanded.

特開2009-148700号公報Japanese Patent Application Publication No. 2009-148700 特開2012-210632号公報Japanese Patent Application Publication No. 2012-210632 特開2010-104913号公報Japanese Patent Application Publication No. 2010-104913 特開2011-240247号公報Japanese Patent Application Publication No. 2011-240247 特開平7-303835号公報Japanese Patent Application Publication No. 7-303835 国際公開第2014/045861号International Publication No. 2014/045861 国際公開第2016/152487号International Publication No. 2016/152487

従って、本発明は、従来よりも更に高い光触媒活性を得られる酸化チタン粒子、その分散液、分散液を用いて形成される光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法を提供することを目的とする。 Therefore, the present invention provides titanium oxide particles that can obtain even higher photocatalytic activity than conventional methods, a dispersion thereof, a photocatalytic thin film formed using the dispersion, a member having a photocatalytic thin film on the surface, and the production of a titanium oxide particle dispersion. The purpose is to provide a method.

本発明者らは、上記目的を達成するため、光触媒(酸化チタン)と種々の材料の組合せやその量比などを詳細に検討した結果、酸化チタン粒子に鉄成分及びケイ素成分を混合することによって得られる、鉄成分及びケイ素成分が表面に付着している酸化チタン粒子の光触媒活性が飛躍的に向上することを見出し、本発明を完成した。 In order to achieve the above object, the present inventors conducted detailed studies on combinations of photocatalysts (titanium oxide) and various materials, their quantitative ratios, etc., and found that by mixing iron and silicon components with titanium oxide particles, The present invention was completed based on the discovery that the photocatalytic activity of the resulting titanium oxide particles having iron and silicon components attached to their surfaces was dramatically improved.

従って、本発明は、下記に示す酸化チタン粒子、その分散液、分散液を用いて形成される光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法を提供するものである。
〔1〕
鉄成分及びケイ素成分が表面に付着している、酸化チタン粒子。
〔2〕
鉄成分のチタンとのモル比(Ti/Fe)が10~10,000であり、ケイ素成分のチタンとのモル比(Ti/Si)が1~10,000である〔1〕に記載の酸化チタン粒子。
〔3〕
更にモリブデン、タングステン及びバナジウム成分から選ばれる少なくとも1種の金属成分が表面に付着している〔1〕又は〔2〕に記載の酸化チタン粒子。
〔4〕
水性分散媒中に、〔1〕~〔3〕のいずれか1項に記載の酸化チタン粒子が分散されている酸化チタン粒子分散液。
〔5〕
更に、バインダーを含有する〔4〕に記載の酸化チタン粒子分散液。
〔6〕
バインダーがケイ素化合物系バインダーである〔5〕に記載の酸化チタン粒子分散液。
〔7〕
〔1〕~〔3〕のいずれか1項に記載の酸化チタン粒子を含む光触媒薄膜。
〔8〕
更に、バインダーを含有する〔7〕に記載の光触媒薄膜。
〔9〕
基材表面に〔7〕又は〔8〕の光触媒薄膜が形成された部材。
〔10〕
下記工程(1)~(4)を有する酸化チタン粒子分散液の製造方法。
(1)原料チタン化合物、塩基性物質、過酸化水素及び水性分散媒から、ペルオキソチタン酸溶液を製造する工程
(2)上記(1)の工程で製造したペルオキソチタン酸溶液を、圧力制御の下、80~250℃で加熱し、酸化チタン粒子分散液を得る工程
(3)鉄化合物、ケイ素化合物及び水性分散媒から、鉄成分及びケイ素成分の溶液または分散液を製造する工程
(4)上記(2)の工程で製造した酸化チタン粒子分散液と、(3)の工程で製造した鉄成分及びケイ素成分の溶液または分散液を混合して分散液を得る工程
Therefore, the present invention provides the following titanium oxide particles, a dispersion thereof, a photocatalytic thin film formed using the dispersion, a member having the photocatalytic thin film on its surface, and a method for producing the titanium oxide particle dispersion. .
[1]
Titanium oxide particles with iron and silicon components attached to their surfaces.
[2]
The oxidation according to [1], wherein the molar ratio of the iron component to titanium (Ti/Fe) is 10 to 10,000, and the molar ratio of the silicon component to titanium (Ti/Si) is 1 to 10,000. titanium particles.
[3]
The titanium oxide particles according to [1] or [2], further comprising at least one metal component selected from molybdenum, tungsten, and vanadium components attached to the surface.
[4]
A titanium oxide particle dispersion liquid in which the titanium oxide particles according to any one of [1] to [3] are dispersed in an aqueous dispersion medium.
[5]
The titanium oxide particle dispersion according to [4], further containing a binder.
[6]
The titanium oxide particle dispersion according to [5], wherein the binder is a silicon compound binder.
[7]
A photocatalytic thin film containing the titanium oxide particles according to any one of [1] to [3].
[8]
The photocatalytic thin film according to [7], further containing a binder.
[9]
A member in which the photocatalytic thin film of [7] or [8] is formed on the surface of a base material.
[10]
A method for producing a titanium oxide particle dispersion comprising the following steps (1) to (4).
(1) Step of producing peroxotitanic acid solution from raw material titanium compound, basic substance, hydrogen peroxide and aqueous dispersion medium. (2) Step of producing peroxotitanic acid solution produced in step (1) above under pressure control. , a step of heating at 80 to 250°C to obtain a titanium oxide particle dispersion (3) A step of producing a solution or dispersion of an iron component and a silicon component from an iron compound, a silicon compound, and an aqueous dispersion medium (4) The above ( A step of mixing the titanium oxide particle dispersion produced in step 2) and the solution or dispersion of iron components and silicon components produced in step (3) to obtain a dispersion.

本発明の酸化チタン粒子は従来よりも更に高い光触媒活性を有する。また、該酸化チタン粒子の分散液から透明性の高い光触媒薄膜を簡便に作製することができる。したがって、本発明の酸化チタン粒子は、有害物質の速やかな分解・除去が求められる実環境下で利用する部材に有用である。 The titanium oxide particles of the present invention have higher photocatalytic activity than conventional ones. Furthermore, a highly transparent photocatalytic thin film can be easily produced from the titanium oxide particle dispersion. Therefore, the titanium oxide particles of the present invention are useful for members used in actual environments where rapid decomposition and removal of harmful substances is required.

以下、本発明について詳細に説明する。
<酸化チタン粒子分散液>
本発明の酸化チタン粒子分散液は、水性分散媒中に、酸化チタン粒子と、鉄成分及びケイ素成分とを含有するものである。酸化チタン粒子分散液に含まれる鉄成分及びケイ素成分は酸化チタン粒子表面に付着しているものであるが、鉄成分及びケイ素成分は酸化チタン粒子分散液中に遊離していてもよい。
The present invention will be explained in detail below.
<Titanium oxide particle dispersion>
The titanium oxide particle dispersion of the present invention contains titanium oxide particles, an iron component, and a silicon component in an aqueous dispersion medium. The iron component and silicon component contained in the titanium oxide particle dispersion are attached to the surface of the titanium oxide particles, but the iron component and silicon component may be free in the titanium oxide particle dispersion.

水性分散媒は、水を用いることが好ましいが、水と任意の割合で混合される親水性有機溶媒と水との混合溶媒を用いてもよい。水としては、例えば、ろ過水、脱イオン水、蒸留水、純水等の精製水が好ましい。また、親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、エチレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコール-n-プロピルエーテル等のグリコールエーテル類が好ましい。混合溶媒を用いる場合には、混合溶媒中の親水性有機溶媒の割合が0質量%より多く、50質量%以下であることが好ましく、より好ましくは20質量%以下、更に好ましくは10質量%以下である。 As the aqueous dispersion medium, it is preferable to use water, but a mixed solvent of water and a hydrophilic organic solvent that can be mixed with water in any proportion may also be used. As water, for example, purified water such as filtered water, deionized water, distilled water, pure water, etc. is preferable. Examples of hydrophilic organic solvents include alcohols such as methanol, ethanol, and isopropanol, glycols such as ethylene glycol, and glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and propylene glycol-n-propyl ether. Preferably. When using a mixed solvent, the proportion of the hydrophilic organic solvent in the mixed solvent is preferably more than 0% by mass and 50% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less. It is.

酸化チタン粒子分散液中に含まれる酸化チタン粒子自体は特に限定されず、光触媒として使用される酸化チタンを用いることができ、酸化チタン粒子;白金、金、パラジウム、銅、ニッケルなどの助触媒を担持した酸化チタン粒子;窒素、炭素、硫黄及び金属成分を固溶した酸化チタン粒子のいずれでもよく、中でも、酸化チタン粒子;金属成分を固溶した酸化チタン粒子を用いることが好ましい。
酸化チタンに固溶させる金属成分は特に限定されないが、スズ成分及び遷移金属成分などが挙げられる。
The titanium oxide particles themselves contained in the titanium oxide particle dispersion are not particularly limited, and titanium oxide used as a photocatalyst can be used. The supported titanium oxide particles may be any of titanium oxide particles in which nitrogen, carbon, sulfur, and a metal component are dissolved in solid solution. Among them, it is preferable to use titanium oxide particles; titanium oxide particles in which a metal component is dissolved in solid solution.
The metal component to be dissolved in titanium oxide is not particularly limited, and examples include a tin component and a transition metal component.

酸化チタン粒子の結晶相としては、通常、ルチル型、アナターゼ型、ブルッカイト型の3つが知られているが、本発明の酸化チタン粒子は、主としてアナターゼ型又はルチル型であることが好ましい。なお、ここでいう「主として」とは、酸化チタン粒子全体のうち、当該結晶相の酸化チタン粒子を50質量%以上含有することを意味し、好ましくは70質量%以上、更に好ましくは90質量%以上であり、100質量%であってもよい。 Three crystal phases of titanium oxide particles are generally known: rutile type, anatase type, and brookite type, but the titanium oxide particles of the present invention are preferably mainly anatase type or rutile type. Note that the term "mainly" as used herein means that titanium oxide particles in the crystalline phase are contained in an amount of 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass of all titanium oxide particles. or more, and may be 100% by mass.

ここで、本明細書において、固溶体とは、ある一つの結晶相の格子点にある原子が別の原子と置換するか、格子間隙に別の原子が入り込んだ相、即ち、ある結晶相に他の物質が溶け込んだとみなされる混合相を有するものをいい、結晶相としては均一相であるものをいう。格子点にある溶媒原子が溶質原子と置換したものを置換型固溶体、格子間隙に溶質原子が入ったものを侵入型固溶体というが、本明細書では、このいずれをも指すものとする。 Here, in this specification, a solid solution is a phase in which an atom at a lattice point of a certain crystal phase is substituted with another atom, or another atom enters a lattice gap, that is, a certain crystal phase is replaced by another atom. It refers to a substance that has a mixed phase that is considered to have dissolved substances, and a crystalline phase that is a homogeneous phase. A solid solution in which solvent atoms at lattice points are substituted with solute atoms is called a substitutional solid solution, and a solid solution in which solute atoms are present in lattice gaps is called an interstitial solid solution. In this specification, both of these are referred to.

酸化チタン粒子分散液中に含まれる酸化チタン粒子は、スズ原子及び/又は遷移金属原子と固溶体を形成していてもよい。固溶体としては、置換型であっても侵入型であってもよい。酸化チタンの置換型固溶体は、酸化チタン結晶のチタンサイトが各種金属原子に置換されて形成されるものであり、酸化チタンの侵入型固溶体は、酸化チタン結晶の格子間隙に各種金属原子が入って形成されるものである。酸化チタンに各種金属原子が固溶されると、X線回折などにより結晶相を測定した際、酸化チタンの結晶相のピークのみが観測され、添加した各種金属原子由来の化合物のピークは観測されない。 The titanium oxide particles contained in the titanium oxide particle dispersion may form a solid solution with tin atoms and/or transition metal atoms. The solid solution may be a substitutional type or an interstitial type. A substitutional solid solution of titanium oxide is formed when the titanium sites of a titanium oxide crystal are replaced by various metal atoms, and an interstitial solid solution of titanium oxide is formed when various metal atoms enter the lattice gaps of a titanium oxide crystal. It is something that is formed. When various metal atoms are dissolved in titanium oxide, when the crystal phase is measured by X-ray diffraction, only the peak of the crystal phase of titanium oxide is observed, and the peaks of compounds derived from the various metal atoms added are not observed. .

金属酸化物結晶に異種金属を固溶する方法は特に限定されるものではないが、気相法(CVD法、PVD法など)、液相法(水熱法、ゾル・ゲル法など)、固相法(高温焼成法など)などを挙げることができる。 Methods for dissolving dissimilar metals in metal oxide crystals are not particularly limited, but include gas phase methods (CVD method, PVD method, etc.), liquid phase methods (hydrothermal method, sol-gel method, etc.), and solid solution methods. Examples include phase methods (high temperature firing method, etc.).

酸化チタン粒子にスズ成分を固溶させる場合、スズ成分はスズ化合物から誘導されるものであればよく、例えば、スズの金属単体(Sn)、酸化物(SnO、SnO2)、水酸化物、塩化物(SnCl2、SnCl4)、硝酸塩(Sn(NO32)、硫酸塩(SnSO4)、ハロゲン(Br、I)化物、オキソ酸塩(Na2SnO3、K2SnO3)、錯化合物等が挙げられ、これらの1種又は2種類以上を組み合わせて使用したものでもよい。その中でも酸化物(SnO、SnO2)、塩化物(SnCl2、SnCl4)、硫酸塩(SnSO4)、オキソ酸塩(Na2SnO3、K2SnO3)を使用することが好ましい。 When a tin component is solid-dissolved in titanium oxide particles, the tin component may be derived from a tin compound, such as an elemental metal of tin (Sn), an oxide (SnO, SnO 2 ), a hydroxide, Chlorides (SnCl 2 , SnCl 4 ), nitrates (Sn(NO 3 ) 2 ), sulfates (SnSO 4 ), halides (Br, I), oxoacids (Na 2 SnO 3 , K 2 SnO 3 ), Examples include complex compounds, and one or a combination of two or more of these may be used. Among these, it is preferable to use oxides (SnO, SnO 2 ), chlorides (SnCl 2 , SnCl 4 ), sulfates (SnSO 4 ), and oxoacid salts (Na 2 SnO 3 , K 2 SnO 3 ).

酸化チタン粒子に固溶されるスズ成分の量は、チタンとのモル比(Ti/Sn)で1以上、好ましくは5以上である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないためである。 The amount of the tin component dissolved in the titanium oxide particles is 1 or more, preferably 5 or more in molar ratio (Ti/Sn) to titanium. This is because when the molar ratio is less than 1, the content of titanium oxide decreases and the photocatalytic effect is not sufficiently exhibited.

酸化チタン粒子に固溶する遷移金属は、周期表第3族~第11族の中から選ばれる1種又は2種以上の元素であり、例えば、バナジウム、クロム、マンガン、ニオブ、モリブデン、ロジウム、タングステン、セリウムなどから選択することができるが、その中でもモリブデン、タングステン及びバナジウムが好ましい。 The transition metal dissolved in the titanium oxide particles is one or more elements selected from Groups 3 to 11 of the periodic table, such as vanadium, chromium, manganese, niobium, molybdenum, rhodium, It can be selected from tungsten, cerium, etc., among which molybdenum, tungsten and vanadium are preferred.

酸化チタン粒子に固溶される遷移金属成分は、当該遷移金属化合物から誘導されるものであればよく、金属、酸化物、水酸化物、塩化物、硝酸塩、硫酸塩、ハロゲン(Br、I)化物、オキソ酸塩、各種錯化合物等が挙げられ、これらの1種又は2種以上が用いられる。 The transition metal component dissolved in the titanium oxide particles may be one derived from the transition metal compound, and may include metals, oxides, hydroxides, chlorides, nitrates, sulfates, and halogens (Br, I). compounds, oxoacid salts, various complex compounds, etc., and one or more of these may be used.

酸化チタン粒子に固溶される遷移金属成分の量は、遷移金属成分の種類に応じて適宜選定し得るが、チタンとのモル比(Ti/遷移金属)で1以上であることが好ましい。 The amount of the transition metal component dissolved in the titanium oxide particles can be appropriately selected depending on the type of the transition metal component, but it is preferable that the molar ratio with titanium (Ti/transition metal) is 1 or more.

酸化チタン粒子にモリブデンを固溶させる場合、モリブデン成分はモリブデン化合物から誘導されるものであればよく、例えば、モリブデンの金属単体(Mo)、酸化物(MoO2、MoO3)、水酸化物、塩化物(MoCl3、MoCl5)、硝酸塩、硫酸塩、ハロゲン(Br、I)化物、モリブデン酸及びオキソ酸塩(H2MoO4、Na2MoO4、K2MoO4)、錯化合物等が挙げられ、これらの1種又は2種以上を組み合わせて使用したものでもよい。その中でも、酸化物(MoO2、MoO3)、塩化物(MoCl3、MoCl5)、オキソ酸塩(H2MoO4、Na2MoO4、K2MoO4)を使用することが好ましい。 When molybdenum is dissolved in titanium oxide particles as a solid solution, the molybdenum component may be derived from a molybdenum compound, such as molybdenum elemental metal (Mo), oxides (MoO 2 , MoO 3 ), hydroxides, Chlorides (MoCl 3 , MoCl 5 ), nitrates, sulfates, halides (Br, I), molybdic acid and oxoacid salts (H 2 MoO 4 , Na 2 MoO 4 , K 2 MoO 4 ), complex compounds, etc. These may be used alone or in combination of two or more. Among them, it is preferable to use oxides (MoO 2 , MoO 3 ), chlorides (MoCl 3 , MoCl 5 ), and oxoacid salts (H 2 MoO 4 , Na 2 MoO 4 , K 2 MoO 4 ).

酸化チタン粒子に固溶されるモリブデン成分の量は、チタンとのモル比(Ti/Mo)で1以上、好ましくは5以上、より好ましくは20以上である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあるためである。 The amount of the molybdenum component dissolved in the titanium oxide particles is 1 or more, preferably 5 or more, and more preferably 20 or more in terms of molar ratio (Ti/Mo) to titanium. This is because if the molar ratio is less than 1, the content of titanium oxide may decrease and the photocatalytic effect may not be sufficiently exhibited.

酸化チタン粒子にタングステンを固溶させる場合、タングステン成分はタングステン化合物から誘導されるものであればよく、例えば、タングステンの金属単体(W)、酸化物(WO3)、水酸化物、塩化物(WCl4、WCl6)、硝酸塩、硫酸塩、ハロゲン(Br、I)化物、タングステン酸及びオキソ酸塩(H2WO4、Na2WO4、K2WO4)、錯化合物等が挙げられ、これらの1種又は2種以上を組み合わせて使用したものでもよい。その中でも、酸化物(WO3)、塩化物(WCl4、WCl6)、オキソ酸塩(Na2WO4、K2WO4)を使用することが好ましい。 When solid-dissolving tungsten in titanium oxide particles, the tungsten component may be derived from a tungsten compound. For example, tungsten elemental metal (W), oxide (WO 3 ), hydroxide, chloride ( WCl 4 , WCl 6 ), nitrates, sulfates, halides (Br, I), tungstic acid and oxoacid salts (H 2 WO 4 , Na 2 WO 4 , K 2 WO 4 ), complex compounds, etc. One or a combination of two or more of these may be used. Among these, it is preferable to use oxides (WO 3 ), chlorides (WCl 4 , WCl 6 ), and oxoacid salts (Na 2 WO 4 , K 2 WO 4 ).

酸化チタン粒子に固溶されるタングステン成分の量は、チタンとのモル比(Ti/W)で1以上、好ましくは5以上、より好ましくは20以上である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないためである。 The amount of the tungsten component dissolved in the titanium oxide particles is 1 or more, preferably 5 or more, and more preferably 20 or more in molar ratio (Ti/W) to titanium. This is because when the molar ratio is less than 1, the content of titanium oxide decreases and the photocatalytic effect is not sufficiently exhibited.

酸化チタン粒子にバナジウムを固溶させる場合、バナジウム成分はバナジウム化合物から誘導されるものであればよく、例えば、バナジウムの金属単体(V)、酸化物(VO、V23、VO2、V25)、水酸化物、塩化物(VCl5)、オキシ塩化物(VOCl3)、硝酸塩、硫酸塩、オキシ硫酸塩(VOSO4)、ハロゲン(Br、I)化物、オキソ酸塩(Na3VO4、K3VO4、KVO3)、錯化合物等が挙げられ、これらの1種又は2種以上を組み合わせて使用したものでもよい。その中でも、酸化物(V23、V25)、塩化物(VCl5)、オキシ塩化物(VOCl3)、オキシ硫酸塩(VOSO4)、オキソ酸塩(Na3VO4、K3VO4、KVO3)を使用することが好ましい。 When vanadium is solid-dissolved in titanium oxide particles, the vanadium component may be derived from a vanadium compound, such as vanadium elemental metal (V), oxides (VO, V 2 O 3 , VO 2 , V 2 O 5 ), hydroxide, chloride (VCl 5 ), oxychloride (VOCl 3 ), nitrate, sulfate, oxysulfate (VOSO 4 ), halide (Br, I), oxoacid (Na 3 VO 4 , K 3 VO 4 , KVO 3 ), complex compounds, and the like, and one or a combination of two or more of these may be used. Among them, oxides (V 2 O 3 , V 2 O 5 ), chlorides (VCl 5 ), oxychlorides (VOCl 3 ), oxysulfates (VOSO 4 ), oxoacid salts (Na 3 VO 4 , K 3 VO 4 , KVO 3 ) is preferably used.

酸化チタン粒子に固溶されるバナジウム成分の量は、チタンとのモル比(Ti/V)で1以上、好ましくは10以上、より好ましくは100以上である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないためである。 The amount of the vanadium component solid-dissolved in the titanium oxide particles is 1 or more, preferably 10 or more, and more preferably 100 or more in molar ratio with titanium (Ti/V). This is because when the molar ratio is less than 1, the content of titanium oxide decreases and the photocatalytic effect is not sufficiently exhibited.

酸化チタン粒子に固溶される遷移金属成分として、モリブデン、タングステン及びバナジウムの中から複数を選択してもよく、その際の各成分量は上記範囲より選択することができる。但し、各成分量の合計とチタンとのモル比[Ti/(Mo+W+V)]は、1以上である。 As the transition metal component dissolved in the titanium oxide particles, a plurality of molybdenum, tungsten, and vanadium may be selected, and the amount of each component can be selected from the above range. However, the molar ratio [Ti/(Mo+W+V)] between the total amount of each component and titanium is 1 or more.

酸化チタン粒子は、1種で用いてもよいし、2種以上を組み合わせて使用してもよい。異なる光応答性を持つ2種以上を組み合わせた場合、光触媒活性が高まる効果が得られることがある。 One type of titanium oxide particles may be used, or two or more types may be used in combination. When two or more types having different photoresponsiveness are combined, the effect of increasing photocatalytic activity may be obtained.

酸化チタン粒子分散液に含まれ、酸化チタン粒子表面に付着している鉄成分及びケイ素成分は、光触媒薄膜の光触媒活性を高めるものであるが、酸化チタン粒子分散液は、鉄成分及びケイ素成分に加えて、更に光触媒活性を高める成分として、酸化チタン粒子に固溶されていてもよい遷移金属成分でもあるモリブデン、タングステン及びバナジウム成分から選ばれる少なくとも1種の金属成分を含有してもよい。 The iron and silicon components contained in the titanium oxide particle dispersion and attached to the surface of the titanium oxide particles increase the photocatalytic activity of the photocatalytic thin film. In addition, at least one metal component selected from molybdenum, tungsten, and vanadium components, which are also transition metal components that may be solid-dissolved in the titanium oxide particles, may be contained as a component to further enhance photocatalytic activity.

酸化チタン粒子分散液に含まれる鉄成分は、光触媒薄膜の光触媒活性を高めるためのものであるが、鉄化合物から誘導されるものであればよく、例えば、鉄の金属単体(Fe)、酸化物(Fe23、Fe34)、水酸化物(Fe(OH)2、Fe(OH)3)、オキシ水酸化物(FeO(OH))、塩化物(FeCl2、FeCl3)、硝酸塩(Fe(NO)3)、硫酸塩(FeSO4、Fe2(SO43)、ハロゲン(Br、I)化物、錯化合物等が挙げられ、これらの1種又は2種以上を組み合わせて使用してもよい。 The iron component contained in the titanium oxide particle dispersion is intended to enhance the photocatalytic activity of the photocatalytic thin film, but it may be derived from iron compounds, such as elemental iron metal (Fe), oxides, etc. (Fe 2 O 3 , Fe 3 O 4 ), hydroxide (Fe(OH) 2 , Fe(OH) 3 ), oxyhydroxide (FeO(OH)), chloride (FeCl 2 , FeCl 3 ), Examples include nitrates (Fe(NO) 3 ), sulfates (FeSO 4 , Fe 2 (SO 4 ) 3 ), halides (Br, I), complex compounds, etc., and these may be used alone or in combination of two or more. May be used.

酸化チタン粒子分散液に含まれる鉄成分の含有量は、チタンとのモル比(Ti/Fe)で10~10,000、好ましくは20~5,000、より好ましくは50~2,000である。これは、モル比が10未満の場合、酸化チタンが凝集・沈殿して得られる光触媒薄膜の品質が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、光触媒活性が不十分となることがあるためである。 The content of the iron component contained in the titanium oxide particle dispersion is 10 to 10,000, preferably 20 to 5,000, more preferably 50 to 2,000 in molar ratio with titanium (Ti/Fe). . This is because if the molar ratio is less than 10, the quality of the photocatalytic thin film obtained by agglomeration and precipitation of titanium oxide may deteriorate and the photocatalytic effect may not be sufficiently exhibited, and if the molar ratio exceeds 10,000, the photocatalytic activity is insufficient. This is because it may become.

酸化チタン粒子分散液に含まれるケイ素成分は、鉄成分添加時の酸化チタン及び鉄成分の凝集・沈殿を抑制することで光触媒薄膜の品質低下を防いで光触媒効果の低下を抑制するものであるが、ケイ素化合物から誘導されるものであればよく、例えば、ケイ素の金属単体(Si)、酸化物(SiO、SiO2)、アルコキシド(Si(OCH34、Si(OC254、Si(OCH(CH324)、ケイ酸塩(ナトリウム塩、カリウム塩)及びこのケイ酸塩からナトリウムやカリウム等のイオンの少なくとも一部を除去した活性ケイ酸等が挙げられ、これらの1種又は2種類以上を組み合わせて使用してもよい。その中でも、ケイ酸塩(ケイ酸ナトリウム)や活性ケイ酸、特に活性ケイ酸を使用することが好ましい。 The silicon component contained in the titanium oxide particle dispersion suppresses agglomeration and precipitation of titanium oxide and iron components when iron components are added, thereby preventing deterioration in the quality of the photocatalytic thin film and suppressing the deterioration of the photocatalytic effect. , may be derived from silicon compounds, such as elemental silicon metal (Si), oxides (SiO, SiO 2 ), alkoxides (Si(OCH 3 ) 4 , Si(OC 2 H 5 ) 4 , Examples include Si(OCH(CH 3 ) 2 ) 4 ), silicates (sodium salts, potassium salts), and activated silicic acids obtained by removing at least a portion of ions such as sodium and potassium from these silicates. You may use 1 type or a combination of 2 or more types. Among these, it is preferable to use silicates (sodium silicate) and active silicic acid, especially active silicic acid.

酸化チタン粒子分散液に含まれるケイ素成分の含有量は、チタンとのモル比(Ti/Si)で1~10,000、好ましくは2~5,000、より好ましくは5~2,000である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、酸化チタンの凝集・沈殿の抑制効果が不十分となることがあるためである。 The content of the silicon component contained in the titanium oxide particle dispersion is 1 to 10,000, preferably 2 to 5,000, more preferably 5 to 2,000 in molar ratio with titanium (Ti/Si). . If the molar ratio is less than 1, the content of titanium oxide may decrease and the photocatalytic effect may not be sufficiently exhibited, and if it exceeds 10,000, the effect of suppressing agglomeration and precipitation of titanium oxide will be insufficient. This is because there are certain things.

光触媒薄膜の光触媒活性を更に高めるために、酸化チタン粒子分散液に更に遷移金属成分(モリブデン、タングステン、バナジウム)を添加する場合、酸化チタン粒子分散液に含まれる遷移金属成分の含有量は、遷移金属成分の種類に応じて適宜選定し得るが、チタンとのモル比(Ti/遷移金属)で10~10,000であることが好ましい。 In order to further increase the photocatalytic activity of the photocatalytic thin film, when a transition metal component (molybdenum, tungsten, vanadium) is further added to the titanium oxide particle dispersion, the content of the transition metal component contained in the titanium oxide particle dispersion is Although it can be appropriately selected depending on the type of metal component, the molar ratio with titanium (Ti/transition metal) is preferably 10 to 10,000.

酸化チタン粒子分散液に含まれる遷移金属成分にモリブデンを選択する場合、モリブデン成分は酸化チタン粒子に固溶させる場合に使用したものと同様のモリブデン化合物から誘導されるものであればよい。 When molybdenum is selected as the transition metal component contained in the titanium oxide particle dispersion, the molybdenum component may be derived from the same molybdenum compound as that used in solid solution in the titanium oxide particles.

酸化チタン粒子分散液に含まれるモリブデン成分の含有量は、チタンとのモル比(Ti/Mo)で10~10,000、好ましくは50~5,000、より好ましくは100~3,000である。これは、モル比が10未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、光触媒活性が不十分となることがあるためである。 The content of the molybdenum component contained in the titanium oxide particle dispersion is 10 to 10,000, preferably 50 to 5,000, more preferably 100 to 3,000 in molar ratio with titanium (Ti/Mo). . This is because if the molar ratio is less than 10, the content of titanium oxide may decrease and the photocatalytic effect may not be sufficiently exhibited, and if it exceeds 10,000, the photocatalytic activity may be insufficient.

酸化チタン粒子分散液に含まれる遷移金属成分にタングステンを選択する場合、タングステン成分は酸化チタン粒子に固溶させる場合に使用したものと同様のタングステン化合物から誘導されるものであればよい。 When selecting tungsten as the transition metal component contained in the titanium oxide particle dispersion, the tungsten component may be one derived from the same tungsten compound as that used in solid solution in the titanium oxide particles.

酸化チタン粒子分散液に含まれるタングステン成分の含有量は、チタンとのモル比(Ti/W)で10~10,000、好ましくは50~5,000、より好ましくは100~3,000である。これは、モル比が10未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、光触媒活性が不十分となることがあるためである。 The content of the tungsten component contained in the titanium oxide particle dispersion is 10 to 10,000, preferably 50 to 5,000, more preferably 100 to 3,000 in molar ratio with titanium (Ti/W). . This is because if the molar ratio is less than 10, the content of titanium oxide may decrease and the photocatalytic effect may not be sufficiently exhibited, and if it exceeds 10,000, the photocatalytic activity may be insufficient.

酸化チタン粒子分散液に含まれる遷移金属成分にバナジウムを選択する場合、バナジウム成分は酸化チタン粒子に固溶させる場合に使用したものと同様のバナジウム化合物から誘導されるものであればよい。 When vanadium is selected as the transition metal component contained in the titanium oxide particle dispersion, the vanadium component may be derived from the same vanadium compound as that used in solid solution in the titanium oxide particles.

酸化チタン粒子分散液に含まれるバナジウム成分の含有量は、チタンとのモル比(Ti/V)で10~10,000、好ましくは50~5,000、より好ましくは100~3,000である。これは、モル比が10未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、光触媒活性が不十分となることがあるためである。 The content of the vanadium component contained in the titanium oxide particle dispersion is 10 to 10,000, preferably 50 to 5,000, more preferably 100 to 3,000 in terms of molar ratio to titanium (Ti/V). . This is because if the molar ratio is less than 10, the content of titanium oxide may decrease and the photocatalytic effect may not be sufficiently exhibited, and if it exceeds 10,000, the photocatalytic activity may be insufficient.

酸化チタン粒子分散液に含まれる遷移金属成分として、モリブデン、タングステン及びバナジウムの中から複数を選択することもでき、その際の各成分量は上記範囲より選択することができる。但し、各成分量の合計とチタンとのモル比[Ti/(Mo+W+V)]は、10以上10,000より小さい。 As the transition metal component contained in the titanium oxide particle dispersion, a plurality of molybdenum, tungsten, and vanadium can be selected, and the amount of each component can be selected from the above range. However, the molar ratio [Ti/(Mo+W+V)] between the total amount of each component and titanium is 10 or more and less than 10,000.

鉄成分及びケイ素成分を含有する酸化チタン粒子分散液中の酸化チタン粒子は、レーザー光を用いた動的光散乱法により測定される体積基準の50%累積分布径(以下、D50と表記することがある)が、それぞれ3~50nmであることが好ましく、より好ましくは3~40nm、更に好ましくは3~30nmである。D50が、3nm未満の場合、光触媒活性が不十分になることがあり、50nm超過の場合、分散液が不透明となることがあるためである。 The titanium oxide particles in the titanium oxide particle dispersion containing an iron component and a silicon component have a volume-based 50% cumulative distribution diameter (hereinafter referred to as D 50 ) measured by a dynamic light scattering method using laser light. ) is preferably 3 to 50 nm, more preferably 3 to 40 nm, even more preferably 3 to 30 nm. If D 50 is less than 3 nm, the photocatalytic activity may become insufficient, and if it exceeds 50 nm, the dispersion may become opaque.

また、体積基準の90%累積分布径(以下、D90と表記することがある)は、それぞれ5~100nmであることが好ましく、より好ましくは5~80nmである。D90が、5nm未満の場合、光触媒活性が不十分になることがあり、100nm超過の場合、分散液が不透明となることがあるためである。
本発明の酸化チタン粒子はD50及びD90が上述した範囲にある粒子であることが、高い光触媒活性を有し、かつ透明性の高い分散液となるため、好ましい。
なお、上記酸化チタン粒子分散液中の酸化チタン粒子のD50及びD90を測定する装置としては、例えば、ELSZ-2000ZS(大塚電子(株)製)、ナノトラックUPA-EX150(日機装(株)製)、LA-910(堀場製作所(株)製)等を使用することができる。
Further, the volume-based 90% cumulative distribution diameter (hereinafter sometimes referred to as D 90 ) is preferably 5 to 100 nm, more preferably 5 to 80 nm. If D 90 is less than 5 nm, the photocatalytic activity may become insufficient, and if it exceeds 100 nm, the dispersion may become opaque.
It is preferable that the titanium oxide particles of the present invention have D 50 and D 90 within the above-mentioned ranges, since this results in a dispersion having high photocatalytic activity and high transparency.
The devices for measuring the D 50 and D 90 of the titanium oxide particles in the titanium oxide particle dispersion include, for example, ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.) and Nanotrack UPA-EX150 (manufactured by Nikkiso Co., Ltd.). (manufactured by Horiba, Ltd.), LA-910 (manufactured by Horiba, Ltd.), etc. can be used.

酸化チタン粒子分散液中の酸化チタン粒子の濃度は、所要の厚さの光触媒薄膜の作製し易さの点で、0.01~20質量%が好ましく、特に0.5~10質量%が好ましい。 The concentration of titanium oxide particles in the titanium oxide particle dispersion is preferably 0.01 to 20% by mass, particularly preferably 0.5 to 10% by mass, from the viewpoint of ease of producing a photocatalytic thin film with a required thickness. .

更に、酸化チタン粒子分散液には、後述する各種部材表面に該分散液を塗布し易くすると共に該粒子を接着し易いようにする目的でバインダーを添加してもよい。バインダーとしては、例えば、ケイ素、アルミニウム、チタン、ジルコニウム等を含む金属化合物系バインダーやフッ素系樹脂、アクリル系樹脂、ウレタン系樹脂等を含む有機樹脂系バインダー等が挙げられる。 Further, a binder may be added to the titanium oxide particle dispersion for the purpose of making it easier to apply the dispersion to the surfaces of various members described later and to make it easier to adhere the particles. Examples of the binder include metal compound binders containing silicon, aluminum, titanium, zirconium, etc., and organic resin binders containing fluorine resins, acrylic resins, urethane resins, and the like.

バインダーと酸化チタンの質量比[酸化チタン/バインダー]としては、99~0.01、より好ましくは9~0.1、更に好ましくは2.5~0.4の範囲で添加して使用することが好ましい。これは、上記質量比が99超過の場合、各種部材表面への酸化チタン粒子の接着が不十分となり、0.01未満の場合、光触媒活性が不十分となることがあるためである。 The mass ratio of the binder and titanium oxide [titanium oxide/binder] should be added in the range of 99 to 0.01, more preferably 9 to 0.1, and still more preferably 2.5 to 0.4. is preferred. This is because if the mass ratio exceeds 99, adhesion of the titanium oxide particles to the surfaces of various members may be insufficient, and if it is less than 0.01, the photocatalytic activity may become insufficient.

中でも、光触媒活性及び透明性の高い優れた光触媒薄膜を得るためには、特にケイ素化合物系バインダーを質量比(酸化チタン/ケイ素化合物系バインダー)99~0.01、より好ましくは9~0.1、更に好ましくは2.5~0.4の範囲で添加して使用することが好ましい。ここで、ケイ素化合物系バインダーとは、固体状又は液体状のケイ素化合物を水性分散媒中に含んでなるケイ素化合物の、コロイド分散液、溶液、又はエマルジョンであって、具体的には、コロイダルシリカ(好ましい粒径1~150nm);シリケート等のケイ酸塩類溶液;シラン、シロキサン加水分解物エマルジョン;シリコーン樹脂エマルジョン;シリコーン-アクリル樹脂共重合体、シリコーン-ウレタン樹脂共重合体等のシリコーン樹脂と他の樹脂との共重合体のエマルジョン等を挙げることができる。 Among these, in order to obtain an excellent photocatalytic thin film with high photocatalytic activity and transparency, the silicon compound binder should be used at a mass ratio (titanium oxide/silicon compound binder) of 99 to 0.01, more preferably 9 to 0.1. , more preferably in the range of 2.5 to 0.4. Here, the silicon compound binder is a colloidal dispersion, solution, or emulsion of a silicon compound containing a solid or liquid silicon compound in an aqueous dispersion medium, and specifically, a silicon compound binder is a colloidal dispersion, solution, or emulsion of a silicon compound containing a solid or liquid silicon compound in an aqueous dispersion medium. (preferred particle size 1 to 150 nm); solutions of silicates such as silicates; emulsions of silane and siloxane hydrolysates; silicone resin emulsions; silicone resins such as silicone-acrylic resin copolymers, silicone-urethane resin copolymers, etc. Examples include emulsions of copolymers with resins.

<酸化チタン粒子分散液の製造方法>
本発明の酸化チタン粒子分散液の製造方法は、酸化チタン粒子分散液と鉄成分及びケイ素成分の溶液または分散液とをそれぞれ製造し、酸化チタン粒子分散液と鉄成分及びケイ素成分の溶液または分散液とを混合することにより調製される。
<Method for producing titanium oxide particle dispersion>
The method for producing a titanium oxide particle dispersion of the present invention includes producing a titanium oxide particle dispersion and a solution or dispersion of an iron component and a silicon component, respectively, and manufacturing a titanium oxide particle dispersion and a solution or dispersion of an iron component and a silicon component. It is prepared by mixing with liquid.

鉄成分及びケイ素成分を含有する酸化チタン粒子分散液の製造方法としては、具体的には下記工程(1)~(4)を有する製造方法を挙げることができる。
(1)原料チタン化合物、塩基性物質、過酸化水素及び水性分散媒から、ペルオキソチタン酸溶液を製造する工程
(2)上記(1)の工程で製造したペルオキソチタン酸溶液を、圧力制御の下、80~250℃で加熱し、酸化チタン粒子分散液を得る工程
(3)鉄化合物、ケイ素化合物及び水性分散媒から、鉄成分及びケイ素成分の溶液または分散液を製造する工程
(4)上記(2)の工程で製造した酸化チタン粒子分散液と、(3)の工程で製造した鉄成分及びケイ素成分の溶液または分散液を混合して分散液を得る工程

なお、酸化チタン粒子にスズ成分及び/または遷移金属成分を固溶する場合、上述の工程(1)において原料チタン化合物に、スズ化合物及び/または遷移金属化合物を添加する以外は同様にしてスズ成分及び/または遷移金属成分を固溶した、鉄成分及びケイ素成分を含有する、酸化チタン粒子分散液を得ることができる。
また、光触媒薄膜の光触媒活性を更に高めるために、酸化チタン粒子分散液が遷移金属成分を含有する場合、上述の工程(3)において更に遷移金属化合物を添加する以外は同様にして、鉄成分、ケイ素成分及び遷移金属成分を含有する酸化チタン粒子分散液を得ることができる。
As a method for producing a titanium oxide particle dispersion containing an iron component and a silicon component, specifically, a production method having the following steps (1) to (4) can be mentioned.
(1) A step of producing a peroxotitanic acid solution from a raw material titanium compound, a basic substance, hydrogen peroxide, and an aqueous dispersion medium.(2) A step of producing a peroxotitanic acid solution produced in step (1) above under pressure control. (3) Step of producing a solution or dispersion of iron components and silicon components from an iron compound, a silicon compound, and an aqueous dispersion medium (4) The above ( A step of mixing the titanium oxide particle dispersion produced in step 2) and the solution or dispersion of iron components and silicon components produced in step (3) to obtain a dispersion.

In addition, when dissolving a tin component and/or a transition metal component in titanium oxide particles, the tin component is added in the same manner except that the tin compound and/or transition metal compound is added to the raw material titanium compound in step (1) above. and/or a titanium oxide particle dispersion containing an iron component and a silicon component in which a transition metal component is dissolved can be obtained.
In addition, in order to further enhance the photocatalytic activity of the photocatalytic thin film, if the titanium oxide particle dispersion contains a transition metal component, the iron component, A titanium oxide particle dispersion containing a silicon component and a transition metal component can be obtained.

工程(1)~(2)が酸化チタン粒子分散液を得る工程であり、工程(3)が鉄成分及びケイ素成分の溶液または分散液を得る工程であり、そして、工程(4)は鉄成分及びケイ素成分が表面に付着した酸化チタン粒子を含有する分散液を得る工程である。 Steps (1) and (2) are steps for obtaining a titanium oxide particle dispersion, step (3) is a step for obtaining a solution or dispersion of an iron component and a silicon component, and step (4) is a step for obtaining a titanium oxide particle dispersion. and a step of obtaining a dispersion containing titanium oxide particles having silicon components attached to their surfaces.

・工程(1):
工程(1)では、原料チタン化合物、塩基性物質及び過酸化水素を水性分散媒中で反応させることにより、ペルオキソチタン酸溶液を製造する。
より具体的には、水性分散媒中の原料チタン化合物に塩基性物質を添加して水酸化チタンとし、含有する金属イオン以外の不純物イオンを除去し、過酸化水素を添加してペルオキソチタン酸溶液を得る。
・Process (1):
In step (1), a peroxotitanic acid solution is produced by reacting a raw material titanium compound, a basic substance, and hydrogen peroxide in an aqueous dispersion medium.
More specifically, a basic substance is added to the raw material titanium compound in an aqueous dispersion medium to form titanium hydroxide, impurity ions other than the contained metal ions are removed, and hydrogen peroxide is added to form a peroxotitanic acid solution. get.

スズ成分及び/または遷移金属成分を固溶させる場合は、工程(1)においてスズ化合物及び/または遷移金属化合物を添加する。
このときの反応方法としては、下記i)~iii)の方法のいずれでもよい。

i)水性分散媒中の原料チタン化合物及び塩基性物質に対して、スズ化合物及び遷移金属化合物を添加して溶解させてから、スズ成分及び遷移金属成分含有水酸化チタンとし、含有する金属イオン以外の不純物イオンを除去し、過酸化水素を添加してスズ成分及び遷移金属成分含有ペルオキソチタン酸とする方法

ii)水性分散媒中の原料チタン化合物に塩基性物質を添加して水酸化チタンとし、含有する金属イオン以外の不純物イオンを除去した後にスズ化合物及び遷移金属化合物を添加し、次いで過酸化水素を添加することでスズ成分及び遷移金属成分含有ペルオキソチタン酸とする方法

iii)水性分散媒中の原料チタン化合物に塩基性物質を添加して水酸化チタンとし、含有する金属イオン以外の不純物イオンを除去し、過酸化水素を添加してペルオキソチタン酸とした後にスズ化合物及び遷移金属化合物を添加して、スズ成分及び遷移金属成分含有ペルオキソチタン酸とする方法

なお、i)の方法の前段において、「水性分散媒中の原料チタン化合物及び塩基性物質」を、「原料チタン化合物を分散させた水性分散媒」と「塩基性物質を分散させた水性分散媒」のように2液の水性分散媒に分けて、スズ化合物及び遷移金属化合物のそれぞれの化合物の当該2液への溶解性に従って、それぞれの化合物を当該2液のいずれか一方又は両方へ溶解させた後に、両者を混合してもよい。
When the tin component and/or the transition metal component are dissolved in solid solution, the tin compound and/or the transition metal compound are added in step (1).
The reaction method at this time may be any of the following methods i) to iii).

i) Add and dissolve a tin compound and a transition metal compound to the raw material titanium compound and basic substance in an aqueous dispersion medium, and then form titanium hydroxide containing a tin component and a transition metal component, excluding the metal ions contained. A method of removing impurity ions and adding hydrogen peroxide to obtain peroxotitanic acid containing a tin component and a transition metal component.

ii) A basic substance is added to the raw material titanium compound in an aqueous dispersion medium to form titanium hydroxide, and after removing impurity ions other than the contained metal ions, a tin compound and a transition metal compound are added, and then hydrogen peroxide is added. A method of producing peroxotitanic acid containing a tin component and a transition metal component by adding

iii) A basic substance is added to the raw material titanium compound in an aqueous dispersion medium to form titanium hydroxide, impurity ions other than the contained metal ions are removed, hydrogen peroxide is added to form peroxotitanic acid, and then a tin compound is formed. and a method of adding a transition metal compound to obtain peroxotitanic acid containing a tin component and a transition metal component.

In addition, in the first step of method i), "the raw material titanium compound and the basic substance in the aqueous dispersion medium" are replaced with "the aqueous dispersion medium in which the raw material titanium compound is dispersed" and "the aqueous dispersion medium in which the basic substance is dispersed". '', and dissolve each compound in either or both of the two liquids according to the solubility of each compound of the tin compound and the transition metal compound in the two liquids. After that, both may be mixed.

ここで、原料チタン化合物としては、例えば、チタンの塩化物、硝酸塩、硫酸塩等の無機酸塩、蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸塩、これらの水溶液にアルカリを添加して加水分解することにより析出させた水酸化チタン等が挙げられ、これらの1種又は2種以上を組み合わせて使用してもよい。その中でも、チタンの塩化物(TiCl3、TiCl4)を使用することが好ましい。 Here, raw material titanium compounds include, for example, inorganic acid salts of titanium such as chloride, nitrate, and sulfate; organic acid salts such as formic acid, citric acid, oxalic acid, lactic acid, and glycolic acid; and alkali added to an aqueous solution of these. Examples include titanium hydroxide precipitated by hydrolysis, and these may be used alone or in combination of two or more. Among these, it is preferable to use titanium chloride (TiCl 3 , TiCl 4 ).

スズ化合物、遷移金属化合物、及び水性分散媒としては、それぞれ前述のものが、前述の配合となるように使用される。なお、原料チタン化合物と水性分散媒とから形成される原料チタン化合物水溶液の濃度は、60質量%以下、特に30質量%以下であることが好ましい。濃度の下限は適宜選定されるが、通常1質量%以上であることが好ましい。 As the tin compound, transition metal compound, and aqueous dispersion medium, those mentioned above are used so as to have the above-mentioned formulation. The concentration of the raw material titanium compound aqueous solution formed from the raw material titanium compound and the aqueous dispersion medium is preferably 60% by mass or less, particularly 30% by mass or less. Although the lower limit of the concentration is appropriately selected, it is usually preferably 1% by mass or more.

塩基性物質は、原料チタン化合物をスムーズに水酸化チタンにするためのもので、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属の水酸化物、アンモニア、アルカノールアミン、アルキルアミン等のアミン化合物が挙げられ、その中でも特にアンモニアを使用することが好ましく、原料チタン化合物水溶液のpHを7以上、特にpH7~10になるような量で添加して使用される。なお、塩基性物質は、上記水性分散媒と共に適当な濃度の水溶液にして使用してもよい。 Basic substances are used to smoothly convert raw material titanium compounds into titanium hydroxide, such as alkali metal or alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide, ammonia, alkanolamines, and alkyl hydroxides. Examples include amine compounds such as amines, among which it is particularly preferable to use ammonia, which is added in an amount such that the pH of the raw material titanium compound aqueous solution becomes 7 or more, particularly pH 7 to 10. Note that the basic substance may be used in an aqueous solution of an appropriate concentration together with the aqueous dispersion medium.

過酸化水素は、上記原料チタン化合物又は水酸化チタンをペルオキソチタン、つまりTi-O-O-Ti結合を含む酸化チタン化合物に変換させるためのものであり、通常、過酸化水素水の形態で使用される。過酸化水素の添加量は、Tiの物質量、又はTi、遷移金属及びSnの合計物質量の1.5~20倍モルとすることが好ましい。また、過酸化水素を添加して原料チタン化合物又は水酸化チタンをペルオキソチタン酸にする反応において、反応温度は5~80℃とすることが好ましく、反応時間は30分~24時間とすることが好ましい。 Hydrogen peroxide is used to convert the raw material titanium compound or titanium hydroxide into peroxotitanium, that is, a titanium oxide compound containing a Ti-O-O-Ti bond, and is usually used in the form of aqueous hydrogen peroxide. be done. The amount of hydrogen peroxide added is preferably 1.5 to 20 times the mole amount of Ti or the total amount of Ti, transition metals, and Sn. In addition, in the reaction of adding hydrogen peroxide to convert the raw material titanium compound or titanium hydroxide into peroxotitanic acid, the reaction temperature is preferably 5 to 80°C, and the reaction time is preferably 30 minutes to 24 hours. preferable.

こうして得られるペルオキソチタン酸溶液は、pH調整等のため、アルカリ性物質又は酸性物質を含んでいてもよい。ここでいう、アルカリ性物質としては、例えば、アンモニア、水酸化ナトリウム、水酸化カルシウム、アルキルアミン等が挙げられ、酸性物質としては、例えば、硫酸、硝酸、塩酸、炭酸、リン酸、過酸化水素等の無機酸及び蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸が挙げられる。この場合、得られたペルオキソチタン酸溶液のpHは、1~9、特に4~7であることが取り扱いの安全性の点で好ましい。 The peroxotitanic acid solution obtained in this way may contain an alkaline substance or an acidic substance for pH adjustment and the like. Examples of alkaline substances include ammonia, sodium hydroxide, calcium hydroxide, alkyl amines, etc., and examples of acidic substances include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, phosphoric acid, hydrogen peroxide, etc. and organic acids such as formic acid, citric acid, oxalic acid, lactic acid, and glycolic acid. In this case, the pH of the obtained peroxotitanic acid solution is preferably 1 to 9, particularly 4 to 7, from the viewpoint of handling safety.

・工程(2):
工程(2)では、上記工程(1)で得られたペルオキソチタン酸溶液を、圧力制御の下、80~250℃、好ましくは100~250℃の温度において0.01~24時間水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80~250℃が適切であり、その結果、ペルオキソチタン酸は、酸化チタン粒子に変換されていく。なお、ここで圧力制御の下とは、反応温度が分散媒の沸点を超える場合には、反応温度が維持できるように、適宜加圧を行い、反応温度を維持することをいい、分散媒の沸点以下の温度とする場合に大気圧で制御する場合を含む。ここで用いる圧力は、通常0.12~4.5MPa程度、好ましくは0.15~4.5MPa程度、より好ましくは0.20~4.5MPa程度である。反応時間は、1分~24時間であることが好ましい。この工程(2)により、酸化チタン粒子分散液が得られる。
この工程(2)で得られる酸化チタン粒子分散液のpHは、8~14であることが好ましく、10~14であることがより好ましい。この工程(2)で得られる酸化チタン粒子分散液は前述のpHとなるように、pH調整等のため、アルカリ性物質又は酸性物質を含んでいてもよく、アルカリ性物質、酸性物質及びpH調整の方法は、前述の工程(1)で得られるペルオキソチタン酸溶液と同様である。
・Process (2):
In step (2), the peroxotitanic acid solution obtained in step (1) above is subjected to a hydrothermal reaction at a temperature of 80 to 250°C, preferably 100 to 250°C, for 0.01 to 24 hours under pressure control. provide A suitable reaction temperature is 80 to 250° C. from the viewpoint of reaction efficiency and controllability of the reaction, and as a result, peroxotitanic acid is converted into titanium oxide particles. Note that under pressure control here means that when the reaction temperature exceeds the boiling point of the dispersion medium, pressure is applied appropriately to maintain the reaction temperature. This includes cases in which the temperature is controlled at atmospheric pressure when the temperature is below the boiling point. The pressure used here is usually about 0.12 to 4.5 MPa, preferably about 0.15 to 4.5 MPa, and more preferably about 0.20 to 4.5 MPa. The reaction time is preferably 1 minute to 24 hours. Through this step (2), a titanium oxide particle dispersion is obtained.
The pH of the titanium oxide particle dispersion obtained in step (2) is preferably 8 to 14, more preferably 10 to 14. The titanium oxide particle dispersion obtained in this step (2) may contain an alkaline substance or an acidic substance in order to adjust the pH to the above-mentioned pH. is the same as the peroxotitanic acid solution obtained in step (1) above.

ここで得られる酸化チタン粒子の粒子径(D50及びD90)は、既に述べた通りの範囲のものが好ましく、反応条件を調整することで粒子径を制御することが可能であり、例えば、反応時間や昇温時間を短くすることによって粒子径を小さくすることができる。 The particle diameters (D 50 and D 90 ) of the titanium oxide particles obtained here are preferably within the ranges described above, and the particle diameter can be controlled by adjusting the reaction conditions, for example, The particle size can be reduced by shortening the reaction time and temperature rise time.

・工程(3):
工程(3)では、上記工程(1)~(2)とは別に、原料鉄化合物及び原料ケイ素化合物を水性分散媒中に溶解または分散させることにより、鉄成分及びケイ素成分の溶液または分散液を製造する。
・Process (3):
In step (3), separately from the above steps (1) and (2), a solution or dispersion of the iron component and silicon component is prepared by dissolving or dispersing the raw material iron compound and the raw material silicon compound in an aqueous dispersion medium. Manufacture.

原料鉄化合物としては、上述した鉄化合物、例えば、鉄の金属単体(Fe)、酸化物(Fe23、Fe34)、水酸化物(Fe(OH)2、Fe(OH)3)、オキシ水酸化物(FeO(OH))、塩化物(FeCl2、FeCl3)、硝酸塩(Fe(NO)3)、硫酸塩(FeSO4、Fe2(SO43)、ハロゲン(Br、I)化物、錯化合物等が挙げられ、これらの1種又は2種以上を組み合わせて使用してもよい。その中でも、酸化物(Fe23、Fe34)、オキシ水酸化物(FeO(OH))、塩化物(FeCl2、FeCl3)、硝酸塩(Fe(NO)3)、硫酸塩(FeSO4、Fe2(SO43)を使用することが好ましい。
原料ケイ素化合物としては、上述したケイ素化合物、例えば、ケイ素の金属単体(Si)、酸化物(SiO、SiO2)、アルコキシド(Si(OCH34、Si(OC254、Si(OCH(CH324)、ケイ酸塩(ナトリウム塩、カリウム塩)及びこのケイ酸塩からナトリウムやカリウム等のイオンを除去した活性ケイ酸等が挙げられ、これらの1種又は2種類以上を組み合わせて使用してもよい。その中でも、ケイ酸塩(ケイ酸ナトリウム)や活性ケイ酸を使用することが好ましい。活性ケイ酸は、例えばケイ酸ナトリウムを純水に溶解したケイ酸ナトリウム水溶液に陽イオン交換樹脂を添加してナトリウムイオンの少なくとも一部を除去することで得られ、得られた活性ケイ酸溶液のpHが2~10、好ましくは2~7となるように陽イオン交換樹脂を添加することが好ましい。
The raw material iron compounds include the above-mentioned iron compounds, such as elemental iron metal (Fe), oxides (Fe 2 O 3 , Fe 3 O 4 ), and hydroxides (Fe(OH) 2 , Fe(OH) 3 ) . ), oxyhydroxides (FeO(OH)), chlorides (FeCl 2 , FeCl 3 ), nitrates (Fe(NO) 3 ), sulfates (FeSO 4 , Fe 2 (SO 4 ) 3 ), halogens (Br , I) compounds, complex compounds, etc., and these may be used alone or in combination of two or more. Among them, oxides (Fe 2 O 3 , Fe 3 O 4 ), oxyhydroxides (FeO(OH)), chlorides (FeCl 2 , FeCl 3 ), nitrates (Fe(NO) 3 ), sulfates ( It is preferable to use FeSO 4 , Fe 2 (SO 4 ) 3 ).
As the raw material silicon compound, the above-mentioned silicon compounds, such as metal elemental silicon (Si), oxide (SiO, SiO 2 ), alkoxide (Si(OCH 3 ) 4 , Si(OC 2 H 5 ) 4 , Si( OCH (CH 3 ) 2 ) 4 ), silicates (sodium salts, potassium salts), and activated silicic acid obtained by removing ions such as sodium and potassium from these silicates, and one or two of these. The above may be used in combination. Among these, it is preferable to use silicates (sodium silicate) and activated silicic acid. Active silicic acid can be obtained, for example, by adding a cation exchange resin to an aqueous sodium silicate solution in which sodium silicate is dissolved in pure water to remove at least a portion of the sodium ions, and the resulting activated silicic acid solution It is preferable to add the cation exchange resin so that the pH is 2 to 10, preferably 2 to 7.

こうして得られる鉄成分及びケイ素成分含有溶液または分散液も、pH調整等のため、アルカリ性物質又は酸性物質を含んでいてもよく、ここでいう、アルカリ性物質及び酸性物質、そしてpH調整も前述と同様に取り扱うことができる。
鉄成分及びケイ素成分含有溶液または分散液のpHは1~7であることが好ましく、1~5であることがより好ましい。
The iron component and silicon component-containing solution or dispersion obtained in this way may also contain an alkaline substance or an acidic substance for pH adjustment, etc. The alkaline substance, acidic substance, and pH adjustment mentioned here are the same as described above. can be handled.
The pH of the iron component and silicon component-containing solution or dispersion is preferably 1 to 7, more preferably 1 to 5.

工程(3)で製造する鉄成分及びケイ素成分の溶液または分散液中の原料鉄化合物濃度は0.001~10質量%が好ましく、0.01~5質量%がより好ましく、原料ケイ素化合物濃度は0.001~10質量%が好ましく、0.01~5質量%がより好ましい。 The raw material iron compound concentration in the solution or dispersion of the iron component and silicon component produced in step (3) is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, and the raw material silicon compound concentration is It is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight.

また、この鉄成分及びケイ素成分の溶液または分散液は、更に遷移金属成分(モリブデン、タングステン、バナジウム)を溶解または分散していてもよい。
遷移金属成分としてはモリブデン、タングステン、バナジウムが挙げられ、その原料化合物としては上述のようなものを挙げることができる。
工程(3)で製造する鉄成分及びケイ素成分の溶液または分散液に更に遷移金属成分(モリブデン、タングステン、バナジウム)を溶解または分散する場合の添加量は、遷移金属成分の種類に応じて適宜選定し得るが、チタンとのモル比(Ti/遷移金属)で10~10,000であることが好ましい。
酸化チタン粒子に添加する遷移金属成分として、モリブデン、タングステン、バナジウムの中から複数を選択することもでき、その際の各成分量は上記範囲より選択することができる。但し、各成分量の合計とチタンとのモル比[Ti/(Mo+W+V)]は、10以上10,000より小さい。
The solution or dispersion of the iron component and silicon component may further have a transition metal component (molybdenum, tungsten, vanadium) dissolved or dispersed therein.
Examples of the transition metal component include molybdenum, tungsten, and vanadium, and examples of the raw material compounds include those mentioned above.
When a transition metal component (molybdenum, tungsten, vanadium) is further dissolved or dispersed in the solution or dispersion of the iron component and silicon component produced in step (3), the amount added is appropriately selected depending on the type of the transition metal component. However, the molar ratio with titanium (Ti/transition metal) is preferably 10 to 10,000.
As the transition metal component added to the titanium oxide particles, a plurality of molybdenum, tungsten, and vanadium can be selected from among molybdenum, tungsten, and vanadium, and the amount of each component can be selected from the above range. However, the molar ratio [Ti/(Mo+W+V)] between the total amount of each component and titanium is 10 or more and less than 10,000.

・工程(4):
工程(4)では、工程(2)で得られた酸化チタン粒子分散液と工程(3)で得られた鉄成分及びケイ素成分の溶液または分散液とを混合する。混合方法は特に限定されず、攪拌機で撹拌する方法でも、超音波分散機で分散させる方法でもよい。混合時の温度は20~100℃、好ましくは20~80℃、より好ましくは20~40℃であり、時間は1分~3時間であることが好ましい。混合比については、酸化チタン粒子分散液中のTiとFe及びSiのモル比が、既に述べた通りのモル比になるように混合すればよい。
・Process (4):
In step (4), the titanium oxide particle dispersion obtained in step (2) and the solution or dispersion of iron and silicon components obtained in step (3) are mixed. The mixing method is not particularly limited, and may be a method of stirring with a stirrer or a method of dispersing with an ultrasonic disperser. The temperature during mixing is 20 to 100°C, preferably 20 to 80°C, more preferably 20 to 40°C, and the time is preferably 1 minute to 3 hours. Regarding the mixing ratio, the molar ratios of Ti, Fe, and Si in the titanium oxide particle dispersion may be as described above.

上記の工程(1)~(4)で得られた酸化チタン粒子分散液は、pH調整等のため、アルカリ性物質又は酸性物質を含んでいてもよく、pH調整剤としては上述のようなものを使用することができる。また、イオン成分濃度の調整のためにイオン交換処理やろ過洗浄処理を行ったり、溶媒成分変更のために溶媒置換処理を行ったりしてもよい。
酸化チタン粒子分散液のpHは7~14であることが好ましく、8~12であることがより好ましい。
The titanium oxide particle dispersion obtained in the above steps (1) to (4) may contain an alkaline substance or an acidic substance for pH adjustment, etc., and the above-mentioned ones may be used as the pH adjuster. can be used. Further, ion exchange treatment or filtration cleaning treatment may be performed to adjust the ionic component concentration, or solvent replacement treatment may be performed to change the solvent component.
The pH of the titanium oxide particle dispersion is preferably 7 to 14, more preferably 8 to 12.

酸化チタン粒子分散液に含まれる酸化チタン粒子の質量は、酸化チタン粒子分散液の質量と濃度から算出できる。なお、酸化チタン粒子分散液の濃度の測定方法は、酸化チタン粒子分散液の一部をサンプリングし、105℃で1時間加熱して溶媒を揮発させた後の不揮発分(酸化チタン粒子)の質量とサンプリングした酸化チタン粒子分散液の質量から、次式に従い算出することができる。
酸化チタン粒子分散液の濃度(%)=〔不揮発分質量(g)/酸化チタン粒子分散液質量(g)〕×100
The mass of the titanium oxide particles contained in the titanium oxide particle dispersion can be calculated from the mass and concentration of the titanium oxide particle dispersion. The concentration of the titanium oxide particle dispersion was measured by sampling a part of the titanium oxide particle dispersion, heating it at 105°C for 1 hour to volatilize the solvent, and then measuring the mass of the nonvolatile content (titanium oxide particles). From the mass of the sampled titanium oxide particle dispersion liquid, it can be calculated according to the following formula.
Concentration of titanium oxide particle dispersion (%) = [Non-volatile mass (g)/mass of titanium oxide particle dispersion (g)] x 100

こうして調製された酸化チタン粒子分散液中の鉄成分及びケイ素成分と酸化チタン粒子の合計の濃度は、上述した通り、所要の厚さの光触媒薄膜の作製し易さの点で、0.01~20質量%が好ましく、特に0.5~10質量%が好ましい。濃度調整については、濃度が所望の濃度より高い場合には、水性溶媒を添加して希釈することで濃度を下げることができ、所望の濃度より低い場合には、水性溶媒を揮発もしくは濾別することで濃度を上げることができる。なお、濃度は、上述のように算出することができる。 As mentioned above, the total concentration of the iron component, the silicon component, and the titanium oxide particles in the titanium oxide particle dispersion prepared in this manner is 0.01 to 0.01 to facilitate the production of a photocatalytic thin film of the required thickness. 20% by weight is preferred, particularly 0.5-10% by weight. Regarding concentration adjustment, if the concentration is higher than the desired concentration, the concentration can be lowered by adding an aqueous solvent to dilute it, and if it is lower than the desired concentration, the aqueous solvent is evaporated or filtered. This can increase the concentration. Note that the concentration can be calculated as described above.

また、上述した膜形成性を高めるバインダーを添加する場合には、上述したバインダーの溶液(水性バインダー溶液)を、混合した後に所望の濃度となるよう、上述のように濃度調整を行った酸化チタン粒子分散液に対して添加することが好ましい。
なお、酸化チタン粒子分散液に含まれるケイ素成分は酸化チタン粒子及び鉄成分の凝集・沈殿を抑制し、光触媒活性の低下を抑制するものであり、酸化チタン粒子と鉄成分を混合するときに同時に添加されるものである。一方、バインダーは、酸化チタン粒子分散液の膜形成性を高めるものであり、酸化チタン粒子分散液を調製後、塗工する前に添加されるものであり、両者は異なるものである。
In addition, when adding the above-mentioned binder that improves film-forming properties, titanium oxide whose concentration has been adjusted as described above so that the desired concentration is obtained after mixing the above-mentioned binder solution (aqueous binder solution). It is preferable to add it to the particle dispersion.
The silicon component contained in the titanium oxide particle dispersion suppresses aggregation and precipitation of the titanium oxide particles and iron component, and suppresses the decline in photocatalytic activity. It is added. On the other hand, the binder improves the film-forming properties of the titanium oxide particle dispersion, and is added after the titanium oxide particle dispersion is prepared and before coating, and the two are different.

<酸化チタン粒子>
本発明の酸化チタン粒子は、鉄成分及びケイ素成分が表面に付着していることを特徴とする。鉄成分及びケイ素成分は酸化チタン粒子表面の少なくとも一部に付着していればよく、全面に付着していてもよい。また、本発明の酸化チタン粒子は、鉄成分及びケイ素成分に加えて、更にモリブデン、タングステン及びバナジウム成分から選ばれる少なくとも1種の金属成分が表面に付着していてもよい。
<Titanium oxide particles>
The titanium oxide particles of the present invention are characterized in that an iron component and a silicon component are attached to the surface. The iron component and the silicon component need only be attached to at least a portion of the surface of the titanium oxide particles, and may be attached to the entire surface. Furthermore, in addition to the iron component and the silicon component, the titanium oxide particles of the present invention may have at least one metal component selected from molybdenum, tungsten, and vanadium components adhered to the surface.

酸化チタン粒子の表面に鉄成分及びケイ素成分を付着させる方法は特に限定されるものではないが、固体状態で混合する方法(酸化チタン粒子粉末と鉄成分及びケイ素成分からなる粉末を混合)、液体状態で混合する方法(酸化チタン粒子分散液と鉄成分及びケイ素成分からなる溶液または分散液を混合)、固体と液体を混合する方法(酸化チタン粒子粉末に鉄成分及びケイ素成分からなる溶液または分散液を混合、あるいは、酸化チタン粒子分散液に鉄成分及びケイ素成分からなる粉末を混合)などを挙げることができる。ケイ素成分は鉄成分の凝集を抑制する役割を担うため、鉄成分とケイ素成分を予め混合したのちに酸化チタン粒子と混合することが好ましい。
なかでも、液体状態で混合する方法が好ましく、上述した酸化チタン粒子分散液の製造方法のように、工程(1)~(4)による方法がより好ましい。
The method of adhering the iron component and silicon component to the surface of titanium oxide particles is not particularly limited, but methods include mixing in a solid state (mixing titanium oxide particle powder and powder consisting of iron and silicon components), liquid method. (mixing a titanium oxide particle dispersion with a solution or dispersion of an iron component and a silicon component); a method of mixing a solid and a liquid (a solution or dispersion of a titanium oxide particle powder with an iron component and a silicon component); Examples include mixing a liquid, or mixing a titanium oxide particle dispersion with a powder consisting of an iron component and a silicon component. Since the silicon component plays a role in suppressing agglomeration of the iron component, it is preferable to mix the iron component and the silicon component in advance and then mix them with the titanium oxide particles.
Among these, a method of mixing in a liquid state is preferred, and a method of steps (1) to (4) as in the above-mentioned method for producing a titanium oxide particle dispersion is more preferred.

酸化チタン粒子の表面には、混合した鉄成分及びケイ素成分の少なくとも一部が付着していればよく、混合した鉄成分及びケイ素成分の全てが付着していてもよい。さらには、鉄成分とケイ素成分が各々酸化チタン粒子表面に直接付着していることがよい。 At least a portion of the mixed iron component and silicon component may adhere to the surface of the titanium oxide particles, or all of the mixed iron component and silicon component may adhere to the surface of the titanium oxide particles. Furthermore, it is preferable that the iron component and the silicon component each directly adhere to the surface of the titanium oxide particles.

本発明の酸化チタン粒子の製造方法としては、上述した酸化チタン粒子分散液から製造することが好ましい。 As a method for producing titanium oxide particles of the present invention, it is preferable to produce them from the above-mentioned titanium oxide particle dispersion.

<酸化チタン粒子を含む光触媒薄膜・光触媒薄膜を表面に有する部材>
本発明の酸化チタン粒子分散液は、各種部材の表面に光触媒膜を形成させるために使用することができる。ここで、各種部材は、特に制限されないが、部材の材料としては、例えば、有機材料、無機材料が挙げられる。これらは、それぞれの目的、用途に応じた様々な形状を有することができる。
<Photocatalytic thin film containing titanium oxide particles/member having a photocatalytic thin film on the surface>
The titanium oxide particle dispersion of the present invention can be used to form a photocatalytic film on the surfaces of various members. Here, the various members are not particularly limited, but examples of the material of the members include organic materials and inorganic materials. These can have various shapes depending on their respective purposes and uses.

有機材料としては、例えば、塩化ビニル樹脂(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、アクリル樹脂、ポリアセタール、フッ素樹脂、シリコーン樹脂、エチレン-酢酸ビニル共重合体(EVA)、アクリロニトリル-ブタジエンゴム(NBR)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリビニルブチラール(PVB)、エチレン-ビニルアルコール共重合体(EVOH)、ポリイミド樹脂、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリエーテルエーテルイミド(PEEI)、ポリエーテルエーテルケトン(PEEK)、メラミン樹脂、フェノール樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂等の合成樹脂材料、天然ゴム等の天然材料、又は上記合成樹脂材料と天然材料との半合成材料が挙げられる。これらは、フィルム、シート、繊維材料、繊維製品、その他の成型品、積層体等の所要の形状、構成に製品化されていてもよい。 Examples of organic materials include vinyl chloride resin (PVC), polyethylene (PE), polypropylene (PP), polycarbonate (PC), acrylic resin, polyacetal, fluororesin, silicone resin, and ethylene-vinyl acetate copolymer (EVA). , acrylonitrile-butadiene rubber (NBR), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyvinyl butyral (PVB), ethylene-vinyl alcohol copolymer (EVOH), polyimide resin, polyphenylene sulfide (PPS), polyether Synthetic resin materials such as imide (PEI), polyether ether imide (PEEI), polyether ether ketone (PEEK), melamine resin, phenol resin, acrylonitrile-butadiene-styrene (ABS) resin, natural materials such as natural rubber, or Semi-synthetic materials of the above-mentioned synthetic resin materials and natural materials can be mentioned. These may be manufactured into desired shapes and configurations such as films, sheets, fiber materials, textile products, other molded products, and laminates.

無機材料としては、例えば、非金属無機材料、金属無機材料が包含される。非金属無機材料としては、例えば、ガラス、セラミック、石材等が挙げられる。これらは、タイル、硝子、ミラー、壁、意匠材等の様々な形に製品化されていてもよい。金属無機材料としては、例えば、鋳鉄、鋼材、鉄、鉄合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、亜鉛ダイキャスト等が挙げられる。これらは、上記金属無機材料のメッキが施されていてもよいし、上記有機材料が塗布されていてもよいし、上記有機材料又は非金属無機材料の表面に施すメッキであってもよい。 Examples of the inorganic material include non-metallic inorganic materials and metallic inorganic materials. Examples of nonmetallic inorganic materials include glass, ceramics, and stone. These may be manufactured into various shapes such as tiles, glass, mirrors, walls, and decorative materials. Examples of the metal inorganic material include cast iron, steel, iron, iron alloy, aluminum, aluminum alloy, nickel, nickel alloy, zinc die casting, and the like. These may be plated with the above metal inorganic material, may be coated with the above organic material, or may be plated on the surface of the above organic material or non-metal inorganic material.

本発明の酸化チタン粒子分散液は、上記各種部材の中でも、特に、PET等の高分子フィルム上に透明な光触媒薄膜を作製するのに有用である。 The titanium oxide particle dispersion of the present invention is particularly useful among the above-mentioned various members for producing a transparent photocatalyst thin film on a polymer film such as PET.

各種部材表面への光触媒薄膜の形成方法としては、酸化チタン粒子分散液を、例えば、上記部材表面に、スプレーコート、ディップコート等の公知の塗布方法により塗布した後、遠赤外線乾燥、IH乾燥、熱風乾燥等の公知の乾燥方法により乾燥させればよく、光触媒薄膜の厚さも種々選定され得るが、通常、10nm~10μmの範囲が好ましい。
これにより、上述した酸化チタン粒子の被膜が形成される。この場合、上記分散液に上述した量でバインダーが含まれている場合は、酸化チタン粒子とバインダーとを含む被膜が形成される。
As a method for forming photocatalytic thin films on the surfaces of various members, for example, a titanium oxide particle dispersion is applied to the surfaces of the above members by a known coating method such as spray coating or dip coating, and then far-infrared drying, IH drying, It may be dried by a known drying method such as hot air drying, and the thickness of the photocatalyst thin film can be selected from various values, but is usually preferably in the range of 10 nm to 10 μm.
As a result, the above-mentioned coating of titanium oxide particles is formed. In this case, if the dispersion liquid contains the binder in the amount described above, a film containing titanium oxide particles and the binder is formed.

このようにして形成される光触媒薄膜は、透明であり、特に紫外領域の光(波長10~400nm)において良好な光触媒作用が得られるものであり、該光触媒薄膜が形成された各種部材は、酸化チタンの光触媒作用により表面に吸着した有機物をより速やかに分解することから、該部材表面の清浄化、脱臭、抗菌等の効果を発揮することができるものである。 The photocatalytic thin film formed in this way is transparent and exhibits good photocatalytic action, especially in light in the ultraviolet region (wavelength 10 to 400 nm), and various members on which the photocatalytic thin film is formed are free from oxidation. Since the photocatalytic action of titanium more quickly decomposes organic matter adsorbed on the surface, it can exhibit effects such as cleaning, deodorizing, and antibacterial effects on the surface of the member.

以下に、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。本発明における各種の測定は次のようにして行った。 EXAMPLES Below, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. Various measurements in the present invention were performed as follows.

(1)分散液中の酸化チタン粒子の50%及び90%累積分布径(D50及びD90
分散液中の酸化チタン粒子のD50及びD90は、粒度分布測定装置(ELSZ-2000ZS(大塚電子(株)製))を使用して、レーザー光を用いた動的光散乱法により測定される体積基準の50%及び90%累積分布径として算出した。
(1) 50% and 90% cumulative distribution diameters (D 50 and D 90 ) of titanium oxide particles in the dispersion
The D 50 and D 90 of the titanium oxide particles in the dispersion were measured by a dynamic light scattering method using laser light using a particle size distribution analyzer (ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.)). It was calculated as the 50% and 90% cumulative distribution diameter based on the volume.

(2)光触媒薄膜のアセトアルデヒドガス分解性能試験
分散液を塗布、乾燥することで作製した光触媒薄膜の活性を、アセトアルデヒドガスの分解反応により評価した。評価はバッチ式ガス分解性能評価法により行った。
実施例又は比較例で調製した各酸化チタン粒子分散液を、A4サイズ(210mm×297mm)のPETフィルムの一面に酸化チタン粒子の乾燥質量が約20mgになるように#7のワイヤーバーコーターによって塗り広げて評価用サンプルを作製し、80℃に設定したオーブンで1時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプルを得た。
この評価用サンプルを用いて、酸化チタン粒子の光触媒活性を、アセトアルデヒドガスの分解反応により評価した。評価はバッチ式ガス分解性能評価法により行った。
具体的には、容積5Lの石英ガラス窓付きステンレス製セル内に評価用サンプルを設置したのち、該セルを湿度50%に調湿した初期濃度のアセトアルデヒドガスで満たし、該セル上部に設置した光源で光を照射した。酸化チタンの光触媒作用によりアセトアルデヒドガスが分解すると、該セル中のアセトアルデヒドガス濃度が低下する。そこで、その濃度変化を測定することで光触媒活性の強さを確認できる。アセトアルデヒドガス濃度は光音響マルチガスモニタ(商品名“INNOVA1412”、LumaSense社製)を用いて、光照射開始からアセトアルデヒドガス濃度が1ppm以下になるまでの時間を測定して光触媒活性を評価した。時間が短いほど光触媒活性が高く、時間が長いほど光触媒活性が低いことを示す。
(2) Acetaldehyde gas decomposition performance test of photocatalytic thin film The activity of the photocatalytic thin film produced by coating and drying a dispersion was evaluated by a decomposition reaction of acetaldehyde gas. The evaluation was performed using a batch-type gas decomposition performance evaluation method.
Each titanium oxide particle dispersion prepared in the examples or comparative examples was coated on one side of an A4 size (210 mm x 297 mm) PET film using a #7 wire bar coater so that the dry mass of titanium oxide particles was about 20 mg. A sample for evaluation was prepared by spreading it and dried in an oven set at 80° C. for 1 hour to obtain a sample for evaluation of acetaldehyde gas decomposition performance.
Using this evaluation sample, the photocatalytic activity of the titanium oxide particles was evaluated by a decomposition reaction of acetaldehyde gas. The evaluation was performed using a batch-type gas decomposition performance evaluation method.
Specifically, after placing an evaluation sample in a stainless steel cell with a quartz glass window and a volume of 5 L, the cell was filled with acetaldehyde gas at an initial concentration of 50% humidity, and a light source was placed above the cell. irradiated with light. When acetaldehyde gas is decomposed by the photocatalytic action of titanium oxide, the acetaldehyde gas concentration in the cell decreases. Therefore, the strength of photocatalytic activity can be confirmed by measuring the change in concentration. The photocatalytic activity was evaluated by measuring the time from the start of light irradiation until the acetaldehyde gas concentration became 1 ppm or less using a photoacoustic multi-gas monitor (trade name "INNOVA1412", manufactured by LumaSense). The shorter the time, the higher the photocatalytic activity, and the longer the time, the lower the photocatalytic activity.

紫外線照射下での光触媒活性評価において、光源にはUV蛍光ランプ(商品型番“FL10 BLB”、東芝ライテック(株))を使用し、放射照度が0.1mW/cm2の条件で紫外線を照射した。このとき、セル内のアセトアルデヒド初期濃度は20ppmとした。 In the photocatalytic activity evaluation under ultraviolet irradiation, a UV fluorescent lamp (product model number "FL10 BLB", Toshiba Lighting & Technology Co., Ltd.) was used as the light source, and ultraviolet rays were irradiated at an irradiance of 0.1 mW/ cm2 . . At this time, the initial concentration of acetaldehyde in the cell was 20 ppm.

(3)酸化チタン粒子の結晶相の同定
酸化チタン粒子の結晶相は、得られた酸化チタン粒子の分散液を105℃、3時間乾燥させて回収した酸化チタン粒子粉末の粉末X線回折(商品名“卓上型X線回折装置D2 PHASER”、ブルカー・エイエックスエス(株))を測定することで同定した。
(3) Identification of the crystalline phase of titanium oxide particles The crystalline phase of titanium oxide particles can be determined by powder X-ray diffraction analysis (product It was identified by measurement using a desktop X-ray diffractometer D2 PHASER (Bruker AXS, Inc.).

(4)酸化チタン粒子分散液の調製
[調製例1-1]
<酸化チタン粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液を純水で10倍に希釈した後、10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、水酸化チタンの沈殿物を得た。このときのpHは8.5であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、水酸化チタン沈殿物にH22/Ti(モル比)が8となるように35質量%過酸化水素水を添加し、その後60℃で2時間撹拌して十分に反応させ、橙色透明のペルオキソチタン酸溶液(1a)を得た。
(4) Preparation of titanium oxide particle dispersion [Preparation Example 1-1]
<Preparation of titanium oxide particle dispersion>
After diluting a 36% by mass titanium (IV) chloride aqueous solution 10 times with pure water, a precipitate of titanium hydroxide was obtained by gradually adding 10% by mass ammonia water to neutralize and hydrolyze it. Ta. The pH at this time was 8.5. The obtained precipitate was deionized by repeating the addition of pure water and decantation. After this deionization treatment, 35% by mass hydrogen peroxide solution was added to the titanium hydroxide precipitate so that the H 2 O 2 /Ti (molar ratio) was 8, and then stirred at 60°C for 2 hours to thoroughly dissolve the titanium hydroxide precipitate. A transparent orange peroxotitanic acid solution (1a) was obtained.

容積500mLのオートクレーブに、ペルオキソチタン酸溶液(1a)400mLを仕込み、これを130℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、酸化チタン粒子(1A)の分散液(酸化チタン濃度1.2質量%、pH11)を得た。酸化チタン粒子(1A)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであった。 400 mL of peroxotitanic acid solution (1a) was charged into an autoclave with a volume of 500 mL, and this was hydrothermally treated at 130° C. for 90 minutes. Thereafter, pure water was added to adjust the concentration to form titanium oxide particles ( 1A) was obtained (titanium oxide concentration: 1.2% by mass, pH: 11). When the titanium oxide particles (1A) were subjected to powder X-ray diffraction measurement, the only peak observed was that of anatase-type titanium oxide.

[調製例1-2]
<スズが固溶された酸化チタン粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が20となるように添加・溶解し、これを純水で10倍に希釈した後、10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、スズを含有する水酸化チタンの沈殿物を得た。このときのpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。H22/(Ti+Sn)(モル比)が10となるように35質量%過酸化水素水を添加し、その後60℃で2時間撹拌して十分に反応させ、橙色透明のスズ含有ペルオキソチタン酸溶液(1b)を得た。
[Preparation example 1-2]
<Preparation of titanium oxide particle dispersion containing tin as a solid solution>
Tin (IV) chloride was added and dissolved in a 36% by mass titanium (IV) chloride aqueous solution so that the Ti/Sn (molar ratio) was 20, and after diluting this 10 times with pure water, 10% by mass was added. By gradually adding aqueous ammonia to neutralize and hydrolyze, a precipitate of titanium hydroxide containing tin was obtained. The pH at this time was 8. The obtained precipitate was deionized by repeating the addition of pure water and decantation. 35% by mass hydrogen peroxide was added so that the H 2 O 2 /(Ti+Sn) (molar ratio) was 10, and then stirred at 60°C for 2 hours to allow a sufficient reaction, resulting in an orange transparent tin-containing peroxotitanium. An acid solution (1b) was obtained.

容積500mLのオートクレーブに、スズ含有ペルオキソチタン酸溶液(1b)400mLを仕込み、これを150℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、スズが固溶された酸化チタン粒子(1B)の分散液(酸化チタン濃度1.2質量%、pH10)を得た。酸化チタン粒子(1B)の粉末X線回折測定を行ったところ、観測されるピークはルチル型酸化チタンのもののみであり、スズが酸化チタンに固溶されていることが分かった。 Into an autoclave with a volume of 500 mL, 400 mL of tin-containing peroxotitanic acid solution (1b) was charged, and this was hydrothermally treated at 150°C for 90 minutes, and then pure water was added to adjust the concentration. A dispersion (titanium oxide concentration: 1.2% by mass, pH 10) of solid-dissolved titanium oxide particles (1B) was obtained. When the titanium oxide particles (1B) were subjected to powder X-ray diffraction measurement, the observed peak was only that of rutile-type titanium oxide, indicating that tin was solidly dissolved in titanium oxide.

[調製例1-3]
<モリブデンが固溶された酸化チタン粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液を純水で10倍に希釈した後、10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、水酸化チタンの沈殿物を得た。このときのpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に、前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Mo(モル比)が250となるようモリブデン(VI)酸ナトリウムを添加した。H22/(Ti+Mo)(モル比)が10となるように35質量%過酸化水素水を添加し、その後60℃で2時間撹拌して十分に反応させ、橙色透明のモリブデン含有ペルオキソチタン酸溶液(1c)を得た。
[Preparation example 1-3]
<Preparation of titanium oxide particle dispersion containing molybdenum as a solid solution>
After diluting a 36% by mass titanium (IV) chloride aqueous solution 10 times with pure water, a precipitate of titanium hydroxide was obtained by gradually adding 10% by mass ammonia water to neutralize and hydrolyze it. Ta. The pH at this time was 8. The obtained precipitate was deionized by repeating the addition of pure water and decantation. Sodium molybdate (VI) was added to the deionized titanium hydroxide precipitate so that the Ti/Mo (molar ratio) was 250 with respect to the Ti component in the titanium (IV) chloride aqueous solution. 35% by mass hydrogen peroxide solution was added so that the H 2 O 2 /(Ti+Mo) (molar ratio) was 10, and then stirred at 60°C for 2 hours to fully react, resulting in orange transparent molybdenum-containing peroxotitanium. An acid solution (1c) was obtained.

容積500mLのオートクレーブに、モリブデン含有ペルオキソチタン酸溶液(1c)400mLを仕込み、これを150℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、モリブデンが固溶された酸化チタン粒子(1C)の分散液(酸化チタン濃度1.2質量%、pH11)を得た。酸化チタン粒子(1C)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、モリブデンが酸化チタンに固溶されていることが分かった。 Charge 400 mL of molybdenum-containing peroxotitanic acid solution (1c) into an autoclave with a volume of 500 mL, hydrothermally treat this at 150°C for 90 minutes, and then add pure water to adjust the concentration to remove molybdenum. A dispersion of solid-dissolved titanium oxide particles (1C) (titanium oxide concentration 1.2% by mass, pH 11) was obtained. When the titanium oxide particles (1C) were subjected to powder X-ray diffraction measurement, the only peak observed was that of anatase-type titanium oxide, indicating that molybdenum was dissolved in titanium oxide.

[調製例1-4]
<鉄及びケイ素が固溶された酸化チタン粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液に塩化鉄(III)をTi/Fe(モル比)が20となるように添加し、これを純水で10倍に希釈した後、この水溶液に、前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Si(モル比)が7.5となるようケイ酸ナトリウムを添加・溶解した10質量%のアンモニア水を徐々に添加して中和、加水分解することにより鉄及びケイ素を含有する水酸化チタンの沈殿物を得た。このときのpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の鉄及びケイ素を含有する水酸化チタン沈殿物に、H22/(Ti+Fe+Si)(モル比)が15となるように35質量%過酸化水素水を添加し、その後50℃で2時間撹拌して十分に反応させ、橙色透明の鉄及びケイ素を含有するペルオキソチタン酸溶液(1d)を得た。
[Preparation example 1-4]
<Preparation of titanium oxide particle dispersion in which iron and silicon are dissolved>
Iron (III) chloride was added to a 36% by mass titanium (IV) chloride aqueous solution so that the Ti/Fe (molar ratio) was 20, and this was diluted 10 times with pure water. Neutralize by gradually adding 10% by mass ammonia water in which sodium silicate is added and dissolved so that the Ti/Si (molar ratio) is 7.5 with respect to the Ti component in the titanium (IV) chloride aqueous solution. , a precipitate of titanium hydroxide containing iron and silicon was obtained by hydrolysis. The pH at this time was 8. The obtained precipitate was deionized by repeating the addition of pure water and decantation. To this deionized titanium hydroxide precipitate containing iron and silicon, 35% by mass hydrogen peroxide solution was added so that H 2 O 2 /(Ti+Fe+Si) (molar ratio) was 15, and then 50% by mass was added. The mixture was stirred at .degree. C. for 2 hours to allow a sufficient reaction, and a transparent orange peroxotitanic acid solution (1d) containing iron and silicon was obtained.

容積500mLのオートクレーブに、鉄、ケイ素含有ペルオキソチタン酸溶液(1d)400mLを仕込み、これを130℃の条件下、120分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、鉄及びケイ素が固溶された酸化チタン粒子(1D)の分散液(酸化チタン濃度1.2質量%、pH11)を得た。酸化チタン粒子(1D)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、鉄及びケイ素が酸化チタンに固溶されていることが分かった。 Into an autoclave with a volume of 500 mL, 400 mL of iron and silicon-containing peroxotitanic acid solution (1d) was charged, and this was hydrothermally treated at 130 ° C. for 120 minutes, and then pure water was added to adjust the concentration. A dispersion of titanium oxide particles (1D) in which iron and silicon were dissolved (titanium oxide concentration 1.2% by mass, pH 11) was obtained. When the titanium oxide particles (1D) were subjected to powder X-ray diffraction measurement, the observed peaks were only those of anatase-type titanium oxide, indicating that iron and silicon were dissolved in titanium oxide.

表1に、各調製例で調製した酸化チタン粒子の原料比、水熱処理条件、分散粒子径(D50、D90)をまとめて示す。分散粒子径はレーザー光を用いた動的光散乱法(ELSZ-2000ZS(大塚電子(株)製)により測定した。

Figure 0007362224000001
Table 1 summarizes the raw material ratio, hydrothermal treatment conditions, and dispersed particle diameters (D 50 , D 90 ) of the titanium oxide particles prepared in each preparation example. The dispersed particle diameter was measured by a dynamic light scattering method using laser light (ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).

Figure 0007362224000001

(5)鉄成分及びケイ素成分の溶液または分散液の調製
[調製例2-1]
<硫酸鉄及び活性珪酸の水溶液の調製>
純水100gにJIS3号珪酸ソーダ(SiO2換算29.1質量%)を0.34g溶解して得た珪酸ソーダ水溶液に強酸性陽イオン交換樹脂(アンバージェット1024H、オルガノ(株)製)を添加して撹拌したあと、イオン交換樹脂をろ別することで活性珪酸水溶液を得た。この活性珪酸水溶液に硫酸第二鉄を0.13g添加することで、pH2.6の硫酸鉄及び活性珪酸の水溶液(2A)を得た。
(5) Preparation of solution or dispersion of iron component and silicon component [Preparation Example 2-1]
<Preparation of aqueous solution of iron sulfate and activated silicic acid>
A strongly acidic cation exchange resin (Amber Jet 1024H, manufactured by Organo Co., Ltd.) was added to a sodium silicate aqueous solution obtained by dissolving 0.34 g of JIS No. 3 sodium silicate (29.1% by mass in terms of SiO 2 ) in 100 g of pure water. After stirring, the ion exchange resin was filtered off to obtain an active silicic acid aqueous solution. By adding 0.13 g of ferric sulfate to this activated silicic acid aqueous solution, an aqueous solution (2A) of iron sulfate and activated silicic acid having a pH of 2.6 was obtained.

[調製例2-2]
<硫酸鉄及び活性珪酸の水溶液の調製>
純水100gにJIS3号珪酸ソーダ(SiO2換算)を3.43g溶解して得た珪酸ソーダ水溶液に強酸性陽イオン交換樹脂(アンバージェット1024H、オルガノ(株)製)添加して撹拌したあと、イオン交換樹脂をろ別することで活性珪酸水溶液を得た。この活性珪酸水溶液に硫酸第二鉄を0.50g添加することで、pH1.9の硫酸鉄及び活性珪酸の水溶液(2B)を得た。
[Preparation example 2-2]
<Preparation of aqueous solution of iron sulfate and activated silicic acid>
After adding a strongly acidic cation exchange resin (Amber Jet 1024H, manufactured by Organo Co., Ltd.) to a sodium silicate aqueous solution obtained by dissolving 3.43 g of JIS No. 3 sodium silicate (SiO 2 equivalent) in 100 g of pure water and stirring, An activated silicic acid aqueous solution was obtained by filtering off the ion exchange resin. By adding 0.50 g of ferric sulfate to this activated silicic acid aqueous solution, an aqueous solution (2B) of iron sulfate and activated silicic acid having a pH of 1.9 was obtained.

[調製例2-3]
<硫酸鉄及び活性珪酸の水溶液の調製>
純水100gにJIS3号珪酸ソーダ(SiO2換算)を0.034g溶解して得た珪酸ソーダ水溶液に強酸性陽イオン交換樹脂(アンバージェット1024H、オルガノ(株)製)添加して撹拌したあと、イオン交換樹脂をろ別することで活性珪酸水溶液を得た。この活性珪酸水溶液に硫酸第二鉄を0.025g添加することで、pH3.1の硫酸鉄及び活性珪酸の水溶液(2C)を得た。
[Preparation example 2-3]
<Preparation of aqueous solution of iron sulfate and activated silicic acid>
After adding a strongly acidic cation exchange resin (Amber Jet 1024H, manufactured by Organo Co., Ltd.) to a sodium silicate aqueous solution obtained by dissolving 0.034 g of JIS No. 3 sodium silicate (SiO 2 equivalent) in 100 g of pure water and stirring, An activated silicic acid aqueous solution was obtained by filtering off the ion exchange resin. By adding 0.025 g of ferric sulfate to this activated silicic acid aqueous solution, an aqueous solution (2C) of iron sulfate and activated silicic acid having a pH of 3.1 was obtained.

[調製例2-4]
<硫酸鉄、活性珪酸及びモリブデン酸の水溶液の調製>
調製例2-1で得られた硫酸鉄及び活性珪酸の水溶液にモリブデン(VI)酸ナトリウム二水和物を0.34g添加することで、pH2.5の硫酸鉄、活性珪酸及びモリブデン酸の水溶液(2D)を得た。
[Preparation example 2-4]
<Preparation of aqueous solution of iron sulfate, activated silicic acid, and molybdic acid>
By adding 0.34 g of sodium molybdate (VI) dihydrate to the aqueous solution of iron sulfate and activated silicic acid obtained in Preparation Example 2-1, an aqueous solution of iron sulfate, activated silicic acid, and molybdic acid with a pH of 2.5 is prepared. (2D) was obtained.

[調製例2-5]
<硫酸鉄、活性珪酸及びタングステン酸の水溶液の調製>
調製例2-1で得られた硫酸鉄及び活性珪酸の水溶液にタングステン(VI)酸ナトリウム二水和物を0.071g添加することで、pH2.6の硫酸鉄、活性珪酸及びタングステン酸の水溶液(2E)を得た。
[Preparation example 2-5]
<Preparation of aqueous solution of iron sulfate, activated silicic acid, and tungstic acid>
By adding 0.071 g of sodium tungstate (VI) dihydrate to the aqueous solution of iron sulfate and activated silicic acid obtained in Preparation Example 2-1, an aqueous solution of iron sulfate, activated silicic acid, and tungstic acid with a pH of 2.6 is prepared. (2E) was obtained.

[調製例2-6]
<硫酸鉄、活性珪酸及びバナジン酸の水溶液の調製>
調製例2-1で得られた硫酸鉄及び活性珪酸の水溶液にバナジン(V)酸ナトリウムを0.020g添加することで、pH2.6の硫酸鉄、活性珪酸及びバナジン酸の水溶液(2F)を得た。
[Preparation example 2-6]
<Preparation of aqueous solution of iron sulfate, activated silicic acid, and vanadate>
By adding 0.020 g of sodium vanadate (V) to the aqueous solution of iron sulfate and activated silicic acid obtained in Preparation Example 2-1, an aqueous solution (2F) of iron sulfate, activated silicic acid, and vanadate with a pH of 2.6 was prepared. Obtained.

[調製例2-7]
<硫酸鉄水溶液の調製>
純水100gに硫酸第二鉄を0.50g添加することでpH1.8の硫酸鉄水溶液(2G)を得た。
[Preparation example 2-7]
<Preparation of iron sulfate aqueous solution>
By adding 0.50 g of ferric sulfate to 100 g of pure water, an aqueous iron sulfate solution (2G) with a pH of 1.8 was obtained.

[調製例2-8]
<活性珪酸水溶液の調製>
調製例2-1で硫酸鉄水溶液を添加しなかったこと以外は同様にしてpH3.8の活性珪酸水溶液(2H)を得た。
[Preparation example 2-8]
<Preparation of activated silicic acid aqueous solution>
An activated silicic acid aqueous solution (2H) having a pH of 3.8 was obtained in the same manner as in Preparation Example 2-1 except that the iron sulfate aqueous solution was not added.

(7)酸化チタン粒子分散液の調製
[実施例1]
酸化チタン粒子(1A)の分散液に硫酸鉄及び活性珪酸の水溶液(2A)をTi/Feが200、Ti/Siが75となるように25℃で10分間、撹拌機で混合したあと、固形分濃度を純水で1質量%に調整して、pH10の酸化チタン粒子分散液(E-1)を得た。
(7) Preparation of titanium oxide particle dispersion [Example 1]
A dispersion of titanium oxide particles (1A) is mixed with an aqueous solution of iron sulfate and activated silicic acid (2A) using a stirrer at 25°C for 10 minutes so that the Ti/Fe ratio is 200 and the Ti/Si ratio is 75. The concentration was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (E-1) with a pH of 10.

[実施例2]
酸化チタン粒子(1A)の分散液に硫酸鉄、活性珪酸及びモリブデン酸の水溶液(2D)をTi/Feが200、Ti/Siが75、Ti/Moが90となるように25℃で10分間、撹拌機で混合したあと、固形分濃度を純水で1質量%に調整して、pH10の酸化チタン粒子分散液(E-2)を得た。
[Example 2]
An aqueous solution (2D) of iron sulfate, activated silicic acid, and molybdic acid was added to a dispersion of titanium oxide particles (1A) at 25°C for 10 minutes so that Ti/Fe was 200, Ti/Si was 75, and Ti/Mo was 90. After mixing with a stirrer, the solid content concentration was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (E-2) with a pH of 10.

[実施例3]
酸化チタン粒子(1A)の分散液に硫酸鉄、活性珪酸及びタングステン酸の水溶液(2E)をTi/Feが200、Ti/Siが75、Ti/Wが360となるように30℃で10分間、撹拌機で混合したあと、固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(E-3)を得た。
[Example 3]
An aqueous solution (2E) of iron sulfate, activated silicic acid, and tungstic acid was added to a dispersion of titanium oxide particles (1A) at 30°C for 10 minutes so that Ti/Fe was 200, Ti/Si was 75, and Ti/W was 360. After mixing with a stirrer, the solid content concentration was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (E-3).

[実施例4]
酸化チタン粒子(1A)の分散液に硫酸鉄、活性珪酸及びバナジン酸の水溶液(2F)をTi/Feが200、Ti/Siが75、Ti/Vが1,802となるように20℃で10分間、撹拌機で混合したあと、固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(E-4)を得た。
[Example 4]
An aqueous solution (2F) of iron sulfate, activated silicic acid, and vanadate was added to a dispersion of titanium oxide particles (1A) at 20°C so that Ti/Fe was 200, Ti/Si was 75, and Ti/V was 1,802. After mixing with a stirrer for 10 minutes, the solid content concentration was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (E-4).

[実施例5]
酸化チタン粒子(1B)の分散液に硫酸鉄及び活性珪酸の水溶液(2B)をTi/Feが50、Ti/Siが8となるように25℃で10分間、撹拌機で混合したあと、固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(E-5)を得た。
[Example 5]
After mixing a dispersion of titanium oxide particles (1B) with an aqueous solution of iron sulfate and activated silicic acid (2B) at 25°C for 10 minutes so that the Ti/Fe ratio is 50 and the Ti/Si ratio is 8 using a stirrer, a solid The concentration was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (E-5).

[実施例6]
酸化チタン粒子(1C)の分散液に硫酸鉄及び活性珪酸の水溶液(2C)をTi/Feが1,000、Ti/Siが752となるように25℃で10分間、撹拌機で混合したあと、固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(E-6)を得た。
[Example 6]
After mixing a dispersion of titanium oxide particles (1C) with an aqueous solution of iron sulfate and activated silicic acid (2C) using a stirrer at 25°C for 10 minutes so that Ti/Fe is 1,000 and Ti/Si is 752. The solid content concentration was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (E-6).

[実施例7]
酸化チタン粒子分散液(E-1)にケイ素化合物系(シリカ系)のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製)をTiO2/SiO2(質量比)が1.5となるように添加し、25℃で10分間、撹拌機で混合することで、バインダーを含有する酸化チタン粒子分散液(E-7)を得た。
[Example 7]
A silicon compound-based (silica-based) binder (colloidal silica, trade name: Snowtex 20, manufactured by Nissan Chemical Industries, Ltd.) was added to the titanium oxide particle dispersion (E-1) so that the TiO 2 /SiO 2 (mass ratio) was 1.5 and mixed with a stirrer at 25° C. for 10 minutes to obtain a titanium oxide particle dispersion (E-7) containing a binder.

[比較例1]
酸化チタン粒子(1A)の分散液の固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(C-1)を得た。
[Comparative example 1]
The solid content concentration of the titanium oxide particle dispersion (1A) was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (C-1).

[比較例2]
酸化チタン粒子(1B)の分散液の固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(C-2)を得た。
[Comparative example 2]
The solid concentration of the titanium oxide particle dispersion (1B) was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (C-2).

[比較例3]
酸化チタン粒子(1C)の分散液の固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(C-3)を得た。
[Comparative example 3]
The solid concentration of the titanium oxide particle dispersion (1C) was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (C-3).

[比較例4]
酸化チタン粒子(1A)の分散液に硫酸鉄水溶液(2G)をTi/Feが200となるように混合したあと、固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(C-4)を得た。硫酸鉄の添加によって酸化チタン粒子は凝集・沈殿した。また、酸化チタン粒子分散液(C-4)を孔径1μmのPP製フィルターでろ過したところ、フィルター上に褐色の鉄成分がろ別されたことから、鉄成分も凝集していることが分かった。
[Comparative example 4]
After mixing an aqueous iron sulfate solution (2G) with a dispersion of titanium oxide particles (1A) so that the Ti/Fe ratio is 200, the solid content concentration is adjusted to 1% by mass with pure water to prepare a titanium oxide particle dispersion. (C-4) was obtained. The titanium oxide particles coagulated and precipitated by the addition of iron sulfate. In addition, when the titanium oxide particle dispersion (C-4) was filtered through a PP filter with a pore size of 1 μm, a brown iron component was filtered out on the filter, indicating that the iron component was also aggregated. .

[比較例5]
酸化チタン粒子(1A)の分散液に活性珪酸水溶液(2H)をTi/Siが75となるように混合したあと、固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(C-5)を得た。
[Comparative example 5]
After mixing an activated silicic acid aqueous solution (2H) into a dispersion of titanium oxide particles (1A) so that the Ti/Si ratio is 75, the solid content concentration is adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion. (C-5) was obtained.

[比較例6]
酸化チタン粒子(1A)の分散液に鉄及びケイ素成分が固溶された酸化チタン粒子(1D)の分散液をTi/Feが200、Ti/Siが75となるように混合したあと、固形分濃度を純水で1質量%に調整して、酸化チタン粒子分散液(C-6)を得た。
[Comparative example 6]
After mixing a dispersion of titanium oxide particles (1D) in which iron and silicon components are dissolved in a dispersion of titanium oxide particles (1A) so that Ti/Fe is 200 and Ti/Si is 75, the solid content is The concentration was adjusted to 1% by mass with pure water to obtain a titanium oxide particle dispersion (C-6).

[比較例7]
前記酸化チタン粒子分散液(C-1)にケイ素化合物系(シリカ系)のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製)をTiO2/SiO2(質量比)が1.5となるように添加し、混合することで、バインダーを含有する酸化チタン粒子分散液(C-7)を得た。
[Comparative Example 7]
A silicon compound-based (silica-based) binder (colloidal silica, trade name: Snowtex 20, manufactured by Nissan Chemical Industries, Ltd.) was added to the titanium oxide particle dispersion (C-1) at TiO 2 /SiO 2 (mass ratio). By adding and mixing so that the ratio was 1.5, a titanium oxide particle dispersion (C-7) containing a binder was obtained.

(8)光触媒薄膜を有するサンプル部材の作製
上記実施例又は比較例で調製した各酸化チタン粒子分散液を、#7のワイヤーバーコーターによってA4サイズのPETフィルムに20mgの光触媒酸化チタン粒子を含む光触媒薄膜(厚さ約80nm)を形成するよう塗工し、80℃に設定したオーブンで1時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。
(8) Preparation of a sample member having a photocatalyst thin film Each titanium oxide particle dispersion prepared in the above Examples or Comparative Examples was coated on an A4 size PET film using a #7 wire bar coater. It was coated to form a thin film (about 80 nm thick) and dried in an oven set at 80° C. for 1 hour to obtain a sample member for evaluating acetaldehyde gas decomposition performance.

[UV照射下での光触媒性能試験]
実施例及び比較例の光触媒薄膜を有するサンプル部材に対し、UV蛍光ランプ照射下でアセトアルデヒド分解試験を行なった。アセトアルデヒド初期濃度の20ppmから1ppmまで低減させるのに要する時間に基づき、評価した。
[Photocatalyst performance test under UV irradiation]
An acetaldehyde decomposition test was conducted on sample members having photocatalytic thin films of Examples and Comparative Examples under UV fluorescent lamp irradiation. Evaluation was made based on the time required to reduce the initial concentration of acetaldehyde from 20 ppm to 1 ppm.

表2には酸化チタン粒子と添加金属の種類、酸化チタン中のTiに対する添加金属成分中の金属のモル比、分散粒子径(D50、D90)、アセトアルデヒドガス分解試験結果をまとめて示す。分散粒子径はレーザー光を用いた動的光散乱法(ELSZ-2000ZS(大塚電子(株)製)により測定した。 Table 2 summarizes the types of titanium oxide particles and added metals, the molar ratio of the metal in the added metal component to Ti in titanium oxide, the dispersed particle diameter (D 50 , D 90 ), and the results of an acetaldehyde gas decomposition test. The dispersed particle diameter was measured by a dynamic light scattering method using laser light (ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).

Figure 0007362224000002
Figure 0007362224000002

実施例1、5、6及び比較例1、2、3の結果から分かるように、鉄成分及びケイ素成分を含有する酸化チタン粒子分散液から製造され、表面に鉄成分及びケイ素成分が付着した酸化チタン粒子は、酸化チタン粒子単独の光触媒活性よりも活性が向上することが分かった。
同様に、実施例7と比較例7の結果から、バインダーを含む光触媒薄膜においても、鉄成分及びケイ素成分を含有する酸化チタン粒子分散液から製造され、表面に鉄成分及びケイ素成分が付着した酸化チタン粒子は、酸化チタン粒子単独の光触媒活性よりも活性が向上することが分かった。
As can be seen from the results of Examples 1, 5, and 6 and Comparative Examples 1, 2, and 3, titanium oxide particles were produced from a dispersion of titanium oxide particles containing an iron component and a silicon component, and the oxide particles had the iron component and silicon component attached to the surface. It was found that titanium particles have improved photocatalytic activity compared to the photocatalytic activity of titanium oxide particles alone.
Similarly, from the results of Example 7 and Comparative Example 7, it was found that the photocatalyst thin film containing a binder was also produced from a dispersion of titanium oxide particles containing iron and silicon components, and the oxidation film with the iron and silicon components attached to the surface It was found that titanium particles have improved photocatalytic activity compared to the photocatalytic activity of titanium oxide particles alone.

実施例1及び比較例4の結果から分かるように、酸化チタン粒子(1A)の分散液に鉄成分を添加する際、ケイ素成分と共に添加することで酸化チタン粒子及び鉄成分の凝集・沈殿を抑制できることが分かった。 As can be seen from the results of Example 1 and Comparative Example 4, when adding the iron component to the dispersion of titanium oxide particles (1A), adding it together with the silicon component suppresses aggregation and precipitation of the titanium oxide particles and iron component. I found out that it can be done.

実施例1と比較例1、5の結果から分かるように、酸化チタン粒子(1A)に対して鉄成分及びケイ素成分の両方を添加することにより、ケイ素成分のみ、あるいは両方とも添加しない場合よりも光触媒活性が高いことが分かった。 As can be seen from the results of Example 1 and Comparative Examples 1 and 5, by adding both an iron component and a silicon component to the titanium oxide particles (1A), it is possible to improve It was found that the photocatalytic activity was high.

実施例1と比較例6の結果から分かるように、表面に鉄成分及びケイ素成分(2A)を付着させた酸化チタン粒子(1A)を使用することにより、鉄成分及びケイ素成分を固溶した酸化チタン粒子(1D)を酸化チタン粒子(1A)に混合して使用した場合よりも光触媒活性が高いことが分かった。 As can be seen from the results of Example 1 and Comparative Example 6, by using titanium oxide particles (1A) with iron components and silicon components (2A) attached to the surface, oxidation with solid solution of iron components and silicon components It was found that the photocatalytic activity was higher than when titanium particles (1D) were mixed with titanium oxide particles (1A).

本発明の酸化チタン粒子分散液は、ガラス、金属等の無機物質、及び樹脂等の有機物質からなる種々の基材に施与して光触媒薄膜を作製するのに有用であり、特に種々の基材上に透明な光触媒薄膜を作製するのに有用である。 The titanium oxide particle dispersion of the present invention is useful for producing photocatalytic thin films by applying it to various substrates made of inorganic substances such as glass and metals, and organic substances such as resins. It is useful for producing transparent photocatalytic thin films on materials.

Claims (8)

水性分散媒中に、鉄成分及びケイ素成分が表面に付着している、酸化チタン粒子が分散されている酸化チタン粒子分散液であって、
該酸化チタン粒子のレーザー光を用いた動的光散乱法により測定される体積基準の50%累積分布径D 50 が3~50nmであり、
該酸化チタン粒子は更にモリブデン、タングステン及びバナジウム成分から選ばれる少なくとも1種の金属成分が表面に付着しているものであり、
該酸化チタン粒子は窒素を含有しないものである、
酸化チタン粒子分散液
A titanium oxide particle dispersion liquid in which titanium oxide particles having an iron component and a silicon component attached to the surface are dispersed in an aqueous dispersion medium,
The titanium oxide particles have a volume-based 50% cumulative distribution diameter D 50 of 3 to 50 nm, as measured by a dynamic light scattering method using laser light;
The titanium oxide particles further have at least one metal component selected from molybdenum, tungsten, and vanadium components attached to the surface,
The titanium oxide particles do not contain nitrogen.
Titanium oxide particle dispersion .
鉄成分のチタンとのモル比(Ti/Fe)が10~10,000であり、ケイ素成分のチタンとのモル比(Ti/Si)が1~10,000である請求項1に記載の酸化チタン粒子分散液The oxidation according to claim 1, wherein the molar ratio of the iron component to titanium (Ti/Fe) is 10 to 10,000, and the molar ratio of the silicon component to titanium (Ti/Si) is 1 to 10,000. Titanium particle dispersion liquid . モリブデン、タングステン及びバナジウム成分から選ばれる少なくとも1種の金属成分のチタンとのモル比(Ti/金属)が10~10,000である請求項1又は2に記載の酸化チタン粒子分散液。The titanium oxide particle dispersion according to claim 1 or 2, wherein the molar ratio (Ti/metal) of at least one metal component selected from molybdenum, tungsten, and vanadium components to titanium is 10 to 10,000. 更に、バインダーを含有する請求項1~3のいずれか1項に記載の酸化チタン粒子分散液。 The titanium oxide particle dispersion according to any one of claims 1 to 3, further comprising a binder. バインダーがケイ素化合物系バインダーである請求項に記載の酸化チタン粒子分散液。 The titanium oxide particle dispersion according to claim 4 , wherein the binder is a silicon compound-based binder. 請求項1~のいずれか1項に記載の酸化チタン粒子分散液から形成される光触媒薄膜。 A photocatalytic thin film formed from the titanium oxide particle dispersion according to any one of claims 1 to 5 . 基材表面に請求項6に記載の光触媒薄膜が形成された部材。 A member having the photocatalytic thin film according to claim 6 formed on the surface of a base material. 下記工程(1)~(4)を有する請求項1~3のいずれか1項に記載の酸化チタン粒子分散液の製造方法。
(1)原料チタン化合物、塩基性物質、過酸化水素及び水性分散媒から、ペルオキソチタン酸溶液を製造する工程
(2)上記(1)の工程で製造したペルオキソチタン酸溶液を、圧力制御の下、80~250℃で加熱し、酸化チタン粒子分散液を得る工程
(3)鉄化合物、ケイ素化合物、モリブデン、タングステン及びバナジウム成分から選ばれる少なくとも1種の金属成分並びに水性分散媒から、鉄成分ケイ素成分並びにモリブデン、タングステン及びバナジウム成分から選ばれる少なくとも1種の金属成分の溶液または分散液を製造する工程
(4)上記(2)の工程で製造した酸化チタン粒子分散液と、(3)の工程で製造した鉄成分ケイ素成分並びにモリブデン、タングステン及びバナジウム成分から選ばれる少なくとも1種の金属成分の溶液または分散液を混合して分散液を得る工程

The method for producing a titanium oxide particle dispersion according to any one of claims 1 to 3, comprising the following steps (1) to (4).
(1) Step of producing peroxotitanic acid solution from raw material titanium compound, basic substance, hydrogen peroxide and aqueous dispersion medium. (2) Step of producing peroxotitanic acid solution produced in step (1) above under pressure control. , heating at 80 to 250° C. to obtain a titanium oxide particle dispersion (3) At least one metal component selected from iron compounds, silicon compounds, molybdenum, tungsten, and vanadium components and an aqueous dispersion medium, an iron component , A step of producing a solution or dispersion of a silicon component and at least one metal component selected from molybdenum, tungsten, and vanadium components. (4) The titanium oxide particle dispersion produced in step (2) above, and the step of (3). A step of mixing a solution or dispersion of an iron component , a silicon component , and at least one metal component selected from molybdenum, tungsten, and vanadium components produced in the process to obtain a dispersion.

JP2020081183A 2020-05-01 2020-05-01 Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion Active JP7362224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020081183A JP7362224B2 (en) 2020-05-01 2020-05-01 Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020081183A JP7362224B2 (en) 2020-05-01 2020-05-01 Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion

Publications (2)

Publication Number Publication Date
JP2021175696A JP2021175696A (en) 2021-11-04
JP7362224B2 true JP7362224B2 (en) 2023-10-17

Family

ID=78300263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020081183A Active JP7362224B2 (en) 2020-05-01 2020-05-01 Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion

Country Status (1)

Country Link
JP (1) JP7362224B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283646A (en) 2003-03-19 2004-10-14 Nippon Shokubai Co Ltd Photocatalyst and method for producing photocatalyst
WO2007097220A1 (en) 2006-02-21 2007-08-30 Kyoto University Visible light-responsive photocatalyst
WO2019198484A1 (en) 2018-04-12 2019-10-17 信越化学工業株式会社 Photocatalyst transfer film and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204326A (en) * 1989-01-30 1990-08-14 Teika Corp Rutile-type colored fine-grain titanium dioxide composition and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283646A (en) 2003-03-19 2004-10-14 Nippon Shokubai Co Ltd Photocatalyst and method for producing photocatalyst
WO2007097220A1 (en) 2006-02-21 2007-08-30 Kyoto University Visible light-responsive photocatalyst
WO2019198484A1 (en) 2018-04-12 2019-10-17 信越化学工業株式会社 Photocatalyst transfer film and method for manufacturing same

Also Published As

Publication number Publication date
JP2021175696A (en) 2021-11-04

Similar Documents

Publication Publication Date Title
TWI732752B (en) Visible light response type photocatalyst titanium oxide microparticle dispersion liquid, its production method, and member having a photocatalyst film on the surface
KR102436684B1 (en) Visible light responsive photocatalyst titanium oxide fine particle mixture, dispersion thereof, method for producing dispersion, photocatalyst thin film, and member having photocatalyst thin film on the surface
WO2011145385A1 (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
CN113544094B (en) Titanium oxide fine particles, dispersion thereof, and method for producing the dispersion
KR20210134714A (en) Titanium oxide fine particle mixture, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on the surface, and method for producing titanium oxide fine particle dispersion
WO2022059520A1 (en) Titanium oxide particles and liquid dispersion thereof, photocatalyst thin film, member having photocatalyst thin film formed on surface thereof, and method for producing liquid dispersion of titanium oxide particles
JP7362224B2 (en) Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion
JP7466993B2 (en) Titanium oxide particles, dispersion thereof, photocatalytic thin film, member having photocatalytic thin film on its surface, and method for producing titanium oxide particle dispersion
TWI849069B (en) Titanium oxide microparticles, dispersion thereof and method for producing the dispersion
WO2022059512A1 (en) Titanium oxide particles, dispersion liquid of same, photocatalyst thin film, member having photocatalyst thin film on surface, and method for producing dispersion liquid of titanium oxide particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R150 Certificate of patent or registration of utility model

Ref document number: 7362224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150