JP5161555B2 - Method for producing tungsten oxide photocatalyst - Google Patents

Method for producing tungsten oxide photocatalyst Download PDF

Info

Publication number
JP5161555B2
JP5161555B2 JP2007328688A JP2007328688A JP5161555B2 JP 5161555 B2 JP5161555 B2 JP 5161555B2 JP 2007328688 A JP2007328688 A JP 2007328688A JP 2007328688 A JP2007328688 A JP 2007328688A JP 5161555 B2 JP5161555 B2 JP 5161555B2
Authority
JP
Japan
Prior art keywords
tungsten oxide
photocatalyst
photocatalytic activity
washing
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007328688A
Other languages
Japanese (ja)
Other versions
JP2009148700A (en
Inventor
能彰 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007328688A priority Critical patent/JP5161555B2/en
Publication of JP2009148700A publication Critical patent/JP2009148700A/en
Application granted granted Critical
Publication of JP5161555B2 publication Critical patent/JP5161555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、蛍光灯等の実用光源の光の照射によって高い光触媒活性を示す酸化タングステン光触媒体の製造方法に関する。   The present invention relates to a method for producing a tungsten oxide photocatalyst that exhibits high photocatalytic activity when irradiated with light from a practical light source such as a fluorescent lamp.

半導体にバンドギャップ以上のエネルギーをもつ光を照射すると、価電子帯の電子が伝導帯に励起し、価電子帯に正孔、伝導帯に電子が生成する。これらはそれぞれ強い酸化力と還元力を有し、半導体に接触した分子種に酸化還元作用を及ぼす。このような作用を光触媒作用と呼び、この光触媒作用を利用することによって、大気中の有機物などを分解除去することができる。詳しくは、光触媒作用による有機物の分解反応では、価電子帯に生成した正孔が直接有機物を酸化分解するか、正孔が水を酸化し、そこから生成する活性酸素種が有機物を酸化分解すると考えられており、さらに、それ以外にも、伝導帯に生成した電子が酸素を還元し、そこから生成する活性酸素種が有機物を酸化分解すると考えられる。   When a semiconductor is irradiated with light having energy higher than the band gap, electrons in the valence band are excited to the conduction band, and holes are generated in the valence band and electrons are generated in the conduction band. These have strong oxidizing power and reducing power, respectively, and exert a redox action on the molecular species in contact with the semiconductor. Such an action is called a photocatalytic action, and by utilizing this photocatalytic action, organic substances in the atmosphere can be decomposed and removed. Specifically, in the decomposition reaction of organic substances by photocatalysis, when holes generated in the valence band directly oxidize and decompose organic substances, or holes oxidize water and active oxygen species generated therefrom oxidize and decompose organic substances. In addition, it is considered that the electrons generated in the conduction band reduce oxygen, and the active oxygen species generated therefrom oxidatively decompose the organic matter.

光触媒作用を示す物質としては、従来、酸化チタンが一般的であり、各種媒体や担体などに酸化チタン粒子を分散もしくは担持させた光触媒体が実用化されている。しかしながら、酸化チタンは、太陽光など比較的波長の短い紫外領域の光の照射下では良好な光触媒作用を示すものの、蛍光灯のように可視光が大部分を占める光源で照らされた屋内空間では、充分な光触媒作用を発現しにくい場合があった。そのため、近年、可視光照射下での光触媒作用を高めた可視光応答型光触媒体が注目されており、そのような光触媒体として、これまでに、酸化タングステンが有効であることが知られている。   Conventionally, titanium oxide is generally used as a substance exhibiting a photocatalytic action, and photocatalysts in which titanium oxide particles are dispersed or supported on various media or carriers have been put into practical use. However, although titanium oxide shows a good photocatalytic action under the irradiation of light in the ultraviolet region with a relatively short wavelength such as sunlight, in an indoor space illuminated with a light source that occupies most of the visible light, such as a fluorescent lamp. In some cases, sufficient photocatalytic action is hardly exhibited. Therefore, in recent years, a visible light responsive photocatalyst with enhanced photocatalytic activity under visible light irradiation has attracted attention, and as such a photocatalyst, tungsten oxide has been known to be effective so far. .

例えば、メタタングステン酸アンモニウムを酸化チタンに混合して焼成することにより得られる、酸化タングステン−酸化チタン混合光触媒体が提案されている(特許文献1参照)。しかし、この光触媒体は、その製造条件や使用時に照射される光の種類などによって充分な光触媒作用が得られない場合があり、未だ満足しうる性能には至っていないのが現状であった。   For example, a tungsten oxide-titanium oxide mixed photocatalyst obtained by mixing and baking ammonium metatungstate in titanium oxide has been proposed (see Patent Document 1). However, this photocatalyst may not be able to obtain a sufficient photocatalytic action depending on the production conditions or the type of light irradiated during use, and has not yet achieved satisfactory performance.

他方、酸化タングステンは、従来、タングステン酸ナトリウム(Na2WO4)を塩酸で中和した後、洗浄、焼成する方法や、パラタングステン酸アンモニウムを熱分解する方法によって製造できることが知られている(非特許文献1参照)。しかし、これらの方法で得られた酸化タングステンは、単独で光触媒体として用いた場合、必ずしも充分に高い光触媒活性を示さなかった。
このように、酸化タングステンは可視光応答型光触媒体への利用が期待されているものの、可視光照射下で高い光触媒活性を示す酸化タングステン光触媒体は実用化に至っていないのが現状であった。
On the other hand, it is known that tungsten oxide can be produced by a method of neutralizing sodium tungstate (Na 2 WO 4 ) with hydrochloric acid, followed by washing and baking, or a method of thermally decomposing ammonium paratungstate ( Non-patent document 1). However, the tungsten oxide obtained by these methods did not necessarily exhibit a sufficiently high photocatalytic activity when used alone as a photocatalyst.
Thus, although tungsten oxide is expected to be used for a visible light responsive photocatalyst, a tungsten oxide photocatalyst exhibiting high photocatalytic activity under irradiation with visible light has not yet been put into practical use.

特開2006−198464号公報JP 2006-198464 A 新実験化学講座8 無機化合物の合成I(丸善株式会社)、250〜251ページNew Experimental Chemistry Course 8 Synthesis of Inorganic Compounds I (Maruzen Co., Ltd.)

そこで、本発明の課題は、蛍光灯等の実用光源の光に多く含まれる可視光線によって高い光触媒活性を示しうる酸化タングステン光触媒体の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a method for producing a tungsten oxide photocatalyst that can exhibit high photocatalytic activity by visible light contained in a large amount of light from a practical light source such as a fluorescent lamp.

本発明者らは、上記課題を解決するべく鋭意研究を重ねた。その結果、焼成により酸化タングステンを作製するにあたり、焼成に供する原料の種類と焼成温度の組合せが得られる酸化タングステンの光触媒活性に大きく影響することを突き止め、原料としてパラタングステン酸またはその塩を選択し、これを480℃以上の温度で焼成することが、可視光の照射下における光触媒活性を高めるのに最も有効であることを見出した。さらに、従来の酸化タングステンが可視光によって期待されるだけの光触媒活性を発現しなかった理由として、焼成時の加熱で生じる何らかの不純物が光触媒活性を阻害する要因となっていることを突き止め、焼成後に得られた酸化タングステンに洗浄を施すことにより阻害要因となる不純物を除去すれば、より高い光触媒活性を得ることができることを見出し、加えて、この洗浄による光触媒活性の向上効果は酸化タングステンを作製する際の原料とその焼成温度に依存し、充分な光触媒活性の向上効果を得るには、パラタングステン酸またはその塩を原料として650℃以下の温度で焼成することが重要であることをも見出した。本発明は、これらの知見に基づき完成したものである。   The present inventors have intensively studied to solve the above problems. As a result, in producing tungsten oxide by firing, it was determined that the combination of the type of raw material used for firing and the firing temperature has a significant effect on the photocatalytic activity of tungsten oxide, and paratungstic acid or its salt was selected as the raw material. It has been found that baking this at a temperature of 480 ° C. or higher is most effective in enhancing the photocatalytic activity under irradiation with visible light. Furthermore, as a reason why the conventional tungsten oxide did not exhibit the photocatalytic activity as expected by visible light, it was determined that some impurities generated by heating during firing were a factor inhibiting photocatalytic activity. It has been found that higher impurities of photocatalytic activity can be obtained by removing impurities that cause inhibition by washing the obtained tungsten oxide. In addition, the effect of improving the photocatalytic activity by this washing produces tungsten oxide. It has also been found that it is important to calcine at a temperature of 650 ° C. or less using paratungstic acid or a salt thereof as a raw material, depending on the raw material and the firing temperature. . The present invention has been completed based on these findings.

すなわち、本発明は以下の構成からなる。
(1)パラタングステン酸またはその塩を480〜650℃で焼成した後、得られた酸化タングステン粉末を水および過酸化水素水の少なくとも一方を用いて洗浄する、ことを特徴とする酸化タングステン光触媒体の製造方法。
)前記洗浄は、溶媒への分散、攪拌および固液分離からなる操作で行う、前記(1)記載の酸化タングステン光触媒体の製造方法。
That is, the present invention has the following configuration.
(1) A tungsten oxide photocatalyst comprising calcining paratungstic acid or a salt thereof at 480 to 650 ° C., and then washing the obtained tungsten oxide powder with at least one of water and hydrogen peroxide. Manufacturing method.
(2) the washing, dispersing in the solvent, stirred and the solid-liquid carried by consisting separation operation, the (1) Symbol mounting method for manufacturing the tungsten oxide photocatalyst of.

本発明によれば、蛍光灯等の実用光源による光照射下で高い光触媒活性を示しうる酸化タングステン光触媒体を提供することができる。これにより、紫外光が照射されない環境下であっても、効率よく有機物を酸化分解することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, the tungsten oxide photocatalyst body which can show high photocatalytic activity under the light irradiation by practical light sources, such as a fluorescent lamp, can be provided. This makes it possible to efficiently oxidize and decompose organic substances even in an environment where ultraviolet light is not irradiated.

本発明の酸化タングステン光触媒体の製造方法においては、まず、パラタングステン酸またはその塩(以下、「パラタングステン酸(塩)」と表記する)を特定の焼成温度で焼成する。これにより、高い光触媒活性を発現しうる酸化タングステンを生成させることができる。
焼成に供するパラタングステン酸(塩)としては、パラタングステン酸、パラタングステン酸アンモニウム、パラタングステン酸ナトリウム、パラタングステン酸カリウム、パラタングステン酸セシウム等が挙げられる。ただし、アルカリ金属の塩であると、アルカリ金属の残留による光触媒活性の低下が懸念される場合があるため、そのような懸念のないパラタングステン酸やパラタングステン酸アンモニウムが特に好ましい。焼成に供するパラタングステン酸(塩)は、1種のみであってもよいし、2種以上であってもよい。
In the method for producing a tungsten oxide photocatalyst of the present invention, first, paratungstic acid or a salt thereof (hereinafter referred to as “paratungstic acid (salt)”) is fired at a specific firing temperature. Thereby, the tungsten oxide which can express high photocatalytic activity can be produced | generated.
Examples of paratungstic acid (salt) to be used for firing include paratungstic acid, ammonium paratungstate, sodium paratungstate, potassium paratungstate, cesium paratungstate, and the like. However, in the case of an alkali metal salt, there is a possibility that the photocatalytic activity is lowered due to residual alkali metal, and paratungstic acid and ammonium paratungstate without such a concern are particularly preferable. Only one type or two or more types of paratungstic acid (salt) to be used for firing may be used.

焼成に供するパラタングステン酸(塩)の形状や形態は、特に制限されるものではない。例えば、最終的に得られる光触媒体に所望する形状(例えば、粒子状、繊維状、チューブ状、薄膜状等)に予め成形しておいたパラタングステン酸(塩)成形物を焼成に供してもよい。また、パラタングステン酸(塩)水溶液を用いる場合には、加熱や減圧により水溶液中の水分を除去する方法や噴霧乾燥法などによって得た固形物を焼成に供してもよいし、パラタングステン酸(塩)水溶液を直接気流焼成炉で焼成することも勿論可能である。   The shape and form of paratungstic acid (salt) to be used for firing are not particularly limited. For example, a paratungstic acid (salt) molded product previously molded into a desired shape (for example, a particle shape, a fiber shape, a tube shape, a thin film shape, etc.) for the photocatalyst body finally obtained may be subjected to firing. Good. Moreover, when using a paratungstic acid (salt) aqueous solution, the solid obtained by the method of removing the water | moisture content in aqueous solution by heating or pressure reduction, the spray-drying method, etc. may be used for baking, or paratungstic acid ( Of course, the salt) aqueous solution can be directly fired in an air-flow firing furnace.

焼成温度は、480〜650℃とすることが重要である。焼成温度が480℃未満であると、酸化タングステン(WO3)に結晶転位しないため、高い光触媒活性が得られない。一方、焼成温度が650℃を超えると、後述する洗浄による光触媒活性の向上効果が充分に得られなくなり、さらに、焼成温度が高すぎると、得られる酸化タングステンの表面積が低下するため、反応基質の吸着量が少なくなり、光触媒活性は不充分となる。好ましくは、焼成温度の下限は500℃以上であり、上限は600℃以下とするのがよい。なお、焼成時の昇温速度は、特に制限されないが、通常、100℃/時間以上が好ましく、200℃/時間以上がより好ましい。 It is important that the firing temperature is 480 to 650 ° C. When the firing temperature is less than 480 ° C., crystal dislocation does not occur in tungsten oxide (WO 3 ), and thus high photocatalytic activity cannot be obtained. On the other hand, if the calcination temperature exceeds 650 ° C., the effect of improving photocatalytic activity by washing, which will be described later, cannot be obtained sufficiently, and if the calcination temperature is too high, the surface area of the resulting tungsten oxide is reduced. The amount of adsorption decreases and the photocatalytic activity becomes insufficient. Preferably, the lower limit of the firing temperature is 500 ° C. or higher, and the upper limit is 600 ° C. or lower. In addition, although the temperature increase rate at the time of baking is not restrict | limited, 100 degreeC / hour or more is preferable normally and 200 degreeC / hour or more is more preferable.

パラタングステン酸(塩)の焼成は、通常、気流焼成炉、トンネル炉、回転炉などの焼成装置を用いて行うことができる。焼成時間は、焼成温度や焼成装置の種類等に応じて適宜設定すればよいが、通常、10分以上、好ましくは30分以上であり、かつ、30時間以内、好ましくは10時間以内である。焼成は、空気、窒素、酸素、アルゴン等の雰囲気中で行うのが好ましい。   The firing of paratungstic acid (salt) can be usually performed using a firing apparatus such as an airflow firing furnace, a tunnel furnace, or a rotary furnace. The firing time may be appropriately set according to the firing temperature, the type of firing apparatus, and the like, but is usually 10 minutes or longer, preferably 30 minutes or longer, and within 30 hours, preferably within 10 hours. Firing is preferably performed in an atmosphere of air, nitrogen, oxygen, argon or the like.

焼成により得られる酸化タングステンのBET比表面積は、特に制限されないが、4.5〜9.0m2/gであるのが好ましい。BET比表面積が4.5m2/g未満であると、反応基質の吸着量が少なくなり、高い光触媒活性が得られなくなるおそれがあり、一方、9.0m2/gを超えると、酸化タングステンの結晶性が低下して、高い光触媒活性が得られなくなるおそれがある。なお、BET比表面積は、例えば、実施例で後述する窒素吸着法により測定することができる。 The BET specific surface area of tungsten oxide obtained by firing is not particularly limited, but is preferably 4.5 to 9.0 m 2 / g. If the BET specific surface area is less than 4.5 m 2 / g, the amount of adsorption of the reaction substrate may be reduced, and high photocatalytic activity may not be obtained. On the other hand, if the BET specific surface area exceeds 9.0 m 2 / g, There is a possibility that the crystallinity is lowered and high photocatalytic activity cannot be obtained. In addition, a BET specific surface area can be measured by the nitrogen adsorption method mentioned later in an Example, for example.

本発明の酸化タングステン光触媒体の製造方法においては、前記焼成後、得られた酸化タングステンを洗浄する。これにより、光触媒体の表面に付着している光触媒活性の阻害要因となる不純物は除去され、より高い光触媒活性を発現させることができる。
前記洗浄は、溶媒を用いて行う。溶媒としては、例えば、水、過酸化水素水、蓚酸水溶液などが挙げられる。これらの中でも、水および過酸化水素水の少なくとも一方を用いて洗浄を行うことが好ましい。特に、過酸化水素水を溶媒として用いると、酸化タングステンの酸素欠陥を補い、さらに酸化タングステン表面の活性酸素種の量が増加させることができるため、比較的低温で焼成して得られる酸化タングステンでも、高い光触媒活性付与することができるので、より好ましい。なお、溶媒は、1種のみを用いてもよいし、2種以上を併用してもよい。また、洗浄は必要に応じて複数回行ってもよく、その場合、用いる溶媒を適宜変更することもできる。
In the method for producing a tungsten oxide photocatalyst of the present invention, the obtained tungsten oxide is washed after the firing. Thereby, the impurity which becomes the inhibiting factor of the photocatalytic activity adhering to the surface of a photocatalyst body is removed, and higher photocatalytic activity can be expressed.
The washing is performed using a solvent. Examples of the solvent include water, hydrogen peroxide solution, oxalic acid aqueous solution, and the like. Among these, it is preferable to perform washing using at least one of water and hydrogen peroxide water. In particular, when hydrogen peroxide water is used as a solvent, oxygen defects of tungsten oxide can be compensated and the amount of active oxygen species on the surface of tungsten oxide can be increased. Therefore, even tungsten oxide obtained by firing at a relatively low temperature can be used. It is more preferable because high photocatalytic activity can be imparted. In addition, a solvent may use only 1 type and may use 2 or more types together. Moreover, you may perform washing | cleaning in multiple times as needed, In that case, the solvent to be used can also be changed suitably.

酸化タングステンの洗浄は、例えば、焼成後の酸化タングステンが粒子状である場合には、酸化タングステンを溶媒に分散させ、所定時間(通常、5〜60分間程度)攪拌した後、固液分離により固形分を回収する方法で行うことができる。固液分離は、遠心分離、デカンテーション、濾過など通常の手段で行えばよい。このような溶媒への分散、攪拌および固液分離からなる操作で洗浄を行う場合、これら操作は、必要に応じて、複数回(通常、3回以上)繰り返して行うことが望ましい。また、焼成後の酸化タングステンが粒子状以外の成形体である場合には、例えば、酸化タングステン成形体の表面に溶媒を吹きつけて洗い流すようにしたり、溶媒中に酸化タングステン成形体を浸漬して超音波をかけるなどの洗浄方法を採用することができる。   For example, when the sintered tungsten oxide is in the form of particles, the tungsten oxide is dispersed in a solvent, stirred for a predetermined time (usually about 5 to 60 minutes), and then solidified by solid-liquid separation. This can be done by collecting the minute. Solid-liquid separation may be performed by ordinary means such as centrifugation, decantation, and filtration. When washing is performed by such operations including dispersion in a solvent, stirring and solid-liquid separation, these operations are desirably repeated a plurality of times (usually 3 times or more) as necessary. Further, when the sintered tungsten oxide is a non-particulate molded body, for example, the surface of the tungsten oxide molded body may be washed away by washing, or the tungsten oxide molded body may be immersed in the solvent. A cleaning method such as applying ultrasonic waves can be employed.

洗浄に用いる溶媒の量(複数回の洗浄を行った場合には合計使用量)は、特に制限されないが、洗浄に供する酸化タングステンの重量に対して、10倍以上、好ましくは20倍以上であり、かつ200倍以下、好ましくは100倍以下とするのがよい。溶媒の量が10倍未満であると、不純物の除去が不充分となり、光触媒活性が低下するおそれがある。一方、溶媒の量が200倍を超えて使用しても、溶媒の増量に見合うだけの光触媒活性の向上効果は得られないので、コスト面で不利となる傾向がある。   The amount of the solvent used for washing (total amount used in the case of performing washing several times) is not particularly limited, but is 10 times or more, preferably 20 times or more with respect to the weight of tungsten oxide used for washing. And 200 times or less, preferably 100 times or less. If the amount of the solvent is less than 10 times, the removal of impurities becomes insufficient and the photocatalytic activity may be lowered. On the other hand, even if the amount of the solvent exceeds 200 times, the effect of improving the photocatalytic activity corresponding to the increase in the amount of the solvent cannot be obtained, which tends to be disadvantageous in terms of cost.

上述したように、溶媒への分散、攪拌および固液分離からなる操作で洗浄を行う場合、洗浄に供する酸化タングステンには、あらかじめ粉砕を施しておくことが好ましい。粉砕は、水などの液体を加えることなく乾燥状態で粉砕する乾式粉砕であってもよいし、水などの液体を加えて湿潤状態で粉砕する湿式粉砕であってもよい。乾式粉砕により粉砕する場合には、例えば、転動ミル、振動ボールミル、遊星ミルなどのボールミル、ピンミルなどの高速回転粉砕機、媒体攪拌ミル、ジェットミルなどの粉砕装置を用いることができる。湿式粉砕により粉砕する場合には、例えば、上記と同様のボールミル、高速回転粉砕機、媒体攪拌ミルなどの粉砕装置を用いることができる。なお、粉砕は、必要に応じて、洗浄後もしくは後述する乾燥後に行ってもよい。
洗浄後の酸化タングステンには、必要に応じて、乾燥等を施すことができる。乾燥は、気流乾燥機、媒体流動乾燥機、静置乾燥機などで行えばよい。
As described above, when washing is performed by an operation consisting of dispersion in a solvent, stirring, and solid-liquid separation, it is preferable to pulverize tungsten oxide to be used for washing in advance. The pulverization may be dry pulverization that pulverizes in a dry state without adding a liquid such as water, or may be wet pulverization that adds a liquid such as water and pulverizes in a wet state. In the case of pulverization by dry pulverization, for example, a ball mill such as a rolling mill, a vibration ball mill or a planetary mill, a high-speed rotary pulverizer such as a pin mill, a pulverizer such as a medium stirring mill or a jet mill can be used. In the case of pulverization by wet pulverization, for example, a pulverizer similar to the above, such as a ball mill, a high-speed rotary pulverizer, or a medium stirring mill can be used. In addition, you may grind | pulverize after washing | cleaning or after the drying mentioned later as needed.
The tungsten oxide after washing can be dried as necessary. Drying may be performed with an air flow dryer, a medium fluidized dryer, a stationary dryer, or the like.

以上のようにして製造された酸化タングステンからなる光触媒体は、実用光源である蛍光灯等の照射によって高い触媒活性を示すので、屋内空間においても、反応基質に含まれる有害な有機物(例えば、大気中の悪臭物質、水中の有機溶剤、農薬、界面活性剤等)の分解除去を効率よく行うことができる。   The photocatalyst made of tungsten oxide produced as described above exhibits high catalytic activity when irradiated with a fluorescent light, which is a practical light source. Therefore, harmful indoors contained in the reaction substrate (for example, atmospheric air) It is possible to efficiently decompose and remove malodorous substances, organic solvents in water, agricultural chemicals, surfactants, etc.).

本発明の製造方法で得られた酸化タングステン光触媒体を有機物の分解除去に適用する際には、そのまま用いることもできるが、必要に応じて、各種添加剤と混合したり、分散体(コーティング液)としたり、成形するなどして用いてもよい。   When the tungsten oxide photocatalyst obtained by the production method of the present invention is applied to decompose and remove organic matter, it can be used as it is. However, if necessary, it can be mixed with various additives or dispersed (coating liquid). Or may be used after molding.

酸化タングステン光触媒体を各種添加剤と混合する場合、酸化タングステン光触媒体の吸着性や光触媒活性をさらに向上させうる添加剤を選択するのが好ましい。そのような添加剤としては、例えば、非晶質シリカ、シリカゾル、水ガラス、オルガノポリシロキサンのような珪素化合物、非晶質アルミナ、アルミナゾル、水酸化アルミニウムのようなアルミニウム化合物、ゼオライト、カオリナイトのようなアルミノ珪酸塩、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウムおよび水酸化バリウムのようなアルカリ土類金属(水)酸化物、リン酸カルシウム、モレキュラーシーブ、活性炭、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Ga、In、Tl、Ge、Sn、Pb、Bi、La、Ceのような金属元素の水酸化物や、これらの金属元素の酸化物、有機ポリシロキサン化合物の重縮合物、リン酸塩、フッ素系ポリマー、シリコン系ポリマー、アクリル樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂などが挙げられる。これら添加剤は、1種のみを用いてもよいし、2種以上を併用してもよい。   When the tungsten oxide photocatalyst is mixed with various additives, it is preferable to select an additive that can further improve the adsorptivity and photocatalytic activity of the tungsten oxide photocatalyst. Examples of such additives include amorphous silica, silica sol, water glass, silicon compounds such as organopolysiloxane, amorphous alumina, alumina sol, aluminum compounds such as aluminum hydroxide, zeolite, and kaolinite. Alkaline earth metal (hydroxide) oxides such as aluminosilicate, magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide, calcium phosphate, molecular sieve , Activated carbon, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au Zn, Cd, Ga, In, Tl, Ge, Sn, Pb, Bi, La, C Hydroxides of these metal elements, oxides of these metal elements, polycondensates of organic polysiloxane compounds, phosphates, fluoropolymers, silicone polymers, acrylic resins, polyester resins, melamine resins, urethanes Examples thereof include resins and alkyd resins. These additives may be used alone or in combination of two or more.

酸化タングステン光触媒体を分散体として用いる場合には、本発明の製造方法で得られた酸化タングステン光触媒体を水やアルコール等の有機溶媒中に分散させればよい。その際、酸化タングステン光触媒体の分散性を向上させる目的で、必要に応じて分散剤を添加することができる。さらに、塗膜にしたときの基材との密着性を向上させる目的で、必要に応じて公知の無機系バインダーや有機系バインダーを添加することもできる。このような分散体(コーティング液)は、例えば、壁、天井、窓ガラス、タイルなど、可視光線を多く含む蛍光灯、ハロゲンランプ、キセノンランプ、発光ダイオード、太陽光線等を照射可能な場所に塗布される。   When the tungsten oxide photocatalyst is used as a dispersion, the tungsten oxide photocatalyst obtained by the production method of the present invention may be dispersed in an organic solvent such as water or alcohol. At that time, a dispersant may be added as necessary for the purpose of improving the dispersibility of the tungsten oxide photocatalyst. Furthermore, a known inorganic binder or organic binder can be added as necessary for the purpose of improving the adhesion to the substrate when it is formed into a coating film. Such a dispersion (coating liquid) is applied to places that can be irradiated with fluorescent light, halogen lamps, xenon lamps, light-emitting diodes, sunlight, etc., which contain a large amount of visible light, such as walls, ceilings, window glass, and tiles. Is done.

以下、本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。
なお、実施例および比較例における各物性の測定およびその光触媒活性の評価については、以下の方法で行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
In addition, about the measurement of each physical property in an Example and a comparative example, and the evaluation of the photocatalytic activity, it performed with the following method.

<結晶構造>
X線回折装置(リガク社製「RINT2000/PC」)を用いて試料のX線回折スペクトルを測定し、そのスペクトルから主成分の結晶構造を求めた。
<Crystal structure>
The X-ray diffraction spectrum of the sample was measured using an X-ray diffractometer (“RINT2000 / PC” manufactured by Rigaku Corporation), and the crystal structure of the main component was determined from the spectrum.

<BET比表面積>
比表面積測定装置(湯浅アイオニクス社製「モノソーブ」)を用いて窒素吸着法により測定した。
<BET specific surface area>
It measured by the nitrogen adsorption method using the specific surface area measuring apparatus ("Monosorb" by Yuasa Ionics Co., Ltd.).

<光触媒活性の評価>
光触媒活性は、蛍光灯の光の照射下でのアセトアルデヒドの分解反応における一次反応速度定数を測定することにより評価した。
まず、光触媒活性測定用の試料を作製した。すなわち、内径60mmのガラス製シャーレに光触媒体0.1gを入れ、水を少量加えてペースト状にした後、得られたペーストをシャーレ全体に均一となるように展開した。次いで、このシャーレを110℃の乾燥機で1時間乾燥させ、光触媒活性測定用試料を作製した。得られた試料は、ブラックライト(紫外線強度2mW/cm2:トプコン社製紫外線強度計「UVR−2」に同社製受光部「UD−36」を取り付けて測定)を16時間照射することにより初期化しておいた。
<Evaluation of photocatalytic activity>
The photocatalytic activity was evaluated by measuring a first-order reaction rate constant in the decomposition reaction of acetaldehyde under irradiation of light from a fluorescent lamp.
First, a sample for measuring photocatalytic activity was prepared. That is, 0.1 g of the photocatalyst was placed in a glass petri dish having an inner diameter of 60 mm, and a small amount of water was added to form a paste, and then the obtained paste was developed so as to be uniform throughout the petri dish. Subsequently, this petri dish was dried with a dryer at 110 ° C. for 1 hour to prepare a sample for photocatalytic activity measurement. The obtained sample was initially irradiated with 16 hours of black light (ultraviolet intensity 2 mW / cm 2 : measured by attaching a UV receiver “UD-36” manufactured by Topcon UV intensity meter “UVR-2”) for 16 hours. It was converted.

次に、この初期化した光触媒活性測定用試料をシャーレごと密閉式ガラス製容器(直径8cm、高さ10cm、容量約0.5L)内に設置した後、この容器内を酸素20容量%と窒素80容量%とからなる混合ガスで満たし、さらにその中にアセトアルデヒド13.4μmolを封入した。そして、容器の外から蛍光灯の光を照度6000ルクス(ミノルタ製照度計「T−10」で測定)で照射して、アセトアルデヒドの分解反応を行った。このとき、反応開始(蛍光灯による光照射の開始)から、容器内のアセトアルデヒド濃度を光音響マルチガスモニタ(INNOVA製「1312型」)で経時的に測定した。そして、照射時間に対するアセトアルデヒドの濃度減少量を対数軸にプロットし、得られた直線の傾きから、反応開始から初期の10分間での一次反応速度定数を算出し、これをアセトアルデヒド分解能として評価した。一次反応速度定数が大きいほど、アセトアルデヒドの分解能(換言すれば、光触媒活性)が高いと言える。   Next, this initialized sample for photocatalytic activity measurement was placed in a sealed glass container (diameter 8 cm, height 10 cm, capacity about 0.5 L) together with the petri dish, and then the inside of the container was filled with 20% oxygen and nitrogen. The mixture gas was filled with 80% by volume, and 13.4 μmol of acetaldehyde was further sealed therein. And the light of the fluorescent lamp was irradiated with the illumination intensity of 6000 lux (measured with Minolta illuminance meter "T-10") from the outside of the container, and the decomposition reaction of acetaldehyde was performed. At this time, the concentration of acetaldehyde in the container was measured over time from the start of the reaction (start of light irradiation with a fluorescent lamp) with a photoacoustic multi-gas monitor (“1312” manufactured by INNOVA). Then, the concentration decrease of acetaldehyde with respect to the irradiation time was plotted on the logarithmic axis, and the first-order rate constant for the first 10 minutes from the start of the reaction was calculated from the slope of the obtained straight line, and this was evaluated as the acetaldehyde resolution. It can be said that the higher the first-order reaction rate constant, the higher the acetaldehyde resolution (in other words, the photocatalytic activity).

(実施例1)
パラタングステン酸アンモニウム(日本無機化学工業(株)製)を空気中で500℃にて1時間焼成した。このとき、昇温速度は200℃/時間とした。焼成後の粉末は、結晶型が酸化タングステン(WO3)であり、そのBET比表面積は7.0m2/gであった。
次に、焼成後の粉末(酸化タングステン)2.0gを水30gに分散させた後、遠心分離機にて上澄みを除去した。この操作(水に分散させ、上澄みを除去する操作)を合計5回繰り返し、酸化タングステンの洗浄を行った。その後、得られた粉末を50℃にて一晩(18時間)真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0129min-1であった。
Example 1
Ammonium paratungstate (manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) was calcined in air at 500 ° C. for 1 hour. At this time, the temperature rising rate was 200 ° C./hour. The powder after firing had a crystal form of tungsten oxide (WO 3 ), and its BET specific surface area was 7.0 m 2 / g.
Next, 2.0 g of the fired powder (tungsten oxide) was dispersed in 30 g of water, and then the supernatant was removed with a centrifuge. This operation (operation of dispersing in water and removing the supernatant) was repeated a total of 5 times to wash the tungsten oxide. Thereafter, the obtained powder was vacuum-dried at 50 ° C. overnight (18 hours) to obtain a photocatalyst.
When the obtained photocatalyst was used for the decomposition reaction of acetaldehyde under the irradiation of light from a fluorescent lamp and the photocatalytic activity was evaluated, the reaction rate constant was 0.0129 min −1 .

(実施例2)
焼成温度を600℃とした以外は実施例1と同様にして焼成を行った。焼成後の粉末は、結晶型が酸化タングステン(WO3)であり、そのBET比表面積は5.3m2/gであった。
次に、焼成後の粉末(酸化タングステン)を実施例1と同様に、水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0132min-1であった。
(Example 2)
Firing was performed in the same manner as in Example 1 except that the firing temperature was 600 ° C. The powder after firing had a crystal form of tungsten oxide (WO 3 ), and its BET specific surface area was 5.3 m 2 / g.
Next, the fired powder (tungsten oxide) was washed with water in the same manner as in Example 1 and then vacuum-dried to obtain a photocatalyst.
When the obtained photocatalyst was used for the decomposition reaction of acetaldehyde under the irradiation of light from a fluorescent lamp and the photocatalytic activity was evaluated, the reaction rate constant was 0.0132 min −1 .

(実施例3)
実施例1と同様にして(すなわち、焼成温度500℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)2.0gを5%過酸化水素水30gに分散させた後、遠心分離機にて上澄みを除去した。この操作(過酸化水素水に分散させ、上澄みを除去する操作)を合計5回繰り返し、酸化タングステンの洗浄を行った。その後、得られた粉末を50℃にて一晩(18時間)真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0132min-1であった。
(Example 3)
After dispersing 2.0 g of the baked powder (tungsten oxide) obtained in the same manner as in Example 1 (that is, baking ammonium paratungstate at a baking temperature of 500 ° C.) in 30 g of 5% aqueous hydrogen peroxide. The supernatant was removed with a centrifuge. This operation (operation of dispersing in hydrogen peroxide solution and removing the supernatant) was repeated a total of 5 times to wash the tungsten oxide. Thereafter, the obtained powder was vacuum-dried at 50 ° C. overnight (18 hours) to obtain a photocatalyst.
When the obtained photocatalyst was used for the decomposition reaction of acetaldehyde under the irradiation of light from a fluorescent lamp and the photocatalytic activity was evaluated, the reaction rate constant was 0.0132 min −1 .

(実施例4)
実施例2と同様にして(すなわち、焼成温度600℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)を用いた以外は、実施例3と同様に、過酸化水素水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0129min-1であった。
Example 4
In the same manner as in Example 3, except that the baked powder (tungsten oxide) obtained in the same manner as in Example 2 (that is, by baking ammonium paratungstate at a calcination temperature of 600 ° C.) was used. After washing with water, it was vacuum dried to obtain a photocatalyst.
When the obtained photocatalyst was used for the decomposition reaction of acetaldehyde under the irradiation of light from a fluorescent lamp and the photocatalytic activity was evaluated, the reaction rate constant was 0.0129 min −1 .

(比較例1)
焼成温度を400℃とした以外は実施例1と同様にしてパラタングステン酸アンモニウムの焼成を行った。焼成後の粉末は、分解中間体と推測された。また、そのBET比表面積は16.0m2/gであった。
得られた焼成後の粉末を、水や過酸化水素水で洗浄することなく、光触媒体として用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0010min-1であった。
(Comparative Example 1)
Ammonium paratungstate was fired in the same manner as in Example 1 except that the firing temperature was 400 ° C. The powder after firing was presumed to be a decomposition intermediate. The BET specific surface area was 16.0 m 2 / g.
Without rinsing the obtained powder after washing with water or hydrogen peroxide water, as a photocatalyst, the decomposition reaction of acetaldehyde under the irradiation of the light of the fluorescent lamp, the photocatalytic activity was evaluated, The reaction rate constant was 0.0010 min −1 .

(比較例2)
焼成温度を450℃とした以外は実施例1と同様にしてパラタングステン酸アンモニウムの焼成を行った。焼成後の粉末は、結晶型が酸化タングステン(WO3)であるものと分解中間体と推測されるものとの混合物であった。また、そのBET比表面積は11.0m2/gであった。
得られた焼成後の粉末を、水や過酸化水素水で洗浄することなく、光触媒体として用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0043min-1であった。
(Comparative Example 2)
Ammonium paratungstate was calcined in the same manner as in Example 1 except that the calcining temperature was 450 ° C. The powder after firing was a mixture of a crystal type of tungsten oxide (WO 3 ) and a presumed decomposition intermediate. The BET specific surface area was 11.0 m 2 / g.
Without rinsing the obtained powder after washing with water or hydrogen peroxide water, as a photocatalyst, the decomposition reaction of acetaldehyde under the irradiation of the light of the fluorescent lamp, the photocatalytic activity was evaluated, The reaction rate constant was 0.0043 min −1 .

(比較例3)
比較例2と同様にして(すなわち、焼成温度450℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末を用いた以外は、実施例1と同様に、水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0034min-1であった。
(Comparative Example 3)
After washing with water in the same manner as in Example 1 except that the fired powder obtained in the same manner as in Comparative Example 2 (ie, calcining ammonium paratungstate at a firing temperature of 450 ° C.) was used, vacuum was applied. It dried and the photocatalyst body was obtained.
The obtained photocatalyst was subjected to a decomposition reaction of acetaldehyde under irradiation of light from a fluorescent lamp, and its photocatalytic activity was evaluated. The reaction rate constant was 0.0034 min −1 .

(比較例4)
比較例2と同様にして(すなわち、焼成温度450℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末を用いた以外は、実施例3と同様に、過酸化水素水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0046min-1であった。
(Comparative Example 4)
Washed with hydrogen peroxide solution in the same manner as in Example 3 except that the fired powder obtained in the same manner as in Comparative Example 2 (ie, calcining ammonium paratungstate at a firing temperature of 450 ° C.) was used. Then, it vacuum-dried and obtained the photocatalyst body.
The obtained photocatalyst was subjected to a decomposition reaction of acetaldehyde under irradiation of light from a fluorescent lamp, and its photocatalytic activity was evaluated. The reaction rate constant was 0.0046 min −1 .

(比較例5)
実施例1と同様にして(すなわち、焼成温度500℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)を、水や過酸化水素水で洗浄することなく、光触媒体として用いて、蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0106min-1であった。
(Comparative Example 5)
The photocatalyst without washing the fired powder (tungsten oxide) in the same manner as in Example 1 (that is, calcining ammonium paratungstate at a calcining temperature of 500 ° C.) without washing with water or aqueous hydrogen peroxide. As a result, a decomposition reaction of acetaldehyde was performed under the irradiation of light from a fluorescent lamp, and its photocatalytic activity was evaluated. As a result, the reaction rate constant was 0.0106 min −1 .

(比較例6)
実施例2と同様にして(すなわち、焼成温度600℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)を、水や過酸化水素水で洗浄することなく、光触媒体として用いて、蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0104min-1であった。
(Comparative Example 6)
A photocatalyst without washing the powder (tungsten oxide) after firing obtained in the same manner as in Example 2 (that is, by calcining ammonium paratungstate at a firing temperature of 600 ° C.) with water or aqueous hydrogen peroxide. As a result, a decomposition reaction of acetaldehyde was performed under the irradiation of light from a fluorescent lamp, and its photocatalytic activity was evaluated. As a result, the reaction rate constant was 0.0104 min −1 .

(比較例7)
焼成温度を700℃とした以外は実施例1と同様にしてパラタングステン酸アンモニウムの焼成を行った。焼成後の粉末は、結晶型が酸化タングステン(WO3)であり、そのBET比表面積は3.7m2/gであった。
得られた焼成後の粉末(酸化タングステン)を、水や過酸化水素水で洗浄することなく、光触媒体として用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0119min-1であった。
(Comparative Example 7)
Ammonium paratungstate was calcined in the same manner as in Example 1 except that the calcining temperature was 700 ° C. The powder after firing had a crystal form of tungsten oxide (WO 3 ), and its BET specific surface area was 3.7 m 2 / g.
The obtained powder after baking (tungsten oxide) is used as a photocatalyst without washing with water or hydrogen peroxide, and acetaldehyde is decomposed under the irradiation of light from a fluorescent lamp. When evaluated, the reaction rate constant was 0.0119 min −1 .

(比較例8)
比較例7と同様にして(すなわち、焼成温度700℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)を用いた以外は、実施例1と同様に、水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0121min-1であった。
(Comparative Example 8)
Washing with water in the same manner as in Example 1 except that the baked powder (tungsten oxide) obtained in the same manner as in Comparative Example 7 (that is, by baking ammonium paratungstate at a baking temperature of 700 ° C.) was used. Then, it was vacuum-dried to obtain a photocatalyst.
The obtained photocatalyst was subjected to a decomposition reaction of acetaldehyde under light irradiation of a fluorescent lamp, and the photocatalytic activity was evaluated. The reaction rate constant was 0.0121 min −1 .

(比較例9)
比較例7と同様にして(すなわち、焼成温度700℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)を用いた以外は、実施例3と同様に、過酸化水素水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0109min-1であった。
(Comparative Example 9)
In the same manner as in Example 3, except that the baked powder (tungsten oxide) obtained in the same manner as in Comparative Example 7 (that is, by baking ammonium paratungstate at a baking temperature of 700 ° C.) was used. After washing with water, it was vacuum dried to obtain a photocatalyst.
The resulting photocatalyst was used to undergo a decomposition reaction of acetaldehyde under the irradiation of light from a fluorescent lamp, and when the photocatalytic activity was evaluated, the reaction rate constant was 0.0109 min −1 .

(比較例10)
焼成温度を800℃とした以外は実施例1と同様にしてパラタングステン酸アンモニウムの焼成を行った。焼成後の粉末は、結晶型が酸化タングステン(WO3)であり、そのBET比表面積は1.0m2/gであった。
得られた焼成後の粉末(酸化タングステン)を、水や過酸化水素水で洗浄することなく、光触媒体として用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0080min-1であった。
(Comparative Example 10)
Ammonium paratungstate was fired in the same manner as in Example 1 except that the firing temperature was 800 ° C. The powder after firing had a crystal form of tungsten oxide (WO 3 ), and its BET specific surface area was 1.0 m 2 / g.
The obtained powder after baking (tungsten oxide) is used as a photocatalyst without washing with water or hydrogen peroxide, and acetaldehyde is decomposed under the irradiation of light from a fluorescent lamp. When evaluated, the reaction rate constant was 0.0080 min −1 .

(比較例11)
比較例10と同様にして(すなわち、焼成温度800℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)を用いた以外は、実施例1と同様に、水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0091min-1であった。
(Comparative Example 11)
Washing with water in the same manner as in Example 1 except that the fired powder (tungsten oxide) obtained in the same manner as in Comparative Example 10 (that is, calcining ammonium paratungstate at a firing temperature of 800 ° C.) was used. Then, it was vacuum-dried to obtain a photocatalyst.
The obtained photocatalyst was subjected to a decomposition reaction of acetaldehyde under light irradiation of a fluorescent lamp, and the photocatalytic activity was evaluated. As a result, the reaction rate constant was 0.0091 min −1 .

(比較例12)
比較例10と同様にして(すなわち、焼成温度800℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)を用いた以外は、実施例3と同様に、過酸化水素水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0081min-1であった。
(Comparative Example 12)
In the same manner as in Example 3, except that the baked powder (tungsten oxide) obtained in the same manner as in Comparative Example 10 (that is, by baking ammonium paratungstate at a baking temperature of 800 ° C.) was used. After washing with water, it was vacuum dried to obtain a photocatalyst.
The obtained photocatalyst was subjected to a decomposition reaction of acetaldehyde under irradiation of light from a fluorescent lamp, and its photocatalytic activity was evaluated. The reaction rate constant was 0.0081 min −1 .

(比較例13)
焼成温度を900℃とした以外は実施例1と同様にしてパラタングステン酸アンモニウムの焼成を行った。焼成後の粉末は、結晶型が酸化タングステン(WO3)であり、そのBET比表面積は0.3m2/gであった。
得られた焼成後の粉末(酸化タングステン)を、水や過酸化水素水で洗浄することなく、光触媒体として用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0043min-1であった。
(Comparative Example 13)
Ammonium paratungstate was fired in the same manner as in Example 1 except that the firing temperature was 900 ° C. The powder after firing had a crystal form of tungsten oxide (WO 3 ), and its BET specific surface area was 0.3 m 2 / g.
The obtained powder after baking (tungsten oxide) is used as a photocatalyst without washing with water or hydrogen peroxide, and acetaldehyde is decomposed under the irradiation of light from a fluorescent lamp. When evaluated, the reaction rate constant was 0.0043 min −1 .

(比較例14)
比較例13と同様にして(すなわち、焼成温度900℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)を用いた以外は、実施例1と同様に、水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0049min-1であった。
(Comparative Example 14)
Washing with water in the same manner as in Example 1 except that the fired powder (tungsten oxide) obtained in the same manner as in Comparative Example 13 (ie, calcining ammonium paratungstate at a firing temperature of 900 ° C.) was used. Then, it was vacuum-dried to obtain a photocatalyst.
When the obtained photocatalyst was used for the decomposition reaction of acetaldehyde under the irradiation of light from a fluorescent lamp and the photocatalytic activity was evaluated, the reaction rate constant was 0.0049 min −1 .

(比較例15)
比較例13と同様にして(すなわち、焼成温度900℃でパラタングステン酸アンモニウムを焼成して)得た焼成後の粉末(酸化タングステン)を用いた以外は、実施例3と同様に、過酸化水素水で洗浄した後、真空乾燥して、光触媒体を得た。
得られた光触媒体を用いて蛍光灯の光の照射下でのアセトアルデヒドの分解反応を行い、その光触媒活性を評価したところ、反応速度定数は0.0046min-1であった。
(Comparative Example 15)
In the same manner as in Example 3, except that the fired powder (tungsten oxide) obtained in the same manner as in Comparative Example 13 (that is, calcined ammonium paratungstate at a firing temperature of 900 ° C.) was used. After washing with water, it was vacuum dried to obtain a photocatalyst.
The obtained photocatalyst was subjected to a decomposition reaction of acetaldehyde under irradiation of light from a fluorescent lamp, and its photocatalytic activity was evaluated. The reaction rate constant was 0.0046 min −1 .

実施例1〜4のように、480〜650℃で焼成した後、洗浄すると、高い光触媒活性が得られる。詳しくは、実施例1または3と比較例5との比較、もしくは実施例2または4と比較例6との比較から、前記特定温度で焼成した場合には、洗浄によって光触媒活性(反応速度定数)が概ね1.3倍に向上することが明らかである。
これに対して、比較例1〜4のように、480℃未満の温度で焼成した場合、パラタングステン酸塩が充分に酸化タングステンにならないため、光触媒活性(反応速度定数)は非常に低くなり、比較例7〜15のように、650℃を超える温度で焼成した場合も、光触媒活性(反応速度定数)は低くなる。詳しくは、480℃未満または650℃を超える温度で焼成した場合には、洗浄による光触媒活性(反応速度定数)の向上効果は、最大でも1.1倍であり(比較例2に対する比較例4、比較例8に対する比較例9、比較例11に対する比較例12)、充分な光触媒活性は得られないことが明らかである。
As in Examples 1 to 4, after baking at 480 to 650 ° C. and washing, high photocatalytic activity is obtained. Specifically, from the comparison between Example 1 or 3 and Comparative Example 5 or the comparison between Example 2 or 4 and Comparative Example 6, when calcined at the specific temperature, photocatalytic activity (reaction rate constant) is obtained by washing. It is clear that this is improved by 1.3 times.
On the other hand, when calcined at a temperature lower than 480 ° C. as in Comparative Examples 1 to 4, since the paratungstate does not sufficiently become tungsten oxide, the photocatalytic activity (reaction rate constant) becomes very low, As in Comparative Examples 7 to 15, the photocatalytic activity (reaction rate constant) also decreases when calcined at a temperature exceeding 650 ° C. Specifically, in the case of firing at a temperature lower than 480 ° C. or higher than 650 ° C., the improvement effect of the photocatalytic activity (reaction rate constant) by washing is 1.1 times at most (Comparative Example 4 with respect to Comparative Example 2, It is clear that Comparative Example 9 for Comparative Example 8 and Comparative Example 12 for Comparative Example 11) do not provide sufficient photocatalytic activity.

Claims (2)

パラタングステン酸またはその塩を480〜650℃で焼成した後、得られた酸化タングステン粉末を水および過酸化水素水の少なくとも一方を用いて洗浄する、ことを特徴とする酸化タングステン光触媒体の製造方法。 A method for producing a tungsten oxide photocatalyst comprising calcining paratungstic acid or a salt thereof at 480 to 650 ° C. and then washing the obtained tungsten oxide powder with at least one of water and hydrogen peroxide water . 前記洗浄は、溶媒への分散、攪拌および固液分離からなる操作で行う、請求項1記載の酸化タングステン光触媒体の製造方法。 The washing, dispersing in the solvent, stirred and the solid-liquid carried by consisting separation method of the tungsten oxide photocatalyst according to claim 1 Symbol placement.
JP2007328688A 2007-12-20 2007-12-20 Method for producing tungsten oxide photocatalyst Expired - Fee Related JP5161555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007328688A JP5161555B2 (en) 2007-12-20 2007-12-20 Method for producing tungsten oxide photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007328688A JP5161555B2 (en) 2007-12-20 2007-12-20 Method for producing tungsten oxide photocatalyst

Publications (2)

Publication Number Publication Date
JP2009148700A JP2009148700A (en) 2009-07-09
JP5161555B2 true JP5161555B2 (en) 2013-03-13

Family

ID=40918529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328688A Expired - Fee Related JP5161555B2 (en) 2007-12-20 2007-12-20 Method for producing tungsten oxide photocatalyst

Country Status (1)

Country Link
JP (1) JP5161555B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015069B2 (en) * 2008-06-05 2012-08-29 住友化学株式会社 Method for producing tungsten oxide photocatalyst
JP5582490B2 (en) * 2009-11-09 2014-09-03 三井金属鉱業株式会社 Exhaust gas treatment catalyst and method for producing the same
US8986580B2 (en) 2010-05-18 2015-03-24 Shin-Etsu Chemical Co., Ltd. Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
JP5633571B2 (en) * 2010-10-08 2014-12-03 信越化学工業株式会社 Method for producing rutile type titanium oxide fine particle dispersion
JP5655827B2 (en) 2011-11-14 2015-01-21 信越化学工業株式会社 Visible light responsive titanium oxide fine particle dispersion, method for producing the same, and member having a photocatalytic thin film formed on the surface using the dispersion
CN104640630B (en) 2012-09-19 2017-10-24 信越化学工业株式会社 Visible-light-responsive photocatalyst particle dispersion liquid, its manufacture method and the part on surface with photocatalyst film
KR102170489B1 (en) 2013-10-16 2020-10-28 신에쓰 가가꾸 고교 가부시끼가이샤 Dispersion liquid of titanium oxide-tungsten oxide composite photocatalytic fine particles, production method for same, and member having photocatalytic thin film on surface thereof
KR102499591B1 (en) 2015-03-23 2023-02-14 신에쓰 가가꾸 고교 가부시끼가이샤 Dispersion of visible light-responsive photocatalyst titanium oxide fine particles, manufacturing method thereof, and member having photocatalytic thin film on the surface
EP3486399B1 (en) 2016-07-14 2021-03-17 Shin-Etsu Chemical Co., Ltd. Interior material having surface layer having visible light-responsive photocatalytic activity, and method for manufacturing same
JP6652196B2 (en) 2016-09-12 2020-02-19 信越化学工業株式会社 Visible light responsive photocatalytic titanium oxide fine particle dispersion, method for producing dispersion, photocatalytic thin film, and member having photocatalytic thin film on surface
JP7088082B2 (en) 2019-03-04 2022-06-21 信越化学工業株式会社 A method for producing a titanium oxide fine particle mixture, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a titanium oxide fine particle dispersion.
JP7070474B2 (en) 2019-03-04 2022-05-18 信越化学工業株式会社 Titanium oxide fine particles, their dispersion, and a method for producing the dispersion.
EP4215273A1 (en) 2020-09-15 2023-07-26 Shin-Etsu Chemical Co., Ltd. Titanium oxide particles, dispersion liquid of same, photocatalyst thin film, member having photocatalyst thin film on surface, and method for producing dispersion liquid of titanium oxide particles
EP4215491A1 (en) 2020-09-15 2023-07-26 Shin-Etsu Chemical Co., Ltd. Titanium oxide particles and liquid dispersion thereof, photocatalyst thin film, member having photocatalyst thin film formed on surface thereof, and method for producing liquid dispersion of titanium oxide particles
KR20220095952A (en) 2020-12-30 2022-07-07 주식회사 비엔큐브 Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
TW202311168A (en) 2021-04-21 2023-03-16 日商信越化學工業股份有限公司 Titanium oxide particle-metal particle composition and manufacturing method therefor
TW202332474A (en) 2021-04-21 2023-08-16 日商信越化學工業股份有限公司 Titanium oxide particle/metal particle composition and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169040A (en) * 1988-12-22 1990-06-29 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst
JP3899237B2 (en) * 2001-03-30 2007-03-28 株式会社アライドマテリアル Fine grain tungsten oxide and method for producing the same
JP2006028688A (en) * 2004-07-20 2006-02-02 Sumitomo Chemical Co Ltd Method for producing photocatalyst body-carrying product
JP4694300B2 (en) * 2005-08-08 2011-06-08 大日本印刷株式会社 Method for producing photocatalyst containing layer
JP5374747B2 (en) * 2006-02-01 2013-12-25 東芝マテリアル株式会社 Photocatalyst material, photocatalyst composition using the same, and photocatalyst product

Also Published As

Publication number Publication date
JP2009148700A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5161555B2 (en) Method for producing tungsten oxide photocatalyst
JP5258917B2 (en) Tungsten oxide photocatalyst
TWI510288B (en) Titanium oxide photocatalyst carrying copper compound and its manufacturing method
JP5156009B2 (en) Titanium oxide photocatalyst and method for producing the same
KR100763226B1 (en) Photocatalyst materials manufacturing method of transition metal ion added and 10? mean particle diameter sized metal oxide having semiconductor characteristic, material manufactured thereby, and filter, fan filter unit and clean room system having the same material
JP5537858B2 (en) Photocatalyst material and method for producing the same
CN1093060A (en) The manufacture method of Titanium particles and film
JP2011036770A (en) Method for producing noble metal-supported photocatalyst particle
JP2009131760A (en) Photocatalytic body, its producing method and its use
KR20090127084A (en) Photocatalyst dispersion liquid and process for producing the same
JP5161556B2 (en) Method for producing tungsten oxide photocatalyst
JP2010018503A (en) Tungsten oxide exhibiting high photocatalytic activity
JP2009131761A (en) Photocatalytic body
JP4783315B2 (en) Photocatalyst dispersion
JP5015069B2 (en) Method for producing tungsten oxide photocatalyst
JP5129894B2 (en) Tungsten oxide photocatalyst modified with copper ion and method for producing the same
JP2009056348A (en) Photocatalyst dispersion
CN105214637B (en) A kind of metatitanic acid cesium silicate photochemical catalyst and its preparation method and application
JP2008093630A (en) Method of manufacturing photocatalyst dispersion
JP6258827B2 (en) Photocatalytic material
CN1930250A (en) Carbon-containing, titanium dioxide-based photocatalyst, and process for producing the same
JP2008044850A (en) Antibacterial and deodorant spraying liquid comprising photocatalyst coated with silicon oxide film
JP2019111490A (en) Method for producing photocatalyst particle
JP5295668B2 (en) Method for producing photocatalyst body
JP2009254954A (en) Method of manufacturing tungsten oxide photocatalytic medium containing precious metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees