JP2615854B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2615854B2
JP2615854B2 JP63135099A JP13509988A JP2615854B2 JP 2615854 B2 JP2615854 B2 JP 2615854B2 JP 63135099 A JP63135099 A JP 63135099A JP 13509988 A JP13509988 A JP 13509988A JP 2615854 B2 JP2615854 B2 JP 2615854B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
particle size
average particle
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63135099A
Other languages
Japanese (ja)
Other versions
JPH01304664A (en
Inventor
晋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63135099A priority Critical patent/JP2615854B2/en
Publication of JPH01304664A publication Critical patent/JPH01304664A/en
Application granted granted Critical
Publication of JP2615854B2 publication Critical patent/JP2615854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムと遷移金属との複合酸化物を正極
活性質とする非水電解液二次電池に関するものであり、
特にその電池容量の改善に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery using a composite oxide of lithium and a transition metal as a positive electrode active material,
In particular, it relates to the improvement of the battery capacity.

〔発明の概要〕[Summary of the Invention]

本発明は、LiXMO2(ただし、Mは1以上の遷移金属を
表し、0.05≦x≦1.10である。)を主体とする正極と負
極と非水電解液とからなる非水電解液二次電池におい
て、正極活物質であるLiXMO2の平均粒径を所定の範囲に
規定することにより、電池容量の向上を図ろうとするも
のである。
The present invention relates to a non-aqueous electrolyte comprising a positive electrode mainly composed of Li X MO 2 (where M represents one or more transition metals and 0.05 ≦ x ≦ 1.10), a negative electrode, and a non-aqueous electrolyte. In a secondary battery, an attempt is made to improve battery capacity by defining the average particle size of Li X MO 2 as a positive electrode active material within a predetermined range.

〔従来の技術〕[Conventional technology]

近年、ビデオカメラレコーダやラジオカセットレコー
ダ等に見られる如く、携帯用(いわゆるポータブルタイ
プ)の電子機器が増加しており、これに伴い携帯用電源
としての電池の需要が急増している。
In recent years, as seen in video camera recorders, radio cassette recorders, and the like, portable (so-called portable) electronic devices have been increasing, and demand for batteries as portable power supplies has been rapidly increasing.

ところで、これら携帯用電源として普及している電池
としては、アルカリマンガン電池のような一次電池や、
Ni−Cd電池,鉛電池等の二次電池が挙げられるが、前者
は一回の放電のみの使用でコスト的に不利である。ま
た、後者はいずれも放電電圧が低く、エネルギー密度の
向上が困難であるために、軽量化が難しいという問題を
残している。
By the way, as batteries that are widely used as portable power supplies, primary batteries such as alkaline manganese batteries,
A secondary battery such as a Ni-Cd battery or a lead battery can be used, but the former is disadvantageous in cost due to the use of only one discharge. Further, the latter has a problem that it is difficult to reduce the weight because the discharge voltage is low and it is difficult to improve the energy density.

かかる状況から、例えば特開昭55−136131号公報等に
おいて、正極活物質としてリチウム複合酸化物(例えば
LiCoO2)を用いた非水電解液二次電池が提案されてい
る。
Under such circumstances, for example, in JP-A-55-136131, a lithium composite oxide (for example,
A non-aqueous electrolyte secondary battery using LiCoO 2 ) has been proposed.

このリチウム複合酸化物を正極活物質とする電池は、
高い充放電電圧を示すこと、高エネルギー密度を有する
こと等の数々の利点を有するものである。
A battery using this lithium composite oxide as a positive electrode active material is:
It has a number of advantages such as a high charge / discharge voltage and a high energy density.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前記リチウム複合酸化物を正極活物質
とする非水電解液二次電池では、放電容量が若干不足
し、その改善が大きな課題となっている。二次電池の小
型化,長寿命化が叫ばれている現状では、前記放電容量
の不足は極めて不利である。
However, in the non-aqueous electrolyte secondary battery using the lithium composite oxide as a positive electrode active material, the discharge capacity is slightly insufficient, and the improvement has been a major issue. Under the current situation where miniaturization and long life of secondary batteries are called for, the shortage of the discharge capacity is extremely disadvantageous.

そこで本発明は、LiXMO2(ただし、Mは1以上の遷移
金属を表し、0.05≦x≦1.10である。)を正極活物質と
する非水電解液二次電池の放電容量の向上を目的とする
もので、放電電圧が高く高エネルギー密度を有するとと
もに放電容量の大きな非水電解液二次電池を提供するこ
とを目的とする。
Accordingly, the present invention provides an improvement in the discharge capacity of a nonaqueous electrolyte secondary battery using Li X MO 2 (where M represents one or more transition metals and 0.05 ≦ x ≦ 1.10) as a positive electrode active material. An object of the present invention is to provide a nonaqueous electrolyte secondary battery having a high discharge voltage, a high energy density, and a large discharge capacity.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者は、前述の目的を達成せんものと種々の実験
を重ねた結果、正極活物質であるLiXMO2の平均粒径が電
池容量に大きく影響するとの知見を得るに至った。
The present inventor has repeatedly conducted various experiments to achieve the object described above, and as a result, came to the knowledge that the average particle size of Li X MO 2 as the positive electrode active material greatly affects the battery capacity.

本発明は前記知見に基づいて完成されたものであっ
て、LiXMO2(ただし、Mは、1以上の遷移金属を表し、
0.05≦x≦1.10である。)を主体とする正極と負極と非
水電解液とからなる非水電解液二次電池において、前記
LiXMO2は、平均粒径が10〜150μmで、かつ5μm以下
の粒子が30容量%未満であることを特徴とするものであ
る。
The present invention has been completed on the basis of the above findings, and Li X MO 2 (where M represents one or more transition metals,
0.05 ≦ x ≦ 1.10. A) a non-aqueous electrolyte secondary battery composed mainly of a positive electrode, a negative electrode and a non-aqueous electrolyte,
Li X MO 2 is characterized in that the average particle size is 10 to 150 μm and the particles having a size of 5 μm or less are less than 30% by volume.

本発明の電池において、正極にはLiXMO2(ただし、M
は1以上の遷移金属,好ましくはCo又はNiの少なくとも
1種を表し、0.05≦x≦1.10である。)を含んだ活物質
が使用される。かかる正極活物質としては、例えばLiXC
oO2やLiXNiO2、あるいはLiXNiyCo(1-y)O2(ただし0≦
y<1)で表される複合酸化物が挙げられる。
In the battery of the present invention, Li X MO 2 (where M is
Represents one or more transition metals, preferably at least one of Co and Ni, and satisfies 0.05 ≦ x ≦ 1.10. ) Is used. As such a positive electrode active material, for example, Li X C
oO 2 , Li X NiO 2 , or Li X Ni y Co (1-y) O 2 (where 0 ≦
and a composite oxide represented by y <1).

上記配合酸化物は、例えばリチウム、コバルトさらに
はニッケルの炭酸塩を出発原料とし、これらを組成に応
じて混合して焼成することによって得らる。勿論、出発
原料はこれらに限定されず、これら金属の水酸化物や酸
化物を用いた場合にも同様に合成することができる。ま
た、焼成温度は出発原料に応じて適宜設定すれば良い
が、通常は600〜1100℃の温度範囲とされる。
The above-mentioned compounded oxide is obtained by, for example, using lithium, cobalt or nickel carbonate as a starting material, mixing these according to the composition, and firing. Needless to say, the starting materials are not limited to these, and they can be similarly synthesized using a hydroxide or oxide of these metals. Further, the firing temperature may be appropriately set according to the starting material, but is usually in the temperature range of 600 to 1100 ° C.

前述の正極活性物質(リチウム複合酸化物)は微粒子
状態あるいは粉末状態を呈し、通常はペレット状とした
り例えばAl等よりなる集電体に塗布することで正極とさ
れるが、本発明では、その平均粒径が10〜150μmのも
のを選択して使用することとする。
The above-described positive electrode active material (lithium composite oxide) exhibits a fine particle state or a powder state, and is usually formed into a pellet or applied to a current collector made of, for example, Al to form a positive electrode. A material having an average particle size of 10 to 150 μm is selected and used.

平均粒径が10μm未満では、含有水分量が多く、電池
容量が急激に低下する。逆に平均粒径が150μmを越え
ると、活物質のイオン移動特性が低下し、やはり容量が
低下するとともに、成形性を悪く実用的でない。
When the average particle size is less than 10 μm, the water content is large, and the battery capacity is rapidly reduced. Conversely, if the average particle size exceeds 150 μm, the ion transfer characteristics of the active material decrease, and the capacity also decreases, and the moldability deteriorates, which is not practical.

なお、本発明において、平均粒径とは、平均体積径
(体積加重平均粒径とも言う。)のことで、次式 (Σnd3/Σn)1/3 …(I) (式中、nは粒子個数を表し、dを粒径を表す。)によ
って求められるものである。したがって、例えばマイク
ロトラック粒度分析計を用い、レーザー光の散乱により
粒子個数(n)並びに粒子1個の直径(d)測定するこ
とで、上式に従って平均体積径を算出することができ
る。
In the present invention, the average particle diameter is an average volume diameter (also referred to as a volume-weighted average particle diameter), and is represented by the following formula (Σnd 3 / Σn) 1/3 (I) Where d represents the number of particles and d represents the particle size). Therefore, for example, by using a Microtrac particle size analyzer and measuring the number of particles (n) and the diameter of one particle (d) by scattering of laser light, the average volume diameter can be calculated according to the above equation.

なお、前記リチウム複合酸化物のうち粒径の小さいも
のが悪影響を及ぼすので、特に5μm以下の粒子が30容
量%未満であることが好ましい。
Note that, among the lithium composite oxides, particles having a small particle size have an adverse effect, so that particles having a particle size of 5 μm or less are particularly preferably less than 30% by volume.

一方、負極には、金属リチウム,リチウム合金(例え
ばリチウム−アルミニウム合金等)の他、リチウムイオ
ンをドープ・脱ドープできる物質であればいずれも使用
可能で、例えばピッチ,タール,コークス等の有機物焼
成体や、ポリアセチレン等のポリマー等も使用可能であ
る。
On the other hand, for the negative electrode, any substance other than metallic lithium and a lithium alloy (eg, lithium-aluminum alloy) can be used as long as it can dope and dedope lithium ions. For example, organic substances such as pitch, tar, and coke can be used. A body or a polymer such as polyacetylene can also be used.

電解液も、有機溶剤に電解質を溶解したものであれば
従来より知られるものがいずれも使用できる。したがっ
て、有機溶剤としては、プロピレンカーボネート,エチ
レンカーボネート,γ−ブチロラクトン等のエステル類
や、ジエチルエーテル,テトラヒドロフラン,置換テト
ラヒドロフラン,ジオキソラン,ピラン及びその誘導
体,ジメトキシエタン,ジエトキシエタン等のエーテル
類、3−メチル−2−オキサゾリジノン等の3置換−2
−オキサゾリジノン類、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリル等が挙げられ、
これらを単独若しくは2種以上混合して使用される。ま
た、電解質としては、過塩素酸リチウム,ホウフッ化リ
チウム、リンフッ化リチウム、塩化アルミン酸リチウ
ム、ハロゲン化リチウム、トリフルオロメタンスルホン
酸リチウム等が使用可能である。
As the electrolytic solution, any conventionally known one can be used as long as the electrolyte is dissolved in an organic solvent. Accordingly, examples of the organic solvent include esters such as propylene carbonate, ethylene carbonate, and γ-butyrolactone, ethers such as diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolan, pyran and derivatives thereof, dimethoxyethane, and diethoxyethane; 3-substituted-2 such as methyl-2-oxazolidinone
-Oxazolidinones, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like,
These may be used alone or in combination of two or more. Further, as the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium aluminate, lithium halide, lithium trifluoromethanesulfonate and the like can be used.

なお、本発明が適用される電池の電池形状は、コイン
型,ボタン型のものばかりでなく、渦巻き型(いわゆる
ジェリーロールタイプ)や筒型,角型のもの等であって
もよい。
The shape of the battery to which the present invention is applied is not limited to a coin type or a button type, but may be a spiral type (so-called jelly roll type), a cylindrical type, a square type, or the like.

〔作用〕[Action]

正極活物質として使用されるLiXMO2の平均粒径を10μ
m以上とすることで、当該正極活物質中に含まれる含有
水分量が抑制され、充放電以外の反応,例えば水分と負
極活物質(リチウム)との反応や水分と電解液との反応
等が防止される。
The average particle size of Li X MO 2 used as the positive electrode active material is 10μ.
By setting m or more, the amount of water contained in the positive electrode active material is suppressed, and reactions other than charge and discharge, for example, a reaction between water and the negative electrode active material (lithium), a reaction between water and the electrolytic solution, and the like are suppressed. Is prevented.

また、前記平均粒径を150μm以下とすることで、活
物質のイオン移動特性が維持される。さらに、5μm以
下の粒子が30容量%以下とすることで、粒径の小さいも
のが及ぼす悪影響が抑制される。
Further, by setting the average particle size to 150 μm or less, the ion transfer characteristics of the active material can be maintained. Further, when the volume of the particles having a particle diameter of 5 μm or less is set to 30% by volume or less, the adverse effect of the particles having a small particle diameter is suppressed.

したがって、前記平均粒径を10〜150μmとし、かつ
5μm以下の粒子が30容量%未満とした本発明電池で
は、電池容量の向上が図られる。
Therefore, in the battery of the present invention in which the average particle size is 10 to 150 μm and the particles having a size of 5 μm or less are less than 30% by volume, the battery capacity is improved.

〔実施例〕〔Example〕

以下、本発明を具体的な実施例に基づいて説明する。 Hereinafter, the present invention will be described based on specific examples.

正極材料の調製 炭酸リチウム1/2モルと炭酸コバルト1モルとをボー
ルミルで混合し、電気炉を用いて900℃で5時間焼成を
行って塊状のLiCoO2を得た。
Preparation of Positive Electrode Material 1/2 mol of lithium carbonate and 1 mol of cobalt carbonate were mixed in a ball mill, and calcined at 900 ° C. for 5 hours using an electric furnace to obtain massive LiCoO 2 .

次いで、これをボールミルを用いて粉砕し、ふるい分
けすることによって、平均粒径5μm,7μm,10μm,25μ
m,60μm,150μm,300μmの正極活物質を得た。なお、平
均粒径(平均体積径)は日機装社製,マイクロトラック
粒度分析計モデル7995−10を用いて測定した。
Next, this was pulverized using a ball mill and sieved to obtain an average particle size of 5 μm, 7 μm, 10 μm, and 25 μm.
m, 60 μm, 150 μm, and 300 μm positive electrode active materials were obtained. The average particle diameter (average volume diameter) was measured using a Microtrac particle size analyzer model 7995-10 manufactured by Nikkiso Co., Ltd.

電池の組立 これら活物質を80重量部取り、これにグラファイト15
重量部及びポリテトラフルオロエチレン(テフロン)パ
ウダー5重量部を計量して加え、混合することによって
正極合剤を作成した。さらに、この正極合剤を打錠機を
用いて成形し、直径10.8mm,重量0.125gの正極ペレット
を作成した。
Battery assembly 80 parts by weight of these active materials were added to graphite 15
Parts by weight and 5 parts by weight of polytetrafluoroethylene (Teflon) powder were weighed, added, and mixed to prepare a positive electrode mixture. Further, this positive electrode mixture was molded using a tableting machine to prepare positive electrode pellets having a diameter of 10.8 mm and a weight of 0.125 g.

一方、厚さ1.6mmのリチウム箔を直径12mmに打ち抜き
負極缶に圧着することによって負極を得た。
On the other hand, a 1.6 mm-thick lithium foil was punched out to a diameter of 12 mm and pressed onto a negative electrode can to obtain a negative electrode.

次いで、これら正極ペレット,負極を用いて直径20m
m,厚さ2.5mmのコイン型電池を作成した。すなわち、第
1図に示すように、負極缶(2)にリチウム箔(1)を
圧着し、その上にポリプロピレンの不織布からなり電解
液を含有するセパレータ(5)を重ね、プラスチックの
ガスケット(6)を嵌め込んだ後、用意した正極ペレッ
ト(3)を前記セパレータ(5)の上に置き、正極缶
(4)を被せその端をカシメてコイン型の電池とした。
なお、電解液としては、プロピレンカーボネートと1,2
−ジメトキシエタンとを体積比で1:1の割合で混合した
溶媒に過塩素酸リチウムを1モル/lの割合で溶解した非
水電解液を使用した。
Next, using these positive electrode pellets and negative electrodes,
A coin-shaped battery having a thickness of 2.5 mm and a thickness of 2.5 mm was prepared. That is, as shown in FIG. 1, a lithium foil (1) is pressure-bonded to a negative electrode can (2), a separator (5) made of a nonwoven fabric of polypropylene and containing an electrolytic solution is stacked thereon, and a plastic gasket (6) is formed. ), The prepared positive electrode pellet (3) was placed on the separator (5), the positive electrode can (4) was covered, and the end was swaged to obtain a coin-type battery.
In addition, propylene carbonate and 1,2
A non-aqueous electrolyte in which lithium perchlorate was dissolved at a ratio of 1 mol / l in a solvent in which dimethoxyethane was mixed at a volume ratio of 1: 1 was used.

評価試験 作成したコイン型電池をそれぞれ充電電流0.92mA,上
限電圧4.0Vの条件で充電し、次に放電電流0.46mA,放電
下限電圧3.0Vの条件で放電し、そのときの容量を測定し
た。
Evaluation Test Each of the prepared coin batteries was charged under the conditions of a charge current of 0.92 mA and an upper limit voltage of 4.0 V, and then discharged under the conditions of a discharge current of 0.46 mA and a discharge lower limit voltage of 3.0 V, and the capacity at that time was measured.

正極活物質1g当りの容量を計算したものを第1表に示
す。また、第2図は、この正極活物質1g当たりの容量を
各粒子径毎に示したものである。
Table 1 shows the calculated capacity per gram of the positive electrode active material. FIG. 2 shows the capacity per 1 g of the positive electrode active material for each particle diameter.

第1表並びに第2図から見て、比較例1〜比較例3の
各電池の放電容量が低いことは明らかである。実施例1
〜実施例4の結果から見て、正極活物質に平均粒径10μ
m〜150μmのものを用いれば平均粒径5μmのもの
(比較例1)に比べて10%以上の容量増加となる。
From Table 1 and FIG. 2, it is clear that the discharge capacity of each battery of Comparative Examples 1 to 3 is low. Example 1
-From the results of Example 4, it was found that the positive electrode active material had an average particle size of 10
When the particles having a diameter of m to 150 μm are used, the capacity is increased by 10% or more as compared with the particles having an average particle diameter of 5 μm (Comparative Example 1).

平均粒径10μm以下の正極活物質の容量が低くなる理
由は明らかではないが、理由の一つとして活物質の含有
水分量があげられる。カールフィッシャー水分計を用い
て活物質水分量を測定した場合(測定温度750℃)、実
施例1で使用したものでは900ppmであったの対し、比較
例1で使用したものでは4000ppmであった。非水電解液
電池において、電池中の水分はリチウム,電解液等と反
応するため、充放電特性を劣化させる。そのため水分値
の大きい活物質では容量が低くなったものと推定され
る。
It is not clear why the capacity of the positive electrode active material having an average particle size of 10 μm or less is low, but one of the reasons is the water content of the active material. When the water content of the active material was measured using a Karl Fischer moisture meter (measurement temperature: 750 ° C.), it was 900 ppm for the one used in Example 1 and 4000 ppm for the one used in Comparative Example 1. In a non-aqueous electrolyte battery, the water in the battery reacts with lithium, the electrolyte, and the like, thereby deteriorating the charge / discharge characteristics. Therefore, it is presumed that the capacity of the active material having a large moisture value was reduced.

ところで、前記水分量の差は表面積に依存し、粒子径
が小さくなるほど水分量は増加する傾向にある。そこ
で、平均粒径の異なる数種の正極活物質について、その
粒径分布を調べた。平均体積径7.06μm,10.77μm,11.69
μm,14.38μmの正極活物質の粒径分布を第2表〜第5
表に示す。
Incidentally, the difference in the water content depends on the surface area, and the water content tends to increase as the particle size decreases. Thus, the particle size distribution of several types of positive electrode active materials having different average particle sizes was examined. Average volume diameter 7.06μm, 10.77μm, 11.69
Tables 2 to 5 show the particle size distributions of the positive electrode active materials of μm and 14.38 μm.
It is shown in the table.

これら表を見ると、平均粒径の小さい正極活物質で
は、第2表に示す通り微細な粒径を有する微粒子,特に
5μm以下のものが47%にも達していることがわかる。
これに対して、平均粒径が10μmを越えるものでは、5
μm以下の粒子は30%以下である。
From these tables, it can be seen that in the positive electrode active material having a small average particle diameter, as shown in Table 2, fine particles having a fine particle diameter, particularly those having a particle diameter of 5 μm or less, reached 47%.
On the other hand, when the average particle size exceeds 10 μm, 5
Less than 30% of particles less than μm.

一方、比較例3において見られるように、平均粒径が
300μmの正極活物質の容量が低い理由も明らかではな
いが、理由の一つとしてリチウムイオンの活性物質中の
拡散距離が長いことが考えられる。すなわち、粒子径が
ある一定以上の大きさになると、正極活物質の表面から
侵入したリチウムイオンが活物質中心まで到達せず、し
たがって活物質が有効に利用できないのではないかと考
えられる。本活物質の場合、平均粒径300μm程度でそ
の影響がでるものと推察される。また、平均粒径300μ
mの正極活物質は、秤量性も良好ではなく、例えばペレ
ットの形成が困難であったため、実用的な粒子径とは言
い難い。
On the other hand, as seen in Comparative Example 3, the average particle size was
The reason why the capacity of the positive electrode active material of 300 μm is low is not clear, but one of the reasons may be that the diffusion distance of lithium ions in the active material is long. That is, when the particle diameter becomes a certain size or more, it is considered that lithium ions penetrating from the surface of the positive electrode active material do not reach the center of the active material, and thus the active material cannot be effectively used. In the case of the present active material, it is presumed that the influence is exerted at an average particle size of about 300 μm. Also, average particle size 300μ
The positive electrode active material of m also has poor weighing properties and, for example, it is difficult to form a pellet, so that it is hard to say that it has a practical particle size.

以上のことから、非水電解液二次電池の正極活物質と
して用いるLiXCoO2の平均粒径は、10〜150μmのものが
好ましいと言える。
From the above, it can be said that the average particle diameter of Li X CoO 2 used as the positive electrode active material of the nonaqueous electrolyte secondary battery is preferably 10 to 150 μm.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明においては
正極活物質として使用するリチウム複合酸化物の平均粒
径を規定しているので、電池容量を大幅に向上すること
が可能である。
As is clear from the above description, in the present invention, since the average particle size of the lithium composite oxide used as the positive electrode active material is specified, the battery capacity can be significantly improved.

したがって、本発明によれば、充放電電圧が高く高エ
ネルギー密度を有するとともに、長寿命の非水電解液二
次電池を提供することができる。
Therefore, according to the present invention, a non-aqueous electrolyte secondary battery having a high charge / discharge voltage, a high energy density, and a long life can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図はコイン型の電池の構成例を示す概略断面図であ
る。 第2図は正極活物質1g当たりの容量の平均粒径依存性を
示す特性図である。
FIG. 1 is a schematic sectional view showing a configuration example of a coin-type battery. FIG. 2 is a characteristic diagram showing the average particle size dependency of the capacity per 1 g of the positive electrode active material.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LiXMO2(ただし、Mは、1以上の遷移金属
を表し、0.05≦x≦1.10である。)を主体とする正極と
負極と非水電解液とからなる非水電解液二次電池におい
て、 前記LiXMO2は、平均粒径が10〜150μmで、かつ5μm
以下の粒子が30容量%未満であることを特徴とする非水
電解液二次電池。
1. A non-aqueous electrolyte comprising a positive electrode mainly composed of Li X MO 2 (where M represents one or more transition metals and 0.05 ≦ x ≦ 1.10), a negative electrode and a non-aqueous electrolyte. In the liquid secondary battery, the Li X MO 2 has an average particle size of 10 to 150 μm and 5 μm
A non-aqueous electrolyte secondary battery comprising the following particles in an amount of less than 30% by volume.
JP63135099A 1988-06-01 1988-06-01 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2615854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63135099A JP2615854B2 (en) 1988-06-01 1988-06-01 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63135099A JP2615854B2 (en) 1988-06-01 1988-06-01 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH01304664A JPH01304664A (en) 1989-12-08
JP2615854B2 true JP2615854B2 (en) 1997-06-04

Family

ID=15143814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63135099A Expired - Lifetime JP2615854B2 (en) 1988-06-01 1988-06-01 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2615854B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609975A (en) * 1994-05-13 1997-03-11 Matsushita Electric Industrial Co., Ltd. Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same
US5601950A (en) 1994-06-29 1997-02-11 Sony Corporation Non-aqueous electrolyte secondary cell
DE69530166T2 (en) 1994-12-09 2003-11-13 Japan Storage Battery Co. Ltd., Kyoto Secondary cell with organic electrolyte
JP4106644B2 (en) 2000-04-04 2008-06-25 ソニー株式会社 Battery and manufacturing method thereof
RU2325014C1 (en) * 2004-05-28 2008-05-20 Эл Джи Кем. Лтд. Lithium secondary batteries with cutoff voltage more than 4,35 v
JP4287901B2 (en) * 2006-12-26 2009-07-01 株式会社三徳 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121259A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121259A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Secondary battery

Also Published As

Publication number Publication date
JPH01304664A (en) 1989-12-08

Similar Documents

Publication Publication Date Title
US6270924B1 (en) Lithium secondary battery
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
EP0243926A1 (en) Organic electrolyte cell
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
EP0752728A2 (en) Negative electrode material for use in lithium secondary batteries, its manufacture, and lithium secondary batteries incorporating this material
JPH1027626A (en) Lithium secondary battery
JPH07201316A (en) Nonaqueous electrolyte secondary battery
KR100364069B1 (en) Non-aqueous Electrolyte Secondary Battery
JP3258841B2 (en) Lithium secondary battery
JP2020011892A (en) Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP2615854B2 (en) Non-aqueous electrolyte secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP2002270181A (en) Non-aqueous electrolyte battery
JP3696159B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2000012029A (en) Nonaqueous electrolyte secondary battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JP2003317718A (en) Positive electrode material, electrode and battery
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JP2961745B2 (en) Non-aqueous electrolyte secondary battery
CA1285986C (en) Organic electrolyte cell
JP3050016B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12