JP2020011892A - Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery - Google Patents

Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery Download PDF

Info

Publication number
JP2020011892A
JP2020011892A JP2019147925A JP2019147925A JP2020011892A JP 2020011892 A JP2020011892 A JP 2020011892A JP 2019147925 A JP2019147925 A JP 2019147925A JP 2019147925 A JP2019147925 A JP 2019147925A JP 2020011892 A JP2020011892 A JP 2020011892A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
electrode active
secondary battery
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019147925A
Other languages
Japanese (ja)
Inventor
友也 黒田
Yuya Kuroda
友也 黒田
裕一郎 今成
Yuichiro Imanari
裕一郎 今成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2019147925A priority Critical patent/JP2020011892A/en
Publication of JP2020011892A publication Critical patent/JP2020011892A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a positive electrode active substance for a lithium secondary battery, which generates little gas and prevents the battery from swelling; to provide a positive electrode using the active substance; and to provide a lithium secondary battery using the positive electrode.SOLUTION: This invention relates to a positive electrode active substance for a lithium secondary battery, comprising a lithium metal composite oxide powder constituted from: primary particles; secondary particles which are aggregates of the primary particles; and single particles that are present independently from the primary particles or the secondary particles, wherein the positive electrode active substance is expressed by the following formula (I): Li[Li(NiCoMnM)]O(provided that M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La, and V; and -0.1≤x≤0.2, 0≤y≤0.4, 0≤z≤0.4, and 0≤w≤0.1 are satisfied). The single particles have an average compression strength of more than 80 MPa.SELECTED DRAWING: Figure 1A

Description

本発明は、リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池に関する。   The present invention relates to a lithium metal composite oxide powder, a positive electrode active material for a lithium secondary battery, a positive electrode, and a lithium secondary battery.

リチウム二次電池用正極活物質には、リチウム金属複合酸化物粉末が用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。   As a positive electrode active material for a lithium secondary battery, a lithium metal composite oxide powder is used. Lithium secondary batteries have already been put to practical use not only in small power sources for mobile phones and notebook computers, but also in medium or large power sources for automobiles and power storage.

リチウム金属複合酸化物粉末は、一次粒子と、一次粒子が凝集して形成された二次粒子とから構成されることがある。リチウム金属複合酸化物粉末をリチウム二次電池用正極活物質として用いたとき、リチウム金属複合酸化物粉末は一次粒子の表面並びに二次粒子の表面及び内部で電解液と接し、充電時には粒子内からのリチウムイオンの脱離が起こり、放電時には粒子内へのリチウムイオンの挿入が起こる。粒子の表面状態はリチウムイオンの脱離と挿入に影響を及ぼすので、リチウム金属複合酸化物粉末の一次粒子又は二次粒子の表面状態を制御することは、サイクル特性の向上や、電池エネルギー密度の向上等の電池特性を向上させる上で重要である。   The lithium metal composite oxide powder may be composed of primary particles and secondary particles formed by agglomeration of the primary particles. When the lithium metal composite oxide powder is used as a positive electrode active material for a lithium secondary battery, the lithium metal composite oxide powder comes into contact with the electrolyte on the surface of the primary particles and the surface and inside of the secondary particles, and from the inside of the particles during charging. Desorption of lithium ions occurs, and at the time of discharge, insertion of lithium ions into the particles occurs. Since the surface state of the particles affects the desorption and insertion of lithium ions, controlling the surface state of the primary particles or secondary particles of the lithium metal composite oxide powder can improve cycle characteristics and improve battery energy density. It is important for improving battery characteristics such as improvement.

例えば特許文献1には、コバルト、ニッケル、マンガンの群から選ばれる1種の元素と、リチウムとを主成分とする、単分散の一次粒子(本発明の単粒子に相当)からなるリチウム複合酸化物粉末が記載されている。特許文献1に記載のリチウム複合酸化物は、特定の平均粒子径、比表面積、嵩密度を有し、凝集粒が無い。特許文献1には、単分散の一次粒子からなるリチウム複合酸化物としたことにより、粒界がなく、正極材の成型時等に割れや破壊が起こりにくくなることが記載されている。   For example, Patent Literature 1 discloses a lithium composite oxide composed of monodispersed primary particles (corresponding to single particles of the present invention) containing lithium as a main component and one element selected from the group consisting of cobalt, nickel, and manganese. Product powder is described. The lithium composite oxide described in Patent Literature 1 has a specific average particle diameter, a specific surface area, and a bulk density, and has no aggregated particles. Patent Literature 1 describes that the use of a lithium composite oxide composed of monodispersed primary particles does not have a grain boundary, and is less likely to crack or break during molding of a positive electrode material.

特開2004−355824号公報JP 2004-355824 A

特許文献1に記載のように、単分散の一次粒子からなるリチウム複合酸化物は、二次粒子よりは割れや破壊が生じにくい。
一方で、二次電池を使用する場面においては、粒子界面に発生したわずかな割れにより、新生面が発生することがある。新生面として発生した粒子の表面は、電解液との反応箇所となる。この反応箇所では電解液の分解反応が生じ、ガスが発生することがある。発生したガスは、電池膨れを引き起こす。
本発明は上記事情に鑑みてなされたものであって、ガスの発生が少なく、電池膨れを抑制したリチウム金属複合酸化物粉末、該リチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質、これを用いた正極、及びこれを用いたリチウム二次電池を提供することを課題とする。
As described in Patent Literature 1, a lithium composite oxide composed of monodispersed primary particles is less likely to crack or break than secondary particles.
On the other hand, when a secondary battery is used, a new surface may be generated due to a slight crack generated at the particle interface. The surface of the particle generated as a new surface becomes a reaction site with the electrolytic solution. At this reaction site, a decomposition reaction of the electrolytic solution occurs, and gas may be generated. The generated gas causes battery swelling.
The present invention has been made in view of the above circumstances, and a lithium metal composite oxide powder that generates a small amount of gas and suppresses battery swelling, and a positive electrode active material for a lithium secondary battery containing the lithium metal composite oxide powder. It is an object to provide a substance, a positive electrode using the same, and a lithium secondary battery using the same.

すなわち、本発明は、下記[1]〜[6]の発明を包含する。
[1]一次粒子が凝集して形成された二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物粉末であって、下記組成式(I)で表され、かつ、前記単粒子の平均圧壊強度が80MPaを超えることを特徴とする、リチウム金属複合酸化物粉末。
Li[Li(Ni(1−y−z−w)CoMn1−x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
[2]前記組成式(I)において、0<x≦0.1であり、0<y≦0.4である、[1]に記載のリチウム金属複合酸化物粉末。
[3]前記非水電解質二次電池用正極活物質の90%累積体積粒度D90から10%累積体積粒度D10を引いた値と、50%累積体積粒度D50との比率(D90−D10/D50)が、2.0未満である、[1]又は[2]に記載のリチウム金属複合酸化物粉末。[4]前記単粒子の平均粒子径が0.5μm以上7μm以下である、[1]〜[3]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[5][1]〜[4]のいずれか1つに記載のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質。
[6][5]に記載のリチウム二次電池用正極活物質を有する正極。
[7][6]に記載の正極を有するリチウム二次電池。
That is, the present invention includes the following inventions [1] to [6].
[1] A lithium metal composite oxide powder composed of secondary particles formed by agglomeration of primary particles and single particles existing independently of the secondary particles, and has the following composition formula ( A lithium metal composite oxide powder represented by I), wherein the average crushing strength of the single particles exceeds 80 MPa.
Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 ··· (I)
(Where M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V; −0.1 ≦ x ≦ 0.2, 0 ≦ y ≦ 0.4, 0 ≦ z ≦ 0.4, and 0 ≦ w ≦ 0.1.)
[2] The lithium metal composite oxide powder according to [1], wherein in the composition formula (I), 0 <x ≦ 0.1 and 0 <y ≦ 0.4.
[3] The ratio (D 90 −) of a value obtained by subtracting 10% cumulative volume particle size D 10 from 90% cumulative volume particle size D 90 of the positive electrode active material for a non-aqueous electrolyte secondary battery to 50% cumulative volume particle size D 50. D 10 / D 50) is less than 2.0, [1] or [2] lithium metal composite oxide powder according to. [4] The lithium metal composite oxide powder according to any one of [1] to [3], wherein the average particle diameter of the single particles is 0.5 μm or more and 7 μm or less.
[5] A positive electrode active material for a lithium secondary battery, comprising the lithium metal composite oxide powder according to any one of [1] to [4].
[6] A positive electrode comprising the positive electrode active material for a lithium secondary battery according to [5].
[7] A lithium secondary battery having the positive electrode according to [6].

本発明によれば、ガスの発生が少なく、電池膨れを抑制したリチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、これを用いた正極、及びこれを用いたリチウム二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the generation | occurence | production of a gas is small and the lithium metal composite oxide powder which suppressed battery swelling, the positive electrode active material for lithium secondary batteries, the positive electrode using the same, and the lithium secondary battery using the same are provided. can do.

リチウムイオン二次電池の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an example of a lithium ion secondary battery. リチウムイオン二次電池の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an example of a lithium ion secondary battery.

本発明において、「一次粒子」とは、外観上に粒界が存在しない粒子であって、二次粒子を構成する粒子を意味する。
本発明において、「二次粒子」とは、前記一次粒子が凝集することにより形成された粒子である。
本発明において、「単粒子」とは、前記二次粒子とは独立して存在し、外観上に粒界が存在しない粒子であって、例えば粒子径が0.5μm以上の粒子を意味する。
In the present invention, “primary particles” are particles having no grain boundary on the appearance, and mean particles constituting secondary particles.
In the present invention, “secondary particles” are particles formed by agglomeration of the primary particles.
In the present invention, the term “single particles” refers to particles that exist independently of the secondary particles and have no grain boundary in appearance, for example, particles having a particle diameter of 0.5 μm or more.

<リチウム二次電池用正極活物質>
本実施形態は、一次粒子が凝集して形成された二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物粉末を含むリチウム二次電池用正極活物質(以下、「正極活物質」と記載することがある。)である。
本実施形態の正極活物質は、独立して存在する単粒子を含有する。本実施形態の正極活物質は、下記組成式(I)で表される。かつ、本実施形態の正極活物質は、独立して存在する単粒子の平均圧壊強度が80MPaを超える。
Li[Li(Ni(1−y−z−w)CoMn1−x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
<Positive electrode active material for lithium secondary batteries>
The present embodiment relates to a lithium secondary battery including a lithium metal composite oxide powder composed of secondary particles formed by agglomeration of primary particles, and single particles present independently of the secondary particles. Positive electrode active material for use (hereinafter, may be referred to as “positive electrode active material”).
The positive electrode active material of the present embodiment contains independently present single particles. The positive electrode active material of the present embodiment is represented by the following composition formula (I). Moreover, in the positive electrode active material of the present embodiment, the average crushing strength of the independently existing single particles exceeds 80 MPa.
Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 ··· (I)
(Where M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V; −0.1 ≦ x ≦ 0.2, 0 ≦ y ≦ 0.4, 0 ≦ z ≦ 0.4, and 0 ≦ w ≦ 0.1.)

本実施形態の正極活物質は、独立して存在する単粒子を含有し、この単粒子の平均圧壊強度は80MPaを超える。つまり、本実施形態の正極活物質が含有する単粒子は、粒子強度が高い構造である。このような単粒子は、粒子内に粒界が存在せず、かつ粒子割れが発生しにくい。このため、粒子割れによる新生面が発生しにくい。つまり新生面で生じうる電解液の分解反応が発生しにくい。つまり本実施形態によれば、電池内でガスが発生しにくく、電池膨れを抑制できる正極活物質を提供できる。   The positive electrode active material of the present embodiment contains independently present single particles, and the average crushing strength of the single particles exceeds 80 MPa. That is, the single particles contained in the positive electrode active material of the present embodiment have a structure with high particle strength. Such a single particle has no grain boundary in the particle and does not easily cause particle cracking. For this reason, a new surface due to particle cracking is unlikely to occur. In other words, the decomposition reaction of the electrolytic solution that may occur on the new surface is less likely to occur. That is, according to the present embodiment, it is possible to provide a positive electrode active material that hardly generates gas in the battery and can suppress the battery from swelling.

電池内のガス発生が抑制されていることを示す相関値として、分解電気量がある。
本実施形態によれば、粒子界面で電解液と不可逆反応を起こした際に観測される分解電気量(「フロート電気量」と記載する場合がある)の発生を低減できる。
As a correlation value indicating that gas generation in the battery is suppressed, there is an amount of decomposed electricity.
According to the present embodiment, it is possible to reduce the generation of the amount of decomposition electricity (sometimes referred to as “float electricity”) observed when an irreversible reaction occurs with the electrolyte at the particle interface.

<分解電気量の測定>
本実施形態において、分解電気量は、以下の方法により測定した値とする。
本実施形態の正極活物質を用いてリチウム二次電池(コイン型セル)を作製する。正極は、本実施形態の正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製する。
<Measurement of the amount of electrolysis>
In the present embodiment, the amount of decomposition electricity is a value measured by the following method.
A lithium secondary battery (coin cell) is manufactured using the positive electrode active material of the present embodiment. The positive electrode comprises the positive electrode active material of the present embodiment, a conductive material (acetylene black), and a binder (PVdF) in a composition of positive electrode active material for lithium secondary battery: conductive material: binder = 92: 5: 3 (mass ratio). Then, the mixture is kneaded and kneaded so as to prepare a paste-like positive electrode mixture.

より具体的には、コイン型電池R2032用のコインセル(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリプロピレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み25μm))を置く。ここに電解液を300μL注入する。用いる電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの30:35:35(体積比)混合液に、LiPFを1.0mol/Lとなるように溶解して調製する。
次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コイン型電池」と称することがある。)を作製する。
More specifically, the aluminum foil surface is placed on the lower lid of a coin cell (manufactured by Hosen Co., Ltd.) for the coin-type battery R2032, and a laminated film separator (on a porous film made of polypropylene, A heat resistant porous layer is laminated (thickness: 25 μm). Here, 300 μL of the electrolyte is injected. The electrolytic solution to be used is prepared by dissolving LiPF 6 in a 30:35:35 (volume ratio) mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate so as to have a concentration of 1.0 mol / L.
Next, using metallic lithium as the negative electrode, the negative electrode was placed on the upper side of the laminated film separator, covered with a gasket, covered with a cover, and caulked with a caulking machine to form a lithium secondary battery (coin-type battery R2032; Battery ").

さらに、得られたコイン型セルを用いて次のように試験を行う。
即ち、試験温度60℃で、充電最大電圧4.3V、充電時間60時間、充電電流0.05CAで定電流定電圧充電する。
定電流定電圧充電において、4.3Vの定電圧モードに移行してから30時間の間の積算電気量をフロート電気量(mAh/g)として算出する。
Further, a test is performed as follows using the obtained coin-shaped cell.
That is, constant-current constant-voltage charging is performed at a test temperature of 60 ° C., a maximum charging voltage of 4.3 V, a charging time of 60 hours, and a charging current of 0.05 CA.
In the constant-current constant-voltage charging, the integrated amount of electricity for 30 hours after the shift to the constant voltage mode of 4.3 V is calculated as the float amount of electricity (mAh / g).

≪平均圧壊強度≫
本実施形態において、正極活物質に含まれる単粒子の「平均圧壊強度」とは、以下の方法によって測定される値を指す。
≪Average crush strength≫
In the present embodiment, the “average crush strength” of the single particles contained in the positive electrode active material refers to a value measured by the following method.

まず、正極活物質粉末について株式会社島津製作所製「微小圧縮試験機MCT−510」を用いて、任意に選んだ単粒子1個に対して試験圧力(負荷)をかけ、単粒子の変位量を測定する。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出する。この操作を計5回行い、圧壊強度の5回平均値から平均圧壊強度を算出する。
St=2.8×P/(π×d×d) (d:単粒子径) …(A)
First, a test pressure (load) is applied to one arbitrarily selected single particle using a “micro compression tester MCT-510” manufactured by Shimadzu Corporation for the positive electrode active material powder, and the displacement amount of the single particle is measured. Measure. When the test pressure is gradually increased, the pressure value at which the displacement becomes maximum while the test pressure is almost constant is defined as the test force (P) and is shown in the following equation (A) (Journal of the Japan Mining Association, Vol. 81, (1965)), the crushing strength (St) is calculated. This operation is performed five times in total, and the average crushing strength is calculated from the average value of the five crushing strengths.
St = 2.8 × P / (π × d × d) (d: single particle diameter) (A)

本実施形態においては、独立して存在する単粒子の平均圧壊強度が80MPaを超え、100MPa以上が好ましく、110MPa以上がより好ましく、120MPa以上が特に好ましい。
単粒子の平均圧壊強度が上記下限値以上であると、例えば充放電を繰り返した際に体積が変化した場面や正極成型時のプレス工程において粒子割れが発生しにくく、粒子強度が高い単粒子となる。
In the present embodiment, the average crushing strength of independently present single particles exceeds 80 MPa, is preferably 100 MPa or more, more preferably 110 MPa or more, and particularly preferably 120 MPa or more.
When the average crushing strength of the single particles is equal to or more than the lower limit value, for example, it is difficult for particle cracks to occur in a press step during molding or a positive electrode molding where the volume has changed when charge and discharge are repeated, and a single particle having a high particle strength. Become.

≪組成式(I)≫
本実施形態の正極活物質は、下記組成式(I)で表される。
Li[Li(Ni(1−y−z−w)CoMn1−x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
<< Composition formula (I) >>
The positive electrode active material of the present embodiment is represented by the following composition formula (I).
Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 ··· (I)
(Where M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V; −0.1 ≦ x ≦ 0.2, 0 ≦ y ≦ 0.4, 0 ≦ z ≦ 0.4, and 0 ≦ w ≦ 0.1.)

サイクル特性がよいリチウム二次電池を得る観点から、前記組成式(I)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
xの上限値と下限値は任意に組み合わせることができる。
本実施形態においては、0<x≦0.1であることが好ましい。
本明細書において、「サイクル特性」とは、充放電の繰り返しにより、電池容量が低下する特性を意味し、初期容量に対する再測定時の容量比を意味する。
From the viewpoint of obtaining a lithium secondary battery having good cycle characteristics, x in the composition formula (I) preferably exceeds 0, more preferably 0.01 or more, and further preferably 0.02 or more. . In addition, from the viewpoint of obtaining a lithium secondary battery having higher initial coulomb efficiency, x in the composition formula (I) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06 or less. It is more preferred that:
The upper limit and the lower limit of x can be arbitrarily combined.
In the present embodiment, it is preferable that 0 <x ≦ 0.1.
In the present specification, the “cycle characteristic” means a characteristic in which the battery capacity is reduced due to repetition of charge and discharge, and means a capacity ratio at the time of re-measurement to the initial capacity.

また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0を超えることが好ましく、0.005以上であることがより好ましく、0.01以上であることがさらに好ましく、0.05以上であることが特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0.35以下であることがより好ましく、0.33以下であることがさらに好ましい。
yの上限値と下限値は任意に組み合わせることができる。
本実施形態においては、0<y≦0.4であることが好ましい。
From the viewpoint of obtaining a lithium secondary battery having a low internal resistance of the battery, y in the composition formula (I) preferably exceeds 0, more preferably 0.005 or more, and is 0.01 or more. More preferably, it is particularly preferably 0.05 or more. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y in the composition formula (I) is more preferably 0.35 or less, and further preferably 0.33 or less.
The upper limit and the lower limit of y can be arbitrarily combined.
In the present embodiment, it is preferable that 0 <y ≦ 0.4.

本実施形態においては、組成式(I)において、0<x≦0.1であり、0<y≦0.4であることがより好ましい。   In the present embodiment, in the composition formula (I), 0 <x ≦ 0.1, and more preferably 0 <y ≦ 0.4.

また、サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.01以上であることが好ましく、0.02以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.39以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
zの上限値と下限値は任意に組み合わせることができる。
From the viewpoint of obtaining a lithium secondary battery having high cycle characteristics, z in the composition formula (I) is preferably 0.01 or more, more preferably 0.02 or more, and 0.1 or more. It is more preferred that there be. Further, from the viewpoint of obtaining a lithium secondary battery having high storage stability at a high temperature (for example, in a 60 ° C. environment), z in the composition formula (I) is preferably 0.39 or less, and is 0.38 or less. More preferably, it is still more preferably 0.35 or less.
The upper limit and the lower limit of z can be arbitrarily combined.

また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が多いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
wの上限値と下限値は任意に組み合わせることができる。
In addition, from the viewpoint of obtaining a lithium secondary battery having a low internal resistance of the battery, w in the composition formula (I) preferably exceeds 0, more preferably 0.0005 or more, and 0.001 or more. Is more preferable. From the viewpoint of obtaining a lithium secondary battery having a large discharge capacity at a high current rate, w in the composition formula (I) is preferably 0.09 or less, more preferably 0.08 or less, and 0 or less. 0.07 or less.
The upper limit and the lower limit of w can be arbitrarily combined.

本実施形態においては、前記組成式(I)におけるy+z+wは0.5未満が好ましく、0.3以下がより好ましい。   In the present embodiment, y + z + w in the composition formula (I) is preferably less than 0.5, and more preferably 0.3 or less.

前記組成式(I)におけるMはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属を表す。   M in the composition formula (I) is at least one metal selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V. Represents

また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(I)におけるMは、Ti、Mg、Al、W、B、Zrからなる群より選択される1種以上の金属であることが好ましく、熱的安定性が高いリチウム二次電池を得る観点から、Ti、Al、W、B、Zrからなる群より選択される1種以上の金属であることが好ましい。   Further, from the viewpoint of obtaining a lithium secondary battery having high cycle characteristics, M in the composition formula (I) is at least one metal selected from the group consisting of Ti, Mg, Al, W, B, and Zr. And from the viewpoint of obtaining a lithium secondary battery having high thermal stability, it is preferable that the metal is at least one metal selected from the group consisting of Ti, Al, W, B and Zr.

本実施形態において、前記リチウム二次電池用正極活物質の90%累積体積粒度D90から10%累積体積粒度D10を引いた値と50%累積体積粒度D50との比率(D90−D10/D50)が、2.0未満であることが好ましい。 In the present embodiment, the ratio (D 90 −D) of the value obtained by subtracting the 10% cumulative volume particle size D 10 from the 90% cumulative volume particle size D 90 of the positive electrode active material for a lithium secondary battery to the 50% cumulative volume particle size D 50. 10 / D 50 ) is preferably less than 2.0.

累積体積粒度は、レーザー回折散乱法によって測定される。
まず、リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得る。
次に、得られた分散液についてマイクロトラック・ベル株式会社製マイクロトラックMT3300EXII(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。
そして、得られた累積粒度分布曲線において、全体を100%としたときに、微小粒子側からの累積体積が10%となる点の粒子径の値が10%累積体積粒度D10(μm)、50%となる点の粒子径の値が50%累積体積粒度D50(μm)、90%となる点の粒子径の値が90%累積体積粒度D90(μm)、である。
Cumulative volume particle size is measured by the laser diffraction scattering method.
First, 0.1 g of lithium metal composite oxide powder is put into 50 ml of a 0.2 mass% aqueous sodium hexametaphosphate solution to obtain a dispersion in which the powder is dispersed.
Next, the particle size distribution of the obtained dispersion is measured using Microtrack MT3300EXII (laser diffraction scattering particle size distribution measuring device) manufactured by Microtrac Bell Co., Ltd. to obtain a volume-based cumulative particle size distribution curve.
In the obtained cumulative particle size distribution curve, when the whole is taken as 100%, the value of the particle diameter at the point where the cumulative volume from the fine particle side becomes 10% is 10% cumulative volume particle size D 10 (μm), The value of the particle diameter at the point of 50% is 50% cumulative volume particle size D 50 (μm), and the value of the particle diameter at the point of 90% is 90% cumulative volume particle size D 90 (μm).

本実施形態において、(D90−D10)/D50は、1.9以下が好ましく、1.8以下がより好ましい。 In the present embodiment, (D 90 −D 10 ) / D 50 is preferably 1.9 or less, more preferably 1.8 or less.

本実施形態においては、単粒子の平均粒径が、0.5μm以上が好ましく、0.75μm以上がより好ましく、1.0μm以上が特に好ましい。また、単粒子の平均粒径が、7μm以下であることが好ましく、6μm以下がより好ましく、5μm以下が特に好ましい。
上記上限値及び下限値は任意に組み合わせることができる。本実施形態においては、中でも単粒子の平均粒径が、0.5μm以上7μm以下であることが好ましい。
In the present embodiment, the average particle size of the single particles is preferably 0.5 μm or more, more preferably 0.75 μm or more, and particularly preferably 1.0 μm or more. The average particle size of the single particles is preferably 7 μm or less, more preferably 6 μm or less, and particularly preferably 5 μm or less.
The above upper limit and lower limit can be arbitrarily combined. In the present embodiment, the average particle diameter of the single particles is preferably 0.5 μm or more and 7 μm or less.

一次粒子は、二次粒子を構成するために凝集するため、粒子が大きく成長したものではなく、その粒子径は0.1μm以上0.5μm未満程度である。   Since the primary particles are aggregated to form secondary particles, the particles do not grow greatly, and the particle diameter is about 0.1 μm or more and less than 0.5 μm.

本実施形態において、粒子の平均粒子径は下記の方法により求めた。
まず、正極活物質粉末を、サンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM−5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から任意に50個の単粒子を抽出し、それぞれの単粒子について、単粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を単粒子の粒子径として測定する。得られた単粒子の粒子径の算術平均値を、正極活物質粉末の平均単粒子径とする。
In the present embodiment, the average particle size of the particles was determined by the following method.
First, the positive electrode active material powder is placed on a conductive sheet stuck on a sample stage, and is irradiated with an electron beam having an accelerating voltage of 20 kV using JSM-5510 manufactured by JEOL Ltd. to perform SEM observation. 50 single particles were arbitrarily extracted from an image (SEM photograph) obtained by the SEM observation, and for each single particle, the distance between parallel lines separated by a parallel line obtained by drawing a projected image of the single particle from a certain direction ( Is measured as the particle diameter of a single particle. The arithmetic average of the particle diameters of the obtained single particles is defined as the average single particle diameter of the positive electrode active material powder.

(層状構造)
本実施形態において、正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
(Layered structure)
In the present embodiment, the crystal structure of the positive electrode active material is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.

六方晶型の結晶構造は、P3、P3、P3、R3、P−3、R−3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P−31m、P−31c、P−3m1、P−3c1、R−3m、R−3c、P6、P6、P6、P6、P6、P6、P−6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P−6m2、P−6c2、P−62m、P−62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。 The crystal structure of hexagonal type, P3, P3 1, P3 2 , R3, P3, R3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P31m, P31c, P-3m1, P3c1, R3m, R3c, P6, P6 1, P6 5, P6 2, P6 4, P6 3 , P6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- 6m2, P-6c2, P- 62m, attributed to P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P6 3 / any one space group selected from the group consisting of mmc.

また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。 The crystal structure of monoclinic type, P2, P2 1, C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, C2 / It belongs to any one space group selected from the group consisting of c.

これらのうち、放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R−3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。   Among them, in order to obtain a lithium secondary battery having a high discharge capacity, the crystal structure is a hexagonal crystal structure belonging to space group R-3m or a monoclinic crystal structure belonging to C2 / m. Particularly preferred is a structure.

<リチウム金属複合酸化物粉末の製造方法>
本実施形態の正極活物質が含有するリチウム金属複合酸化物粉末を製造するにあたって、まず、リチウム以外の金属、すなわち、少なくともNiを含み、Co、Mn、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVのうちいずれか1種以上の任意金属を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と、不活性溶融剤と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、リチウム金属複合酸化物粉末の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
<Production method of lithium metal composite oxide powder>
In manufacturing the lithium metal composite oxide powder contained in the positive electrode active material of the present embodiment, first, a metal other than lithium, that is, at least Ni, is contained, and Co, Mn, Fe, Cu, Ti, Mg, Al, W , B, Mo, Nb, Zn, Sn, Zr, Ga, La and V to prepare a metal composite compound containing any one or more of the above metals, and convert the metal composite compound to a suitable lithium salt with an inert lithium salt. It is preferable to bake with a melting agent. As the metal composite compound, a metal composite hydroxide or a metal composite oxide is preferable. Hereinafter, an example of a method for producing a lithium metal composite oxide powder will be described separately for a production process for a metal composite compound and a production process for a lithium metal composite oxide.

(金属複合化合物の製造工程)
金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
(Manufacturing process of metal composite compound)
The metal composite compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method. Hereinafter, a method for producing the metal composite hydroxide containing nickel, cobalt, and manganese will be described in detail.

まず共沈殿法、特に特開2002−201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、NiCoMn(OH)(式中、a+b+c=1)で表される金属複合水酸化物を製造する。 First co-precipitation method, in particular by a continuous method described in 2002-201028 JP-nickel salt solution, cobalt salt solution, is reacted manganese salt solution and a complexing agent, Ni a Co b Mn c ( OH) 2 (where a + b + c = 1) is produced.

上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れか1種又は2種以上を使用することができる。以上の金属塩は、上記NiCoMn(OH)の組成比に対応する割合で用いられる。また、溶媒として水が使用される。 The nickel salt that is a solute of the nickel salt solution is not particularly limited, and for example, any one or more of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used. As the solute of the cobalt salt solution, for example, one or more of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used. As a manganese salt that is a solute of the manganese salt solution, for example, one or more of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used. More metal salts are used in proportions corresponding to the composition ratio of the Ni a Co b Mn c (OH ) 2. Water is used as a solvent.

錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。   The complexing agent is a complexing agent capable of forming a complex with nickel, cobalt, and manganese ions in an aqueous solution. For example, an ammonium ion donor (ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.) Ammonium salts), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.

沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。   At the time of precipitation, an alkali metal hydroxide (for example, sodium hydroxide or potassium hydroxide) is added, if necessary, to adjust the pH value of the aqueous solution.

上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、NiCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30〜70℃の範囲内で制御され、反応槽内のpH値は例えばpH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。 The nickel salt solution, cobalt salt solution, and other manganese salt solution and is supplied continuously complexing agent to the reaction vessel, nickel, cobalt, and manganese to react, Ni a Co b Mn c ( OH) 2 Is manufactured. During the reaction, the temperature of the reaction tank is controlled, for example, in the range of 20 ° C. to 80 ° C., preferably 30 to 70 ° C., and the pH value in the reaction tank is, for example, pH 9 to pH 13 and preferably pH 11 to pH 13 or less. The temperature is controlled within the range, and the substance in the reaction vessel is appropriately stirred. The reaction tank is of a type in which a formed reaction precipitate overflows for separation.

反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、下記工程で最終的に得られるリチウム金属複合酸化物の二次粒子径、細孔半径等の各種物性を制御することが出来る。上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等の酸化性ガス、あるいはそれらの混合ガスを反応槽内に供給してもよい。気体以外に酸化状態を促すものとして、過酸化水素などの坂酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン、オゾンなどを使用することができる。気体以外に還元状態を促すものとして、シュウ酸、ギ酸などの有機酸、亜硫酸塩、ヒドラジンなどを使用する事ができる。   By appropriately controlling the concentration of the metal salt to be supplied to the reaction vessel, the stirring speed, the reaction temperature, the reaction pH, and the firing conditions described below, the secondary particle diameter of the lithium metal composite oxide finally obtained in the following step And various physical properties such as pore radius can be controlled. In addition to controlling the above conditions, various gases, for example, an inert gas such as nitrogen, argon, or carbon dioxide, an oxidizing gas such as air or oxygen, or a mixed gas thereof may be supplied into the reaction vessel. . In addition to gases, use oxides such as hydrogen peroxide, peroxide salts such as permanganate, perchlorates, hypochlorite, nitric acid, nitric acid, halogen, ozone, etc. to promote oxidation. be able to. In addition to gas, organic acids such as oxalic acid and formic acid, sulfites, hydrazine and the like can be used to promote the reduction state.

以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄しても良い。なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。   After the above reaction, the obtained reaction precipitate is washed with water and then dried to isolate nickel cobalt manganese hydroxide as a nickel cobalt manganese composite compound. Further, if necessary, washing may be performed with an aqueous solution of weak acid or an alkali solution containing sodium hydroxide or potassium hydroxide. In the above example, a nickel-cobalt-manganese composite hydroxide is manufactured, but a nickel-cobalt-manganese composite oxide may be prepared.

(リチウム金属複合酸化物の製造工程)
上記金属複合酸化物又は金属複合水酸化物を乾燥した後、リチウム塩と混合する。また、本実施形態において、この混合と同時に不活性溶融剤を混合することが好ましい。
金属複合酸化物若しくは金属複合水酸化物、リチウム塩及び不活性溶融剤を含む、不活性溶融剤含有混合物を焼成することにより、不活性溶融剤の存在下で、混合物を焼成することになる。不活性溶融剤の存在下で焼成することにより、一次粒子同士が焼結して二次粒子が生成することを抑制できる。また、単粒子の成長を促進できる。
(Production process of lithium metal composite oxide)
After drying the above-mentioned metal composite oxide or metal composite hydroxide, it is mixed with a lithium salt. In the present embodiment, it is preferable to mix an inert flux simultaneously with the mixing.
By calcining the mixture containing the inert flux containing the metal composite oxide or hydroxide, the lithium salt and the inert flux, the mixture is calcined in the presence of the inert flux. By baking in the presence of the inert flux, it is possible to suppress sintering of the primary particles and generation of secondary particles. In addition, the growth of single particles can be promoted.

本実施形態において、乾燥条件は特に制限されないが、例えば、金属複合酸化物又は金属複合水酸化物が酸化・還元されない条件(酸化物が酸化物のまま維持される、水酸化物が水酸化物のまま維持される)、金属複合水酸化物が酸化される条件(水酸化物が酸化物に酸化される)、金属複合酸化物が還元される条件(酸化物が水酸化物に還元される)のいずれの条件でもよい。酸化・還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の不活性ガスを使用すればよく、水酸化物が酸化される条件では、酸素又は空気を使用すればよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すればよい。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、または、二つ以上を混合して使用することができる。   In the present embodiment, the drying conditions are not particularly limited. For example, conditions under which the metal composite oxide or the metal composite hydroxide is not oxidized or reduced (the oxide is maintained as an oxide, the hydroxide is a hydroxide) Conditions), conditions under which the metal composite hydroxide is oxidized (the hydroxide is oxidized to the oxide), conditions under which the metal composite oxide is reduced (the oxide is reduced to the hydroxide) )). An inert gas such as nitrogen, helium and argon may be used for conditions where oxidation and reduction are not performed, and oxygen or air may be used for conditions where hydroxides are oxidized. Further, as a condition for reducing the metal composite oxide, a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere. As the lithium salt, any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, and lithium oxide, or a mixture of two or more thereof can be used.

金属複合酸化物又は金属複合水酸化物の乾燥後に、適宜分級を行ってもよい。以上のリチウム塩と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該金属複合水酸化物は、LiNiCoMn(式中、a+b+c=1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン金属複合水酸化物及びリチウム塩の混合物を焼成することによって、リチウム−ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。 After drying the metal composite oxide or metal composite hydroxide, classification may be performed as appropriate. The above lithium salt and metal composite hydroxide are used in consideration of the composition ratio of the final target. For example, when a nickel-cobalt-manganese composite hydroxide is used, the lithium salt and the metal composite hydroxide are used at a ratio corresponding to the composition ratio of LiNi a Co b Mn c O 2 (where a + b + c = 1). . The lithium-nickel-cobalt-manganese composite oxide is obtained by calcining a mixture of the nickel-cobalt-manganese metal composite hydroxide and the lithium salt. In the firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.

本実施形態においては、不活性溶融剤の存在下で混合物の焼成を行うことで、混合物の反応を促進させることができる。不活性溶融剤は、焼成後のリチウム金属複合酸化物粉末に残留していてもよいし、焼成後に水などで洗浄すること等により除去されていてもよい。本実施形態においては、焼成後のリチウム複合金属酸化物は水などを用いて洗浄することが好ましい。   In the present embodiment, by firing the mixture in the presence of the inert flux, the reaction of the mixture can be promoted. The inert flux may remain in the fired lithium metal composite oxide powder, or may be removed by washing with water or the like after firing. In the present embodiment, it is preferable to wash the lithium composite metal oxide after firing using water or the like.

焼成における保持温度を調整することにより、得られるリチウム金属複合酸化物の単粒子の粒子径を本実施形態の好ましい範囲に制御できる。
通常、保持温度が高くなればなるほど、単粒子の粒子径は大きくなり、BET比表面積は小さくなる傾向にある。焼成における保持温度は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。
本実施形態においては、保持温度の設定は、後述する不活性溶融剤の融点を考慮すればよく、不活性溶融剤の融点マイナス100℃以上不活性溶融剤の融点プラス100℃以下の範囲で行うことが好ましい。
保持温度として、具体的には、200℃以上1150℃以下の範囲を挙げることができ、300℃以上1050℃以下が好ましく、500℃以上1000℃以下がより好ましい。
By adjusting the holding temperature in the firing, the particle diameter of the obtained single particles of the lithium metal composite oxide can be controlled within a preferable range of the present embodiment.
In general, the higher the holding temperature, the larger the particle size of the single particle and the smaller the BET specific surface area. The holding temperature in the firing may be appropriately adjusted according to the type of transition metal element used, the type and amount of the precipitant and the inert flux.
In the present embodiment, the setting of the holding temperature may be performed in consideration of the melting point of the inert flux described below, and is performed in the range of the melting point of the inert flux minus 100 ° C. or more and the melting point of the inert flux plus 100 ° C. or less. Is preferred.
Specific examples of the holding temperature include a range of 200 ° C. to 1150 ° C., preferably 300 ° C. to 1050 ° C., and more preferably 500 ° C. to 1000 ° C.

また、前記保持温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。前記保持温度までの昇温速度は、通常50℃/時間以上400℃/時間以下であり、前記保持温度から室温までの降温速度は、通常10℃/時間以上400℃/時間以下である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴンまたはこれらの混合ガスを用いることができる。   The holding time at the holding temperature is, for example, from 0.1 hour to 20 hours, and preferably from 0.5 hour to 10 hours. The rate of temperature rise to the holding temperature is usually 50 ° C./hour to 400 ° C./hour, and the rate of temperature drop from the holding temperature to room temperature is usually 10 ° C./hour to 400 ° C./hour. As the firing atmosphere, air, oxygen, nitrogen, argon, or a mixed gas thereof can be used.

焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。   The lithium metal composite oxide obtained by calcination is appropriately classified after pulverization to obtain a positive electrode active material applicable to a lithium secondary battery.

本実施形態に使用することができる不活性溶融剤は、焼成の際に混合物と反応し難いものであれば特に限定されない。本実施形態においては、Na、K、Rb、Cs、Ca、Mg、SrおよびBaからなる群より選ばれる1種以上の元素(以下、「A」と称する。)のフッ化物、Aの塩化物、Aの炭酸塩、Aの硫酸塩、Aの硝酸塩、Aのリン酸塩、Aの水酸化物、Aのモリブデン酸塩およびAのタングステン酸塩からなる群より選ばれる1種以上が挙げられる。   The inert flux that can be used in the present embodiment is not particularly limited as long as it does not easily react with the mixture during firing. In the present embodiment, a fluoride of one or more elements selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba (hereinafter referred to as “A”), a chloride of A , A carbonate of A, a sulfate of A, a nitrate of A, a phosphate of A, a hydroxide of A, a molybdate of A, and a tungstate of A. .

Aのフッ化物としては、NaF(融点:993℃)、KF(融点:858℃)、RbF(融点:795℃)、CsF(融点:682℃)、CaF(融点:1402℃)、MgF(融点:1263℃)、SrF(融点:1473℃)およびBaF(融点:1355℃)を挙げることができる。 Examples of the fluoride of A include NaF (melting point: 993 ° C.), KF (melting point: 858 ° C.), RbF (melting point: 795 ° C.), CsF (melting point: 682 ° C.), CaF 2 (melting point: 1402 ° C.), MgF 2 (Melting point: 1263 ° C.), SrF 2 (melting point: 1473 ° C.) and BaF 2 (melting point: 1355 ° C.).

Aの塩化物としては、NaCl(融点:801℃)、KCl(融点:770℃)、RbCl(融点:718℃)、CsCl(融点:645℃)、CaCl(融点:782℃)、MgCl(融点:714℃)、SrCl(融点:857℃)およびBaCl(融点:963℃)を挙げることができる。 The chlorides of A include NaCl (melting point: 801 ° C.), KCl (melting point: 770 ° C.), RbCl (melting point: 718 ° C.), CsCl (melting point: 645 ° C.), CaCl 2 (melting point: 782 ° C.), MgCl 2 (Melting point: 714 ° C.), SrCl 2 (melting point: 857 ° C.) and BaCl 2 (melting point: 963 ° C.).

Aの炭酸塩としては、NaCO(融点:854℃)、KCO(融点:899℃)、RbCO(融点:837℃)、CsCO(融点:793℃)、CaCO(融点:825℃)、MgCO(融点:990℃)、SrCO(融点:1497℃)およびBaCO(融点:1380℃)を挙げることができる。 As carbonates of A, Na 2 CO 3 (melting point: 854 ° C.), K 2 CO 3 (melting point: 899 ° C.), Rb 2 CO 3 (melting point: 837 ° C.), Cs 2 CO 3 (melting point: 793 ° C.) , CaCO 3 (melting point: 825 ° C.), MgCO 3 (melting point: 990 ° C.), SrCO 3 (melting point: 1497 ° C.) and BaCO 3 (melting point: 1380 ° C.).

Aの硫酸塩としては、NaSO(融点:884℃)、KSO(融点:1069℃)、RbSO(融点:1066℃)、CsSO(融点:1005℃)、CaSO(融点:1460℃)、MgSO(融点:1137℃)、SrSO(融点:1605℃)およびBaSO(融点:1580℃)を挙げることができる。 As the sulfate of A, Na 2 SO 4 (melting point: 884 ° C.), K 2 SO 4 (melting point: 1069 ° C.), Rb 2 SO 4 (melting point: 1066 ° C.), Cs 2 SO 4 (melting point: 1005 ° C.) , CaSO 4 (melting point: 1460 ° C.), MgSO 4 (melting point: 1137 ° C.), SrSO 4 (melting point: 1605 ° C.) and BaSO 4 (melting point: 1580 ° C.).

Aの硝酸塩としては、NaNO(融点:310℃)、KNO(融点:337℃)、RbNO(融点:316℃)、CsNO(融点:417℃)、Ca(NO(融点:561℃)、Mg(NO、Sr(NO(融点:645℃)およびBa(NO(融点:596℃)を挙げることができる。 As nitrates of A, NaNO 3 (melting point: 310 ° C.), KNO 3 (melting point: 337 ° C.), RbNO 3 (melting point: 316 ° C.), CsNO 3 (melting point: 417 ° C.), Ca (NO 3 ) 2 (melting point : 561 ° C), Mg (NO 3 ) 2 , Sr (NO 3 ) 2 (melting point: 645 ° C) and Ba (NO 3 ) 2 (melting point: 596 ° C).

Aのリン酸塩としては、NaPO、KPO(融点:1340℃)、RbPO、CsPO、Ca(PO、Mg(PO(融点:1184℃)、Sr(PO(融点:1727℃)およびBa(PO(融点:1767℃)を挙げることができる。 As the phosphate of A, Na 3 PO 4 , K 3 PO 4 (melting point: 1340 ° C.), Rb 3 PO 4 , Cs 3 PO 4 , Ca 3 (PO 4 ) 2 , Mg 3 (PO 4 ) 2 ( Melting point: 1184 ° C), Sr 3 (PO 4 ) 2 (melting point: 1727 ° C) and Ba 3 (PO 4 ) 2 (melting point: 1767 ° C).

Aの水酸化物としては、NaOH(融点:318℃)、KOH(融点:360℃)、RbOH(融点:301℃)、CsOH(融点:272℃)、Ca(OH)(融点:408℃)、Mg(OH)(融点:350℃)、Sr(OH)(融点:375℃)およびBa(OH)(融点:853℃)を挙げることができる。 Examples of the hydroxide of A include NaOH (melting point: 318 ° C.), KOH (melting point: 360 ° C.), RbOH (melting point: 301 ° C.), CsOH (melting point: 272 ° C.), Ca (OH) 2 (melting point: 408 ° C.) ), Mg (OH) 2 (melting point: 350 ° C.), Sr (OH) 2 (melting point: 375 ° C.) and Ba (OH) 2 (melting point: 853 ° C.).

Aのモリブデン酸塩としては、NaMoO(融点:698℃)、KMoO(融点:919℃)、RbMoO(融点:958℃)、CsMoO(融点:956℃)、CaMoO(融点:1520℃)、MgMoO(融点:1060℃)、SrMoO(融点:1040℃)およびBaMoO(融点:1460℃)を挙げることができる。 Examples of the molybdate salt of A include Na 2 MoO 4 (melting point: 698 ° C.), K 2 MoO 4 (melting point: 919 ° C.), Rb 2 MoO 4 (melting point: 958 ° C.), Cs 2 MoO 4 (melting point: 956 ° C.) ), CaMoO 4 (melting point: 1520 ° C.), MgMoO 4 (melting point: 1060 ° C.), SrMoO 4 (melting point: 1040 ° C.) and BaMoO 4 (melting point: 1460 ° C.).

Aのタングステン酸塩としては、NaWO(融点:687℃)、KWO、RbWO、CsWO、CaWO、MgWO、SrWOおよびBaWOを挙げることができる。 Examples of the tungstate of A include Na 2 WO 4 (melting point: 687 ° C.), K 2 WO 4 , Rb 2 WO 4 , Cs 2 WO 4 , CaWO 4 , MgWO 4 , SrWO 4 and BaWO 4. .

本実施形態においては、これらの不活性溶融剤を2種以上用いることもできる。2種以上用いる場合は、融点が下がることもある。また、これらの不活性溶融剤の中でも、より結晶性が高いリチウム金属複合酸化物粉末を得るための不活性溶融剤としては、Aの炭酸塩および硫酸塩、Aの塩化物のいずれか又はその組み合わせであることが好ましい。また、Aとしては、ナトリウム(Na)およびカリウム(K)のいずれか一方又は両方であることが好ましい。すなわち、上記の中で、とりわけ好ましい不活性溶融剤は、NaCl、KCl、NaCO,KCO3、NaSO4、およびKSOからなる群より選ばれる1種以上である。
これらの不活性溶融剤を用いることにより、得られるリチウム金属複合酸化物の平均圧壊強度を本実施形態の好ましい範囲に制御できる。
In the present embodiment, two or more of these inert fluxes can be used. When two or more kinds are used, the melting point may be lowered. In addition, among these inert fluxes, as the inert flux for obtaining a lithium metal composite oxide powder having higher crystallinity, carbonates and sulfates of A, any of chlorides of A or a mixture thereof. A combination is preferred. A is preferably one or both of sodium (Na) and potassium (K). That is, among the above, particularly preferred inert fluxes are one or more selected from the group consisting of NaCl, KCl, Na 2 CO 3 , K 2 CO 3, Na 2 SO 4, and K 2 SO 4. .
By using these inert fluxes, the average crushing strength of the obtained lithium metal composite oxide can be controlled within the preferred range of the present embodiment.

本実施形態において、不活性溶融剤として、KSOおよびNaSOのいずれか一方又は両方を用いた場合には、得られるリチウム金属複合酸化物の平均圧壊強度を本実施形態の好ましい範囲に制御できる。 In this embodiment, when one or both of K 2 SO 4 and Na 2 SO 4 are used as the inert flux, the average crushing strength of the obtained lithium metal composite oxide is preferable in this embodiment. Can be controlled to a range.

本実施形態において、焼成時の不活性溶融剤の存在量は適宜選択すればよい。得られるリチウム金属複合酸化物の平均圧壊強度を本実施形態の範囲とするためには、焼成時の不活性溶融剤の存在量はリチウム化合物100質量部に対して0.1質量部以上であることが好ましく、1質量部以上であることがより好ましい。また、必要に応じて、上記に挙げた不活性溶融剤以外の不活性溶融剤を併せて用いてもよい。該溶融剤としては、NHCl、NHFなどのアンモニウム塩等を挙げることができる。 In the present embodiment, the amount of the inert flux present during firing may be appropriately selected. In order to make the average crushing strength of the obtained lithium metal composite oxide fall within the range of the present embodiment, the amount of the inert flux at the time of firing is 0.1 parts by mass or more based on 100 parts by mass of the lithium compound. It is more preferable that the amount is 1 part by mass or more. If necessary, an inert flux other than the above-mentioned inert fluxes may be used in combination. Examples of the melting agent include ammonium salts such as NH 4 Cl and NH 4 F.

<リチウム二次電池>
次いで、リチウム二次電池の構成を説明しながら、本実施形態の正極活物質粉末を含有するリチウム二次電池用正極活物質を用いた正極、およびこの正極を有するリチウム二次電池について説明する。
<Lithium secondary battery>
Next, a description will be given of a positive electrode using the positive electrode active material for a lithium secondary battery containing the positive electrode active material powder of the present embodiment, and a lithium secondary battery having the positive electrode, while describing the configuration of the lithium secondary battery.

本実施形態のリチウム二次電池の一例は、正極および負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。   One example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.

図1A及び図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。   1A and 1B are schematic diagrams illustrating an example of the lithium secondary battery of the present embodiment. The cylindrical lithium secondary battery 10 of the present embodiment is manufactured as follows.

まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、および一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。   First, as shown in FIG. 1A, a pair of band-shaped separators 1, a band-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a band-shaped negative electrode 3 having a negative electrode lead 31 at one end are separated into a separator 1, a positive electrode 2, and a separator 1. An electrode group 4 is obtained by laminating and winding the negative electrode 1 and the negative electrode 3 in this order.

次いで、図1Bに示すように、電池缶5に電極群4および不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7および封口体8で封止することで、リチウム二次電池10を製造することができる。   Next, as shown in FIG. 1B, after housing the electrode group 4 and an insulator (not shown) in the battery can 5, the bottom of the can is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the positive electrode 2 and the negative electrode 3 are formed. An electrolyte is placed between them. Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing body 8, the lithium secondary battery 10 can be manufactured.

電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。   As the shape of the electrode group 4, for example, a columnar shape such that a cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to a winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners Can be mentioned.

また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。   Further, as the shape of the lithium secondary battery having such an electrode group 4, IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or a shape defined by JIS C8500 can be adopted. . For example, a shape such as a cylindrical shape and a square shape can be given.

さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。   Further, the lithium secondary battery is not limited to the above-described wound type configuration, and may be a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of the stacked lithium secondary battery include a so-called coin battery, a button battery, and a paper (or sheet) battery.

以下、各構成について順に説明する。
(正極)
本実施形態の正極は、まず正極活物質、導電材およびバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
Hereinafter, each configuration will be described in order.
(Positive electrode)
The positive electrode of the present embodiment can be manufactured by first preparing a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder, and supporting the positive electrode mixture on a positive electrode current collector.

(導電材)
本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率および出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、および正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
(Conductive material)
As the conductive material of the positive electrode of this embodiment, a carbon material can be used. Examples of the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Carbon black is a fine particle and has a large surface area.By adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be increased, and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture decrease, which causes an increase in internal resistance.

正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。   The proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the positive electrode active material. When a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, the ratio can be reduced.

(バインダー)
本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
(binder)
As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used. Examples of the thermoplastic resin include polyvinylidene fluoride (hereinafter, may be referred to as PVdF), polytetrafluoroethylene (hereinafter, may be referred to as PTFE), and ethylene tetrafluoride / propylene hexafluoride / vinylidene fluoride. Fluororesins such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, and ethylene tetrafluoride / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene;

これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力および正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。   These thermoplastic resins may be used as a mixture of two or more kinds. By using a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the whole positive electrode mixture is 1% by mass to 10% by mass, and the ratio of the polyolefin resin is 0.1% by mass to 2% by mass, whereby the positive electrode It is possible to obtain a positive electrode mixture in which both the adhesion to the current collector and the bonding force inside the positive electrode mixture are high.

(正極集電体)
本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
(Positive electrode current collector)
As the positive electrode current collector included in the positive electrode of this embodiment, a belt-shaped member using a metal material such as Al, Ni, and stainless steel as a forming material can be used. Above all, it is preferable to use Al as a forming material and process it into a thin film in that it is easy to process and inexpensive.

正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。   As a method for supporting the positive electrode mixture on the positive electrode current collector, there is a method in which the positive electrode mixture is pressure-formed on the positive electrode current collector. In addition, the positive electrode mixture is paste-formed using an organic solvent, the obtained positive electrode mixture paste is applied to at least one surface of the positive electrode current collector, dried, pressed and fixed, so that the positive electrode A mixture may be carried.

正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N−メチル−2−ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。   When the positive electrode mixture is made into a paste, usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).

正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法が挙げられる。   Examples of a method of applying the paste of the positive electrode mixture to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.

以上に挙げられた方法により、正極を製造することができる。
(負極)
本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、および負極活物質単独からなる電極を挙げることができる。
The positive electrode can be manufactured by the method described above.
(Negative electrode)
The negative electrode of the lithium secondary battery of the present embodiment may be any type as long as it is possible to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.

(負極活物質)
負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material of the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, and the like), nitrides, metals, and alloys, which can be doped and dedoped with lithium ions at a lower potential than the positive electrode. Can be

負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体を挙げることができる。   Examples of the carbon material that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.

負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。 Examples of oxides that can be used as the negative electrode active material include oxides of silicon represented by the formula SiO x such as SiO 2 and SiO (where x is a positive real number); TiO x such as TiO 2 and TiO (here, , X is a positive real number); a vanadium oxide represented by the formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc., an iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO represented by the formula SnO x (where x is a positive real number) Oxides of tin; oxides of tungsten represented by the general formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; lithium and titanium such as Li 4 Ti 5 O 12 and LiVO 2 Or a composite metal oxide containing vanadium. It is possible.

負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。 Examples of the sulfide usable as the negative electrode active material include titanium sulfide represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2. Vanadium sulfide represented by the formula VS x (where x is a positive real number) such as VS; FeS x (where x is a positive real number) such as Fe 3 S 4 , FeS 2 , and FeS A sulfide of iron represented by the formula: MoS x such as Mo 2 S 3 , MoS 2 (where x is a positive real number); a sulfide of molybdenum represented by the formula SnS x such as SnS 2 or SnS x is represented sulfides of tin is a positive real number); WS 2 wherein WS x (wherein, etc., x is sulfides of tungsten represented by a positive real number); Sb 2 S 3, etc. formula SbS x (wherein Where x is a positive real number) and sulfide of antimony represented by the following formula: Se 5 S 3 , selenium sulfide represented by the formula SeS x (where x is a positive real number) such as SeS 2 and SeS.

負極活物質として使用可能な窒化物としては、LiN、Li3−xN(ここで、AはNiおよびCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。 The nitride can be used as a negative electrode active material, Li 3 N, Li 3- x A x N ( wherein, A is one or both of Ni and Co, which is 0 <x <3.) And other lithium-containing nitrides.

これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。   These carbon materials, oxides, sulfides, and nitrides may be used alone or in combination of two or more. In addition, these carbon materials, oxides, sulfides, and nitrides may be either crystalline or amorphous.

また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属およびスズ金属などを挙げることができる。   Examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.

負極活物質として使用可能な合金としては、Li−Al、Li−Ni、Li−Si、Li−Sn、Li−Sn−Niなどのリチウム合金;Si−Znなどのシリコン合金;Sn−Mn、Sn−Co、Sn−Ni、Sn−Cu、Sn−Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。 Examples of alloys usable as the negative electrode active material include lithium alloys such as Li-Al, Li-Ni, Li-Si, Li-Sn, and Li-Sn-Ni; silicon alloys such as Si-Zn; Sn-Mn, Sn It can also be mentioned; -Co, Sn-Ni, Sn -Cu, tin alloys such as Sn-La; Cu 2 Sb, alloys such as La 3 Ni 2 Sn 7.

これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。   These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.

上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。   Among the above negative electrode active materials, the potential of the negative electrode hardly changes from an uncharged state to a fully charged state during charging (good potential flatness), the average discharge potential is low, and the capacity retention rate when repeatedly charged and discharged is low. A carbon material containing graphite as a main component, such as natural graphite or artificial graphite, is preferably used for reasons such as high (good cycle characteristics). The shape of the carbon material may be any of, for example, a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.

前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレンおよびポリプロピレンを挙げることができる。   The negative electrode mixture may contain a binder, if necessary. Examples of the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethylcellulose, polyethylene, and polypropylene.

(負極集電体)
負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
(Negative electrode current collector)
Examples of the negative electrode current collector included in the negative electrode include a band-shaped member formed of a metal material such as Cu, Ni, and stainless steel. Among them, a material formed into a thin film using Cu as a forming material is preferable in that it is difficult to form an alloy with lithium and is easy to process.

このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。   As a method of supporting the negative electrode mixture on such a negative electrode current collector, similarly to the case of the positive electrode, a method by pressure molding, forming a paste using a solvent or the like, applying the paste on the negative electrode current collector, drying and pressing. There is a method of crimping.

(セパレータ)
本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
(Separator)
Examples of the separator included in the lithium secondary battery of the present embodiment include, for example, a porous film, a nonwoven fabric, and a woven fabric made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. Can be used. Further, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.

本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。   In the present embodiment, the separator has a gas permeability resistance of 50 seconds / 100 cc or more and 300 seconds / 100 cc according to the Gurley method specified in JIS P 8117 in order to allow the electrolyte to pass well when the battery is used (during charge / discharge). Or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.

また、セパレータの空孔率は、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。   The porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less. The separator may be a laminate of separators having different porosity.

(電解液)
本実施形態のリチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
(Electrolyte)
The electrolytic solution of the lithium secondary battery of the present embodiment contains an electrolyte and an organic solvent.

電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCFおよびLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。 As the electrolyte contained in the electrolyte, LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (here, BOB is bis (oxalato) borate ), LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salts of lower aliphatic carboxylic acids, lithium salts such as LiAlCl 4, and a mixture of two or more of these. May be used. Among them, the electrolyte is at least selected from the group consisting of LiPF 6 containing fluorine, LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3. It is preferable to use one containing one kind.

また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。   Examples of the organic solvent contained in the electrolytic solution include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-diethyl carbonate. Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran, Ethers such as methyltetrahydrofuran; esters such as methyl formate, methyl acetate and γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethylacetate Amides such as amides; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, and 1,3-propanesultone; or those obtained by further introducing a fluoro group into these organic solvents ( In which one or more of the hydrogen atoms of the organic solvent are substituted with a fluorine atom) can be used.

有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒および環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。   As the organic solvent, it is preferable to use a mixture of two or more of these. Among them, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ether are more preferable. As the mixed solvent of the cyclic carbonate and the non-cyclic carbonate, a mixed solvent containing ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate is preferable. The electrolytic solution using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. It has many features that it is hardly decomposable even when a graphite material such as artificial graphite is used.

また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。 Further, as the electrolyte, it is preferable to use an electrolyte containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent, since the safety of the obtained lithium secondary battery is enhanced. A mixed solvent containing an ether having a fluorine substituent such as pentafluoropropyl methyl ether or 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate has a high capacity even when charged and discharged at a high current rate. It is more preferable because the maintenance ratio is high.

上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS−SiS、LiS−GeS、LiS−P、LiS−B、LiS−SiS−LiPO、LiS−SiS−LiSO、LiS−GeS−Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。 A solid electrolyte may be used instead of the above electrolyte. As the solid electrolyte, for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one polyorganosiloxane chain or a polyoxyalkylene chain can be used. Further, a so-called gel type in which a non-aqueous electrolyte is held in a polymer compound can also be used. Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.

また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。   Further, in the lithium secondary battery of the present embodiment, when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.

次に、本発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

≪平均圧壊強度の測定≫
正極活物質に含まれる単粒子の「平均圧壊強度」とは、以下の方法によって測定した。
≫Measurement of average crush strength 強度
The “average crush strength” of the single particles contained in the positive electrode active material was measured by the following method.

まず、正極活物質粉末について株式会社島津製作所製「微小圧縮試験機MCT−510」を用いて、任意に選んだ単粒子1個に対して試験圧力(負荷)をかけ、単粒子の変位量を測定した。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出する。この操作を計5回行い、圧壊強度の5回平均値から平均圧壊強度を算出した。
St=2.8×P/(π×d×d) (d:単粒子径) …(A)
First, a test pressure (load) is applied to one arbitrarily selected single particle using a “micro compression tester MCT-510” manufactured by Shimadzu Corporation for the positive electrode active material powder, and the displacement amount of the single particle is measured. It was measured. When the test pressure is gradually increased, the pressure value at which the displacement becomes maximum while the test pressure is almost constant is defined as the test force (P), and the equation of Hiramatsu et al. Vol. 81, (1965)), the crushing strength (St) is calculated. This operation was performed five times in total, and the average crushing strength was calculated from the average value of the five crushing strengths.
St = 2.8 × P / (π × d × d) (d: single particle diameter) (A)

≪(D90−D10)/D50の測定≫
リチウム金属複合酸化物粉末の90%累積体積粒度D90と、10%累積体積粒度D10との比率(D90/D10)は以下の方法により算出した。
まず、リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得た。
次に、得られた分散液についてマイクロトラック・ベル株式会社製マイクロトラックMT3300EXII(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。
そして、得られた累積粒度分布曲線において、10%累積時の微小粒子側から見た粒子径の値が10%累積体積粒度D10(μm)、50%累積時の微小粒子側から見た粒子径の値が50%累積体積粒度D50(μm)とし、90%累積時の微小粒子側から見た粒子径の値が90%累積体積粒度D90(μm)とし、比率(D90−D10)/D50 を算出した。
«(D 90 -D 10) / D measurement of 50»
The ratio (D 90 / D 10 ) of the 90% cumulative volume particle size D 90 and the 10% cumulative volume particle size D 10 of the lithium metal composite oxide powder was calculated by the following method.
First, 0.1 g of lithium metal composite oxide powder was added to 50 ml of a 0.2% by mass aqueous solution of sodium hexametaphosphate to obtain a dispersion in which the powder was dispersed.
Next, the particle size distribution of the obtained dispersion was measured using Microtrack MT3300EXII (laser diffraction scattering particle size distribution analyzer) manufactured by Microtrack Bell Co., Ltd., and a volume-based cumulative particle size distribution curve was obtained.
In the obtained cumulative particle size distribution curve, the value of the particle diameter as viewed from the fine particle side at the time of 10% accumulation is 10% cumulative volume particle size D 10 (μm), and the particle as viewed from the fine particle side at the time of 50% accumulation. The value of the diameter is 50% cumulative volume particle size D 50 (μm), the value of the particle size as viewed from the fine particle side at 90% accumulation is 90% cumulative volume particle size D 90 (μm), and the ratio (D 90 −D) 10) was calculated / D 50.

≪単粒子の粒子径の測定≫
単粒子の平均粒子径は下記の方法により求めた。
まず、正極活物質粉末を、サンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM−5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。SEM観察により得られた画像(SEM写真)から任意に50個の単粒子を抽出し、それぞれの単粒子について、単粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を単粒子の粒子径として測定した。得られた単粒子の粒子径の算術平均値を、正極活物質粉末の平均単粒子径とした。
≫Measurement of single particle size≪
The average particle size of the single particles was determined by the following method.
First, the positive electrode active material powder was placed on a conductive sheet stuck on a sample stage, and an electron beam having an acceleration voltage of 20 kV was irradiated using JSM-5510 manufactured by JEOL Ltd. to perform SEM observation. 50 single particles were arbitrarily extracted from an image (SEM photograph) obtained by the SEM observation, and for each single particle, the distance between parallel lines separated by a parallel line obtained by drawing a projected image of the single particle from a certain direction ( (Diameter in a fixed direction) was measured as the particle diameter of a single particle. The arithmetic average of the particle diameters of the obtained single particles was defined as the average single particle diameter of the positive electrode active material powder.

≪フロート電気量の測定≫
「フロート電気量」は、以下の方法により測定した。
後述の方法により得られた正極活物質を用いてリチウム二次電池(コイン型セル)を作製した。正極は、後述の方法により得られた正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。
≫Measurement of float electric quantity≫
"Float electricity quantity" was measured by the following method.
A lithium secondary battery (coin-type cell) was produced using the positive electrode active material obtained by the method described below. For the positive electrode, a positive electrode active material for a lithium secondary battery: a conductive material: a binder = 92: 5: 3 (mass ratio) comprising a positive electrode active material obtained by a method described below, a conductive material (acetylene black), and a binder (PVdF). ) To obtain a paste-like positive electrode mixture.

より具体的には、コイン型電池R2032用のコインセル(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリプロピレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み25μm))を置く。ここに電解液を300μL注入する。用いる電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの30:35:35(体積比)混合液に、LiPFを1.0mol/Lとなるように溶解して調製した。
次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コインセル」と称することがある。)を作製した。
More specifically, the aluminum foil surface is placed on the lower lid of a coin cell (manufactured by Hosen Co., Ltd.) for the coin-type battery R2032, and a laminated film separator (on a porous film made of polypropylene, A heat resistant porous layer is laminated (thickness: 25 μm). Here, 300 μL of the electrolyte is injected. The electrolytic solution used was prepared by dissolving LiPF 6 in a 30:35:35 (volume ratio) mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate to a concentration of 1.0 mol / L.
Next, using metallic lithium as the negative electrode, the negative electrode was placed on the upper side of the laminated film separator, covered with a gasket, covered with a cover, and caulked with a caulking machine to form a lithium secondary battery (coin-type battery R2032; hereinafter, referred to as “coin cell”). ).

さらに、得られたコインセルを用いて次のように試験を行った。
即ち、試験温度60℃で、充電最大電圧4.3V、充電時間60時間、充電電流0.05CAで定電流定電圧充電した。
定電流定電圧充電において、4.3Vの定電圧モードに移行してから30時間の間の積算電気量をフロート電気量(mAh/g)として算出した。
Further, a test was performed as follows using the obtained coin cell.
That is, constant-current constant-voltage charging was performed at a test temperature of 60 ° C., a maximum charging voltage of 4.3 V, a charging time of 60 hours, and a charging current of 0.05 CA.
In the constant current / constant voltage charging, the integrated amount of electricity for 30 hours after the shift to the constant voltage mode of 4.3 V was calculated as the float amount of electricity (mAh / g).

≪実施例1≫
1.正極活物質1の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
<< Example 1 >>
1. Production of Positive Electrode Active Material 1 After water was poured into a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added, and the liquid temperature was maintained at 50 ° C.

硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.60:0.20:0.20となるように混合して、混合原料液を調製した。   A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed such that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms becomes 0.60: 0.20: 0.20, and the mixed raw material liquid is obtained. Prepared.

次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを反応槽内に連続通気させた。反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物1を得た。   Next, this mixed raw material solution and an aqueous solution of ammonium sulfate were continuously added as a complexing agent to the reaction vessel with stirring, and nitrogen gas was continuously passed through the reaction vessel. An aqueous solution of sodium hydroxide is added dropwise at appropriate times so that the pH of the solution in the reaction vessel becomes 11.7, to obtain nickel-cobalt-manganese composite hydroxide particles, which are washed and then dehydrated by a centrifugal separator. By isolating and drying at 105 ° C., a nickel-cobalt-manganese composite hydroxide 1 was obtained.

ニッケルコバルトマンガン複合水酸化物粒子1と炭酸リチウム粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn)=1.20、KSO/(LiCO+KSO)=0.1(mol/mol)となるように秤量して混合した後、大気雰囲気下925℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質1を得た。 The nickel / cobalt / manganese composite hydroxide particles 1, the lithium carbonate powder and the potassium sulfate powder were mixed with Li / (Ni + Co + Mn) = 1.20, K 2 SO 4 / (Li 2 CO 3 + K 2 SO 4 ) = 0.1 (mol) / Mol), and then calcined at 925 ° C for 8 hours under an air atmosphere to obtain a lithium metal composite oxide powder. The slurry prepared by mixing the powder and pure water so that the ratio of the powder weight to the total amount is 0.3 is stirred for 20 minutes, then dehydrated, isolated, and dried at 105 ° C. A positive electrode active material 1 was obtained.

2.正極活物質1の評価
正極活物質1の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.20、z=0.20、w=0であった。
2. Evaluation of Positive Electrode Active Material 1 The composition analysis of the positive electrode active material 1 was performed, and according to the composition formula (I), x = 0.02, y = 0.20, z = 0.20, and w = 0. Was.

正極活物質1のSEM観察の結果、独立して存在する単粒子の粒子径は2μmであった。正極活物質1に含まれる単粒子の平均圧壊強度は127MPa、(D90−D10)/D50 は1.2、フロート電気量は7.66mAh/gであった。 As a result of the SEM observation of the positive electrode active material 1, the particle diameter of the independently existing single particle was 2 μm. The average crushing strength of the single particles contained in the positive electrode active material 1 was 127 MPa, (D 90 −D 10 ) / D 50 was 1.2, and the float charge was 7.66 mAh / g.

≪実施例2≫
1.正極活物質2の製造
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.88:0.08:0.04となるように混合した以外は、実施例1と同様に操作してニッケルコバルトマンガン複合水酸化物2を得た。
<< Example 2 >>
1. Production of Positive Electrode Active Material 2 An aqueous solution of nickel sulfate, an aqueous solution of cobalt sulfate, and an aqueous solution of manganese sulfate were mixed such that the atomic ratio of nickel, cobalt, and manganese was 0.88: 0.08: 0.04. A nickel cobalt manganese composite hydroxide 2 was obtained in the same manner as in Example 1 except for the above.

ニッケルコバルトマンガン複合水酸化物2と、水酸化リチウム一水和物粉末と硫酸カリウム粉末とを、Li/(Ni+Co+Mn)=1.20、LiOH/(LiOH+KSO)=0.10(mol/mol)となるように秤量して混合した後、酸素雰囲気下820℃で6時間焼成して、得られたリチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.3になるように混合し作製したスラリーを、20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質2を得た。 Nickel-cobalt-manganese composite hydroxide 2, lithium hydroxide monohydrate powder and potassium sulfate powder were mixed with Li / (Ni + Co + Mn) = 1.20, LiOH / (LiOH + K 2 SO 4 ) = 0.10 (mol / mol), and calcined at 820 ° C. for 6 hours in an oxygen atmosphere to obtain the obtained lithium metal composite oxide powder. The slurry prepared by mixing the powder and pure water so that the ratio of the powder weight to the total amount is 0.3 is stirred for 20 minutes, then dehydrated, isolated, and dried at 105 ° C. As a result, a positive electrode active material 2 was obtained.

2.正極活物質2の評価
正極活物質2の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.08、z=0.04、w=0であった。
2. Evaluation of Positive Electrode Active Material 2 A composition analysis of the positive electrode active material 2 was performed. According to the composition formula (I), x = 0.02, y = 0.08, z = 0.04, and w = 0. Was.

正極活物質2のSEM観察の結果、独立して存在する単粒子の粒子径は3μmであった。正極活物質2に含まれる単粒子の平均圧壊強度は126MPa、(D90−D10)/D50 は1.9、フロート電気量は7.68mAh/gであった。 As a result of the SEM observation of the positive electrode active material 2, the particle diameter of the independently existing single particle was 3 μm. The average crushing strength of the single particles contained in the positive electrode active material 2 was 126 MPa, (D 90 −D 10 ) / D 50 was 1.9, and the float charge was 7.68 mAh / g.

≪実施例3≫
1.正極活物質3の製造
ニッケルコバルトマンガン複合水酸化物2を酸素雰囲気下760℃で6時間焼成して、得られたリチウム金属複合酸化物粉末を得た以外は実施例2と同様に操作して、正極活物質3を得た。
Example 3
1. Production of Positive Electrode Active Material 3 The same operation as in Example 2 was performed except that the nickel-cobalt-manganese composite hydroxide 2 was calcined at 760 ° C. for 6 hours in an oxygen atmosphere to obtain an obtained lithium metal composite oxide powder. Thus, a positive electrode active material 3 was obtained.

2.正極活物質3の評価
正極活物質3の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.08、z=0.04、w=0であった。
2. Evaluation of Positive Electrode Active Material 3 A composition analysis of the positive electrode active material 3 was performed. According to the composition formula (I), x = 0.02, y = 0.08, z = 0.04, and w = 0. Was.

正極活物質3のSEM観察の結果、独立して存在する単粒子の粒子径は1.8μmであった。正極活物質3に含まれる単粒子の平均圧壊強度は102MPa、(D90−D10)/D50 は1.7、フロート電気量は7.57mAh/gであった。   As a result of the SEM observation of the positive electrode active material 3, the particle size of the independently existing single particles was 1.8 μm. The average crushing strength of the single particles contained in the positive electrode active material 3 was 102 MPa, (D90-D10) / D50 was 1.7, and the float charge was 7.57 mAh / g.

≪比較例1≫
1.正極活物質4の製造
正極活物質焼成時にKSOを添加せずに、焼成温度を850℃とした以外は実施例1と同様の方法で正極活物質4を得た。
<< Comparative Example 1 >>
1. Production of Positive Electrode Active Material 4 A positive electrode active material 4 was obtained in the same manner as in Example 1 except that K 2 SO 4 was not added at the time of firing the positive electrode active material and the firing temperature was 850 ° C.

2.正極活物質4の評価
正極活物質4の組成分析を行い、組成式(I)に対応させたところ、x=0、y=0.20、z=0.20、w=0であった。
2. Evaluation of Positive Electrode Active Material 4 The composition analysis of the positive electrode active material 4 was made to correspond to the composition formula (I), whereupon x = 0, y = 0.20, z = 0.20, and w = 0.

正極活物質4のSEM観察の結果、独立して存在する単粒子は含まれていなかった。(D90−D10)/D50は1.9で、フロート電気量は11.3mAh/gであった。 As a result of SEM observation of the positive electrode active material 4, independent single particles were not included. (D 90 -D 10) / D 50 is 1.9, the float electric amount was 11.3mAh / g.

≪比較例2≫
1.正極活物質5の製造
正極活物質焼成時にKSOを添加せずに、焼成温度を760℃とした以外は実施例2と同様の方法で正極活物質5を得た。
<< Comparative Example 2 >>
1. Production of Positive Electrode Active Material 5 A positive electrode active material 5 was obtained in the same manner as in Example 2, except that K 2 SO 4 was not added at the time of firing the positive electrode active material and the firing temperature was 760 ° C.

2.正極活物質5の評価
正極活物質5の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.08、z=0.04、w=0であった。
2. Evaluation of Positive Electrode Active Material 5 A composition analysis of the positive electrode active material 5 was made to correspond to the composition formula (I). As a result, x = 0.02, y = 0.08, z = 0.04, and w = 0. Was.

正極活物質5のSEM観察の結果、独立して存在する単粒子は含まれていなかった。(D90−D10)/D50は1.8で、フロート電気量は14.3mAh/gであった。 As a result of the SEM observation of the positive electrode active material 5, independent single particles were not included. (D 90 -D 10) / D 50 is 1.8, the float electric amount was 14.3mAh / g.

≪比較例3≫
1.正極活物質6の製造
正極活物質焼成時にKSOを添加せずに、焼成温度を925℃とした以外は実施例1と同様の方法で正極活物質6を得た。
<< Comparative Example 3 >>
1. Production of Positive Electrode Active Material 6 A positive electrode active material 6 was obtained in the same manner as in Example 1 except that K 2 SO 4 was not added at the time of firing the positive electrode active material and the firing temperature was set at 925 ° C.

2.正極活物質6の評価
正極活物質6の組成分析を行い、組成式(I)に対応させたところ、x=−0.01、y=0.20、z=0.20、w=0であった。
2. Evaluation of Positive Electrode Active Material 6 A composition analysis of the positive electrode active material 6 was performed to correspond to the composition formula (I). As a result, x = −0.01, y = 0.20, z = 0.20, and w = 0. there were.

正極活物質6のSEM観察の結果、独立して存在する単粒子の粒子径は1μmであった。正極活物質6に含まれる単粒子の平均圧壊強度は71.9MPaで、(D90−D10)/D50は11.0で、フロート電気量は9.9mAh/gであった。 As a result of SEM observation of the positive electrode active material 6, the particle diameter of the independently existing single particle was 1 μm. The average crushing strength of the single particles contained in the positive electrode active material 6 was 71.9 MPa, (D 90 −D 10 ) / D 50 was 11.0, and the float charge was 9.9 mAh / g.

下記表1に、実施例1〜3、比較例1〜3の各結果についてまとめて記載する。   Table 1 below summarizes the results of Examples 1 to 3 and Comparative Examples 1 to 3.

Figure 2020011892
Figure 2020011892

上記結果に示した通り、本発明を適用した実施例1〜3の正極活物質は、フロート電気量の発生が少なく、電解液との分解反応が少ない正極活物質であることが確認できた。   As shown in the above results, it was confirmed that the positive electrode active materials of Examples 1 to 3 to which the present invention was applied were those which generated little amount of float electricity and had little decomposition reaction with the electrolytic solution.

1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード   DESCRIPTION OF SYMBOLS 1 ... Separator, 2 ... Positive electrode, 3 ... Negative electrode, 4 ... Electrode group, 5 ... Battery can, 6 ... Electrolyte, 7 ... Top insulator, 8 ... Sealing body, 10 ... Lithium secondary battery, 21 ... Positive electrode lead, 31 … Negative electrode lead

Claims (7)

一次粒子と、
前記一次粒子が凝集して形成された二次粒子と、
前記一次粒子又は前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物粉末であって、
下記組成式(I)で表され、かつ、前記単粒子の平均圧壊強度が80MPaを超えることを特徴とする、リチウム金属複合酸化物粉末。
Li[Li(Ni(1−y−z−w)CoMn1−x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
Primary particles,
Secondary particles formed by aggregation of the primary particles,
The primary particles or the single particles that are present independently of the secondary particles, and a lithium metal composite oxide powder composed of:
A lithium metal composite oxide powder represented by the following composition formula (I), wherein the average crushing strength of the single particles exceeds 80 MPa.
Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 ··· (I)
(Where M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V; −0.1 ≦ x ≦ 0.2, 0 ≦ y ≦ 0.4, 0 ≦ z ≦ 0.4, and 0 ≦ w ≦ 0.1.)
前記組成式(I)において、0<x≦0.1であり、0<y≦0.4である、請求項1に記載のリチウム金属複合酸化物粉末。   2. The lithium metal composite oxide powder according to claim 1, wherein in the composition formula (I), 0 <x ≦ 0.1 and 0 <y ≦ 0.4. 前記リチウム金属複合酸化物粉末の90%累積体積粒度D90から10%累積体積粒度D10を引いた値と、50%累積体積粒度D50との比率(D90−D10/D50)が、2.0未満である、請求項1又は2に記載のリチウム金属複合酸化物粉末。 A value obtained by subtracting the lithium metal composite oxide 90% cumulative volume particle size D 90 10% cumulative volume particle size D 10 of the powder, the ratio of 50% cumulative volume particle size D 50 (D 90 -D 10 / D 50) The lithium metal composite oxide powder according to claim 1 or 2, which is less than 2.0. 前記単粒子の平均粒子径が0.5μm以上7μm以下である、請求項1〜3のいずれか1項に記載のリチウム金属複合酸化物粉末。   The lithium metal composite oxide powder according to any one of claims 1 to 3, wherein the average particle diameter of the single particles is 0.5 µm or more and 7 µm or less. 請求項1〜4のいずれか1項に記載のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質。   A positive electrode active material for a lithium secondary battery, comprising the lithium metal composite oxide powder according to claim 1. 請求項5に記載のリチウム二次電池用正極活物質を有する正極。   A positive electrode comprising the positive electrode active material for a lithium secondary battery according to claim 5. 請求項6に記載の正極を有するリチウム二次電池。   A lithium secondary battery having the positive electrode according to claim 6.
JP2019147925A 2019-08-09 2019-08-09 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery Pending JP2020011892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019147925A JP2020011892A (en) 2019-08-09 2019-08-09 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147925A JP2020011892A (en) 2019-08-09 2019-08-09 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018045955A Division JP2019160573A (en) 2018-03-13 2018-03-13 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2020011892A true JP2020011892A (en) 2020-01-23

Family

ID=69169327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147925A Pending JP2020011892A (en) 2019-08-09 2019-08-09 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2020011892A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477860A (en) * 2020-05-11 2020-07-31 广西师范大学 Preparation method of GaSn/NC composite material
WO2022169080A1 (en) * 2021-02-04 2022-08-11 한국전자기술연구원 Positive electrode active material, all-solid-state battery comprising same, and method for manufacturing same
JP7405655B2 (en) 2020-03-17 2023-12-26 パナソニックホールディングス株式会社 Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405655B2 (en) 2020-03-17 2023-12-26 パナソニックホールディングス株式会社 Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
CN111477860A (en) * 2020-05-11 2020-07-31 广西师范大学 Preparation method of GaSn/NC composite material
WO2022169080A1 (en) * 2021-02-04 2022-08-11 한국전자기술연구원 Positive electrode active material, all-solid-state battery comprising same, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6630863B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary batteries
JP6962838B2 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
JP6549565B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP6836369B2 (en) Method for manufacturing positive electrode active material precursor for lithium secondary battery and positive electrode active material for lithium secondary battery
JP6256956B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6108141B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6600734B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
WO2016060105A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6337360B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN111837268B (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
JP2019003955A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6542421B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6630864B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, and method for producing lithium metal composite oxide powder
JP2019160572A (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery
JP2020011892A (en) Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
JP6630865B1 (en) Lithium composite metal oxide powder and positive electrode active material for lithium secondary batteries
JP6659894B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, and method for producing lithium metal composite oxide powder
JP6799551B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP6843732B2 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP7222866B2 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
JP7235650B2 (en) Lithium transition metal composite oxide powder, nickel-containing transition metal composite hydroxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP6640976B1 (en) Lithium transition metal composite oxide powder, nickel-containing transition metal composite hydroxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6360374B2 (en) Method for producing lithium-containing composite metal oxide
JP2019172573A (en) Lithium metal composite oxide powder, cathode active material for lithium secondary battery, cathode for lithium secondary battery, and lithium secondary battery
JP2021098631A (en) Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery