JP2594120B2 - Conductive resin composition - Google Patents

Conductive resin composition

Info

Publication number
JP2594120B2
JP2594120B2 JP63168528A JP16852888A JP2594120B2 JP 2594120 B2 JP2594120 B2 JP 2594120B2 JP 63168528 A JP63168528 A JP 63168528A JP 16852888 A JP16852888 A JP 16852888A JP 2594120 B2 JP2594120 B2 JP 2594120B2
Authority
JP
Japan
Prior art keywords
conductive
resin composition
conductive resin
elastomer particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63168528A
Other languages
Japanese (ja)
Other versions
JPH0218490A (en
Inventor
悦子 長野
均 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP63168528A priority Critical patent/JP2594120B2/en
Publication of JPH0218490A publication Critical patent/JPH0218490A/en
Application granted granted Critical
Publication of JP2594120B2 publication Critical patent/JP2594120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Dry Development In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子写真複写機の帯電ロール,現像ロール
等の導電性ロールに用いられる導電性樹脂組成物に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to a conductive resin composition used for a conductive roll such as a charging roll and a developing roll of an electrophotographic copying machine.

〔従来の技術〕[Conventional technology]

電子写真複写機の電子部品である帯電ロール等の導電
性ロールは、通常、第1図に示すように、金属シヤフト
4とその外周面に形成された導電性高分子層5によつて
構成されている。上記導電性高分子層5を形成する導電
性高分子組成物としては、一般に、エポキシ樹脂または
フエノール樹脂等の熱硬化性樹脂中に導電剤を混入した
導電性樹脂組成物等が知られている。
As shown in FIG. 1, a conductive roll such as a charging roll, which is an electronic component of an electrophotographic copying machine, is usually composed of a metal shaft 4 and a conductive polymer layer 5 formed on the outer peripheral surface thereof. ing. As the conductive polymer composition forming the conductive polymer layer 5, a conductive resin composition in which a conductive agent is mixed in a thermosetting resin such as an epoxy resin or a phenol resin is generally known. .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記導電性樹脂組成物は、熱硬化性樹
脂中に導電剤が多量に混入されているためその硬化物が
脆く、また金属シヤフト4との熱膨張係数も大きく異な
る。したがつて、それを用いて導電性高分子層を形成す
る場合には、上記導電性高分子層の形成の際に生ずる、
熱膨張係数差に起因する樹脂の歪みおよび使用時のヒー
トサイクル等に起因し、形成された導電性高分子層に割
れが発生する。そのため、従来の導電性樹脂組成物は、
夏,冬等の温度差が激しい地域で使用する製品や、寒冷
地,酷暑地で使用する製品に応用する場合には充分満足
しうるような効果を奏することができない。
However, since the conductive resin composition contains a large amount of a conductive agent in the thermosetting resin, the cured product is brittle, and has a significantly different coefficient of thermal expansion from the metal shaft 4. Therefore, when forming a conductive polymer layer using the same, it occurs at the time of forming the conductive polymer layer,
Cracks occur in the formed conductive polymer layer due to distortion of the resin due to a difference in thermal expansion coefficient and a heat cycle during use. Therefore, the conventional conductive resin composition,
When applied to a product used in an area where the temperature difference is severe such as summer and winter, or a product used in a cold region or a very hot region, an effect that is sufficiently satisfactory cannot be obtained.

この発明はこのような事情に鑑みなされたもので、温
度差の激しい地域や寒冷地,酷暑地でも、その硬化物に
割れを生じない導電性樹脂組成物の提供を目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a conductive resin composition that does not cause cracks in a cured product thereof even in a region having a large temperature difference, a cold region, or a very hot region.

〔問題点を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明の導電性樹脂組
成物は、導電剤を含有する熱硬化性樹脂マトリツクス成
分中に、粒径500μm以下のエラストマー粒子が分散さ
れているという構成をとる。
In order to achieve the above object, the conductive resin composition of the present invention has a configuration in which elastomer particles having a particle size of 500 μm or less are dispersed in a thermosetting resin matrix component containing a conductive agent.

〔作用〕[Action]

すなわち、本発明者らは、導電性樹脂組成物の導電性
に影響を及ぼすことなく、その組成物硬化体の割れの発
生を防止する目的で一連の研究を重ねた結果、ゴム弾性
を有するエラストマー粒子を上記組成物中に分散させる
と、そのエラストマー粒子に歪みが吸収され割れの発生
が防止されるようになることを突き止めた。そして、上
記エラストマー粒子を中心に、さらに研究を重ねた結
果、粒径が500μm以下のものを使用すると、導電性に
影響を及ぼすことなく割れの発生が防止されるようにな
ることを見いだしこの発明に到達した。
That is, the present inventors have conducted a series of studies for the purpose of preventing the occurrence of cracks in a cured product of the conductive resin composition without affecting the conductivity of the conductive resin composition. It was determined that when the particles were dispersed in the composition, the elastomer particles could absorb the strain and prevent cracking. Further, as a result of further studies, mainly on the above-mentioned elastomer particles, it was found that the use of particles having a particle size of 500 μm or less would prevent the occurrence of cracks without affecting conductivity. Reached.

この発明の導電性樹脂成形品は、熱硬化性樹脂マトリ
ツクス成分と導電剤と粒径が500μm以下のエラストマ
ー粒子とを用いて得られる。
The conductive resin molded article of the present invention is obtained by using a thermosetting resin matrix component, a conductive agent, and elastomer particles having a particle size of 500 μm or less.

上記熱硬化性樹脂マトリツクス成分の熱硬化性樹脂と
しては、特に限定するものではないが、寸法安定性およ
び成形性等の観点から従来から用いられているエポキシ
樹脂,フエノール樹脂等が用いられる。
The thermosetting resin of the thermosetting resin matrix component is not particularly limited, but epoxy resins, phenol resins, and the like conventionally used from the viewpoint of dimensional stability and moldability are used.

また、上記マトリツクス成分中に分散される導電剤と
しては、例えばカーボンブラツク,銅粉,銀粉等の金属
粉があげられ、これらは単独でもしくは併せて用いられ
る。
Examples of the conductive agent dispersed in the matrix component include metal powders such as carbon black, copper powder and silver powder, and these may be used alone or in combination.

上記熱硬化性樹脂と導電剤の配合割合は、熱硬化性樹
脂100重量部(以下「部」と略す)に対して導電剤150〜
300部の範囲に設定されるのが好ましく、特にそれを用
いた導電性樹脂組成物硬化体を半導電領域(106〜1011
Ω・cm)にするのに好適なのは200部前後である。
The mixing ratio of the thermosetting resin and the conductive agent is 100 parts by weight of the thermosetting resin (hereinafter abbreviated as “parts”).
It is preferably set in the range of 300 parts, and in particular, the cured product of the conductive resin composition using the semi-conductive region (10 6 to 10 11
Ω · cm) is preferably around 200 parts.

上記導電剤とともにマトリツクス成分中に分散される
エラストマー粒子としては、天然ゴム(NR),スチレン
−ブタジエンゴム(SBR),アクリロニトリルブタジエ
ンゴム(NBR),クロロプレンゴム(CR)等のゴム材
料、ポリスチレン系,ポリオレフイン系,ポリウレタン
系,ポリエステル系,ポリ塩化ビニル(PVC)系等の熱
可塑性樹脂材料があげられ、単独でもしくは併せて使用
される。これらのエラストマー粒子は、例えば冷凍粉砕
(液体窒素にエラストマー粒子材料を浸漬し液体窒素を
供給しながら粉砕する操作)等により粒径を500μm以
下にしたものを用いる必要がある。特に、粒径100μm
以下の微細粒子が好ましい。すなわち、粒径が500μm
を超えるものを用いると、導電性に影響が生じるように
なるうえ、エラストマー粒子の熱硬化性樹脂マトリツク
ス成分に対する分散状態が悪くなつて、導電性樹脂組成
物硬化体の強度にばらつきを生じ、かつ硬化体全体の強
度も低下するからである。これは、粒径500μm以下の
エラストマー粒子は、他の添加剤と略同じ粒径であるた
め、熱硬化性樹脂マトリツクス成分中における分散状態
が良好となることに起因すると考えられる。特に、この
発明の導電性樹脂組成物を用いて導電性ロールの導電性
高分子層5(第1図参照)を形成する場合において、導
電性ロールが帯電ロール等のときには、上記導電性高分
子層5を半導電領域に設定でき、かつ電子写真複写機の
複写用のトナーに対して親和性を発揮するように構成で
きる樹脂組成物を用いることが好適である。上記トナー
と親和性が高く、かつ半導電領域の導電性を有するよう
に構成できる樹脂組成物として、マトリツクス成分をフ
エノール樹脂とし、エラストマー粒子としてポリエステ
ルエラストマー粒子とするものが好適である。上記ポリ
エステルエラストマー粒子は、電気抵抗が108〜11Ω・
cmと半導電領域にあり、また複写用トナーに対しても馴
染み性のよいことから、他のエラストマー粒子に比べて
上記導電性高分子層を電子写真複写機用の半導電領域に
設定する場合に最適である。
Elastomer particles dispersed in the matrix component together with the conductive agent include rubber materials such as natural rubber (NR), styrene-butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), polystyrene, Examples include thermoplastic resin materials such as polyolefin, polyurethane, polyester, and polyvinyl chloride (PVC), which are used alone or in combination. It is necessary to use those elastomer particles having a particle diameter of 500 μm or less by, for example, freeze-pulverization (an operation of immersing the elastomer particle material in liquid nitrogen and pulverizing while supplying liquid nitrogen). Especially, particle size 100μm
The following fine particles are preferred. That is, the particle size is 500 μm
When using more than one, in addition to having an effect on the conductivity, the dispersion state of the elastomer particles to the thermosetting resin matrix component becomes worse, and the strength of the conductive resin composition cured body varies, and This is because the strength of the entire cured body also decreases. This is considered to be due to the fact that the elastomer particles having a particle size of 500 μm or less have substantially the same particle size as the other additives, and thus have a good dispersion state in the thermosetting resin matrix component. In particular, when the conductive polymer layer 5 (see FIG. 1) of the conductive roll is formed using the conductive resin composition of the present invention, when the conductive roll is a charging roll or the like, the conductive polymer It is preferable to use a resin composition that can set the layer 5 to a semiconductive region and that can be configured to exhibit an affinity for a copying toner of an electrophotographic copying machine. As the resin composition having a high affinity for the toner and having conductivity in the semiconductive region, a resin composition in which the matrix component is a phenol resin and the elastomer particles are polyester elastomer particles is preferable. The polyester elastomer particles have an electric resistance of 108 to 11 Ω ·
When the conductive polymer layer is set as a semiconductive region for an electrophotographic copying machine as compared to other elastomer particles, since the conductive polymer layer is in a semiconductive region with cm and has good compatibility with copying toner. Ideal for

上記エラストマー粒子の混合割合は、熱硬化性樹脂と
導電剤の混合物中2〜40重量%の範囲に設定するのが好
ましく、特にこの発明の導電性樹脂組成物の硬化体を半
導電領域にするには、2〜10重量%にすることが好まし
い。すなわち、混合割合が2重量%を下回れば割れ防止
の充分な効果があがらず、40重量%を上回ると、導電性
樹脂組成物の硬化体が軟質になり過ぎる傾向がみられる
からである。
The mixing ratio of the elastomer particles is preferably set in the range of 2 to 40% by weight in the mixture of the thermosetting resin and the conductive agent, and in particular, the cured product of the conductive resin composition of the present invention is used as a semiconductive region. Is preferably 2 to 10% by weight. That is, if the mixing ratio is less than 2% by weight, a sufficient effect of preventing cracking will not be obtained, and if it exceeds 40% by weight, the cured product of the conductive resin composition tends to be too soft.

なお、必要に応じて、上記原料以外に、ガラス繊維,
カーボン繊維等の補強材や加工助剤等の添加剤を、適宜
配合するようにしてもよい。
If necessary, besides the above raw materials, glass fiber,
An additive such as a reinforcing material such as carbon fiber or a processing aid may be appropriately compounded.

この発明の導電性樹脂組成物は、例えばつぎのように
して製造される。すなわち、まずエラストマー粒子材料
を冷凍粉砕等により粒径500μm以下に粉砕する。そし
て、上記粒径500μm以下に粉砕されたエラストマー粒
子ならびにその他の成分原料を適宜配合して混合混練
し、この混合物を粉砕することにより目的とする導電性
樹脂組成物を得ることができる。
The conductive resin composition of the present invention is produced, for example, as follows. That is, first, the elastomer particle material is pulverized to a particle diameter of 500 μm or less by freeze pulverization or the like. The desired conductive resin composition can be obtained by appropriately mixing and kneading the above-mentioned elastomer particles pulverized to a particle size of 500 μm or less and other component materials, and then pulverizing the mixture.

このようにして得られる導電性樹脂組成物は、押出成
形等により、例えば導電性ロール表面の導電性高分子層
等に構成され、環境温度の大幅な変化にもひび割れ等を
生起させず対応できるようになる。
The conductive resin composition thus obtained is formed, for example, by a conductive polymer layer or the like on the surface of a conductive roll by extrusion molding or the like, and can cope with a large change in environmental temperature without causing cracks or the like. Become like

〔発明の効果〕〔The invention's effect〕

以上のように、この発明の導電性樹脂組成物は、樹脂
マトリツクス中に特定の粒径のエラストマー粒子を配合
しているため、その硬化体に環境温度変化に基づく大き
な歪みが生じても、その歪みが上記エラストマー粒子に
よつて呼吸され割れ等を生じない。しかも、上記エラス
トマー粒子が特定粒径であるため、その使用によつて導
電性等の電気特性に影響が及ぶことがない。したがつ
て、この導電性樹脂組成物は、電子写真複写機の帯電ロ
ール,現像ロール等の表面層の導電性高分子層の形成材
料として好適である。
As described above, the conductive resin composition of the present invention contains elastomer particles having a specific particle size in the resin matrix. The strain is respired by the elastomer particles and does not crack. In addition, since the above-mentioned elastomer particles have a specific particle size, their use does not affect the electrical properties such as conductivity. Therefore, this conductive resin composition is suitable as a material for forming a conductive polymer layer on a surface layer of a charging roll, a developing roll, and the like of an electrophotographic copying machine.

つぎに、実施例について比較例と併せて説明する。 Next, examples will be described together with comparative examples.

〔実施例1〜4、比較例1〜4〕 まず、エラストマー粒子として、ポリエステル系エラ
ストマー(ペルプレンPタイプ,東洋紡社製)およびNB
Rをホソカワミクロンリンレツクスミル(細川製作所社
製)を用いて冷却粉砕してそれぞれ粒径100μm以下,30
0μm以下にしたもの2種類を用意した。ついで後記の
第1表に示す各成分原料を同表に示す配合割合で混合混
練して粉砕し目的とする導電性樹脂組成物を得た。な
お、東洋紡社製ペルプレンPタイプはハードセグメント
に芳香族ポリエステル,ソフトセグメントに芳香族ポリ
エーテルを共重合させたものである。
[Examples 1 to 4, Comparative Examples 1 to 4] First, as elastomer particles, a polyester elastomer (Perprene P type, manufactured by Toyobo Co., Ltd.) and NB
R is cooled and pulverized using a Hosokawa Micron Linrex Mill (manufactured by Hosokawa Seisakusho Co., Ltd.).
Two types having a size of 0 μm or less were prepared. Then, the respective component raw materials shown in Table 1 described later were mixed, kneaded and crushed in the mixing ratio shown in the same table to obtain a desired conductive resin composition. The PERPEN P type manufactured by Toyobo Co., Ltd. is obtained by copolymerizing an aromatic polyester in the hard segment and an aromatic polyether in the soft segment.

以上の実施例および比較例によつて得られた粉末状の
導電性樹脂組成物を圧縮成形することにより板状の導電
性樹脂成形品を作製した。この板状の導電性樹脂成形品
を板状金属片に接着して第2図に示すようなテストピー
ス2を作製した。図において、1は網材(SUM)+ニツ
ケルメツキにしてなる板状金属片、3は導電性樹脂成形
品で導電性を有するエポキシ樹脂系接着剤で接着されて
いる。つぎに、このテストピース2を用いて、−30℃→
+80℃→−30℃を1サイクルとするヒートサイクルテス
トを行い、導電性樹脂成形品3に割れが発生するサイク
ル数を観察した。また、一つのテストピースについて6
個所の電気抵抗(Rv)を測定しそのばらつきの度合いR
および平均値xを求めて第2表に示した。他方、板状導
電性樹脂成形品のみをテストピースにしてその曲げ破壊
強度,破壊歪み量,曲げ弾性率をJIS−K−7203に従っ
て測定しその結果を同表に併せて示した。
The powdery conductive resin composition obtained by the above Examples and Comparative Examples was compression-molded to produce a plate-shaped conductive resin molded product. The plate-shaped conductive resin molded product was bonded to a plate-shaped metal piece to produce a test piece 2 as shown in FIG. In the figure, reference numeral 1 denotes a plate-shaped metal piece made of mesh material (SUM) + nickel plating, and 3 denotes a conductive resin molded product which is adhered with a conductive epoxy resin adhesive. Next, using this test piece 2, -30 ° C. →
A heat cycle test was performed with + 80 ° C. → −30 ° C. as one cycle, and the number of cycles at which cracks occurred in the conductive resin molded article 3 was observed. In addition, 6
Measure the electrical resistance (Rv) at each location and measure the degree of variation R
The average value x was determined and is shown in Table 2. On the other hand, only a plate-shaped conductive resin molded product was used as a test piece, and its flexural fracture strength, fracture strain, and flexural modulus were measured in accordance with JIS-K-7203, and the results are shown in the same table.

第2表の結果から、実施例では、導電性樹脂成形品3
に導電剤を多量に含有させているにもかかわらずヒート
サイクルテストに4回以上耐えている。これに対して導
電剤を多量に含有させた比較例1では初回のヒートサイ
クルテストの途中で割れを生じている。そして、導電剤
量を大幅に低減させた比較例3で実施例と同等の性能に
なつている。また、実施例のものを、導電剤を等量含有
する比較例1と対比すると、電気特性は同程度である
が、曲げ強度,破壊歪み量等の機械特性において著しく
優れていることがわかる。比較例2,3は導電剤の量が減
少しており機械特性は改善されるものの、絶縁性が高く
半導電領域から外れている。
From the results in Table 2, in the example, the conductive resin molded product 3
Although it contains a large amount of a conductive agent, it has endured a heat cycle test four times or more. On the other hand, in Comparative Example 1 in which a large amount of the conductive agent was contained, cracks occurred during the first heat cycle test. In Comparative Example 3 in which the amount of the conductive agent was significantly reduced, the performance was equivalent to that of the example. Also, when the example is compared with Comparative Example 1 containing an equal amount of a conductive agent, it can be seen that the electrical properties are almost the same, but the mechanical properties such as bending strength and breaking strain are remarkably excellent. In Comparative Examples 2 and 3, although the amount of the conductive agent was reduced and the mechanical characteristics were improved, the insulating properties were high and the conductive agents were out of the semiconductive region.

また、粒径が550μmのポリエステルエラストマー粒
子を用いた比較例4では、電気抵抗においては実施例品
と同程度であるが、電気抵抗のばらつき度合い(R)が
著しく大きくなる。また、機械特性も実施例品に比べ劣
っている。
In Comparative Example 4 using polyester elastomer particles having a particle size of 550 μm, the electrical resistance is almost the same as that of the example product, but the degree of variation (R) in the electrical resistance is significantly large. Also, the mechanical properties are inferior to those of the example product.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、一般的な導電性ロールの構成を示す縦断面
図、第2図は実施例および比較例に用いられたテストピ
ースの斜視図である。
FIG. 1 is a longitudinal sectional view showing the configuration of a general conductive roll, and FIG. 2 is a perspective view of a test piece used in Examples and Comparative Examples.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電剤を含有する熱硬化性樹脂マトリツク
ス成分中に、粒径500μm以下のエラストマー粒子が分
散されていることを特徴とする導電性樹脂組成物。
1. A conductive resin composition comprising elastomer particles having a particle size of 500 μm or less dispersed in a thermosetting resin matrix component containing a conductive agent.
JP63168528A 1988-07-06 1988-07-06 Conductive resin composition Expired - Lifetime JP2594120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168528A JP2594120B2 (en) 1988-07-06 1988-07-06 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168528A JP2594120B2 (en) 1988-07-06 1988-07-06 Conductive resin composition

Publications (2)

Publication Number Publication Date
JPH0218490A JPH0218490A (en) 1990-01-22
JP2594120B2 true JP2594120B2 (en) 1997-03-26

Family

ID=15869692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168528A Expired - Lifetime JP2594120B2 (en) 1988-07-06 1988-07-06 Conductive resin composition

Country Status (1)

Country Link
JP (1) JP2594120B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173249B2 (en) * 2007-05-01 2013-04-03 キヤノン株式会社 Charging member, process cartridge, and electrophotographic image forming apparatus
US8676089B2 (en) * 2011-07-27 2014-03-18 Xerox Corporation Composition for use in an apparatus for delivery of a functional material to an image forming member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223746A (en) * 1983-06-01 1984-12-15 Matsushita Electric Works Ltd Phenolic resin molding material for substrate to be plated
JPS624749A (en) * 1985-07-02 1987-01-10 Asahi Chem Ind Co Ltd Blend type electrically conductive composite material
JPS63161015A (en) * 1986-12-25 1988-07-04 Sumitomo Bakelite Co Ltd Electrically conductive resin paste
JPH0689220B2 (en) * 1988-02-20 1994-11-09 株式会社イノアックコーポレーション Tray for integrated circuits

Also Published As

Publication number Publication date
JPH0218490A (en) 1990-01-22

Similar Documents

Publication Publication Date Title
EP0297888B1 (en) Electroconductive resin composition
KR100632084B1 (en) Thermally Conductive Body and Method of Manufacturing the Same
JP2010501675A (en) Highly filled thermoplastic composite material
JP2002538272A (en) Conductive thermoplastic elastomers and products made therefrom
JP2594120B2 (en) Conductive resin composition
JP2003105108A (en) Heat conductive sheet
JP2595317B2 (en) Conductive roll
JPH0586982B2 (en)
JP3593402B2 (en) Semi-conductive rubber
JPH0753813A (en) Electrically conductive plastic composition
JP2006137860A (en) Thermal conductive sheet
JP2004035782A (en) Highly thermoconductive material and manufacturing method therefor
JP3900456B2 (en) Conductive spin chuck
JP2004225003A (en) Resin composition for electrostatic prevention
JPH04253109A (en) Deformable conductive elastomer
JP2849971B2 (en) Conductive resin composition and electromagnetic wave shielding material using the composition
JP2003529626A (en) High fluidity impact resistant conductive acrylonitrile-butadiene-styrene three-dimensional copolymer composition and method for producing the same
JPH08311242A (en) Conductive thermosetting resin composition and housing for electric and electronic apparatus
JPS6344680A (en) Bearing part of heat fixing unit
JPH0746534B2 (en) Conductive magnetic rubber sheet
JP2865294B2 (en) Conductive roll
JPH0234665A (en) Conductive resin comosition
JP2003119372A (en) Polyether aromatic ketone resin composition and film and sheet
JPH08176401A (en) Phenol resin composition
JPH049185B2 (en)