JPH0234665A - Conductive resin comosition - Google Patents

Conductive resin comosition

Info

Publication number
JPH0234665A
JPH0234665A JP18383288A JP18383288A JPH0234665A JP H0234665 A JPH0234665 A JP H0234665A JP 18383288 A JP18383288 A JP 18383288A JP 18383288 A JP18383288 A JP 18383288A JP H0234665 A JPH0234665 A JP H0234665A
Authority
JP
Japan
Prior art keywords
component
diameter
length
conductive
volume resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18383288A
Other languages
Japanese (ja)
Other versions
JPH0819262B2 (en
Inventor
Etsuko Nagano
長野 悦子
Hitoshi Yoshikawa
均 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP18383288A priority Critical patent/JPH0819262B2/en
Publication of JPH0234665A publication Critical patent/JPH0234665A/en
Publication of JPH0819262B2 publication Critical patent/JPH0819262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Dry Development In Electrophotography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title composition which, when used for a development roll of an electrophotographic copier or the like, can show a uniform volume resistivity which does not change with the lapse of time by introducing a conductive material and three specified bibrous reinforcements into an insulating polymeric material in a specified mixing ratio. CONSTITUTION:This conductive resin composition is prepared by adding 20-300 pts.wt. conductive material particles (e.g., carbon blace of a particle diamete of 0.01-3mum) to 100 pts.wt. insulating polymeric material (a phenolic resin is desirable in respect of its volume resistivity and strengths) and adding a reinforcement comprising 5-45wt.%, based on the composition, fibrous rinforcement (A) os a diameter of 5-100mum and a length of 1-12mm (desirably, glass fiber), 2-35wt.% fibrous reinforcement (B) (e.g., potassium tinanate whisker) of a diameter of 0.1-10mum and a length of 0.5-100mum and 0-15wt.% fobrous reinforcement (C) (e.g., asbestos) of a diameter of 0.01-0.1mum and a length of 0.1-100mum (the total of components A-C is 15-55wt.%) to the above obtained mixture.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子写真複写機の現像ロール等の導電性ロ
ールに用いられる導電性樹脂組成物に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a conductive resin composition used in a conductive roll such as a developing roll of an electrophotographic copying machine.

〔従来の技術〕[Conventional technology]

従来から使用されている導電性ロールの中でも電子導電
性タイプのロール形成用の合成樹脂材料としては、2種
類のものがあげられる。一つは、合成樹脂材料として導
電性高分子材料を用いたもので、樹脂マトリックス成分
自身が導電性を有するタイプのものである。しかし、上
記タイプは、耐久性等の信鯨性に欠けるという問題を有
しており未だ汎用化されていないのが実情である。もう
一つのタイプは、絶縁性高分子材料を用いそのマトリッ
クス成分中に、補強剤としてのガラス繊維、アスベスト
とともに、導電材粒子を分散させたものである。このよ
うな樹脂組成物を用いて、例えば現像ロールを形成する
場合、現像ロールの体積固有抵抗(Rv)が均一でかつ
経時的に安定であルコとが要求される。これは、電子写
真複写機の複写像の高画質化、高機能化の要望に応える
ためである。この場合、上記体積固有抵抗の均一性を得
るため、上記樹脂組成物の各材料を所定粒度に揃え、か
つ充分に混合して均一に分散させる等の工夫がなされて
いる。
Among the conventionally used conductive rolls, there are two types of synthetic resin materials for forming electronically conductive type rolls. One type uses a conductive polymer material as a synthetic resin material, and the resin matrix component itself is conductive. However, the above-mentioned type has the problem of lacking reliability such as durability, and the reality is that it has not yet been widely used. The other type uses an insulating polymer material and has conductive material particles dispersed in the matrix component along with glass fibers and asbestos as reinforcing agents. When forming, for example, a developing roll using such a resin composition, it is required that the volume resistivity (Rv) of the developing roll is uniform and stable over time. This is to meet the demand for higher image quality and higher functionality of images copied by electrophotographic copying machines. In this case, in order to obtain the uniformity of the volume resistivity, measures have been taken to make each material of the resin composition have a predetermined particle size, and to sufficiently mix and disperse them uniformly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述の絶縁性高分子材料中にガラス繊維
およびアスベストが補強材として配合された樹脂組成物
は、原料の段階で各成分が均一分散されていても、成形
工程を経て硬化し成形品になると、その成形品(硬化体
)の体積固有抵抗(Rv)が時間の経過とともに初期設
定値からずれてしまうという大きな問題を有している。
However, even if each component is uniformly dispersed in the raw material stage, the resin composition in which glass fiber and asbestos are blended as reinforcing materials into the above-mentioned insulating polymer material hardens during the molding process and becomes a molded product. This poses a major problem in that the volume resistivity (Rv) of the molded product (cured product) deviates from the initial setting value over time.

また、上記体積固有抵抗のずれ度合いに、成形品の部位
によって差が生じるため、体積固有抵抗に部分的なばら
つきを生じるという問題も生じている。したがって、こ
のような樹脂組成物を用いてロールを形成し、その体積
固有抵抗を所定の値に、部分的なばらつきもなく設定す
ることは極めて困難である。
Further, since the degree of deviation of the volume resistivity varies depending on the part of the molded product, there is also a problem of local variations in the volume resistivity. Therefore, it is extremely difficult to form a roll using such a resin composition and set its volume resistivity to a predetermined value without local variations.

この発明は、このような事情に鑑みなされたもので、体
積固有抵抗が均一で、その値が経時的に変化することの
ない硬化体を形成しうる導電性樹脂組成物の提供をその
目的とする。
The present invention was made in view of the above circumstances, and its purpose is to provide a conductive resin composition capable of forming a cured product with uniform volume resistivity and whose value does not change over time. do.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の導電性樹脂組成
物は、絶縁性高分子材料中に、導電剤と下記の(A)〜
(C)成分が組成物全体中に下記の式(1)〜(IV)
に示す割合(重量%)で含有されているという構成をと
る。
In order to achieve the above object, the conductive resin composition of the present invention contains a conductive agent and the following (A) to
Component (C) has the following formulas (1) to (IV) in the entire composition.
It has a composition in which it is contained in the proportion (wt%) shown below.

(A)直径dが、5μm≦d≦100 pmで、長さ2
が、1m≦l≦12mmの繊維状補強材。
(A) Diameter d is 5 μm≦d≦100 pm, length 2
is a fibrous reinforcement material with 1m≦l≦12mm.

(B)直径dが、0.1μm≦d≦10μmで、長さl
が、0.5μm≦2≦100 utsの繊維状補強材。
(B) Diameter d is 0.1 μm≦d≦10 μm, and length l
is a fibrous reinforcing material of 0.5 μm≦2≦100 uts.

(C)直径dが、0.01μm≦d≦0.1μ−で、長
さ2が、0.1μm≦l≦100 graの繊維状補強
材。
(C) A fibrous reinforcing material with a diameter d of 0.01 μm≦d≦0.1 μ− and a length 2 of 0.1 μm≦l≦100 gra.

5≦A≦45     ・・・(1) 2≦B≦35     ・・・(II)0≦C≦15 
    ・・・(III)15≦A+B十C≦55 ・
・・(IV)〔作用〕 すなわち、゛本発明者らは、前記導電性ロール形成用組
成物としての2種類のタイプの中から、耐久性等に優れ
ているという点に鑑み、後者のタイプである絶縁性高分
子マトリックス中にカーボン、金属粉等の導電剤粒子を
配合したものに着目し、その硬化体についての体積固有
抵抗(Rv)の経時的変化ならびに部分的なばらつきの
発生を防止する目的で研究を重ねた。その研究の過程で
、本発明者らは、上記体積固有抵抗の経時的変化等は、
上記各種の材料のうち、ガラス繊維等の補強材が影響し
ているのではないかと着想し、使用する補強材を中心に
さらに研究を重ねた。その結果、補強材として寸法の異
なる3種類のものを使用し、その相互の使用割合を特定
範囲内に設定すると体積固有抵抗(Rv)の経時的変化
ならびに部分的なばらつきが生じなくなることを見いだ
しこの発明に到達した。
5≦A≦45 ... (1) 2≦B≦35 ... (II) 0≦C≦15
...(III) 15≦A+B10C≦55 ・
...(IV) [Function] That is, ``Out of the two types of composition for forming a conductive roll, the present inventors selected the latter type in view of its superior durability etc. We focused on a material in which conductive agent particles such as carbon and metal powder are blended into an insulating polymer matrix, which prevents changes in volume resistivity (Rv) over time and local variations in the cured product. I have done a lot of research with the aim of doing so. In the course of the research, the inventors determined that the changes in the volume resistivity over time, etc.
Among the various materials mentioned above, we thought that reinforcing materials such as glass fiber might have an effect, and conducted further research focusing on the reinforcing materials to be used. As a result, it was found that when three types of reinforcing materials with different dimensions were used and the ratio of their use was set within a specific range, changes over time and local variations in volume resistivity (Rv) were eliminated. We have arrived at this invention.

この発明の導電性樹脂組成物は、絶縁性高分子材料と、
導電剤と、特定の繊維状充填材(A成分)と、A成分よ
り形状寸法の小さい特定の繊維状充填材(B成分)と、
B成分よりさらに形状寸法の小さい特定の瞳維状充填材
(C成分)を用いて得られる。
The conductive resin composition of the present invention includes an insulating polymer material,
A conductive agent, a specific fibrous filler (component A), a specific fibrous filler (component B) whose shape and dimensions are smaller than that of component A,
It is obtained using a specific pupil fibrous filler (component C) whose shape and dimensions are even smaller than that of component B.

上記絶縁性高分子材料としては、特に限定するものでは
ない。例えば、フェノール樹脂、エポキシ樹脂、不飽和
ポリエステル樹脂等の熱硬化性樹脂、塩化ビニル樹脂等
の熱可塑性樹脂等の中から適宜選ぶことができる。特に
、体積固有抵抗および現像ロール等の強度の観点から、
フェノール樹脂を使用することが好結果をもたらす。
The above-mentioned insulating polymer material is not particularly limited. For example, it can be appropriately selected from thermosetting resins such as phenol resins, epoxy resins, and unsaturated polyester resins, and thermoplastic resins such as vinyl chloride resins. In particular, from the viewpoint of volume resistivity and strength of the developing roll, etc.
The use of phenolic resins gives good results.

上記絶縁性高分子材料中に分散される導電剤としては、
特に限定するものではなく、例えばカーボン粉末、グラ
ファイト粉末、チタンカーバイト粉末、金属粉末、チタ
ン酸カリウムウィスカー還元処理品、導電処理された酸
化亜鉛粉末および三酸化アンチモンがドーピングされた
酸化スズ等があげられる。これらは、単独で用いてもよ
いし併せて用いてもよい。このような導電剤粒子は、粒
径が0.01〜3μ−程度の範囲内であることが効果の
点から好ましい。
As the conductive agent dispersed in the above insulating polymer material,
Examples include, but are not limited to, carbon powder, graphite powder, titanium carbide powder, metal powder, potassium titanate whisker-reduced products, electrically conductive treated zinc oxide powder, and tin oxide doped with antimony trioxide. It will be done. These may be used alone or in combination. From the viewpoint of effectiveness, it is preferable that such conductive agent particles have a particle size within a range of about 0.01 to 3 μm.

上記絶縁性高分子材料と導電剤粒子の配合割合は、絶縁
性高分子材料100重量部に対して導電材粒子が20〜
300重量部の範囲内になるように設定するのが好まし
い。
The mixing ratio of the above-mentioned insulating polymer material and conductive agent particles is 20 to 20 parts by weight of the conductive agent particles to 100 parts by weight of the insulating polymer material.
It is preferable to set the content within the range of 300 parts by weight.

上記絶縁性高分子材料中に配合される3種類の補強材の
うち第1の繊維状補強材(A成分)は、直径dが5≦d
≦100μmでかつ長さlが1≦l≦12mmの範囲内
のものでなければならない。
Among the three types of reinforcing materials mixed in the above-mentioned insulating polymer material, the first fibrous reinforcing material (component A) has a diameter d of 5≦d.
It must be ≦100 μm and the length l should be within the range of 1≦l≦12 mm.

しかし、上記形状寸法を有するものであれば材質は特に
限定するものではない。しかし、ガラス繊維を使用する
ことが好ましい。
However, the material is not particularly limited as long as it has the above shape and dimensions. However, it is preferred to use glass fibers.

また、上記A成分とともに用いられる第2の繊維状補強
材(B成分)は、直径dが0.1≦d≦10μmでかつ
長さ2が0.5≦2≦100μmの範囲内のものでなけ
ればならない。このような形状寸法を有するものであれ
ばあらゆるものが使用可能である。しかし、具体的には
、チタン酸カリウムウィスカー、炭化ケイ素ウィスカー
、ならびに上記形状寸法を有するところの、窒化ケイ素
ウィスカー、炭化ホウ素ウィスカー、アルミナウィスカ
ー、酸化ベリリウムウィスカー等があげられる。
The second fibrous reinforcing material (component B) used together with the above component A has a diameter d of 0.1≦d≦10 μm and a length 2 of 0.5≦2≦100 μm. There must be. Any material having such shape and dimensions can be used. However, specific examples thereof include potassium titanate whiskers, silicon carbide whiskers, as well as silicon nitride whiskers, boron carbide whiskers, alumina whiskers, beryllium oxide whiskers, and the like having the above-mentioned shapes and dimensions.

また、上記B成分よりもさらに形状寸法の小さい第3の
繊維状補強材(C成分)としては、直径dが0.01≦
d≦0.1μmでかつ長さ2が0.1≦l≦100un
+の範囲内のものがあげられ、具体的には、アスベスト
、セピオライト布チップ。
In addition, the third fibrous reinforcing material (component C) whose shape and dimensions are even smaller than the above-mentioned component B has a diameter d of 0.01≦
d≦0.1μm and length 2 is 0.1≦l≦100un
Items within the + range are listed, specifically asbestos and sepiolite cloth chips.

セルロース、木粉等があげられる。Examples include cellulose and wood flour.

上記A成分、B成分およびC成分の繊維状充填材は、そ
のまま用いてもよいが、用いる絶縁性高分子材料に即し
た界面カップリング剤等で処理して用いるとより一層効
果的である。
The fibrous fillers of component A, component B, and component C may be used as they are, but they are more effective if they are treated with an interfacial coupling agent or the like suitable for the insulating polymer material used.

また、A成分、B成分およびC成分の、導電性樹脂組成
物における配合量(重量%)は、下記の式(1)〜(I
V)を満たすような範囲内に設定する必要がある。
In addition, the blending amounts (wt%) of component A, component B, and component C in the conductive resin composition are determined by the following formulas (1) to (I
It is necessary to set it within a range that satisfies V).

5≦A≦45      ・・・(I)2≦B≦35 
     ・・・(n)0≦C≦15      ・・
・(III)15≦A+B+C≦55 ・・・(IV)
この発明の導電性樹脂組成物は、例えば上記各成分原料
を用いて、つぎのようにして製造される、すなわち、高
分子マトリックスとなりうる熱硬化性樹脂、熱可塑性樹
脂材料中に、上記導電剤粒子を配合し、さらに上記、A
成分、B成分およびC成分を上記の割合で配合し充分混
合することにより得ることができる。
5≦A≦45 ... (I) 2≦B≦35
...(n)0≦C≦15...
・(III) 15≦A+B+C≦55 ... (IV)
The conductive resin composition of the present invention is manufactured in the following manner using, for example, the raw materials for each of the above components. That is, the conductive agent is added to a thermosetting resin or thermoplastic resin material that can serve as a polymer matrix. Blending the particles, and further adding the above, A
It can be obtained by blending the components, B component and C component in the above ratio and mixing thoroughly.

このようにして得られた導電性樹脂組成物(例えば、絶
縁性高分子材料としてフェノール樹脂を用いたもの)を
押出成形、射出成形等して形成した円筒品を現像ロール
のスリーブとして用いた現像ロール3を図に示す。すな
わち、この現像ロール3は、金属製エンドキャップ10
の外周にステンレス、アルミニウム等の金属製の円筒状
芯金11を設け、その外周に、この発明の導電性樹脂組
成物を押し出し成形することによりにより形成されたス
リーブ9を導電性接着剤層12を介して取り付は構成さ
れている。この現像ロール3においては、スリーブ9が
上記導電性樹脂組成物で形成されているため、電気特性
(体積固有抵抗および表面抵抗)が均一で、しかも経時
的変化により上記特性が変動しない。これは、つぎのよ
うな理由によるものと考えられる。すなわち、上記半導
電性樹脂組成物の構成材料として、上記導電剤粒子、上
記A成分、B成分およびC成分を用いた場合には、例え
ば樹脂からなるマトリックス中において、A成分(ガラ
ス繊維等)とそれよりがなり形状寸法(直径、長さ)の
小さいC成分(アスベスト等)との間に、両者の中間の
形状寸法のB成分が配合分散された構造になるため、環
境温度等が変化しても、マトリックス中において、上記
A成分、B成分およびC成分の移動が起こらなくなり、
導電剤粒子の配列状態の変化が生じなくなるがらと考え
られる。
Development using a cylindrical product formed by extrusion molding, injection molding, etc. of the conductive resin composition obtained in this way (for example, one using a phenol resin as an insulating polymer material) as a sleeve of a developing roll. Roll 3 is shown in the figure. That is, this developing roll 3 has a metal end cap 10.
A cylindrical core metal 11 made of metal such as stainless steel or aluminum is provided on the outer periphery of the sleeve 9 formed by extrusion molding the conductive resin composition of the present invention on the outer periphery of the conductive adhesive layer 12. The mounting is configured through. In this developing roll 3, since the sleeve 9 is formed of the above conductive resin composition, the electrical properties (volume resistivity and surface resistance) are uniform, and the above properties do not change due to changes over time. This is considered to be due to the following reasons. That is, when the conductive agent particles, the A component, the B component, and the C component are used as the constituent materials of the semiconductive resin composition, for example, the A component (glass fiber, etc.) in the resin matrix. Because the structure is such that the B component, which has an intermediate shape and size, is mixed and dispersed between the C component (asbestos, etc.), which has a smaller shape and dimensions (diameter, length), etc., the environmental temperature etc. will change. However, the movement of the A component, B component and C component does not occur in the matrix,
This is thought to be due to the fact that no change in the arrangement state of the conductive agent particles occurs.

つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.

l−」−−1 〔実施例1〜7、比較例〕 下記の第1表に示す原料を同表に示す割合で配合し、混
合、混練し冷却後粉砕して目的とする導電性樹脂組成物
を得た。この場合における繊維状充填材(A)〜(C)
成分の組成物全体中における割合を第2表に示した。
l-''--1 [Examples 1 to 7, Comparative Examples] The raw materials shown in Table 1 below are blended in the proportions shown in the same table, mixed, kneaded, cooled and pulverized to obtain the desired conductive resin composition. I got something. Fibrous fillers (A) to (C) in this case
Table 2 shows the proportions of the components in the total composition.

(以下余白) つぎに、上記組成物を用い、押出成形により円筒状スリ
ーブをつくり、これを用いて図に示すような現像ロール
を製造した。この場合におけるスリーブの電気特性の均
一性および経時的な体積固有抵抗(Rv)の変化度合を
調べた。この測定は、上記スリーブの中央部および左右
両端部の3個所について成形後1日日、10日目、20
日目。
(The following is a margin.) Next, a cylindrical sleeve was made by extrusion molding using the above composition, and a developing roll as shown in the figure was manufactured using this. In this case, the uniformity of the electrical characteristics of the sleeve and the degree of change in volume resistivity (Rv) over time were investigated. This measurement was performed at three locations, the center and both left and right ends of the sleeve, on the 1st day, 10th day, and 20th day after molding.
Day.

30日日のそれぞれ体積固有抵抗(Rv)を調べ、その
値を下記の第3表に記載している。
The volume resistivity (Rv) was examined on each of the 30 days, and the values are listed in Table 3 below.

(以下余白) 上記の結果から明らかなように、実施別品は体積固有抵
抗(Rv)がスリーブの各部分において1桁以内の変化
の範囲にとどまっているのに対し比較別品は2桁も値が
ばらついており、電気特性の均一性の点から実施別品が
著しく優れていることがわかる。また、経時的にも実施
別品は成形後30日経ても体積固有抵抗(Rv)の変化
度合が極めて小さいのに対し比較別品は大きな変化値を
示している。
(Leaving space below) As is clear from the above results, the volume resistivity (Rv) of the actual product remains within a one-digit range in each part of the sleeve, while the comparative product has a change of two orders of magnitude. It can be seen that the values vary, and the products according to implementation are significantly superior in terms of uniformity of electrical characteristics. Furthermore, the degree of change in volume resistivity (Rv) of the actual product is extremely small over time even 30 days after molding, whereas the comparison product shows a large change value.

なお、上記の実施例では、この発明の半導電性樹脂組成
物を用いて電子写真複写機の現像ロールを製造している
が、この発明の組成物は上記のものに限らず、例えばワ
ードプロセッサーのプリンター等にも応用可能である。
In the above example, a developing roll for an electrophotographic copying machine is manufactured using the semiconductive resin composition of the present invention, but the composition of the present invention is not limited to the above, and can be used for example in a word processor. It can also be applied to printers, etc.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の半導電性樹脂組成物は、上記
A成分とA成分より形状寸法(直径、長さ)の小さいC
成分とその両者の中間の形状を有するB成分とを特定の
範囲内で絶縁性高分子材料中に含有させているため、そ
の硬化体の体積固有抵抗の経時的変化ならびに部分的な
ばらつきが生じなくなる。したがって、この半導電性樹
脂組成物を用いて例えば現像ロール等の円筒状スリーブ
を形成する場合において、スリーブ内の電気特性の均一
性を備え、しかも体積固有抵抗(Rv)の変動幅の極め
て小さいものを製造することができる。その結果、高画
質の複写像を形成することができ、また、電子写真複写
機の高機能化にも対応できるようになる。
As described above, the semiconductive resin composition of the present invention has the above-mentioned A component and C having smaller shape dimensions (diameter, length) than A component.
Because component B and component B, which has a shape intermediate between the two, are contained within a specific range in the insulating polymer material, changes over time and local variations in volume resistivity of the cured product occur. It disappears. Therefore, when forming a cylindrical sleeve such as a developing roll using this semiconductive resin composition, the electrical properties within the sleeve are uniform, and the fluctuation width of the volume resistivity (Rv) is extremely small. can manufacture things. As a result, it is possible to form a high-quality copy image, and it also becomes possible to respond to higher functionality of electrophotographic copying machines.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の導電性樹脂組成物製スリーブを用いた現
像ロールの縦断面図である。 特許出願人  東海ゴム工業株式会社 代理人  弁理士  西 藤 征 彦
The figure is a longitudinal sectional view of a developing roll using a sleeve made of a conductive resin composition of the present invention. Patent applicant: Tokai Rubber Industries Co., Ltd. Agent: Yukihiko Nishifuji, patent attorney

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性高分子材料中に、導電剤と下記の(A)〜
(C)成分が組成物全体中に下記の式( I )〜(IV)
を満たすような割合(重量%)で含有されていることを
特徴とする導電性樹脂組成物。 (A)直径dが、5μm≦d≦100μmで、長さlが
、1mm≦l≦12mmの繊維状補強材。 (B)直径dが、0.1μm≦d≦10μmで、長さl
が、0.5μm≦l≦100μmの繊維状補強材。 (C)直径dが、0.01μm≦d≦0.1μmで、長
さlが、0.1μm≦l≦100μmの繊維状補強材。 5≦A≦45・・・( I ) 2≦B≦35・・・(II) 0≦C≦15・・・(III) 15≦A+B+C≦55・・・(IV)
(1) Insulating polymer material contains a conductive agent and the following (A) ~
Component (C) has the following formulas (I) to (IV) in the entire composition.
A conductive resin composition characterized in that it is contained in a proportion (wt%) that satisfies the following. (A) A fibrous reinforcing material with a diameter d of 5 μm≦d≦100 μm and a length l of 1 mm≦l≦12 mm. (B) Diameter d is 0.1 μm≦d≦10 μm, and length l
is a fibrous reinforcing material of 0.5 μm≦l≦100 μm. (C) A fibrous reinforcing material with a diameter d of 0.01 μm≦d≦0.1 μm and a length l of 0.1 μm≦l≦100 μm. 5≦A≦45...(I) 2≦B≦35...(II) 0≦C≦15...(III) 15≦A+B+C≦55...(IV)
JP18383288A 1988-07-22 1988-07-22 Conductive resin composition Expired - Fee Related JPH0819262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18383288A JPH0819262B2 (en) 1988-07-22 1988-07-22 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18383288A JPH0819262B2 (en) 1988-07-22 1988-07-22 Conductive resin composition

Publications (2)

Publication Number Publication Date
JPH0234665A true JPH0234665A (en) 1990-02-05
JPH0819262B2 JPH0819262B2 (en) 1996-02-28

Family

ID=16142626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18383288A Expired - Fee Related JPH0819262B2 (en) 1988-07-22 1988-07-22 Conductive resin composition

Country Status (1)

Country Link
JP (1) JPH0819262B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059009A1 (en) * 2000-02-14 2001-08-16 Asahi Kasei Kabushiki Kaisha Thermoplastic resin formed article having high rigidity and high strength
WO2002051940A1 (en) * 2000-12-25 2002-07-04 Polyplastics Co., Ltd. Semiconductive resin composition and formed article
JP2008100454A (en) * 2006-10-20 2008-05-01 Union Corp Phosphorescent glass member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059009A1 (en) * 2000-02-14 2001-08-16 Asahi Kasei Kabushiki Kaisha Thermoplastic resin formed article having high rigidity and high strength
WO2002051940A1 (en) * 2000-12-25 2002-07-04 Polyplastics Co., Ltd. Semiconductive resin composition and formed article
JP2008100454A (en) * 2006-10-20 2008-05-01 Union Corp Phosphorescent glass member

Also Published As

Publication number Publication date
JPH0819262B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JPS58127761A (en) High specific gravity composite material reinforced with organic fiber
JPS6129385B2 (en)
JPH0234665A (en) Conductive resin comosition
JPH0233166A (en) Electrically conductive roll
JPH0233167A (en) Electrically conductive roll
JP4370652B2 (en) Sizing agent and chopped carbon fiber treated with the sizing agent
JPH01254766A (en) Electrically conductive polyaylene sulfide resin composition
JPH09194685A (en) Phenolic resin molding material
JP2757454B2 (en) Short carbon fiber aggregate and fiber-reinforced thermoplastic resin composition obtained by blending the same
JPH08333474A (en) Semiconductive resin composite
JP2611299B2 (en) Functionality imparting agent for resin
JPH0311306B2 (en)
JP2019198962A (en) Method for producing fiber-reinforced resin component
JP2594120B2 (en) Conductive resin composition
JP3305839B2 (en) Phenolic resin molding material
JPS6185464A (en) Phenolic resin molding material
JP2932281B2 (en) Damping material
JP3526087B2 (en) Phenolic resin molding material
JP3121686B2 (en) Phenolic resin molding material
JPH0192234A (en) Carbon short fiber aggregate and fiber reinforced thermoplastic resin composition comprising said aggregate is reinforcing material
JP2586505B2 (en) Conductive material
JPH11247971A (en) Fiber reinforced resin machine part and manufacture therefor
JPH0790150A (en) Colored antistatic molding and colored antistatic laminate
JPH0441344A (en) Paper feed roller
CA2231008A1 (en) Polymeric composition for radiation shielding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees