JPS58127761A - High specific gravity composite material reinforced with organic fiber - Google Patents

High specific gravity composite material reinforced with organic fiber

Info

Publication number
JPS58127761A
JPS58127761A JP901282A JP901282A JPS58127761A JP S58127761 A JPS58127761 A JP S58127761A JP 901282 A JP901282 A JP 901282A JP 901282 A JP901282 A JP 901282A JP S58127761 A JPS58127761 A JP S58127761A
Authority
JP
Japan
Prior art keywords
specific gravity
weight
parts
composite material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP901282A
Other languages
Japanese (ja)
Inventor
Toshiaki Sugimoto
杉本 敏昭
Kazuhiko Ezaki
一彦 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I Pex Inc
Original Assignee
Dai Ichi Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Seiko Co Ltd filed Critical Dai Ichi Seiko Co Ltd
Priority to JP901282A priority Critical patent/JPS58127761A/en
Publication of JPS58127761A publication Critical patent/JPS58127761A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled composite material with a high specific gravity providing a molding with smooth appearance, low coefficient of thermal expansion, high mechanical strength, by blending with a thermoplastic resin an inorg. filler having a high specific gravity and an aromatic polyamide fiber each in a specific wt. ratio. CONSTITUTION:150-500pts.wt. powder selected from a group of inorg. filler consisting of a finely divided metal with a specific gravity of 3 or more (e.g., copper powder, tin powder) and/or metal oxide, hydroxide, carbonate, sulfate, silicate, double salt thereof, sulfide, etc., 1-50pts.wt. strand chop or pulp of arom. polyamide fiber cut into 1/4 inch or less, and, if necessary, 1-50pts.wt. reinforcing fiber such as glass fiber, carbon fiber, or a variety of whiskers are blended with 100pts.wt. thermoplastic resin such as polyamide, polyethylene, etc. to yield the intended composite material with a high specific gravity.

Description

【発明の詳細な説明】 本発明は、芳香族ポリアミド繊維によって強化された射
出成形に好適が高比重複合材料であって、平滑な外観、
低い熱膨張係数、高い機械的強度を有する成形品を提供
し得る高比重複合材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a high specific gravity composite material suitable for injection molding reinforced with aromatic polyamide fibers, which has a smooth appearance,
The present invention relates to a high specific gravity composite material that can provide molded products having a low coefficient of thermal expansion and high mechanical strength.

従来、熱可塑性樹脂に金属粉末などを高密度に充填して
成る高比重複合材料は公知であるが、充填量の増加に伴
って衝撃強度の著しい低下が起こるだめ実用性の点から
自ずと充填量に限界があり、せいぜい比重2.5程度1
での複合材料しか構成し得なかった。父、フィラ低充填
複合材において効果の大きい高弾性を有する無機系強化
繊維も、フィラ高充填複合材においては混練時及び成形
時に大半が破砕されてしまい、補強効果が著しく減少し
てしまうという問題があった。
Hitherto, high-density composite materials made by densely filling thermoplastic resin with metal powder, etc., have been known. There is a limit to the specific gravity, at most about 2.51
could only be constructed using composite materials. The problem is that even inorganic reinforcing fibers with high elasticity, which are highly effective in low-filler composites, are mostly crushed during kneading and molding in high-filler filler composites, resulting in a significant reduction in the reinforcing effect. was there.

父、熱可塑性樹脂は、本来軽量性、高成形性等の優れた
特性を生かして工業部品5弱電部品、輸送機器等の分野
で金萬、セラミックス、木材等に替り様々の有用な商品
を生み出しているが、熱膨張係数が高いという欠九に加
え、その特徴である軽量性、電気絶縁性が場合如よって
は欠点となって用途が限定されてしまうことも少なくな
いという問題があった。そのため、制振性を要求される
用途や、熱雰囲気による寸法変化を嫌う用途や、制電性
、遮音性、電磁波遮蔽性及び反射性を要求される用途に
は、比重が大きく機械的強度にも優れた生産性の高い複
合材料への期待が大きい。又、熱可塑性樹脂に単に金属
粉及び/又は金属酸化物等を複合させたり、更にこれ等
にガラス繊維等の無機繊維を加えた複合物では目的とす
る諸物性の中でも特に優れた耐衝撃強度を得ることは出
来外い0 又、芳香族ポリアミド繊維例えばデュポン社のケプラー
(登辞商標)は強化プラスチック用補強材として良く知
られておシ、カーボン繊維と複合させた高強度強化プラ
スチックは航空宇宙産業。
My father, thermoplastic resin, has created a variety of useful products in the fields of industrial parts, low-light electrical parts, transportation equipment, etc., as an alternative to metals, ceramics, wood, etc., by taking advantage of its excellent characteristics such as lightness and high moldability. However, in addition to its high coefficient of thermal expansion, its characteristic lightness and electrical insulation properties often become disadvantages, limiting its use. Therefore, for applications that require vibration damping properties, applications that do not want dimensional changes due to thermal atmosphere, applications that require antistatic properties, sound insulation properties, electromagnetic wave shielding properties, and reflection properties, the specific gravity is large and the mechanical strength is low. There are high expectations for composite materials with excellent productivity. In addition, composites made by simply compounding thermoplastic resin with metal powder and/or metal oxides, etc., or by adding inorganic fibers such as glass fiber to these, have particularly excellent impact resistance strength among the desired physical properties. In addition, aromatic polyamide fibers such as DuPont's Kepler (registered trademark) are well known as reinforcing materials for reinforced plastics, and high-strength reinforced plastics composited with carbon fibers are used in aviation. Space industry.

陸海上輸送機器分野で増々その評価を高めつつある。こ
れらの用途における芳香族ポリアミド繊維の形状はいず
れもロービンゲヤーン或はクロス。
Its reputation in the field of land and sea transportation equipment is increasing. The aromatic polyamide fibers used in these applications are either roving yarn or cloth.

マットであり、これを熱硬化性樹脂例えば不胞和ポリエ
ステル樹脂やエポキシ樹脂と複合させ、フィラメントワ
インデインゲ法、プルトルージョン法、シートモールデ
ィンゲニンパウンド法等により加熱加圧し成形硬化させ
ている。しかしながら、□当初芳香族ポリアミド繊維は
その高弾性、高張力のために短繊維にカットすることが
困鑓であり、それが熱可塑性強化プラスチックへの応用
を阻む要因ともなっていた。近年になシカット専用機が
開発され、ようやく一定のカット長のストランド状チョ
ップ或はパルプ状短繊維の田現を見るに到シ、アスベス
ト、ガラスウールの代替用途例えば断熱材として用途を
広げつつあるが、解束性の悪さから樹脂への均一分散が
困難なため熱可塑性強化プラスチックへの応用例は少な
かった。
It is a matte, which is composited with a thermosetting resin such as an uncelled polyester resin or an epoxy resin, and molded and cured by heating and pressing using a filament Windinge method, a pultrusion method, a sheet moldingen pounding method, or the like. However, initially, it was difficult to cut aromatic polyamide fibers into short fibers due to their high elasticity and high tensile strength, which was a factor that prevented their application to thermoplastic reinforced plastics. In recent years, special machines for cutting have been developed, and we have finally begun to see the production of strand-like chops or pulp-like short fibers with a certain cut length, and its use is expanding as an alternative to asbestos and glass wool, such as insulation materials. However, because of its poor unbundling properties, it is difficult to uniformly disperse it in resins, so there have been few examples of its application to thermoplastic reinforced plastics.

本発明は、上記欠点を克服し、芳香族ポリアミド繊維で
強化された射出成形可能な高比重複合材料を提供せんと
するものである。即ち、金属及び/又はその酸化物、各
種塩類は高比重、熱膨張抑制、制電性等の機能付与の効
果を有すると共に、混合混線時においては難分散性の芳
香族ポリアミド短繊維又はパルプの良好な解束材となる
ことを見出し、本発明を完成するに到った。本発明によ
る高比重複合材料は、熱可塑性樹脂100重量部に対し
、比重3以上の金属粉及び/又は金属酸化物、水酸化物
、炭酸塩、硫酸塩、硅酸塩、これらの複塩、硫化物等か
ら成る無機充填材群のうちの一種類又は二種類以上の粉
末の合計150〜500重量部と、芳香族ポリアミド繊
維1〜50重量部を単独又はガラス繊維、カーボン繊維
、各種ウィスカー等の強化繊維のうちの少なくとも一種
類の1〜50重量部を併用したものとを分散配合して成
り、射出成形に好適な比重2.5以上のものである。こ
れを材料として射出成形された製品は、機械的強度に優
れ、高比重は勿論高充填による成形収縮の低減、熱膨張
係数の低減といった副次的改良効果を有している。従っ
て、その用途は単に重さのみを機能として要求される用
途例えば文具装飾品等からエンジニアリングプラスチッ
ク分野への展開も可能である。
The present invention aims to overcome the above-mentioned drawbacks and provide an injection moldable high specific gravity composite material reinforced with aromatic polyamide fibers. In other words, metals and/or their oxides and various salts have the effect of imparting functions such as high specific gravity, thermal expansion suppression, and antistatic properties, and they also have the effect of imparting functions such as high specific gravity, thermal expansion suppression, and antistatic properties. It was discovered that it is a good unbundling material, and the present invention was completed. The high specific gravity composite material according to the present invention contains metal powder and/or metal oxides, hydroxides, carbonates, sulfates, silicates, double salts thereof, with a specific gravity of 3 or more, based on 100 parts by weight of the thermoplastic resin. A total of 150 to 500 parts by weight of powder of one or more types of inorganic fillers consisting of sulfides, etc., and 1 to 50 parts by weight of aromatic polyamide fiber alone or glass fiber, carbon fiber, various whiskers, etc. It is made by dispersing and blending 1 to 50 parts by weight of at least one kind of reinforcing fibers, and has a specific gravity of 2.5 or more suitable for injection molding. Products injection molded using this material have excellent mechanical strength, and have secondary improvements such as a reduction in molding shrinkage and a reduction in the coefficient of thermal expansion due to not only high specific gravity but also high filling. Therefore, the application can be extended from applications requiring only weight as a function, such as stationery decorations, to the field of engineering plastics.

本発明における熱可塑性樹脂としては、ポリアミド、ポ
リエチレン、ポリプロピレン、オレフィン変性ビニルア
ルコール(例えば日本合成化学株式会社のGL樹脂)、
ポリフェニレンサルファイド等の結晶性樹脂や、ポリス
チレン及びその共重合体、エチレン酢ピコポリマー、ポ
リサルホン。
The thermoplastic resin in the present invention includes polyamide, polyethylene, polypropylene, olefin-modified vinyl alcohol (for example, GL resin from Nippon Gosei Kagaku Co., Ltd.),
Crystalline resins such as polyphenylene sulfide, polystyrene and its copolymers, ethylene vinegar picopolymers, and polysulfones.

ポリエーテルサルホン等の非品性樹脂や、ポリウレタン
に代表される熱可塑性エラストマー等を包含する。又、
高比重を得るだめの充填材としては、比重3以上の金属
例えば銅、スズ、亜鉛、鉄、鉛。
It includes non-grade resins such as polyether sulfone and thermoplastic elastomers typified by polyurethane. or,
Fillers for obtaining a high specific gravity include metals with a specific gravity of 3 or more, such as copper, tin, zinc, iron, and lead.

タングステン、チタン等の金属が代表的なものであるが
、勿論銀、金等の貴金属を含めて良い。父、金属酸化物
としては、必ずしも比重が3以上である必要はなく、熱
膨張抑制効果が期待出来るものであれば何でも良く、例
えば酸化銅、酸化亜鉛。
Typical examples include metals such as tungsten and titanium, but of course noble metals such as silver and gold may also be included. The metal oxide does not necessarily have to have a specific gravity of 3 or more, and any metal oxide can be used as long as it can be expected to have a thermal expansion suppressing effect, such as copper oxide and zinc oxide.

酸化鉄、酸化アルミニウム、酸化スズ、酸化鉛。Iron oxide, aluminum oxide, tin oxide, lead oxide.

酸化チタン、酸化アンチモン等の高比重の酸化物に加え
、比重3以下の二酸化硅素等も含まれる。
In addition to high specific gravity oxides such as titanium oxide and antimony oxide, silicon dioxide and the like with a specific gravity of 3 or less are also included.

金属酸化物以外でこれと同様の効果を期待出来るものと
して、金属の水酸化物、炭酸塩、硫酸塩。
Other than metal oxides that can be expected to have similar effects are metal hydroxides, carbonates, and sulfates.

硅酸塩、これらの複塩、硫化物等例えば水酸化アルミニ
ウム、水酸化マグネシウム、水酸化カルシウム、炭酸カ
ルシウム、炭酸マグネシウム、硫酸バリウム、メタ硅酸
カルシウム、マイカ等が代表的なものである。尚、充填
材は以上の記載例に限定されるものではないし、カップ
リング剤で表面処理が施される場合もあり得る。又、強
化材としては、耐衝撃性付与成分として芳香族ポリアミ
ド繊維の短繊維又はパルプを用いる。これには、例えば
デュポン社のケブラー(登録商標)、アクゾ社のアレン
力(登録商標)、量大(株)のコーネツ” ス(登録商
標)!デュポン社のノーメックス(登録商標)等があり
、靭性付与の観点からすればグレードとしては低モジユ
ラスタイプのもの例えばケブラー29が好ましいが、こ
れに限定されるものではない。一方、剛性付与成分とし
て複合される強化材としては、種々の公知材料を用い得
る。これには、例えばガラス繊維、カーボン繊維。
Typical examples include silicates, double salts thereof, sulfides, etc., such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, barium sulfate, calcium metasilicate, and mica. Note that the filler is not limited to the examples described above, and may be surface-treated with a coupling agent. Further, as the reinforcing material, short fibers of aromatic polyamide fibers or pulp are used as an impact resistance imparting component. Examples of these include DuPont's Kevlar (registered trademark), Akzo's Allen force (registered trademark), Ryotai Co., Ltd.'s Cornets (registered trademark)! DuPont's Nomex (registered trademark), etc. From the viewpoint of imparting toughness, the grade is preferably a low modulus type, such as Kevlar 29, but is not limited to this.On the other hand, various known materials can be used as the reinforcing material to be combined as a stiffening component. This includes, for example, glass fibers and carbon fibers.

チタン酸カリ繊維を含む各種ウィスカー、高モジユラス
芳香族ポリアミド繊維等が挙げられる。勿論、これらの
強化材としては、シラン系カップリング剤等の表面処理
剤で処理されているのも包含する。
Examples include various whiskers containing potassium titanate fibers, high modulus aromatic polyamide fibers, and the like. Of course, these reinforcing materials include those treated with a surface treatment agent such as a silane coupling agent.

尚、以上の複合用各種材料の他て混合混線上或は射出成
形上必要な公知の各種添加剤例えば滑剤や表面処理剤及
び可塑剤は適宜使用されるし、必要なら成形品に特有な
機能を付与するための添加剤例えば耐摩耗、耐摩槽性を
付与するための各種潤滑性付与剤とか非帯電性を更に改
良するだめの帯電防止剤等も加えられ得る。
In addition to the above-mentioned various composite materials, various known additives necessary for mixing or injection molding, such as lubricants, surface treatment agents, and plasticizers, may be used as appropriate, and if necessary, they may be added with functions specific to the molded product. For example, various lubricity imparting agents to impart wear resistance and wear tank resistance, and antistatic agents to further improve antistatic properties may also be added.

以下実施例によって本発明による高比重複合材料につい
て具体的に説明する。
EXAMPLES The high specific gravity composite material according to the present invention will be specifically explained below with reference to Examples.

〔実施例1〕 ポリアミド(東し株式会社製のナイロン61゛アミラン
1001°’)100重量部、金属亜鉛粉末300重量
部、酸化亜鉛粉末50重量部、ステアリン酸カルシウム
1重量部を240°Cに加熱した加圧型ニーグーに投入
し常圧混合を続ける。内温がおよそ150°Cを越えた
時点でケブラー29−970 (178インチカット)
30重量部を加えて加圧混合を開始する。内温220′
C近辺よりポリアミドの溶融が始すると共にニーダーの
負荷が最大に達し、溶融、弾線完了と共にニーダーの負
荷は下がり安定してくる。この時点をもって混練完了と
し、内容物を目視観察するとケブラーが良く解束されて
おシ分散は良好であった。内容物を取出し、ロールに通
して偏平にしだ後、冷却し粉砕して成形材料とした。こ
の成形材料を90°Cで乾燥した後、最大型締圧100
tの射出成形機にてシリンダ一温度240°C2金型濡
度80”Cの条件でJIS規格に沿った機械的強度試験
片を成形した。成形はスムーズに行われると共に、成形
品は平滑で光沢がアシ、機械的強度が高く中でも耐衝撃
性に優れるものであった。尚、得られた成型品の比重は
2.89であった。
[Example 1] 100 parts by weight of polyamide (Nylon 61, Amiran 1001°' manufactured by Toshi Co., Ltd.), 300 parts by weight of metal zinc powder, 50 parts by weight of zinc oxide powder, and 1 part by weight of calcium stearate were heated to 240°C. Pour into the pressurized Ni-Goo and continue mixing at normal pressure. Kevlar 29-970 (178 inch cut) when the internal temperature exceeds approximately 150°C
Add 30 parts by weight and start pressure mixing. Internal temperature 220'
As the polyamide begins to melt near C, the load on the kneader reaches its maximum, and as the melting and trajectory are completed, the load on the kneader decreases and becomes stable. At this point, the kneading was completed, and visual observation of the contents revealed that the Kevlar was well unbundled and the dispersion was good. The contents were taken out, passed through a roll, flattened, cooled and pulverized to obtain a molding material. After drying this molding material at 90°C, the maximum mold clamping pressure was 100°C.
Mechanical strength test pieces were molded in accordance with JIS standards using an injection molding machine with a cylinder temperature of 240°C and a mold wetness of 80"C.Molding was carried out smoothly, and the molded product was smooth. It had a glossy finish, high mechanical strength, and excellent impact resistance.The specific gravity of the obtained molded product was 2.89.

〔実施例2〕 ポリアミド(アミラン1001)100重量部。[Example 2] 100 parts by weight of polyamide (Amilan 1001).

金属亜鉛粉末300重量部、酸化亜鉛粉末50重量部、
ステアリン酸カルシュウム1重It 部ヲ240゜Cに
加熱した加圧型ニーグーに投入し、常圧混合を続ける。
300 parts by weight of metal zinc powder, 50 parts by weight of zinc oxide powder,
A single portion of calcium stearate was placed in a pressurized Ni-Goo heated to 240°C, and mixing was continued at normal pressure.

内温がおよそ150°Cを越えた時点でケブラー29−
970を20重量部を加えて加圧混合を開始する。内温
220°C近辺よりポリアミドの溶融が始まると共にニ
ーダ−の負荷が最大に達し、混練完了と共にニーダーの
負荷は下がり安定する。実施例1と同様の方法でケブラ
ーの分散を確認した後、1/8インチチョツプドストラ
ンドガラス(アミノシラン処理)50重量部ヲ加えて3
分間混練を続けて終了とし、内容物をロールに通した後
冷却し粉砕して成形材料としだ。この成形材料を実施例
1と同じ条件で射出成形した結束、成形性が良好であり
且つ外観、@械的強度。
When the internal temperature exceeds approximately 150°C, Kevlar 29-
Add 20 parts by weight of 970 and start mixing under pressure. The kneader load reaches its maximum as the polyamide begins to melt at an internal temperature of around 220°C, and as the kneading is completed, the kneader load decreases and stabilizes. After confirming the dispersion of Kevlar in the same manner as in Example 1, 50 parts by weight of 1/8 inch chopped strand glass (aminosilane treatment) was added.
Kneading was continued for a minute until completion, and the contents were passed through a roll, cooled, and ground to form a molding material. This molding material was injection molded under the same conditions as Example 1, and the binding, moldability, appearance, and mechanical strength were good.

熱膨張係数に極めて優れる成形部が得られた。尚、得ら
れた成形品の比重は2.91であった。
A molded part with an extremely excellent coefficient of thermal expansion was obtained. Note that the specific gravity of the obtained molded product was 2.91.

〔実施例3〕 ケブラーのみケブラー29−p(パルプタイプ)20重
機部に変えた他は全て実施例2と同一配合。
[Example 3] All the formulations were the same as in Example 2, except that Kevlar was changed to Kevlar 29-p (pulp type) and 20 heavy machinery parts.

同一条件で混合・混練を行った結果、パ)Vプの分散も
極めて良い成形材料となった。この成形材料を実施例1
と同じ条件で射出成形した結果、実施例2と同様に成形
性、外観2機械的強度、熱膨張係数に惚めて優れる成形
物が漫られた。尚、得られた成形品の比重は2.96で
あった。
As a result of mixing and kneading under the same conditions, a molding material with extremely good dispersion of P) was obtained. This molding material was used in Example 1.
As a result of injection molding under the same conditions as in Example 2, a molded product with excellent moldability, appearance, mechanical strength, and coefficient of thermal expansion was obtained. Note that the specific gravity of the obtained molded product was 2.96.

〔比較例1〕 ポリアミド(アミラン1001 ) 100 重量部。[Comparative example 1] Polyamide (Amilan 1001) 100 parts by weight.

金m佃鉛粉末300重承部、酸[L、亜鉛粉末50重量
部、ステアリン酸カッVシウム1重量部を240゜Cに
加熱した加圧型ニーグーに投入し、加圧混合・混練を行
う。内容物の溶融混練完了と共にニーグーの負荷が下が
り安定してくる。この時点をもって混線終rとし、以後
上記実施例と同様な方法で冷却し粉砕して成形材料とし
た。この成形材料を90°Cで乾燥した後、上記実施例
と同一の成形機にてシリンダー湿度230°C5金型湿
度80’C!の条件でJIS規格に沿った機械的強度試
験片を成形した。成形は極めて容易に行われ、外観のぼ
れた成形品を得ることが出来たが、機械的強度が低く中
でも特に耐衝撃性が劣り、而も熱膨張係数も大きくはな
はだ実用性に乏しいものであった。
300 parts by weight of gold lead powder, 50 parts by weight of acid [L, zinc powder, and 1 part by weight of potassium stearate were charged into a pressurized Ni-Goo heated to 240°C, and mixed and kneaded under pressure. As soon as the melting and kneading of the contents is completed, the load on the Ni-Goo decreases and becomes stable. At this point, the crosslinking was completed, and thereafter, the mixture was cooled and pulverized to obtain a molding material in the same manner as in the above example. After drying this molding material at 90°C, the cylinder humidity was 230°C and the mold humidity was 80'C using the same molding machine as in the above example. A mechanical strength test piece was molded in accordance with JIS standards under the following conditions. Although molding was extremely easy and it was possible to obtain a molded product with an excellent appearance, it had low mechanical strength, especially impact resistance, and a high coefficient of thermal expansion, making it extremely impractical. .

尚、得られた成形品の比重は3818であった。The specific gravity of the obtained molded product was 3,818.

〔比較例2〕 比較例1と同一処方、同一条件で混合・混練し、内容物
が完全に溶融混合したのを確認した後、アミノシラン系
カップリング剤で処理された1/8インチチョツプドス
トランドガラス70重量部ヲ加えて3分間混練を続けて
終了とし、以後上記実施例と同様な方法で冷却し粉砕し
て成形材料としだ。この成形材料を実施例1と同じ条件
で成形した結果、成形性が良好であり且つ平滑な外観、
低い熱膨張係数、高い剛性を有する成形物が得られたが
、耐衝撃性が劣シ、実用性に乏しいものであった。尚、
得られた成形品の比重は3.07であった。
[Comparative Example 2] The same formulation as Comparative Example 1 was mixed and kneaded under the same conditions, and after confirming that the contents were completely melted and mixed, 1/8 inch chopped wood treated with an aminosilane coupling agent was prepared. After adding 70 parts by weight of strand glass and kneading for 3 minutes, the mixture was cooled and crushed in the same manner as in the above example to obtain a molding material. As a result of molding this molding material under the same conditions as in Example 1, it had good moldability and a smooth appearance.
A molded product having a low coefficient of thermal expansion and high rigidity was obtained, but the impact resistance was poor and the product was poor in practical use. still,
The specific gravity of the obtained molded article was 3.07.

〔比較例3〕 実施例1と同一配合とするが、ケブラー29−970を
30重量部投入する時期を内容物が完全に混線融和した
後とし、その後混線を20分間続けたがケブラーのスト
ランド状チョップの解束・分散が悪く、そのため更に1
0分間混練を続けた後終了とし、上記実施例と同一の方
法で冷却・粉砕して成形材料とした。得られた成形材料
中にはケブラーの集中体がところどころに露出しており
、解束 分散の不良がうかがえた。この成形材料を実施
例1と同様な条件で成形した結果、得られた成形品には
ケブラーの分散不良に帰因すると思われる種々の欠陥が
露呈した。例えば、ケブラーのブロックの表面露出によ
る外観不良や、機械的強度のバラツキが大きくて信頼性
に乏しいとと々どであった。
[Comparative Example 3] The same formulation as in Example 1 was used, but 30 parts by weight of Kevlar 29-970 was added after the contents were completely mixed and mixed, and the mixing was continued for 20 minutes, but the Kevlar strand-like The unbundling and dispersion of the chop was bad, so 1 more
After kneading was continued for 0 minutes, the kneading was terminated, and the mixture was cooled and pulverized to obtain a molding material in the same manner as in the above example. Concentrations of Kevlar were exposed in some places in the molding material obtained, indicating poor unbundling and dispersion. As a result of molding this molding material under the same conditions as in Example 1, the resulting molded product exhibited various defects believed to be due to poor dispersion of Kevlar. For example, the surface of the Kevlar block was exposed, resulting in poor appearance and large variations in mechanical strength, resulting in poor reliability.

〔実施例4〕 GL樹脂(日本合成化学株式会社製のオレフィン変性ビ
ニルアルコール樹脂) 100 TE、rJL部、金属
鉛粉末300重駈部、酸化チタン粉末50重量部、ステ
アリン酸カノンシウム1重量部を220°Cに加熱した
加圧型ニーグーに投入し、常圧混合を絖ける。内温がお
よそ120°Cを越えた時点でケブラー29−970を
20重量部加え加圧混合を開始する。内温180°C近
辺よシGL樹脂の溶融が始まり、その後ニーダ−の負荷
が最大に達し、更に混線完了と共にニーグーの負荷は下
がり安定する。続いてケブラーの分散を確認した後、1
71.6インチカーボンファイバー(呉羽fヒ学株式会
社製のタレ力チョップ)50重量部を加えて3分間加圧
混線を続けて終了とし、以下実施例1と同様の方法で冷
却し粉砕して成形イオ料とした。得られた成形材料を実
1准例1と同様な条件で成形した結果、実施例2と同様
に各種物性に優れた高比重成形品が′碍られた。中でも
高弾性を有し耐・貸求性に優れている点が特筆される。
[Example 4] GL resin (olefin-modified vinyl alcohol resin manufactured by Nippon Gosei Kagaku Co., Ltd.) 100 parts of TE, rJL, 300 parts of metal lead powder, 50 parts by weight of titanium oxide powder, 1 part by weight of canonium stearate, 220 parts by weight Pour into a pressurized Ni-Goo heated to °C and mix under normal pressure. When the internal temperature exceeds approximately 120°C, 20 parts by weight of Kevlar 29-970 is added and mixing under pressure is started. When the internal temperature is around 180°C, the melting of the GL resin begins, and then the load on the kneader reaches its maximum, and as the crosstalk is completed, the load on the kneader decreases and becomes stable. Next, after checking the dispersion of Kevlar, 1
50 parts by weight of 71.6-inch carbon fiber (Tareki Chop manufactured by Kureha Fhigaku Co., Ltd.) was added and mixed under pressure for 3 minutes to complete the process, and then cooled and pulverized in the same manner as in Example 1. It was made into a molded ion material. As a result of molding the obtained molding material under the same conditions as in Example 1 and Sub-Example 1, a high specific gravity molded product having excellent various physical properties as in Example 2 was obtained. Among them, it is noteworthy that it has high elasticity and excellent durability and loanability.

尚、得られた成形品の比重は3.01であった。Note that the specific gravity of the obtained molded product was 3.01.

〔比較例4〕 実施例4の配合よりケブラーを除いた配合で成形材料を
製潰し、実m例4と同−条A:で射出成形を行った。得
られた成形品は、平滑な外観、低い熱膨張係数、高い剛
性を示したが、耐衝撃性に乏しく、コストに見合う実用
性を示さなかった。尚、得られた成形品の比重は3.1
9であった。
[Comparative Example 4] A molding material was crushed using the formulation of Example 4 except that Kevlar was removed, and injection molding was performed using the same material as Example 4. Although the obtained molded product had a smooth appearance, a low coefficient of thermal expansion, and high rigidity, it had poor impact resistance and did not have practicality commensurate with cost. The specific gravity of the obtained molded product is 3.1.
It was 9.

〔実施例5〕 ポリプロピレン樹脂(昭和電工株式会社製゛ショウアロ
マMA410”)100重肘部、金属タングステン粉末
400重量部、酸化亜鉛粉末50重量部、ステアリン酸
カルシュ941重量部を200°Cに力H熱した加圧型
ニーグーに投入し、常圧混合を続ける。内温が80°C
を越えた時点でケブラー29−pを20重量部加え加圧
混合を開始する。内温160°C近辺より溶融が始脣り
、その後ニーダーの負荷が最大に達し、更に混練完了と
共にニーダーの負荷は下がり安定する。続いてケブラー
の分散を確認した後、チタン酸カリ繊維(大塚化学株式
会社製でアミノシラン系カップリング剤で処J即シだ゛
ティスモ゛)50重量部を加えて5分間加圧混線を続け
て終−rとし、前述した実施例と同様な方法で成形材料
を得た。得られた成形材料をシリンダー湿度200°C
5金型湿度60゜Cにて射出成形すると、流動性がすこ
ぶる良好であった。成形品は極めて優れた平滑性を示す
と共に、低い熱膨張係数、優れた機械的強度を示した。
[Example 5] 100 parts of polypropylene resin (Showa Aroma MA410'' manufactured by Showa Denko Co., Ltd.), 400 parts by weight of metal tungsten powder, 50 parts by weight of zinc oxide powder, and 941 parts by weight of stearic acid calcium were heated to 200°C. Pour into a heated pressurized Ni-Goo and continue mixing under normal pressure. Internal temperature is 80°C.
When the temperature exceeds 20 parts by weight, 20 parts by weight of Kevlar 29-p is added and mixing under pressure is started. Melting begins at an internal temperature of around 160°C, after which the load on the kneader reaches its maximum, and as kneading is completed, the load on the kneader decreases and becomes stable. Subsequently, after confirming the dispersion of Kevlar, 50 parts by weight of potassium titanate fiber (manufactured by Otsuka Chemical Co., Ltd., treated with an aminosilane coupling agent) was added and mixed under pressure for 5 minutes. A molding material was obtained in the same manner as in the example described above. The obtained molding material was heated to a cylinder humidity of 200°C.
When injection molding was performed at a mold humidity of 60°C, the fluidity was very good. The molded product showed extremely excellent smoothness, a low coefficient of thermal expansion, and excellent mechanical strength.

尚、得られた成形品の比重は3.77であった。Note that the specific gravity of the obtained molded product was 3.77.

〔比較例5〕 実施例5の配合よりケブラーを除き、チタン酸カリ繊維
を70重量部にして、実施例5と同一の方法で成形材料
を製造し、成形を行った。得られた成形品は、平滑な外
観、低い熱膨張係数を有していたが、耐衝撃性に劣る欠
点を有していた。尚、得られた成形品の比重は3.99
であった。
[Comparative Example 5] A molding material was produced and molded in the same manner as in Example 5 except that Kevlar was removed from the formulation of Example 5 and the potassium titanate fiber was changed to 70 parts by weight. The obtained molded product had a smooth appearance and a low coefficient of thermal expansion, but had the drawback of poor impact resistance. The specific gravity of the obtained molded product is 3.99.
Met.

〔実施例6〕 A、、 B S樹脂(ダイセル株式会社製°゛セビアン
■−610” ) 100重量部、金属銅粉末300重
量部、酸化銅粉末50重量部、ステアリン酸力rソシュ
ウム1重量部を240°Cに加熱した加圧型ニーグーに
投入し、以後実施例1と同一の手順でケブラー29−4
70を30重量部加えて成形材料を製造した。これをシ
リンダ一温度24.0’C、金型温度80′Cの条件で
射出成形した結果、成形品は熱膨張係数が低く、機械的
物性のバランスに優れ、表面固有抵抗が8.9X10°
ΩQmという極めて優れた導電性を示(〜fCo尚、得
られた成形品の比重は3.05であった。
[Example 6] 100 parts by weight of A, BS resin (Sevian-610'' manufactured by Daicel Corporation), 300 parts by weight of copper metal powder, 50 parts by weight of copper oxide powder, 1 part by weight of stearic acid was put into a pressurized Ni-Goo heated to 240°C, and then Kevlar 29-4 was added in the same manner as in Example 1.
A molding material was produced by adding 30 parts by weight of 70. As a result of injection molding at a cylinder temperature of 24.0'C and a mold temperature of 80'C, the molded product had a low coefficient of thermal expansion, excellent balance of mechanical properties, and a surface resistivity of 8.9X10°.
It exhibited an extremely excellent conductivity of ΩQm (~fCo).The specific gravity of the obtained molded product was 3.05.

〔実施例7〕 ポリフエニレノナルファイド(フィリップ社製゛′ライ
ドン])−4°’)100重量部、鉄粉300重量部、
鉄粉300重量部、酸化亜鉛粉末50重量部、ステアリ
ン酸マグネシウム1重量部を30o。
[Example 7] 100 parts by weight of polyphenylenenonalphide (manufactured by Philips Co., Ltd. "Rydon")-4°'), 300 parts by weight of iron powder,
300 parts by weight of iron powder, 50 parts by weight of zinc oxide powder, and 1 part by weight of magnesium stearate at 30°C.

Cに加熱した加圧塑ニーダ−に投入し、常圧混合を続け
る。内温がおよそ230’Cを越えた時点でケブラー2
9−470を20重量部を力0玩加圧混合を開始する。
The mixture was placed in a pressurized plastic kneader heated to C, and mixing at normal pressure was continued. When the internal temperature exceeds approximately 230'C, Kevlar 2
Start mixing 20 parts by weight of 9-470 under zero pressure.

内温29 o′a近辺よりポリフェニレンサルファイド
の溶融が如才ると共にニーダ−の負荷が最大に達し、そ
の後ニーダ−の負荷が急速に低下し安定する。この時点
で内容物は完全に混練されてお゛す、ケブラーも良く分
散しているが観察される。続いてガラス繊維(1/16
インチチョツプドストランド)50重量部を投入し、3
分間加圧混線を続けて終了とし、以後前述の実施例と同
様の方法で冷却し粉砕して成形材料とした。
As the polyphenylene sulfide melts smoothly from around the internal temperature of 29 o'a, the load on the kneader reaches its maximum, and then the load on the kneader rapidly decreases and becomes stable. At this point, the contents were completely kneaded and Kevlar was observed to be well dispersed. Next, glass fiber (1/16
Add 50 parts by weight of inch chopped strands,
After continuing to pressurize and mix for 1 minute, the mixture was cooled and pulverized to obtain a molding material in the same manner as in the above-mentioned example.

この成形材料をシリンダ一温度340°C2金型湿度1
40°Cの条件で射出成形した結果、成形性が良好であ
り且つ外観7機械的強度、熱膨張係数等に極めて優れた
成形物が得られた。尚、得られた成形品の比重は3.2
8であった。
Apply this molding material to the cylinder temperature: 340°C2 mold humidity: 1
As a result of injection molding at 40°C, a molded product was obtained which had good moldability and was extremely excellent in appearance, mechanical strength, thermal expansion coefficient, etc. The specific gravity of the obtained molded product is 3.2.
It was 8.

次に、上記実施例1乃至7.比軸例1乃至5で得だ各成
形品の各種物性を下記の表で示す。
Next, the above Examples 1 to 7. The various physical properties of the molded products obtained in Ratio Examples 1 to 5 are shown in the table below.

上述の如く、本発明による高比重複合材料は、成形性が
良好であると共に、平滑な外観、低い熱膨張係数、高い
機械的強度を有する成形品を提供し得るという重要な利
点を有している。
As mentioned above, the high specific gravity composite material according to the present invention has the important advantage that it has good moldability and can provide a molded article having a smooth appearance, a low coefficient of thermal expansion, and high mechanical strength. There is.

代 理 人     篠  原  泰  司手続補正書
(自発) 昭和57年11 月12日 特許庁長官    殿 1、事件の表示 特願昭57−9012  号 公昭       号 λ発明の名称   有機繊維で強化された高比重複合材
料3、補正をする者  特許出願人 埼玉県用口市並木2の30の1 〒105東京都港区新橋5の19゜ 電話東京(432) 4 5 7 6 (6582)弁理士篠原泰司 5、補正の対象 明細書の発明の詳細な説明の欄。
Agent Yasushi Shinohara Procedural amendment (voluntary) November 12, 1980 Commissioner of the Japan Patent Office Tono 1, Indication of the case Patent application No. 1983-9012 Publication No. λ Name of the invention High specific gravity reinforced with organic fibers Composite material 3, person making the amendment Patent applicant: 2-30-1 Namiki, Yoguchi-shi, Saitama Address: 19°, Shinbashi-5, Minato-ku, Tokyo 105 Phone: Tokyo (432) 4 5 7 6 (6582) Patent attorney Yasushi Shinohara 5 , Detailed description of the invention in the specification to be amended.

6、補正の内容 (1)明細書簡5頁6〜7行目の「芳香族ポリアミド短
繊維」を「芳香族ポリアミド繊維の短繊維」と訂正する
6. Contents of the amendment (1) "Aromatic polyamide short fibers" on page 5, lines 6-7 of the specification letter is corrected to "aromatic polyamide short fibers."

(2)明細書第5頁18行目の「比重2.5以上のもの
」を「高比重複合材料」と訂正する。
(2) On page 5, line 18 of the specification, "materials with a specific gravity of 2.5 or more" is corrected to "high specific gravity composite material."

C3)  明細書簡8頁11行目の「適宜」を「適宜」
と訂正する。
C3) Change “appropriately” to “appropriately” on page 8, line 11 of the letter of specification.
I am corrected.

(4)明細書簡10頁18行目の「成形部」を「成形物
」と訂正する。
(4) "Molded part" on page 10, line 18 of the specification letter is corrected to "molded product."

(5)明細書第19頁の表の「曲げ弾性係数(Kq/d
)」を「曲げ弾性係数CK9/mmす」と訂正する。
(5) “Bending elastic modulus (Kq/d
)" should be corrected to "bending elastic modulus CK9/mm".

Claims (4)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂100重量部に対し、比重3以上の
金属粉及び/又は金属の酸化物、水酸化物。 炭酸塩、硫酸塩、硅酸塩、これらの複塩、硫化物等から
成る無機充填材群のうちの一種類又は二種類以上の粉末
の合計150〜500重量部と、芳香族ポリアミド繊維
1〜50重量部を単独又はガラス繊維、カーボン繊維、
各種ウィスカー等の強([1維のうちの少なくとも一種
類の1〜50重量部を併用したものとを分散配合して成
る高比重複合材料。
(1) Metal powder and/or metal oxide or hydroxide having a specific gravity of 3 or more based on 100 parts by weight of the thermoplastic resin. A total of 150 to 500 parts by weight of powder of one or more types of inorganic fillers consisting of carbonates, sulfates, silicates, double salts thereof, sulfides, etc., and 1 to 500 parts by weight of aromatic polyamide fibers. 50 parts by weight alone or with glass fiber, carbon fiber,
A high-density composite material made by dispersing and blending various types of whiskers, etc., in combination with 1 to 50 parts by weight of at least one type of fiber.
(2)  上記芳香族ポリアミド繊維が1/4インチ以
下にカットされたストランド状チョップであることを特
徴とする特許請求の範囲(1)に記載の高比重複合材料
(2) The high specific gravity composite material according to claim (1), wherein the aromatic polyamide fiber is a chopped strand cut into 1/4 inch or less.
(3)  上記芳香族ポリアミド繊維がパルプであるこ
とを特徴とする特許請求の範囲(1)に記載の高比重複
合材料。
(3) The high specific gravity composite material according to claim (1), wherein the aromatic polyamide fiber is pulp.
(4)  上記芳香族ポリアミド繊維及び上記強化繊維
が予めシラン糸カップリング剤で処理されていることを
特徴とする特許請求の範囲(1)に記載の高比重複合材
料。
(4) The high specific gravity composite material according to claim (1), wherein the aromatic polyamide fiber and the reinforcing fiber are treated with a silane thread coupling agent in advance.
JP901282A 1982-01-25 1982-01-25 High specific gravity composite material reinforced with organic fiber Pending JPS58127761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP901282A JPS58127761A (en) 1982-01-25 1982-01-25 High specific gravity composite material reinforced with organic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP901282A JPS58127761A (en) 1982-01-25 1982-01-25 High specific gravity composite material reinforced with organic fiber

Publications (1)

Publication Number Publication Date
JPS58127761A true JPS58127761A (en) 1983-07-29

Family

ID=11708732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP901282A Pending JPS58127761A (en) 1982-01-25 1982-01-25 High specific gravity composite material reinforced with organic fiber

Country Status (1)

Country Link
JP (1) JPS58127761A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514541A (en) * 1984-05-21 1985-04-30 E. I. Du Pont De Nemours And Company Fiber containing particulate elastomeric composition
JPS61168645A (en) * 1985-01-22 1986-07-30 Youbea Le-Ron Kogyo Kk Electrically conductive sliding material composition
JPS61190557A (en) * 1985-02-19 1986-08-25 Toho Rayon Co Ltd Resin composition
JPS61197654A (en) * 1985-02-28 1986-09-01 Nippon Mektron Ltd Thermoplastic elastomer composition
JPS61243859A (en) * 1985-04-22 1986-10-30 Jushi Kigata:Kk Surface-fortifying resin for resin mold
JPS61275357A (en) * 1985-05-31 1986-12-05 Denki Kagaku Kogyo Kk Thermoplastic resin composition
EP0249226A2 (en) * 1986-06-13 1987-12-16 Sumitomo Electric Industries Limited Resin composite
WO1988001630A1 (en) * 1986-09-04 1988-03-10 Nikkiso Co., Ltd. Whisker-reinforced composite material
JPS63263032A (en) * 1987-04-21 1988-10-31 ダイワ精工株式会社 Fishing reel
JPS63273664A (en) * 1987-04-30 1988-11-10 Kanebo Ltd Polyamide composition
WO1988009356A1 (en) * 1987-05-29 1988-12-01 Otsuka Kagaku Kabushiki Kaisha Resin composition for scroll type compressor members and process for manufacturing scroll type compressor parts
JPS6411163A (en) * 1987-07-03 1989-01-13 Calp Corp Thermoplastic polymer composition
JPH01216129A (en) * 1988-02-23 1989-08-30 Kioritz Corp Centrifugal clutch
JPH0366756A (en) * 1989-08-07 1991-03-22 Idemitsu Petrochem Co Ltd Resin composition for part of optical pick-up and optical pick-up part
WO1999015588A1 (en) * 1997-09-19 1999-04-01 Daicel Chemical Industries, Ltd. Styrenic resin composition and moldings produced therefrom
US7022751B2 (en) * 2002-01-02 2006-04-04 Royal Group Technologies Limited Composite plastic materials produced from waste materials and method of producing same
US20110171867A1 (en) * 2008-10-06 2011-07-14 E.I Du Pont De Nemours And Company Reinforced composite material and preparation method and applications thereof
CN104260504A (en) * 2014-09-26 2015-01-07 北京化工大学 High-performance thermoplastic polyolefin waterproof coiled material with high scrap rubber powder doping amount
CN104419199A (en) * 2013-08-22 2015-03-18 黑龙江鑫达企业集团有限公司 Aramid fiber pulp reinforced PA66 composite material and preparation method thereof
CN104589757A (en) * 2015-01-26 2015-05-06 岳阳东方雨虹防水技术有限责任公司 TPO composite thermoplastic macromolecular water-proof coiled material and production process thereof
JP2015530472A (en) * 2012-10-08 2015-10-15 エムプラスト ゲーエムベーハー Composite materials used in injection molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335749A (en) * 1976-09-16 1978-04-03 Rhythm Watch Co Plastic material compositions for molding clock parts
JPS53121843A (en) * 1977-04-01 1978-10-24 Polyplastics Kk Thermoplastic resin mold composition
JPS53125447A (en) * 1977-04-08 1978-11-01 Asahi Chem Ind Co Ltd Fiber-reinforced resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335749A (en) * 1976-09-16 1978-04-03 Rhythm Watch Co Plastic material compositions for molding clock parts
JPS53121843A (en) * 1977-04-01 1978-10-24 Polyplastics Kk Thermoplastic resin mold composition
JPS53125447A (en) * 1977-04-08 1978-11-01 Asahi Chem Ind Co Ltd Fiber-reinforced resin composition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514541A (en) * 1984-05-21 1985-04-30 E. I. Du Pont De Nemours And Company Fiber containing particulate elastomeric composition
JPH0546855B2 (en) * 1985-01-22 1993-07-15 Ntn Toyo Bearing Co Ltd
JPS61168645A (en) * 1985-01-22 1986-07-30 Youbea Le-Ron Kogyo Kk Electrically conductive sliding material composition
JPS61190557A (en) * 1985-02-19 1986-08-25 Toho Rayon Co Ltd Resin composition
JPS61197654A (en) * 1985-02-28 1986-09-01 Nippon Mektron Ltd Thermoplastic elastomer composition
JPS61243859A (en) * 1985-04-22 1986-10-30 Jushi Kigata:Kk Surface-fortifying resin for resin mold
JPS61275357A (en) * 1985-05-31 1986-12-05 Denki Kagaku Kogyo Kk Thermoplastic resin composition
EP0249226A2 (en) * 1986-06-13 1987-12-16 Sumitomo Electric Industries Limited Resin composite
WO1988001630A1 (en) * 1986-09-04 1988-03-10 Nikkiso Co., Ltd. Whisker-reinforced composite material
JPS63263032A (en) * 1987-04-21 1988-10-31 ダイワ精工株式会社 Fishing reel
JPS63273664A (en) * 1987-04-30 1988-11-10 Kanebo Ltd Polyamide composition
US5131827A (en) * 1987-05-29 1992-07-21 Otsuka Kagaku Kabushiki Kaisha Fiber- and whisker-reinforced injection moldable resin composition for scroll compressor parts and method of manufacturing scroll compressor parts
WO1988009356A1 (en) * 1987-05-29 1988-12-01 Otsuka Kagaku Kabushiki Kaisha Resin composition for scroll type compressor members and process for manufacturing scroll type compressor parts
JPS6411163A (en) * 1987-07-03 1989-01-13 Calp Corp Thermoplastic polymer composition
JPH01216129A (en) * 1988-02-23 1989-08-30 Kioritz Corp Centrifugal clutch
JPH0366756A (en) * 1989-08-07 1991-03-22 Idemitsu Petrochem Co Ltd Resin composition for part of optical pick-up and optical pick-up part
WO1999015588A1 (en) * 1997-09-19 1999-04-01 Daicel Chemical Industries, Ltd. Styrenic resin composition and moldings produced therefrom
US7022751B2 (en) * 2002-01-02 2006-04-04 Royal Group Technologies Limited Composite plastic materials produced from waste materials and method of producing same
US20110171867A1 (en) * 2008-10-06 2011-07-14 E.I Du Pont De Nemours And Company Reinforced composite material and preparation method and applications thereof
JP2015530472A (en) * 2012-10-08 2015-10-15 エムプラスト ゲーエムベーハー Composite materials used in injection molding
CN104419199A (en) * 2013-08-22 2015-03-18 黑龙江鑫达企业集团有限公司 Aramid fiber pulp reinforced PA66 composite material and preparation method thereof
CN104260504A (en) * 2014-09-26 2015-01-07 北京化工大学 High-performance thermoplastic polyolefin waterproof coiled material with high scrap rubber powder doping amount
CN104589757A (en) * 2015-01-26 2015-05-06 岳阳东方雨虹防水技术有限责任公司 TPO composite thermoplastic macromolecular water-proof coiled material and production process thereof

Similar Documents

Publication Publication Date Title
JPS58127761A (en) High specific gravity composite material reinforced with organic fiber
JP2610671B2 (en) Fiber reinforced thermoplastic resin composition
JP2002088259A5 (en) Molded article and method for producing the same
JP4160138B2 (en) Thermoplastic resin molded product, material for molded product, and method for producing molded product
Ramu et al. Approaches of material selection, alignment and methods of fabrication for natural fiber polymer composites: A review
JPS63204782A (en) Printed wiring board
JPH05112657A (en) Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material
JPH0128781B2 (en)
JP3352121B2 (en) Long fiber reinforced polyamide resin composition and molded article thereof
JP7401029B1 (en) Fiber-reinforced resin molding materials and molded products
WO2024004748A1 (en) Fiber-reinforced resin molding material and molded article
JP2001139831A (en) Carbon fiber-based bulk molding compound material and molded article
JPH0311306B2 (en)
JPH06287317A (en) Pellet for molding fiber reinforced synthetic resin product
JPS59140253A (en) Polybutylene terephthalate resin composition
JP2659435B2 (en) Carbon fiber
JPS5958018A (en) Unsaturated polyester resin composition for molding
JPH04106158A (en) Resin composition
JPH0860550A (en) Mesophase pitch-based carbon fiber chopped strand
JPH04117182A (en) Synthetic resin rotor for ultrasonic motor
CN114507400A (en) Modified glass fiber reinforced polypropylene composition and preparation method thereof
JPH03416B2 (en)
JPS61183355A (en) Glass fiber-reinforced resin composition
JPH0258544A (en) Material for stamping-molding
JPH0192234A (en) Carbon short fiber aggregate and fiber reinforced thermoplastic resin composition comprising said aggregate is reinforcing material