WO2001059009A1 - Thermoplastic resin formed article having high rigidity and high strength - Google Patents

Thermoplastic resin formed article having high rigidity and high strength Download PDF

Info

Publication number
WO2001059009A1
WO2001059009A1 PCT/JP2000/000794 JP0000794W WO0159009A1 WO 2001059009 A1 WO2001059009 A1 WO 2001059009A1 JP 0000794 W JP0000794 W JP 0000794W WO 0159009 A1 WO0159009 A1 WO 0159009A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
molded article
glass fiber
resin
molding
Prior art date
Application number
PCT/JP2000/000794
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Kinoshita
Ikuji Ohtani
Yoshikazu Suda
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to PCT/JP2000/000794 priority Critical patent/WO2001059009A1/en
Priority to CNB008061831A priority patent/CN1175052C/en
Priority to DE10084451T priority patent/DE10084451T1/en
Publication of WO2001059009A1 publication Critical patent/WO2001059009A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a high-rigidity / high-strength thermoplastic resin molded article reinforced with glass fiber and a method for producing the same.
  • thermoplastic resins such as polyethylene resins, polypropylene resins, styrene resins, and polyamide resins. These thermoplastic resins are required to have high rigidity and high strength depending on the application.
  • the most preferable method for imparting this performance is reinforcement by glass fiber.
  • glass fiber reinforced polypropylene resin, glass fiber reinforced polyamide resin and the like are sold.
  • glass fiber reinforced polyamide resins are widely used as materials for automobiles such as radiator tanks, materials for tool housings such as electric drills, and materials for office equipment such as office chairs.
  • the polyamide resin serving as the matrix has relatively high strength, high rigidity and high strength can be exhibited simply by combining the polyamide resin and glass fiber.
  • glass fiber reinforced polypropylene resin does not have sufficient strength compared to glass fiber reinforced polyamide because the strength of the polypropylene resin itself, which is the matrix, is smaller than that of polyamide resin. At present, usable applications are limited.
  • the present invention has been developed to provide a thermoplastic resin having higher rigidity and higher strength. It is intended to provide a molded article.
  • the present inventors have first studied intensively mainly using a polyolefin-based resin, particularly a polypropylene-based resin.
  • polypropylene resin alone is required for applications requiring high rigidity and high strength, such as materials for automobiles such as radiator tanks, materials for tool housings such as electric drills, and materials for office equipment such as office chairs. Not satisfy the performance.
  • a method called the short fiber method in the same industry as the method usually used for glass fiber reinforced polyamide that is, a glass fiber (chopped glass) is mixed with a propylene-based resin and kneaded with an extruder, and the obtained product is obtained.
  • glass fiber Chopop glass
  • extrusion kneading and screw kneading during injection molding are performed twice. Therefore, the glass fiber is broken during the kneading, and the fiber length becomes extremely short.
  • the glass fiber in the molded article can be kept long because the molded article is produced only by screw kneading during injection molding.
  • the length of the glass fiber in the molded product differs depending on the molding conditions, but the rigidity and strength are not sufficient even if it is short, and the surface appearance is not enough even if it is long.
  • the molded article has excellent surface appearance, rigidity and mechanical strength, and has practical strength in the above-mentioned applications.
  • the present inventors have found that Furthermore, a higher level of mechanical strength is required for some applications, but a rubber-like polymer with a certain shape is further added to a molded product made of glass fiber and polypropylene resin having a certain length distribution. When coexisting, it has a higher level of surface appearance, and The present inventors have found that a molded article having excellent rigidity and mechanical strength can be obtained. At the same time, they have found that they can be applied not only to polypropylene resins but also to other resins.
  • a molded article with a higher level of mechanical strength can be obtained because the glass fibers are oriented when the molding material is molded by injection molding or the like. Since the mechanical strength differs in the vertical and horizontal directions with respect to the molding direction, directional (anisotropic) is generated in the mechanical strength. Therefore, the mechanical strength such as impact resistance is high in one direction, and Although the result is low in the direction, the rubbery polymer relaxes this directionality (anisotropic).
  • the present invention relates to a thermoplastic resin molded article containing glass fiber and a thermoplastic resin, wherein the glass fiber is contained at a content of 1 to 60% by weight and has a length of 0.5 mm or less. 90 to 90% fiber, 0.5 to 2 mm long glass fiber is 10 to 90%, 2 mm or more glass fiber is 0 to 30% high rigidity.
  • the present invention relates to a molded article and a method for producing the same.
  • the present invention is a thermoplastic green resin molded article containing glass fiber, a thermoplastic resin, and further a rubbery polymer, wherein the glass fiber is contained at a content of 1 to 60% by weight. Glass with a length of less than 0.5 mm, glass with 90 to 10%, glass with a length of 0.5 to 2 mm with 10 to 90%, glass with a length of 2 mm or more The fiber content is 0 to 30% and the rubbery polymer is 1 to 30% by weight 0 /.
  • the present invention relates to a thermoplastic resin molded article having high rigidity and high strength, particularly excellent in impact resistance.
  • mechanical strength can be significantly improved by coexisting a rubbery polymer with glass fiber.
  • Rubbery polymers are preferred over their ability to partially or completely crosslink.
  • the improvement effect is even greater than when no cross-linking is performed.
  • the reason for this is that when the rubber-like polymer is not crosslinked, the material for the molded article of the present invention is stretched in the flow direction of the material and molded like the glass fiber when molding the material for the molded article of the present invention.
  • the coalesce is also oriented, but when the rubber-like polymer is cross-linked, the shape of the rubber-like polymer in the molding material is not stretched in the flow direction. It is estimated that even if the glass fibers are oriented, the rubber-like polymer does not orient even if the glass fiber is oriented, which leads to a significant improvement in mechanical strength, especially a significant improvement in impact resistance. are doing.
  • the glass fiber in the thermoplastic resin molded article of the present invention has an average diameter of 0.01 to 1000 m, preferably 0.1 to 500 / ⁇ , more preferably 1 to: 100 / zm, and most preferably. 5 to 50 ⁇ .
  • the average length is 0.2 to 3 mm, preferably 0.5 to 2 mm. If the average diameter is less than 0.01 m, the reinforcing effect is small and the effect of improving mechanical strength is not sufficient. If it exceeds 1000 ⁇ m, the dispersibility decreases, and similarly, the effect of improving the mechanical strength is not sufficient. On the other hand, if the average length is less than 0.2 mm, the effect of capturing is small and the effect of improving mechanical strength is not sufficient.
  • the glass fiber content of the molded article of the present invention is 1 to 60% by weight, preferably 5 to 50% by weight, more preferably 10 to 40% by weight, and most preferably 20 to 40% by weight.
  • the glass fiber content is less than 1% by weight, the effect of improving the mechanical strength is not sufficient. If the content exceeds 60% by weight, the appearance of the molded product will deteriorate, and at the same time, the mechanical strength tends to decrease due to the decrease in the amount of the thermoplastic resin that maintains the mechanical strength.
  • the mechanical strength of a molded article is also affected by the average diameter and average length of the glass fiber as described above, the length distribution of the glass fiber is the most dominant factor. That is, the presence of many short fibers in a molded article does not lead to a large improvement in mechanical strength. The presence of longer fibers increases the mechanical strength, but the longer the glass fibers in the molded article, the better.
  • Japanese Patent Application Laid-Open No. 3-243308 discloses a molded article in which fibers of at least 50% by weight and having a length of at least 2 mm or more are present in the molded article.
  • a very low molecular weight thermoplastic resin is used, it is not possible to produce a molded article with such a fiber length.
  • High rigidity and high strength due to low mechanical strength of resin itself Cannot be obtained.
  • the glass fiber in the molded article of the present invention is 90 to 90% of glass fiber having a length of 0.5 mm or less, 10 to 90% of glass fiber having a length of 0.5 to 2 mm, and 2 mm or more.
  • It is necessary that 5 to 20% of glass fiber with a length of at least mm is used.
  • the glass fiber length of 0.5 mm or less exceeds 90%, the effect of improving the mechanical strength is not sufficient.
  • the length of the glass fiber in the molded article has a great influence on the surface appearance of the molded article. The reason for this is that if you try to adopt a molding process that can leave long glass fibers during molding, you tend to avoid using the largest share, and as a result, the glass fibers are made of thermoplastic resin. It becomes difficult to disperse in the glass, the dispersion state of the glass fiber becomes uneven in the resin, and the liquid becomes uneven (localization), and unevenness due to fuzzing and agglomeration of the glass fiber occurs, and the surface condition becomes poor. It is considered that the mechanical strength is lowered at the same time.
  • the surface appearance becomes poor and the mechanical strength tends to decrease. If the glass fiber having a length of 0.5 mm or less is less than 10%, the appearance of the molded product is not good and the mechanical strength is reduced.
  • the glass fiber length of 0.5 to 2 mm is less than 10%, the amount of glass fiber of 0.5 mm or less in the molded product increases, and the effect of improving the mechanical strength is not sufficient. If it exceeds 90%, the appearance of the molded article tends to be poor and the mechanical strength tends to be low.
  • the length of the glass fiber in the molded article is determined by the molding of the material for the molded article of the present invention. Depends on conditions. In general, under conditions where the melt viscosity of the molded article material is high and the share is high, the glass fiber breaks during kneading and becomes shorter, so that molding at a high temperature keeps the glass fiber long. In addition, if the molding is performed with the screw rotation speed set at a low value during molding, the glass fiber can be kept long. Furthermore, the length varies depending on the design of the molding machine. For example, molding using a deep groove screw can keep the glass fiber long. In order to obtain a molded article of the present invention having an appropriate fiber length and excellent appearance, it is preferable to select optimal molding conditions.
  • glass fiber in the molded article of the present invention E glass, S glass, C glass, AR glass and the like can be used.
  • the glass fiber used is preferably pretreated with, for example, a silane coupling agent or the like in order to increase the adhesion to the resin.
  • glass fiber is an essential component, but other fibers, for example, natural fibers such as cotton, silk, wool or hemp, recycled fibers such as rayon or cuvula, acetate or promix, etc.
  • Semi-synthetic fiber polyester, polyacrylonitrile, polyamide, alamide, polyolefin, synthetic fiber composed of carbon or vinyl chloride, inorganic fiber composed of glass or asbestos, or metal fiber composed of SUs, copper or brass It is also possible to use them in combination.
  • carbon fiber has a remarkable effect of increasing rigidity, so that it is possible to further improve rigidity by using it together with glass fiber.
  • the rubbery polymer which is a preferable component of the molded article of the present invention, preferably has a glass transition temperature (T g) of ⁇ 30 ° C. or lower.
  • T g glass transition temperature
  • examples of such a rubbery polymer include polybutadiene, Gen-based rubbers such as poly (styrene-butadiene) and poly (acrylonitrile-butadiene) and acrylic rubbers such as hydrogenated saturated rubber, isoprene rubber, chloroprene rubber, polybutyl acrylate, etc. — Olefin copolymer rubbers and the like.
  • ethylene-a-olefin copolymer rubber mainly composed of ethylene and ⁇ -olefin or a polymer having a structure similar thereto has excellent weather resistance, mechanical strength, etc.
  • the polymer having a similar structure is, for example, a rubber obtained by adding hydrogen to polybutadiene, becomes a rubber having a structure similar to an ethylene / butene-11 copolymer by weight, and refers to such a polymer.
  • an ethylene- ⁇ -olefin copolymer mainly comprising ethylene and a-olefin having 3 to 20 carbon atoms is more preferable.
  • the haloolefins having 3 to 20 carbon atoms include propylene, butene-1, pentene-1, hexene-1, 4-methinolepentene1, heptene-1, octene1, nonene-1, decene-1. 1, undesen-1 and dodecene 1-1.
  • These phosphores may be used alone or in combination of two or more.
  • a copolymer component may be included as the third component.
  • the third component are non-conjugated components such as 1,3-butadiene and isoprene; conjugated pentagens; Conjugated Gens and the like.
  • the ethylene ' ⁇ -olefin copolymer rubber containing the third component copolymer component include, for example, ethylene-propylene-conjugated or non-conjugated gen terpolymer rubber (EPDM) and the like.
  • EPDM non-conjugated gen terpolymer rubber
  • the ethylene / ⁇ -olefin copolymer rubber containing no conjugated or non-conjugated gen has better weather resistance than the ethylene / ⁇ -olefin copolymer rubber containing no conjugated or non-conjugated gen. Inferior and not preferred.
  • the present invention does not exclude an ethylene / ⁇ -olefin copolymer rubber containing a conjugated or non-conjugated diene, but does not exclude an ethylene / ⁇ -olefin-based copolymer rubber containing no conjugated or non-conjugated diene. Is more preferred. Examples thereof include copolymer rubbers of ethylene and hexene-11,4-methylpentene-11 or otaten-11. Among these, a copolymer rubber of ethylene and otaten-11 is particularly preferred. The reason is that it has excellent weather resistance and rubber elasticity.
  • the thermoplastic resin is a polyolefin resin
  • the molded article is It has been pointed out that when used in a power tool housing, etc., when the tool is dropped, the impact will cause the molded product to whiten.It is better to use rubber with a high degree of branching, that is, rubber with long chain branches. Difficult to convert, it depends.
  • the ethylene octene-1 copolymer rubber suitably used as the rubbery polymer of the present invention is preferably one produced using a meta-mouth catalyst.
  • the melt index of the ethylene / ⁇ -olefin copolymer rubber used as a raw material for obtaining the molded article of the present invention is from 0.01 to: 100 g / 10 min (190.C, 2.16 kg )), And more preferably 0.2 to 20 gZlO. If it exceeds 100 gZl 0 minutes, the rubber elasticity of the rubbery polymer is insufficient, and if it is less than 0.01 / 10 minutes, the flowability is poor at the time of molding to obtain the molded article of the present invention, and the processability is poor. It is undesirably reduced.
  • the rubbery polymer which is a preferred component of the molded article of the present invention, is more preferably partially or completely crosslinked.
  • the reason for this is that, as described above, when molding a material for a molded article to obtain the molded article of the present invention, the resin is stretched and oriented in the flow direction, but the rubber-like polymer is crosslinked. Therefore, the shape of the rubber-like polymer of the raw material can be maintained in the molded article without being stretched in the flow direction, so that even if the glass fiber is oriented, the rubber-like polymer relaxes the directionality. It is.
  • the ratio of the crosslinked rubbery polymer (rubbery polymer that does not dissolve in the solvent) in the total rubbery polymer present in the thermoplastic resin molded product is defined as the degree of crosslinking, The degree is preferably at least 20%, more preferably at least 50%.
  • the rubbery polymer which is a preferable component in the molded article of the present invention When used as one component, its content is 1 to 30% by weight, preferably 5 to 30% by weight, more preferably 10 to 30% by weight. %, Most preferably 15 to 25% by weight.
  • the mechanical strength, especially the impact resistance, of a molded article largely depends on the shape of the rubbery polymer in the molded article, that is, the morphology.
  • the shape is preferably such that the number average particle diameter in terms of a circle from a cut surface in a direction perpendicular to the flow direction during molding is 0.1 to 1.5 / xm. More preferably, it is 0.2 to 1.2 ⁇ .
  • the rubber-like polymer is not crosslinked, it is stretched in the flow direction at the time of molding, so that the rubber-like polymer in the molded article is
  • the shape is observed with an electron microscope, the shape differs between the plane parallel to the flow direction and the plane perpendicular to the flow direction.
  • the shapes are slightly different between the surface layer and the inside of the molded product, and between the gate and the terminal.
  • the shape of the rubber-like polymer of the molded article of the present invention is defined by the number-average particle diameter in terms of a circle from the center of the molded article and a cross section perpendicular to the flow direction at the time of molding at the center.
  • the average particle size in terms of circle means that the shape of the rubbery polymer present in the molded product is not necessarily spherical regardless of whether it is crosslinked or not. It is converted into a circle and expressed as the number average of its diameter. When the number average particle diameter in circle is less than 0.1 ⁇ m, the effect of improving mechanical strength is not sufficient. On the other hand, when the thickness is 1.5 ⁇ m or more, the effect of improving mechanical strength is not sufficient.
  • the rubber-like polymer in the molded article of the present invention is used as one component, a plurality of types may be mixed and used. In this case, the workability can be further improved.
  • thermoplastic resin in the thermoplastic resin molded article of the present invention will be described.
  • thermoplastic resin in the thermoplastic resin molded article of the present invention is one that is compatible or uniformly dispersed with the rubbery polymer preferably used, or one that is compatible or uniformly dispersed with a compatibilizer. If there are any restrictions, For example, polystyrene, polyphenylene ether, polyolefin, polyvinyl chloride, polyamide, polyester, polyphenylene sulfide, polycarbonate, polymethacrylate resins, etc., or a mixture of two or more resins Can be used. Among these, a polyolefin-based resin is preferable as the thermoplastic resin.
  • the reason is that, when a rubber-like polymer is allowed to coexist with the thermoplastic resin molded article of the present invention, an ethylene-diol copolymer rubber preferably used as the rubber-like polymer or a polymer having a structure similar thereto This is because it has a high affinity and high strength.
  • the polyolefin-based resin suitably used in the present invention is roughly classified into a polyethylene-based resin, a polypropylene-based resin, or a mixture of a polyethylene-based resin and a polypropylene-based resin.
  • polyethylene resins examples include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), copolymers of acrylic-based monomer and ethylene (EEA, EMMA, etc.) or Bull acetate Copolymers of monomers and ethylene (EVA) and the like can be mentioned.
  • high-density polyethylene (HDPE), low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) 1 are particularly preferable because they have high heat resistance and can be obtained at low cost.
  • These polyethylene resins may be used alone or in combination of two or more.
  • high-density polyethylene (HDPE) is used as the material for the molded article of the present invention, its density generally ranges from 0.930 to 0.970.
  • the melt flow rate (MFR) measured at 190 ° C. under a load of 2.16 kg is preferably in the range of 0.05 to 100 g / l 0 min.
  • LDP E low density polyethylene
  • LLDPE linear low density polyethylene
  • the melt flow rate (MFR) measured at a load of 16 kg is preferably in the range of 0.05 to: 100 gZ for 10 minutes.
  • the molded article of the present invention has insufficient mechanical strength and heat resistance, and if the melt flow rate is less than 05 g Z10 minutes, it is used to obtain the molded article of the present invention.
  • the flowability is poor and the molding processability is undesirably reduced.
  • polypropylene resin examples include polypropylene (homopolymer) and copolymer resin (block, random copolymer) of propylene and other ⁇ -olefins such as ethylene, butene-11, pentene-11, hexene-11. (Including coalescence).
  • the melt flow rate (MFR) of the polypropylene resin used to obtain the molded article of the present invention measured at 230 ° C and under a load of 2.16 kg is 0.1 to :! It is preferably in the range of O O g / 10 min. If the melt flow rate exceeds 100 g / 10 minutes, the mechanical strength and heat resistance of the molded article of the present invention are insufficient, and if the melt flow rate is less than 0.1 lg / 10 minutes, molding is performed to obtain the molded article of the present invention. In this case, the flowability is poor and the molding processability is undesirably reduced.
  • the polyolefin resin preferably used for obtaining the molded article of the present invention is composed of a polyethylene resin and / or a polypropylene resin as described above.
  • a polypropylene resin is more preferable because of its high heat resistance.
  • polypropylene resins are more preferable.
  • polypropylene homopolymers are generally susceptible to oxidative degradation, and their mechanical strength tends to decrease due to molecular weight reduction during long-term use.
  • polyethylene generally does not decompose with acid and tends to maintain or improve mechanical strength by crosslinking. Therefore, when using a polypropylene resin, especially in applications where durability is required, a homopolymer of polypropylene and a polyethylene resin are used in combination, or a random or block polymer of a propylene monomer and an ethylene monomer is used. It may be preferable to use or use together.
  • thermoplastic resin in the thermoplastic resin molded article of the present invention has a high affinity for an ethylene- ⁇ -olefin copolymer rubber suitably used as a rubber-like polymer or a polymer having a structure similar thereto, It is preferable to use a polyolefin resin because a high-strength resin can be obtained, but it is also possible to use a thermoplastic resin other than a polyolefin resin such as a polystyrene resin and a polyphenylene ether resin as described above. it can.
  • the compatibility with the ethylene-polyolefin copolymer rubber preferably used as the rubber-like polymer is often not necessarily good.
  • a compatibilizer is used.
  • the compatibilizer include a polymer material having both a polyolefin-based component and a thermoplastic resin component to be used in the molecule or a component compatible with the thermoplastic resin.
  • the polystyrene resin include hydrogenated styrene-butadiene block resin and styrene-grafted polyethylene.
  • the thermoplastic resin molded article of the present invention is composed of a thermoplastic resin containing at least glass fiber and preferably a rubber-like polymer as described above, and other components, if necessary, a matrix for imparting thermoplasticity.
  • Polymers other than thermoplastic resins (modifiers) It can contain softeners, powdered inorganic fillers, whiskers and plasticizers.
  • Examples of the polymer (modifier) other than the thermoplastic resin serving as the matrix include a thermoplastic resin capable of interfacially bonding the glass fiber and the thermoplastic resin of the present invention.
  • a copolymer of maleic acid-modified polyolefin or maleic acid is used as a material for improving the interfacial adhesion between the glass fiber and the thermoplastic resin as a matrix.
  • a copolymer of maleic acid-modified polyolefin or maleic acid is used as a material for improving the interfacial adhesion between the glass fiber and the thermoplastic resin as a matrix.
  • examples thereof include polymerized polyolefin, acrylic acid-modified polyolefin or copolymerized polyolefin with acrylic acid, fumaric acid-modified polyolefin, and copolymerized polyolefin with fumaric acid. The coexistence of such a modifier is effective for improving the impact resistance.
  • a process oil such as a paraffinic or naphthenic oil can be used.
  • a softener When a softener is present, the stiffness tends to decrease slightly, but it has the effect of further improving the impact resistance.
  • the softening agent has the effect of improving the whitening.
  • the powdery inorganic filler examples include talc, myric, clay, calcium carbonate, magnesium carbonate, silica, carbon black, titanium oxide, magnesium hydroxide, magnesium hydroxide, aluminum hydroxide, and the like.
  • talc is particularly preferable because it can increase the rigidity of a polyolefin-based resin suitably used as a thermoplastic resin which is a component of the molded article of the present invention.
  • talc When talc is added, its amount is 1 to 50% by weight, preferably 5 to 40% by weight, more preferably 5 to 30% by weight, particularly preferably 10 to 20% by weight.
  • talc When talc is made to coexist, it may be made to coexist in a combination of a thermoplastic resin and glass fiber, or preferably in a combination of a thermoplastic resin, glass fiber and a rubbery polymer. .
  • plasticizer examples include phthalate esters such as polyethylene glycol and octyl phthalate (DOP).
  • phthalate esters such as polyethylene glycol and octyl phthalate (DOP).
  • other additives such as organic and inorganic pigments, heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, flame retardants, Silicone oil, antiblocking agents, foaming agents, antistatic agents, antibacterial agents and the like are also suitably used.
  • thermoplastic resin molded article of the present invention Next, a preferred method for producing the thermoplastic resin molded article of the present invention will be described.
  • the molded article of the present invention can be obtained by blending glass fiber itself or glass fiber hardened with latex or a thermoplastic resin with a thermoplastic resin, and directly molding this blended article.
  • a thermoplastic resin containing a glassy fiber or a rubbery polymer (preferably a partially or completely crosslinked rubbery polymer) and a glass fiber or the like hardened with a latex or a thermoplastic resin hereinafter referred to as “thermoplastic”.
  • the thermoplastic resin is blended with a thermoplastic resin if necessary, and the molded product of the present invention is obtained by a method of directly injection-molding the blended product.
  • a more preferable method is to impregnate a thermoplastic resin into a force for dipping a bundle of glass fibers (or a bing) into a latex or a roving, or to extrude a thermoplastic resin and coat the roving with a resin, thereby forming a pellet length.
  • thermoplastic resin pellets containing glass fibers of the same length as above (hereinafter referred to as long fiber pellets) are prepared, and this is pellet-blended with the thermoplastic resin pellets, and this blended product is injection-molded.
  • the molded article contains a rubber-like polymer as one component, thermoplastic resin pellets containing the above-mentioned long-fiber pellets and a rubber-like weight (preferably a partially or completely crosslinked rubber-like polymer) (hereinafter referred to as “thermoplastic pellets”). This is called thermoplastic elastomer pellets.) If necessary, blend the thermoplastic resin pellets with pellets and injection-mold this blend.
  • thermoplastic resin pellets containing talc preferably thermoplastic elastomer pellets, and if necessary, thermoplastic resin pellets are blended by pellet blending.
  • the product is injection molded.
  • a polyolefin resin is used as the thermoplastic resin
  • a polymer other than the thermoplastic resin which is a matrix preferably added to increase the adhesiveness between the resin and the glass fiber, is a thermoplastic resin that coats the glass fiber.
  • a polymer other than the thermoplastic resin which is a matrix preferably added to increase the adhesiveness between the resin and the glass fiber
  • is a thermoplastic resin that coats the glass fiber is a thermoplastic resin that coats the glass fiber.
  • thermoplastic elastomer containing a crosslinked rubber which is composed of a thermoplastic resin containing a partially or completely crosslinked rubbery polymer, which is most preferably used, is exemplified by a polyolefin resin as the thermoplastic resin.
  • a polyolefin resin as the thermoplastic resin.
  • an ethylene / ⁇ -olefin copolymer mainly composed of ethylene and ⁇ -olefin and a polymer having a structure similar to ⁇ or a similar polymer, a polyolefin resin, a cross-linking agent and a cross-linking aid are used in a twin-screw extruder.
  • the crosslinking agent preferably used includes a radical initiator such as an organic peroxide and an organic azo compound.
  • radical initiator examples include 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexyloxy) -1,3,3 , 5-Trimethylcyclohexane, 1,1-bis (t-hexylpropoxy) cyclohexane, 1,1-bis (t-butylinoxy) Dodecane, 1,1-bis (t-butyl) (Norepoxy) Cyclic hexane, 2,2-bis (t-butynoleveroxy) octane, n-butyl-4,4 Mono-bis (t-ptinoleperoxy) butane, n-butyl-4,4 Peroxyketals such as mono-bis (t-butyl peroxy) valerate; and di-t-butyl baroxyside, dicuminoleno.
  • 1,1-bis (t-butylperoxy) -13,3,5-trimethylcyclohexane, di-t-butylperoxide, dicumyl peroxide, 2,5-dimethyl-2,5- Bis (t-butylperoxy) hexane and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexine-13 are preferred.
  • radical initiators are used in an amount of 0.02 to 3 parts by weight, preferably 0.05 to 1 part by weight, based on 100 parts by weight of the ethylene-olefin copolymer and the polyolefin resin. Used in The level of crosslinking is primarily determined by this amount. If the amount is less than 0.02 parts by weight, the crosslinking is insufficient, and if it exceeds 3 parts by weight, the crosslinking ratio is not significantly improved.
  • Cross-linking aids include dibutylbenzene, triarinoleisocyanurate, triaryl cyanurate, diacetone diacrylamide, polyethylene dalicol diatalylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, Trimethylolpropane triatalylate, ethylene glycol dimethacrylate, triethylene glycol resmethacrylate, methylen glycolone resmethacrylate, disopropininolebenzene, p-quinone dixime, p, p 'dibenzoinolequinone dioxime, fu Ninole maleimide, aryl metathalylate, N, N'-m-phenylene bismaleimide, diaryl phthalate, tetraaryl oxetane, 1,2-polybutadiene, etc. are preferred. It is needed. These crosslinking aids may be used in combination of two or more.
  • the crosslinking aid is used in an amount of 0.1 to 5 parts by weight, and preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the ethylene 'olefin copolymer and the polyolefin resin. If the amount is less than 0.1 part by weight, the crosslinking rate is low, which is not preferable. If the amount exceeds 5 parts by weight, the crosslinking ratio is not significantly improved and is not preferable. It is preferable to use a cross-linking agent and a cross-linking assistant as described above as a cross-linking method. In addition, a phenol resin or bismaleimide may be used as the cross-linking agent. .
  • the manufacturing method is a method of dipping a glass fiber roving in a molten thermoplastic resin and then pelletizing it to a predetermined length.
  • the extruder extrudes the thermoplastic resin while aligning the glass fiber roving under tension.
  • Extrusion from the side extruding thermoplastic resin on the surface of glass fiber and pelletizing (general method called pultrusion method), or dipping glass fiber rovings in emulsion (latex) and then drying There is a method of pelletizing to a predetermined length.
  • any of the above-mentioned resins can be appropriately selected and used, but is preferably the same as the thermoplastic resin to be a matrix.
  • the emulsion be the same as or compatible with the thermoplastic resin as the matrix.
  • emanolions include, for example, ethylene-vinyl acetate emulsion when the thermoplastic resin is a polyolefin resin, and styrene-butadiene emulsion when the thermoplastic resin is a polystyrene resin or a modified polyphenylene ether resin.
  • thermoplastic resin is polyacrylonitrile-styrene resin (AS), polyacrylonitrile-butadiene-styrene resin (ABS), polycarbonate resin (PC), polyester resin (PET, PBT, etc.)
  • AS polyacrylonitrile-styrene resin
  • ABS polyacrylonitrile-butadiene-styrene resin
  • PC polycarbonate resin
  • PET polyester resin
  • PBT PBT, etc.
  • the long fiber pellets thus obtained are usually 2 to 100 mm, preferably 3 to 50 mm, more preferably 5 to 20 mm in length.
  • This long fiber pellet contains glass fibers of the same length as the pellet length.
  • This long fiber pellet is mixed with a thermoplastic resin pellet and injection-molded under appropriate molding conditions, or preferably, the long fiber pellet is mixed with a rubber-like polymer (preferably partially or completely cross-linked).
  • a pellet of a thermoplastic elastomer containing a (rubber-like polymer), a thermoplastic resin containing z or a torque, and, if necessary, a pellet of a thermoplastic resin are mixed and injection-molded under appropriate molding conditions.
  • the molded article of the present invention thus produced is a product having excellent appearance, high rigidity, high strength, and excellent heat resistance.
  • the molded article of the present invention is desired to soften the surface of the molded article depending on the use. For example, in the housing of a power tool, by softening a portion for gripping the power tool, it is possible to impart effects such as not to be tired during use and to feel warmth.
  • the soft molding of the surface of the molded article of the present invention is preferably performed, for example, by molding the molded article material of the present invention and a thermoplastic elastomer in two colors, and loading the molded article of the present invention in a mold. This is carried out by insert molding of a thermoplastic elastomer, or by co-extrusion of the molded article material of the present invention and a thermoplastic elastomer to produce a laminate.
  • thermoplastic elastomer a thermoplastic elastomer containing the above-mentioned rubbery polymer (preferably, a partially or completely crosslinked rubbery polymer) is preferable.
  • the thermoplastic resin and the rubbery polymer preferably coexisting in the molded article of the present invention and the thermoplastic resin and the rubbery polymer in the thermoplastic elastomer laminated on this surface may be different from each other or the same. It may be. However, it is preferable that they be the same.
  • the same component has better adhesion between the molded product and the thermoplastic elastomer laminated on it, and at the same time, when this material is recycled, the molded product and the thermoplastic elastomer are peeled off Even if this is not done, the laminated product itself is powder-framed, glass fibers are added to the extent that the strength is reduced, and this can be reused as a raw material in the production of the molded article of the present invention.
  • the measurement was performed at 23 ° C. by a method according to JISK 6251.
  • the measurement was performed at 23 ° C according to a method according to JIS K 6758.
  • the measurement was performed at 23 ° C according to a method according to JIS K6758.
  • the molded product was fired, and the distribution of fiber length was measured by image analysis using an optical microscope.
  • the molded product was cut by a microtome at right angles to the flow during molding. This was observed with an electron microscope. The number average particle diameter in terms of yen was measured by image analysis.
  • 0.5 g of the crosslinked thermoplastic elastomer is refluxed for 4 hours in 20 ml of xylene.
  • the solution was filtered with a filter paper for quantification, the residue on the filter paper was dried in vacuo, quantified, and calculated as the ratio (%) of the weight of the residue to the weight of the rubbery polymer in the crosslinked thermoplastic elastomer.
  • TPE-1 A method using a meta-mouth catalyst described in JP-A-3-163088 Made from The composition ratio of ethylene Z-otaten-11 in the copolymer was 72/28 (weight ratio) (referred to as TPE-1)
  • Admar (HB030) (M-PE) manufactured by Mitsui Chemicals, Inc. (f) High density polyethylene
  • PET Ground PET bottle
  • Aminosilane treated glass fiber roving (ER 740) manufactured by Asahi Fiber Co., Ltd. (thickness: 13 ⁇ m)
  • a crosslinked thermoplastic elastomer was obtained in the same manner as in (1) except that the ratio of TPE-lZPPZPOXZDVB was 55.6 / 44. 4 / 0.19 / 0.37 (weight ratio). The degree of crosslinking of this crosslinked thermoplastic elastomer was 55%.
  • a crosslinked thermoplastic elastomer was obtained in the same manner as (1) except that TPE-1 / P PZPOXZDVB was changed to TPE_1 / EP-1 / POX / DVB.
  • the degree of crosslinking of this crosslinked thermoplastic elastomer was 81%.
  • TPE-1 / P PZPOX / DVB is TPE-1ZP P / HDPE / PO XZDVB, and the ratio is 55.6 / 33. 3/1 1.1 / 0. 19 / 0.37 (weight ratio) Except for this, a crosslinked thermoplastic elastomer was obtained in the same manner as in (1). The degree of crosslinking of this crosslinked thermoplastic elastomer was 85%.
  • a crosslinked thermoplastic elastomer was obtained in the same manner as in (1) except that TPV-5 was used. Degree of crosslinking of the crosslinked thermoplastic I 1 production Erasutoma is Atsuta almost 100%.
  • Crosslinking heat is applied in the same manner as (1) except that 33 parts by weight of softener (paraffin oil) is injected from the injection port in the center of the extruder to 100 parts by weight of the total amount of TPE-1 and PP. A plastic elastomer was obtained. The degree of crosslinking of this crosslinked thermoplastic elastomer was 82%.
  • TPE-1ZP The ratio of P / POX / DVB is 70.0 / 30.0 / 0.4.8 / 0.93, and the total amount of TPE-1 and PP is 100 parts by weight from the injection port at the center of the extruder. 20 parts by weight of softener (paraffin oil)
  • softener paraffin oil
  • a crosslinked thermoplastic elastomer was obtained in the same manner as in (1) except that it was added. The degree of crosslinking of this crosslinked thermoplastic elastomer was 81%.
  • a roving of 13 ⁇ thick glass fiber was cut into 7 mm and chopped. This chop and PP were mixed at a ratio of 30/70 (weight ratio), and the resin temperature was 230 using a twin-screw extruder (Toshiba TEM-35B). C. Extruded and pelletized. Using this pellet as a raw material, molding was performed at an injection molding machine (Toshiba IS 45 PNV) at a molding temperature of 230 ° C to obtain a molded product. Table 1 shows the composition of the molded article and its properties. Comparative Example 2
  • Example 1 A material obtained by mixing each pellet of GF-1 and PP in Example 1 at 53.6 / 46.4 (weight ratio), the molding temperature was 290 ° C, the back pressure during molding, and the screw rotation speed. However, the firing speed was also reduced to an extreme state, and unlike Example 1, molding was carried out under conditions where it was extremely difficult to obtain the largest share.
  • the glass fiber of 2 mm or more in the obtained molded product is 0. 5% or less was 0%, 0.5 to 2.Omm was 49%, and 0.5mm or more was 51%, but the surface appearance of the molded product was extremely bad due to unevenness due to glass fiber aggregation. I got it. On the other hand, the appearance of the molded product obtained in Example 1 was good. Table 1 shows the composition of the molded article and its properties.
  • each pellet of GF-1, TPV-11 and PP was mixed at 53.6 / 36.0 / 10.4 (weight ratio). Then, the molding temperature was set to 240 ° C., and molding was performed using the same injection molding machine as in Example 1 to obtain a molded product. Table 1 shows the composition of the molded article and its properties.
  • a 13 ⁇ m thick glass fiber roving was cut to 7 mm and made into a chop. This chop, TPV_1,? ? Were mixed at a ratio of 53.6 / 36. 0 / 10.4 (weight ratio), and were extruded and pelletized at a resin temperature of 230 ° C using the same twin-screw extruder as in Comparative Example 1. Using the pellets as a raw material, molding was performed at the molding temperature of 230 ° C. using the same injection molding machine as in Example 1 to obtain a molded product. Table 1 shows the composition of the molded article and its characteristics.
  • Molding was carried out under the same conditions as in Comparative Example 2 using a material obtained by mixing the pellets of GF-1, TPV-1, and PP of Example 2 at a ratio of 53.6 / 36.0 / 10.4 (weight ratio). .
  • the glass fiber of 2 mm or more in the obtained molded product was 0% for 0.5 mm or less, 56% for 0.5 to 2.Omm, and 44% for 0.5 mm or more.
  • the surface appearance was extremely poor due to unevenness due to the aggregation of glass fibers.
  • the appearance of the molded product obtained in Example 2 was good. Table 1 shows the composition of the molded article and its properties.
  • Molding was performed in the same manner as in Example 2 except that the molding temperature was set to 225 ° C to obtain a molded product.
  • Table 1 shows the composition of the molded article and its properties.
  • Molding was performed in the same manner as in Example 1 except that TPO-1 was changed to TPO-1 to obtain a molded article.
  • Table 1 shows the composition of the molded article and its properties.
  • Molding was performed in the same manner as in Example 1 except that TPV-1 was changed to TPV-5 to obtain a molded article.
  • Table 2 shows the composition of the molded article and its properties.
  • Example 11 Except that the material to be extruded on the glass fiber is changed from 5% M-PPZ95% PP to 5% M-PP / 71.3% PP / 23.7% HDPE, a long fiber pellet (GF —3).
  • the ratio of the long fiber pellets to the glass polyolefin resin was 56/44 (weight ratio).
  • the pellets of GF-3, TPV-4 and PP were mixed at 53.6 / 36.0 / 10.4 (weight ratio) and molded in the same manner as in Example 2 to obtain a molded product .
  • Table 2 shows the composition of the molded article and its properties.
  • Example 13 Molding was performed in the same manner as in Example 2 except that the composition of each pellet of GF_1 and TPV-1 was mixed at 53.6 / 46.4 (weight ratio). Table 2 shows the composition of the molded product and its properties. The test piece during the drop weight impact test was slightly whitened in the molded product of Example 2 but completely whitened in the molded product of Example 12. I didn't.
  • Example 13
  • TPV-1, PP and talc were mixed at a ratio of 56.0 / 28.5 / 5 / 15.5 and extruded into a pellet at a resin temperature of 230 ° C with a twin-screw extruder (Toshiba TEM-35B). .
  • This pellet and each pellet of GF_1 were mixed at a ratio (weight ratio) of 64.3 / 35.7, and molding was performed in the same manner as in Example 2 to obtain a molded product.
  • Table 3 shows the composition of the molded article and its properties.
  • Example 2 Molding was performed in the same manner as in Example 1 except that TPV-1 was changed to TPV-6 to obtain a molded article.
  • TPV-1 was changed to TPV-6 to obtain a molded article.
  • TPV-6 and PP 53.6 / 36. 0 / 10.4 in Example 14 and 53.6 / 46.4 / 0/0 in Example 15 (weight ratio)
  • Table 3 shows the composition of the molded article and its properties.
  • AS emulsion (acrylonitrile-styrene latex; acrylonitrile 25%, solids concentration 50% by weight) while rubbing glass fiber roving of 13 ⁇ thickness under tension, dipped the glass fiber in the bath layer, AS resin is adhered, dried, cut into a 5.5 mm long pellet, and a long fiber pellet (GF-4) ) Was manufactured.
  • the ratio of the long fiber pellet to the glass ZAS resin was 80Z20 (dry weight ratio).
  • the pellets of GF-4 and PS were mixed at a ratio of 25.0 / 75.0 (weight ratio), and molded in the same manner as in Example 2 to obtain a molded product.
  • Table 4 shows the composition of the molded article and its properties.
  • Molding was performed in the same manner as in Example 16 except that PS was changed to HIPS to obtain a molded product.
  • Table 4 shows the composition of the molded article and its properties.
  • Molding was performed in the same manner as in Example 16 except that PS was set to AS to obtain a molded product.
  • Table 4 shows the composition of the molded article and its properties.
  • Molding was performed in the same manner as in Example 16 except that P S was changed to A B S to obtain a molded product.
  • Table 4 shows the composition of the molded article and its properties.
  • Molding was performed in the same manner as in Example 16 except that PS was changed to PC to obtain a molded product.
  • Table 4 shows the composition of the molded article and its properties.
  • Molding was performed in the same manner as in Example 16 except that PS was PCZABS to obtain a molded product.
  • Table 4 shows the composition of the molded article and its properties.
  • Molding was performed in the same manner as in Example 16 except that PS was PET, and a molded article was obtained.
  • Table 4 shows the composition of the molded article and its properties.
  • a long fiber pellet (referred to as GF-5) was prepared in the same manner as in Example 1 except that the material to be extrusion-coated on the glass fiber was changed from 5% M-P PZ 95% PP to 5% M-PE Z 95% HDPE. Manufactured. The ratio of the long fiber pellets to the glass / polyolefin resin was 56Z44 (weight ratio). Each pellet of GF-5 and HDPE was mixed at 53.6 / 46.4 (weight ratio) and molded in the same manner as in Example 1 to obtain a molded product. Table 4 shows the composition of the molded article and its properties.
  • Example 2 4 shows the composition of the molded article and its properties.
  • Example 2 Using the same molding machine as in Example 1, the molded articles obtained in Example 1 and Example 2 were loaded into a mold set at 40 ° C. Insert-molded ⁇ -7. The obtained laminate had extremely high adhesion, and the interface between the two could not be peeled off. The surface hardness (A hardness) of the thermoplastic elastomer was 78, and the softness of the molded product was extremely excellent.
  • thermoplastic resin molded article of the present invention has high rigidity and high rigidity, such as automobile parts such as radiator tanks, industrial parts such as power tool housings, office parts such as office chairs, electric parts, daily necessities, and building materials. It can be used for applications that require strength, and plays a major role in the industrial world.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A thermoplastic resin formed article comprising a glass fiber and a thermoplastic resin, wherein the glass fiber is incorporated in an amount of 1 to 60 wt % and is comprised of 90 to 10 % of a glass fiber having a length of 0.5 mm or less, 10 to 90 % of a glass fiber having a length of 0.5 to 2 mm and 0 to 30 % of a glass fiber having a length of 2 mm or more.

Description

明 細 書 高剛性 ·高強度熱可塑性樹脂成形品 技術分野  Description High rigidity and high strength thermoplastic resin moldings Technical field
本発明は、 ガラス繊維で強化された高剛性 ·高強度熱可塑性樹脂成形品及びそ の製造方法に関するものである。  The present invention relates to a high-rigidity / high-strength thermoplastic resin molded article reinforced with glass fiber and a method for producing the same.
背景技術 Background art
熱可塑性樹脂として、 ポリエチレン系樹脂、 ポリプロピレン系樹脂、 スチレン 系樹脂、 ポリアミド系樹脂等多くの樹脂が知られている。 これら熱可塑性樹脂は、 用途によっては高剛性、 高強度が要求される。 この性能を付与する最も好ましい 方法は、 ガラス繊維による補強であり、 例えば、 ガラス繊維補強ポリプロピレン 系樹脂、 ガラス繊維補強ポリアミド系樹脂等が販売されている。 この中でもガラ ス繊維補強ポリアミド系樹脂は、 ラジェータタンク等の自動車用材料、 電動ドリ ル等の工具ハウジング用材料、 事務用椅子等の事務機器用材料等に幅広く使用さ れている。 このガラス繊維強化ポリアミド系樹脂は、 マトリックスとなるポリア ミド系樹脂が比較的高い強度を持っため、 単にポリアミド系樹脂とガラス繊維と の組み合わせだけで高剛性、 高強度を発現することができ、 それ故にその利用分 野は広がっている。 一方、 ガラス繊維強化ポリプロピレン系榭脂は、 マトリック スとなるポリプロピレン系樹脂そのものの強度がポリアミド樹脂等に比較して小 さいため、 ガラス繊維強化ポリアミドに比較して充分な強度を持つに至らず、 使 用できる用途が限られているのが現状である。  Many resins are known as thermoplastic resins, such as polyethylene resins, polypropylene resins, styrene resins, and polyamide resins. These thermoplastic resins are required to have high rigidity and high strength depending on the application. The most preferable method for imparting this performance is reinforcement by glass fiber. For example, glass fiber reinforced polypropylene resin, glass fiber reinforced polyamide resin and the like are sold. Among them, glass fiber reinforced polyamide resins are widely used as materials for automobiles such as radiator tanks, materials for tool housings such as electric drills, and materials for office equipment such as office chairs. In this glass fiber reinforced polyamide resin, since the polyamide resin serving as the matrix has relatively high strength, high rigidity and high strength can be exhibited simply by combining the polyamide resin and glass fiber. Therefore, its use field is expanding. On the other hand, glass fiber reinforced polypropylene resin does not have sufficient strength compared to glass fiber reinforced polyamide because the strength of the polypropylene resin itself, which is the matrix, is smaller than that of polyamide resin. At present, usable applications are limited.
世の中の主流になりつつある、 環境にも優しいポリプロピレン系樹脂等の汎用 樹脂が高剛性且つ高強度の材料となれば、 その用途は広がるのみならず、 ポリア ミド系樹脂であっても更に高剛性且つ高強度となれば、 薄肉化等が可能となり軽 量化、 コストダウンにつながりより好ましい。 このため、 種々の熱可塑性樹脂に おいて、 更に高剛性且つ高強度の材料が求められている。  If general-purpose resins, such as environmentally friendly polypropylene-based resins, which are becoming mainstream in the world, become high-rigidity and high-strength materials, their applications will not only expand, but even polyamide-based resins will have even higher rigidity. In addition, if the strength is high, the thickness can be reduced, which leads to a reduction in weight and cost, which is more preferable. For this reason, materials having higher rigidity and higher strength are required for various thermoplastic resins.
発明の開示 Disclosure of the invention
本宪明は、 このような現状に鑑み、 より高剛性且つより高強度の熱可塑性樹脂 成形品を提供することを目的とするものである。 In view of this situation, the present invention has been developed to provide a thermoplastic resin having higher rigidity and higher strength. It is intended to provide a molded article.
本発明者らは、 上記の目的を達成すべく、 まずポリオレフイン系樹脂、 特にポ リプロピレン系樹脂を主として用いて鋭意検討した。 まず、 ポリプロピレン系樹 脂単独は、 ラジェータタンク等の自動車用材料、 電動ドリル等の工具ハウジング 用材料、 事務用椅子等の事務機器用材料等の高剛性且つ高強度が必要な用途にお いて要求される性能を全く満足しない。 そのため、 通常ガラス繊維強化ポリアミ ドで実施されている方法と同じ業界で短繊維法と言われる方法、 即ち、 ポリプロ ピレン系樹脂にガラス繊維 (チヨプドガラス) を混合して押出機で混練し、 得ら れたペレツトを射出成形し成形品とする方法を検討したが、 得られた成形品は、 ガラス繊維を含まない単なるポリプロピレン系樹脂と比較すると剛性及び機械的 強度は向上するものの、 上記用途を考えた場合、 全く実用強度に達しなかった。 特開平 3— 1 8 8 1 3 1号公報、 特開平 3— 2 4 3 3 0 8号公報、 及び特開平 8 - 3 3 6 8 3 2等は、 長繊維法と言われる方法、 即ち、 例えばポリプロピレン 系樹脂で被覆した長さ 7〜 1 2 mmのガラス繊維を含むポリプロピレン系樹脂べ レットとポリプロピレン系樹脂ペレツトとをブレンドして直接成形する方法を開 示している。 上記短繊維法は、 ポリプロピレン系樹脂にガラス繊維 (チヨプドガ ラス) を混合して押出機で混練し、 その後射出成形し成形品とするため、 押出混 練と射出成形時のスクリュー混練との 2度の混練が行われることになり、 これら の混練時にガラス繊維が折れてその繊維長が極端に短くなってしまう。 これに対 して、 長繊維法は、 射出成形時のスクリュー混練のみで成形品を作るために成形 品中のガラス繊維を長く保つことができる。 この長繊維法での検討結果、 成形品 中のガラス繊維の長さは成形条件によって異なるが、 短くても剛性及び強度が充 分ではなく、 また、 長くても表面外観が充分ではない。  In order to achieve the above-mentioned object, the present inventors have first studied intensively mainly using a polyolefin-based resin, particularly a polypropylene-based resin. First, polypropylene resin alone is required for applications requiring high rigidity and high strength, such as materials for automobiles such as radiator tanks, materials for tool housings such as electric drills, and materials for office equipment such as office chairs. Not satisfy the performance. For this reason, a method called the short fiber method in the same industry as the method usually used for glass fiber reinforced polyamide, that is, a glass fiber (chopped glass) is mixed with a propylene-based resin and kneaded with an extruder, and the obtained product is obtained. We examined a method of injection molding the pellets into a molded product.The obtained molded product has improved rigidity and mechanical strength compared to a mere polypropylene resin containing no glass fiber, but the above applications were considered. Did not reach practical strength at all. JP-A-3-188131, JP-A-3-24833, and JP-A-3-33638, etc., a method called a long fiber method, that is, For example, a method is disclosed in which a polypropylene resin pellet containing glass fibers of 7 to 12 mm in length coated with a polypropylene resin and a polypropylene resin pellet are blended and directly molded. In the short fiber method described above, glass fiber (Chipop glass) is mixed with a polypropylene resin, kneaded with an extruder, and then injection molded to form a molded product. Therefore, extrusion kneading and screw kneading during injection molding are performed twice. Therefore, the glass fiber is broken during the kneading, and the fiber length becomes extremely short. In contrast, in the long fiber method, the glass fiber in the molded article can be kept long because the molded article is produced only by screw kneading during injection molding. As a result of the study using the long fiber method, the length of the glass fiber in the molded product differs depending on the molding conditions, but the rigidity and strength are not sufficient even if it is short, and the surface appearance is not enough even if it is long.
しかしながら驚くべきことに、 成形品中のガラス繊維の長さの分布を一定の範 囲に限定すれば、 表面外観、 剛性及び機械的強度に優れた成形品となり上記用途 で実用強度を持つ成形品とすることができることを本発明者らは見出した。 更に 用途によってはより高いレベルの機械的強度が要求されるが、 この一定の範囲の 長さ分布を持つガラス繊維とポリプロピレン系樹脂からなる成形品中に、 更にあ る形状のゴム状重合体を共存させると、 より高いレベルの表面外観を有し、 かつ 剛性及び機械的強度に優れた成形品とすることができることを本発明者らは見出 した。 と同時にポリプロピレン系樹脂のみならず他の樹脂にも適用できることも 見出した。 However, surprisingly, if the length distribution of the glass fibers in the molded article is limited to a certain range, the molded article has excellent surface appearance, rigidity and mechanical strength, and has practical strength in the above-mentioned applications. The present inventors have found that Furthermore, a higher level of mechanical strength is required for some applications, but a rubber-like polymer with a certain shape is further added to a molded product made of glass fiber and polypropylene resin having a certain length distribution. When coexisting, it has a higher level of surface appearance, and The present inventors have found that a molded article having excellent rigidity and mechanical strength can be obtained. At the same time, they have found that they can be applied not only to polypropylene resins but also to other resins.
これらの知見に基づき本発明を完成するに至った。  Based on these findings, the present invention has been completed.
なお、 ゴム状重合体を共存させた場合、 より高いレベルの機械的強度の成形品 が得られる理由は、 その成形品用材料を射出成形等により成形加工する時、 ガラ ス繊維が配向し、 成形方向に対して縦と横方向で機械的強度が異なってくるため、 機械的強度に方向性 (異方性) が生じ、 従って一つの方向では耐衝擊性等の機械 的強度は高く、 他の方向では低い結果となるが、 ゴム状重合体は、 この方向性 (異方性) を緩和することによる。  When a rubber-like polymer coexists, a molded article with a higher level of mechanical strength can be obtained because the glass fibers are oriented when the molding material is molded by injection molding or the like. Since the mechanical strength differs in the vertical and horizontal directions with respect to the molding direction, directional (anisotropic) is generated in the mechanical strength. Therefore, the mechanical strength such as impact resistance is high in one direction, and Although the result is low in the direction, the rubbery polymer relaxes this directionality (anisotropic).
本発明は、 ガラス繊維と熱可塑性樹脂とを含む熱可塑性樹脂成形品であって、 該ガラス繊維は 1〜6 0重量%の含有量で含まれ、 且つ 0 . 5 mm以下の長さの ガラス繊維が 9 0〜: 1 0 %、 0 . 5〜 2 mmの長さのガラス繊維が 1 0〜 9 0 %、 2 mm以上の長さのガラス繊維が 0〜 3 0 %である高剛性 .高強度熱可塑性榭月旨 成形品及びその製造方法に関するものである。  The present invention relates to a thermoplastic resin molded article containing glass fiber and a thermoplastic resin, wherein the glass fiber is contained at a content of 1 to 60% by weight and has a length of 0.5 mm or less. 90 to 90% fiber, 0.5 to 2 mm long glass fiber is 10 to 90%, 2 mm or more glass fiber is 0 to 30% high rigidity. The present invention relates to a molded article and a method for producing the same.
更に好ましくは、 本発明は、 ガラス繊維と熱可塑性樹脂と更にゴム状重合体と を含む熱可塑†生樹脂成形品であって、 該ガラス繊維は 1〜 6 0重量%の含有量で 含まれ、 且つ 0 . 5 mm以下の長さのガラス,繊維が 9 0〜 1 0 %、 0 . 5〜2 mmの長さのガラス繊維が 1 0〜9 0 %、 2 mm以上の長さのガラス繊維が 0〜 3 0 %であり、 該ゴム状重合体は 1〜 3 0重量0 /。の含有量で含まれるものである、 高剛性 ·高強度、 特に耐衝擊性に優れた熱可塑性樹脂成形品に関する。 More preferably, the present invention is a thermoplastic green resin molded article containing glass fiber, a thermoplastic resin, and further a rubbery polymer, wherein the glass fiber is contained at a content of 1 to 60% by weight. Glass with a length of less than 0.5 mm, glass with 90 to 10%, glass with a length of 0.5 to 2 mm with 10 to 90%, glass with a length of 2 mm or more The fiber content is 0 to 30% and the rubbery polymer is 1 to 30% by weight 0 /. The present invention relates to a thermoplastic resin molded article having high rigidity and high strength, particularly excellent in impact resistance.
本発明の成形品は、 ガラス繊維に更にゴム状重合体を共存させることにより機 械的強度、 特に耐衝撃強度を大幅に改良することができるが、 ゴム状重合体を共 存させる場合、 このゴム状重合体は部分的又は完全に架橋させること力 より好ま しい。 架橋を行った場合、 架橋をしない場合に比較してその改良効果は更に大き くなる。 この理由は、 ゴム状重合体が架橋されていない場合は、 本発明の成形品 となる成形品用材料を成形加工する際、 その材料の流動方向に引き伸ばされガラ ス繊維と同様にゴム状重合体も配向するが、 このゴム状重合体が架橋されている 場合、 流動方向に引き伸ばされることなく成形品用材料中のゴム状重合体の形状 を成形品中でも維持するため、 ガラス繊維が配向していてもゴム状重合体は配向 せず、 そのため、 大幅な機械的強度の向上、 特に大幅な耐衝撃性の向上がもたら されると推定している。 In the molded article of the present invention, mechanical strength, particularly impact resistance, can be significantly improved by coexisting a rubbery polymer with glass fiber. Rubbery polymers are preferred over their ability to partially or completely crosslink. When cross-linking is performed, the improvement effect is even greater than when no cross-linking is performed. The reason for this is that when the rubber-like polymer is not crosslinked, the material for the molded article of the present invention is stretched in the flow direction of the material and molded like the glass fiber when molding the material for the molded article of the present invention. The coalesce is also oriented, but when the rubber-like polymer is cross-linked, the shape of the rubber-like polymer in the molding material is not stretched in the flow direction. It is estimated that even if the glass fibers are oriented, the rubber-like polymer does not orient even if the glass fiber is oriented, which leads to a significant improvement in mechanical strength, especially a significant improvement in impact resistance. are doing.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
まず本発明の各成分について詳細に説明する。  First, each component of the present invention will be described in detail.
本発明の熱可塑性樹脂成形品中のガラス繊維は、 平均の直径が 0. 01〜10 00 m、 好ましくは 0. 1〜500/ζπι、 更に好ましくは 1〜: 100/zm、 最 も好ましくは 5〜50 μπιである。 また、 その平均の長さが 0. 2〜3mm、 好 ましくは 0. 5〜 2mmである。 平均の直径が 0. 01 m未満では、 補強効果 が小さく、 機械的強度改良の効果が充分ではない。 1000 μ mを超えると分散 性が低下し、 同様に機械的強度改良の効果が充分ではない。 また、 平均の長さが 0. 2 mm未満では、 捕強効果が小さく、 機械的強度改良の効果が充分ではない。 一方、 それが 3 mmを超えると成形品の外観が悪レ、。 本発明の成形品のガラス繊 維の含有量は、 1〜 60重量%、 好ましくは 5〜 50重量%、 更に好ましくは 1 0〜40重量%、 最も好ましくは 20〜40重量%で る。 ガラス繊維の含有量 が 1重量%未満の時は、 機械的強度の改良効が充分ではない。 60重量%を超え ると成形品の外観が悪くなると同時に、 機械的強度を保持する熱可塑性樹脂の量 が減ることにより機械的強度も低下する傾向にある。  The glass fiber in the thermoplastic resin molded article of the present invention has an average diameter of 0.01 to 1000 m, preferably 0.1 to 500 / ζπι, more preferably 1 to: 100 / zm, and most preferably. 5 to 50 μπι. The average length is 0.2 to 3 mm, preferably 0.5 to 2 mm. If the average diameter is less than 0.01 m, the reinforcing effect is small and the effect of improving mechanical strength is not sufficient. If it exceeds 1000 μm, the dispersibility decreases, and similarly, the effect of improving the mechanical strength is not sufficient. On the other hand, if the average length is less than 0.2 mm, the effect of capturing is small and the effect of improving mechanical strength is not sufficient. On the other hand, if it exceeds 3 mm, the appearance of the molded product is poor. The glass fiber content of the molded article of the present invention is 1 to 60% by weight, preferably 5 to 50% by weight, more preferably 10 to 40% by weight, and most preferably 20 to 40% by weight. When the glass fiber content is less than 1% by weight, the effect of improving the mechanical strength is not sufficient. If the content exceeds 60% by weight, the appearance of the molded product will deteriorate, and at the same time, the mechanical strength tends to decrease due to the decrease in the amount of the thermoplastic resin that maintains the mechanical strength.
成形品の機械的強度は、 上で述べたようにガラス繊維の平均の直径及ぴ平均の 長さによっても影響されるが、 そのガラス繊維の長さ分布が最も支配的な要因で ある。 即ち、 成形品中に、 短い繊維が多く存在しても機械的強度の大きな向上に つながることはない。 より長い繊維が存在することによって機械的強度が向上す るが、 成形品中に含まれるガラス繊維の長さは、 長ければ長い程好ましいという 訳ではない。  Although the mechanical strength of a molded article is also affected by the average diameter and average length of the glass fiber as described above, the length distribution of the glass fiber is the most dominant factor. That is, the presence of many short fibers in a molded article does not lead to a large improvement in mechanical strength. The presence of longer fibers increases the mechanical strength, but the longer the glass fibers in the molded article, the better.
例えば特開平 3— 243308号公報は、 少なくとも 50重量%の量で少なく とも 2mm以上の長さの繊維が成形品中に存在する成形品を開示している。 しか し、 極めて低い分子量の熱可塑性樹脂を使用しなければこのような繊維の長さを 持つ成形品を製造することができないので、 長い繊維が成形品中に含まれていた としても、 熱可塑性樹脂そのものの機械的強度が低いため、 高剛性で且つ高強度 の成形品を得ることはできない。 たとえ一般に市販されている熱可塑性樹月旨で成 形が可能であるとしても、 その成形品は外観が悪く商品価値の無いものとなる。 本発明の成形品中のガラス繊維は、 0. 5 mm以下の長さのガラス繊維が 90 〜; 10%、 0. 5〜2mmの長さのガラス繊維が 10〜90%、 2 mm以上の長 さのガラス繊維が 0〜30%、 好ましくは 0. 5 mm以下の長さのガラス繊維が 80〜20%、 0. 5〜2mmの長さのガラス繊維が 20〜80%、 2mm以上 の長さのガラス繊維が 5〜25 %、 より好ましくは 0. 5 mm以下の長さのガラ ス繊維が 60〜 25%、 0. 5〜2mmの長さのガラス繊維が 40〜75%、 2 mm以上の長さのガラス繊維が 5〜 20%であることが必要である。 このような ガラス繊維の長さ分布を持つことによって初めて外観に優れ且つ高い剛性 ·高い 機械的強度の成形品を得ることが可能となる。 For example, Japanese Patent Application Laid-Open No. 3-243308 discloses a molded article in which fibers of at least 50% by weight and having a length of at least 2 mm or more are present in the molded article. However, unless a very low molecular weight thermoplastic resin is used, it is not possible to produce a molded article with such a fiber length. High rigidity and high strength due to low mechanical strength of resin itself Cannot be obtained. Even if it is possible to mold with a commercially available thermoplastic resin, the molded product will have poor appearance and no commercial value. The glass fiber in the molded article of the present invention is 90 to 90% of glass fiber having a length of 0.5 mm or less, 10 to 90% of glass fiber having a length of 0.5 to 2 mm, and 2 mm or more. Glass fiber with a length of 0 to 30%, preferably glass fiber with a length of 0.5 mm or less 80 to 20%, glass fiber with a length of 0.5 to 2 mm 20 to 80%, 2 mm or more 5 to 25% glass fiber of length, more preferably 60 to 25% glass fiber of 0.5 mm or less length, 40 to 75% of glass fiber of 0.5 to 2 mm length, 2 It is necessary that 5 to 20% of glass fiber with a length of at least mm is used. By having such a glass fiber length distribution, it is possible to obtain a molded product having excellent appearance, high rigidity and high mechanical strength for the first time.
0. 5mm以下の長さのガラス繊維が 90%を超える場合は、 機械的強度の改 良効果が十分ではない。 また、 成形品中のガラス繊維の長さは成形品の表面外観 に大きな影響を及ぼす。 この理由は、 成形時に長いガラス繊維を残すことができ るような成形加工を採用しょうとすると、 どうしてもシェア一をかけないように する傾向になるため、 結果的には、 ガラス繊維が熱可塑性樹脂中に分散し難くな り、 ガラス繊維の分散状態が榭脂中で不均一化し、 パラツキを生ずるようになり (局在化) 、 毛羽立ちやガラス繊維の凝集による凹凸が生じ、 表面状態が悪くな ると同時に機械的強度も低くなるからと考えられる。 このため、 長いガラス繊維 を残そうとすると、 表面外観が悪くなり、 機械的強度も低下する傾向となる。 0. 5 mm以下の長さのガラス繊維が、 10%未満の場合は、 成形品の外観が良くな く機械的強度も低下する。  If the glass fiber length of 0.5 mm or less exceeds 90%, the effect of improving the mechanical strength is not sufficient. In addition, the length of the glass fiber in the molded article has a great influence on the surface appearance of the molded article. The reason for this is that if you try to adopt a molding process that can leave long glass fibers during molding, you tend to avoid using the largest share, and as a result, the glass fibers are made of thermoplastic resin. It becomes difficult to disperse in the glass, the dispersion state of the glass fiber becomes uneven in the resin, and the liquid becomes uneven (localization), and unevenness due to fuzzing and agglomeration of the glass fiber occurs, and the surface condition becomes poor. It is considered that the mechanical strength is lowered at the same time. For this reason, if a long glass fiber is to be left, the surface appearance becomes poor and the mechanical strength tends to decrease. If the glass fiber having a length of 0.5 mm or less is less than 10%, the appearance of the molded product is not good and the mechanical strength is reduced.
また、 0. 5〜 2mmの長さのガラス繊維が 10%未満の場合は、 結果として 成形品中の 0. 5 mm以下のガラス繊維の量が多くなり機械的強度の改良効果が 十分ではなく、 90%を超える場合は成形品の外観が良くなく且つ機械的強度も 低くなる傾向となる。  In addition, when the glass fiber length of 0.5 to 2 mm is less than 10%, the amount of glass fiber of 0.5 mm or less in the molded product increases, and the effect of improving the mechanical strength is not sufficient. If it exceeds 90%, the appearance of the molded article tends to be poor and the mechanical strength tends to be low.
また、 2 mm以上の長さのガラス繊維が 30 %を超える場合も同じことが言え る。  The same is true when the glass fiber length of 2 mm or more exceeds 30%.
成形品中のガラス繊維の長さは、 本発明の成形品用の材料を成形する際の成形 条件によって異なる。 一般に、 成形品用材料の溶融粘度が高くシェア一がかかる 条件では、 混練中にガラス繊維が折れて短くなるので、 高温で成形することによ りガラス繊維を長いままに保つことになる。 また、 成形時のスクリュー回転数も 低めに設定して成形を行うとガラス繊維を長いままに保つことができる。 更に、 成形機のデザインによっても長さが異なる。 例えば深溝のスクリューを使用し成 形を行うとガラス繊維を長いままに保つことができる。 本発明の適度な繊維の長 さの外観の優れた成形品を得るためには、 最適の成形条件を選定することが好ま しい。 The length of the glass fiber in the molded article is determined by the molding of the material for the molded article of the present invention. Depends on conditions. In general, under conditions where the melt viscosity of the molded article material is high and the share is high, the glass fiber breaks during kneading and becomes shorter, so that molding at a high temperature keeps the glass fiber long. In addition, if the molding is performed with the screw rotation speed set at a low value during molding, the glass fiber can be kept long. Furthermore, the length varies depending on the design of the molding machine. For example, molding using a deep groove screw can keep the glass fiber long. In order to obtain a molded article of the present invention having an appropriate fiber length and excellent appearance, it is preferable to select optimal molding conditions.
本発明の成形品中のガラス繊維としては、 Eガラス、 Sガラス、 Cガラス、 A Rガラス等を使用することができる。 なお、 使用するガラス繊維は、 樹脂との接 着性を上げるために、 例えばシラン力ップリング剤等で前処理したものが好まし い。 本発明の成形品は、 ガラス繊維は必須成分であるが、 それ以外の繊維、 例え ば綿、 絹、 羊毛若しくは麻等の天然繊維、 レーヨン若しくはキュブラ等の再生繊 維、 アセテート若しくはプロミックス等からなる半合成繊維、 ポリエステル、 ポ リアクリロニトリル、 ポリアミ ド、 ァラミ ド、 ポリオレフイン、 炭素若しくは塩 化ビニル等からなる合成繊維、 ガラス若しくは石綿等からなる無機繊維又は S U s、 銅若しくは黄銅等からなる金属繊維等を併用することも可能である。 これら の中でも、 炭素繊維は、 顕著な剛性アップの効果があるため、 ガラス繊維と併用 することによって更に剛性を向上させることも可能となる。  As the glass fiber in the molded article of the present invention, E glass, S glass, C glass, AR glass and the like can be used. The glass fiber used is preferably pretreated with, for example, a silane coupling agent or the like in order to increase the adhesion to the resin. In the molded article of the present invention, glass fiber is an essential component, but other fibers, for example, natural fibers such as cotton, silk, wool or hemp, recycled fibers such as rayon or cuvula, acetate or promix, etc. Semi-synthetic fiber, polyester, polyacrylonitrile, polyamide, alamide, polyolefin, synthetic fiber composed of carbon or vinyl chloride, inorganic fiber composed of glass or asbestos, or metal fiber composed of SUs, copper or brass It is also possible to use them in combination. Among these, carbon fiber has a remarkable effect of increasing rigidity, so that it is possible to further improve rigidity by using it together with glass fiber.
次に本発明の熱可塑性樹脂成形品に好ましく含まれる成分であるゴム状重合体 につレ、て述べる。  Next, the rubbery polymer which is a component preferably contained in the thermoplastic resin molded article of the present invention will be described.
本発明成形品の好ましい成分であるゴム状重合体は、 ガラス転移温度 (T g ) がー 3 0 °C以下であることが好ましく、 このようなゴム状重合体は、 例えば、 ポ リブタジエン、 ポリ (スチレン一ブタジエン) 、 ポリ (アクリロニトリルーブタ ジェン) 等のジェン系ゴム及ぴ上記ジェンゴムを水素添加した飽和ゴム、 イソプ レンゴム、 クロロプレンゴム、 ポリアクリル酸プチル等のアクリル系ゴム及びェ チレン · a—ォレフィン系共重合体ゴム等を挙げることができる。 これらの中で も、 特にエチレンと α—ォレフィンを主体としたエチレン ' aーォレフイン系共 重合体ゴム又はそれに類似の構造を持つ重合体が、 耐候性、 機械的強度等に優れ、 特に好ましい。 ここで類似の構造を持つ重合体とは、 例えばポリブタジエンを水 素添加したゴムは、 構造上エチレン ·ブテン一 1共重量体に近い構造のゴムとな りこのような重合体をいう。 The rubbery polymer, which is a preferable component of the molded article of the present invention, preferably has a glass transition temperature (T g) of −30 ° C. or lower. Examples of such a rubbery polymer include polybutadiene, Gen-based rubbers such as poly (styrene-butadiene) and poly (acrylonitrile-butadiene) and acrylic rubbers such as hydrogenated saturated rubber, isoprene rubber, chloroprene rubber, polybutyl acrylate, etc. — Olefin copolymer rubbers and the like. Among these, ethylene-a-olefin copolymer rubber mainly composed of ethylene and α -olefin or a polymer having a structure similar thereto has excellent weather resistance, mechanical strength, etc. Particularly preferred. Here, the polymer having a similar structure is, for example, a rubber obtained by adding hydrogen to polybutadiene, becomes a rubber having a structure similar to an ethylene / butene-11 copolymer by weight, and refers to such a polymer.
このエチレン ' ctーォレフイン系共重合体ゴムのうち、 エチレンと炭素数 3〜 2 0の a—ォレフィンを主体としたエチレン . α—ォレフイン系共重合体がより 好ましい。 炭素数 3〜 2 0のひーォレフインとしては、 例えば、 プロピレン、 ブ テンー1、 ペンテン一 1、 へキセン一 1 、 4ーメチノレペンテン一 1、 ヘプテン一 1、 ォクテン一 1、 ノネンー 1、 デセン一 1、 ゥンデセン一 1、 ドデセン一 1等 が挙げられる。 これらひーォレフインは単独で用いてもよいし、 又は 2種以上を 組み合わせてもよい。  Among these ethylene-ct-olefin copolymer rubbers, an ethylene-α-olefin copolymer mainly comprising ethylene and a-olefin having 3 to 20 carbon atoms is more preferable. Examples of the haloolefins having 3 to 20 carbon atoms include propylene, butene-1, pentene-1, hexene-1, 4-methinolepentene1, heptene-1, octene1, nonene-1, decene-1. 1, undesen-1 and dodecene 1-1. These phosphores may be used alone or in combination of two or more.
更に第 3成分として共重合成分を含むこともできる。 第 3成分の共重合成分と しては 1, 3—ブタジエン、 イソプレン等の共役ジェン、 ジシク口ペンタジェン、 1 , 4—へキサジェン、 シクロォクタジェン、 メチレンノノレボルネン、 ェチリデ ンノルボルネン等の非共役ジェン等が挙げられる。 第 3成分の共重合成分を含む エチレン ' α—ォレフィン系共重合体ゴムとしては、 例えば、 エチレン一プロピ レンンー共役若しくは非共役ジェン三元共重合体ゴム (E P DM) 等を挙げるこ とができる。  Further, a copolymer component may be included as the third component. Examples of the third component are non-conjugated components such as 1,3-butadiene and isoprene; conjugated pentagens; Conjugated Gens and the like. Examples of the ethylene 'α-olefin copolymer rubber containing the third component copolymer component include, for example, ethylene-propylene-conjugated or non-conjugated gen terpolymer rubber (EPDM) and the like. .
しかしながら、 本発明成形品の一つの用途である電動工具ハウジングにおいて、 その工具ほ屋外で使用されることが多く、 耐候性が要求される。 従って、 共役若 しくは非共役ジェンを含むエチレン · α—ォレフィン系共重合体ゴムは、 共役若 しくは非共役ジェンを含まないエチレン · α—ォレフィン系共重合体ゴムに比較 して耐候性に劣り好ましくない。  However, in the electric tool housing which is one application of the molded article of the present invention, the tool is often used outdoors, and weather resistance is required. Therefore, the ethylene / α-olefin copolymer rubber containing no conjugated or non-conjugated gen has better weather resistance than the ethylene / α-olefin copolymer rubber containing no conjugated or non-conjugated gen. Inferior and not preferred.
本発明は、 共役若しくは非共役ジェンを含むエチレン · α—ォレフィン系共重 合体ゴムを排除するものではないが、 共役若しくは非共役ジェンを含まないェチ レン · α—ォレフイン系共重合体ゴムの方がより好ましい。 この例としては、 ェ チレンとへキセン一 1、 4ーメチルペンテン一 1又はオタテン一 1との共重合体 ゴム等を挙げることができる。 これらの中でも、 特にエチレンとオタテン一 1と の共重合体ゴムが好ましい。 理由は、 耐候性、 ゴム弾性等に優れることによる。 また、 本発明成形品で熱可塑性樹脂をポリオレフイン系樹脂とし、 その成形品を 電動工具ハウジング等に使用すると、 工具を落下させた時、 その衝撃により成形 品が白化することが指摘されており、 分岐度の高いゴム、 即ち長鎖の分岐を持つ ゴムを使用した方が白化し難レ、ことにもよる。 The present invention does not exclude an ethylene / α-olefin copolymer rubber containing a conjugated or non-conjugated diene, but does not exclude an ethylene / α-olefin-based copolymer rubber containing no conjugated or non-conjugated diene. Is more preferred. Examples thereof include copolymer rubbers of ethylene and hexene-11,4-methylpentene-11 or otaten-11. Among these, a copolymer rubber of ethylene and otaten-11 is particularly preferred. The reason is that it has excellent weather resistance and rubber elasticity. Further, in the molded article of the present invention, the thermoplastic resin is a polyolefin resin, and the molded article is It has been pointed out that when used in a power tool housing, etc., when the tool is dropped, the impact will cause the molded product to whiten.It is better to use rubber with a high degree of branching, that is, rubber with long chain branches. Difficult to convert, it depends.
本発明のゴム状重合体として好適に用いられるエチレン ·ォクテン _ 1共重合 体ゴムは、 メタ口セン系触媒を用いて製造されたものが好ましい。 また、 本発明 成形品を得るために使用する原材料としてのエチレン · α—ォレフィン共重合体 ゴムのメルトインデックスは、 0. 01〜: l OO g/10分 (190。C、 2. 1 6 k g) の範囲にあることが好ましく、 更に好ましくは 0. 2〜20 gZl O分 である。 100 gZl 0分を超えるとゴム状重合体のゴム弾性が不十分であり、 また 0. 01/10分より小さいと本発明の成形品を得るための成形時に、 流動 性が悪く、 加工性が低下してしまい望ましくない。  The ethylene octene-1 copolymer rubber suitably used as the rubbery polymer of the present invention is preferably one produced using a meta-mouth catalyst. The melt index of the ethylene / α-olefin copolymer rubber used as a raw material for obtaining the molded article of the present invention is from 0.01 to: 100 g / 10 min (190.C, 2.16 kg )), And more preferably 0.2 to 20 gZlO. If it exceeds 100 gZl 0 minutes, the rubber elasticity of the rubbery polymer is insufficient, and if it is less than 0.01 / 10 minutes, the flowability is poor at the time of molding to obtain the molded article of the present invention, and the processability is poor. It is undesirably reduced.
本発明成形品の好ましい成分であるゴム状重合体は、 部分的又は完全に架橋し ていることがより好ましい。 その理由は、 上述の如く、 本発明の成形品を得るた めに成形品用材料を成形加工する際、 樹脂はその流動方向に引き伸ばされ配向す るが、 ゴム状重合体が架橋されていると、 流動方向に引き伸ばされることなく原 料のゴム状重合体の形状を成形品中でも維持することができ、 そのためガラス繊 維が配向していてもゴム状重合体がその方向性を緩和するからである。  The rubbery polymer, which is a preferred component of the molded article of the present invention, is more preferably partially or completely crosslinked. The reason for this is that, as described above, when molding a material for a molded article to obtain the molded article of the present invention, the resin is stretched and oriented in the flow direction, but the rubber-like polymer is crosslinked. Therefore, the shape of the rubber-like polymer of the raw material can be maintained in the molded article without being stretched in the flow direction, so that even if the glass fiber is oriented, the rubber-like polymer relaxes the directionality. It is.
架橋させる場合は、 熱可塑性榭脂成形品中に存在する全ゴム状重合体中の架橋 しているゴム状重合体 (溶媒に溶解しないゴム状重合体) の比率を架橋度として 定義すると、 架橋度は、 20%以上が好ましく、 更に、 50%以上であることが より好ましい。  In the case of crosslinking, the ratio of the crosslinked rubbery polymer (rubbery polymer that does not dissolve in the solvent) in the total rubbery polymer present in the thermoplastic resin molded product is defined as the degree of crosslinking, The degree is preferably at least 20%, more preferably at least 50%.
本発明成形品中の好ましい成分であるゴム状重合体は、 それを一成分とする場 合、 その含有量は、 1〜30重量%、 好ましくは 5〜30重量%、 更に好ましく は 10〜30重量%、 最も好ましくは 15〜25重量%である。 成形品の機械的 強度、 特に耐衝撃性は、 成形品中のゴム状重合体の形状、 即ちモルフォロジ一に 大きく左右される。 その形状は、 成形時の流れ方向に直角な方向の切断面からの 円換算数平均粒子径が 0. 1〜1. 5 /xmであることが好ましい。 更に 0. 2〜 1. 2 πιであることがより好ましい。 ここで、 ゴム状重合体が架橋していない 場合には、 成形時の流れ方向に引き伸ばされるため、 成形品中のゴム状重合体の 形状を電顕観察すると、 流れ方向に平行な面と直角の面では形状が異なる。 また、 成形品の表層部と内部、 ゲート部と端末部等でもやや形状が異なる。.そのため、 本発明の成形品のゴム状重合体の形状は、 成形品の中央部且つ中心部の成形時の 流れ方向に直角な方向の切断面からの円換算数平均粒子径で定義する。 なお、 円 換算平均粒子径とは、 成形品中に存在するゴム状重合体の形状は、 架橋している、 いないにかかわらず、 必ずしも球状ではないので、 電顕観察写真を画像解析等に より円に換算し、 その直径の数平均値で表したものである。 円換算数平均粒子径 が 0 . 1 μ m以下の場合、 機械的強度改良効果が充分ではない。 一方、 1 . 5 μ m以上の場合も機械的強度改良効果が充分ではない。 When the rubbery polymer which is a preferable component in the molded article of the present invention is used as one component, its content is 1 to 30% by weight, preferably 5 to 30% by weight, more preferably 10 to 30% by weight. %, Most preferably 15 to 25% by weight. The mechanical strength, especially the impact resistance, of a molded article largely depends on the shape of the rubbery polymer in the molded article, that is, the morphology. The shape is preferably such that the number average particle diameter in terms of a circle from a cut surface in a direction perpendicular to the flow direction during molding is 0.1 to 1.5 / xm. More preferably, it is 0.2 to 1.2ππ. Here, if the rubber-like polymer is not crosslinked, it is stretched in the flow direction at the time of molding, so that the rubber-like polymer in the molded article is When the shape is observed with an electron microscope, the shape differs between the plane parallel to the flow direction and the plane perpendicular to the flow direction. In addition, the shapes are slightly different between the surface layer and the inside of the molded product, and between the gate and the terminal. For this reason, the shape of the rubber-like polymer of the molded article of the present invention is defined by the number-average particle diameter in terms of a circle from the center of the molded article and a cross section perpendicular to the flow direction at the time of molding at the center. The average particle size in terms of circle means that the shape of the rubbery polymer present in the molded product is not necessarily spherical regardless of whether it is crosslinked or not. It is converted into a circle and expressed as the number average of its diameter. When the number average particle diameter in circle is less than 0.1 μm, the effect of improving mechanical strength is not sufficient. On the other hand, when the thickness is 1.5 μm or more, the effect of improving mechanical strength is not sufficient.
本発明の成形品中のゴム状重合体は、 それを一成分とする場合は、 複数の種類 のものを混合して用いてもよい。 この場合には、 加工性の更なる向上を図ること ができる。  When the rubber-like polymer in the molded article of the present invention is used as one component, a plurality of types may be mixed and used. In this case, the workability can be further improved.
次に、 本発明の熱可塑性樹脂成形品中の熱可塑性樹脂について述べる。  Next, the thermoplastic resin in the thermoplastic resin molded article of the present invention will be described.
本発明の熱可塑性樹脂成形品中の熱可塑性榭脂は、 好ましく使用されるゴム状 重合体と相溶若しくは均一分散し得るもの、 又は相溶化剤併用で相溶若しくは均 一分散し得るものであれば特に制限はなレ、。 例えば、 ポリスチレン系、 ポリフエ 二レンエーテル系、 ポリオレフイン系、 ポリ塩化ビニル系、 ポリアミド系、 ポリ エステル系、 ポリフエ二レンスルフイド系、 ポリカーボネート系、 ポリメタクリ レート系等の樹脂の単独又は 2種以上を混合したものを使用することができる。 これらの中でも熱可塑性樹脂としては、 ポリオレフイン系樹脂が好ましい。 その 理由は、 本発明の熱可塑性樹脂成形品にゴム状重合体を共存させる場合、 そのゴ ム状重合体として好適に用いるエチレン · ひーォレフイン共重合体ゴム又はそれ に類似の構造を持つ重合体と親和性が強く、 高強度のものが得られることによる。 本発明において好適に用いられるポリオレフイン系樹脂は、 大きく分けてポリ エチレン系榭月旨、 ポリプロピレン系樹脂又はポリエチレン系榭脂とポリプロピレ ン系樹脂の混合物からなる。  The thermoplastic resin in the thermoplastic resin molded article of the present invention is one that is compatible or uniformly dispersed with the rubbery polymer preferably used, or one that is compatible or uniformly dispersed with a compatibilizer. If there are any restrictions, For example, polystyrene, polyphenylene ether, polyolefin, polyvinyl chloride, polyamide, polyester, polyphenylene sulfide, polycarbonate, polymethacrylate resins, etc., or a mixture of two or more resins Can be used. Among these, a polyolefin-based resin is preferable as the thermoplastic resin. The reason is that, when a rubber-like polymer is allowed to coexist with the thermoplastic resin molded article of the present invention, an ethylene-diol copolymer rubber preferably used as the rubber-like polymer or a polymer having a structure similar thereto This is because it has a high affinity and high strength. The polyolefin-based resin suitably used in the present invention is roughly classified into a polyethylene-based resin, a polypropylene-based resin, or a mixture of a polyethylene-based resin and a polypropylene-based resin.
ポリエチレン系樹脂としては、 高密度ポリエチレン (HD P E) 、 低密度ポリ エチレン (L D P E) 、 直鎖状低密度ポリエチレン (L L D P E) 、 アクリル系 ビュルモノマーとエチレンとの共重合体 (E E A、 EMMA等) 又は酢酸ビュル モノマーとエチレンとの共重合体 (EVA) 等を挙げることができる。 し力 しな がら、 これらの中でも高密度ポリエチレン (HDPE) 、 低密度ポリエチレン (LDPE) 及ぴ直鎖状低密度ポリエチレン (LLDPE) 1 耐熱性が高く且 つ安価に入手できるため、 特に好ましい。 これらのポリエチレン系樹脂は、 単独 で用いてもよいし、 また 2種以上を組み合わせて用いてもよい。 Examples of polyethylene resins include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), copolymers of acrylic-based monomer and ethylene (EEA, EMMA, etc.) or Bull acetate Copolymers of monomers and ethylene (EVA) and the like can be mentioned. Among these, high-density polyethylene (HDPE), low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) 1 are particularly preferable because they have high heat resistance and can be obtained at low cost. These polyethylene resins may be used alone or in combination of two or more.
高密度ポリエチレン (HDPE) を本発明成形品用の材料として使用する場合、 その密度は、 一般に、 0. 930〜0. 970
Figure imgf000011_0001
の範囲であり、 190 °C、 2. 16 k g荷重で測定されたメルトフローレート (MFR) は、 0. 05 〜100 g/l 0分の範囲であることが好ましい。 低密度ポリエチレン (LDP E) 又は直鎖状低密度ポリエチレン (LLDPE) を使用する場合、 その密度は、 一般に、 0. 900〜0. 930 g/c m2の範囲であり、 190°C、 2. 16 k g荷重で測定されたメルトフローレート (MFR) は、 0. 05〜: l O O gZ 10分の範囲であることが好ましい。 メルトフローレートが 100 g/10分を 超えると、 本発明成形品の機械的強度、 耐熱性が不十分であり、 また 05 g Z10分より小さいと、 本発明の成形品を得るために使用する材料を成形する際、 流動性が悪く、 成形加工性が低下して望ましくない。
When high-density polyethylene (HDPE) is used as the material for the molded article of the present invention, its density generally ranges from 0.930 to 0.970.
Figure imgf000011_0001
The melt flow rate (MFR) measured at 190 ° C. under a load of 2.16 kg is preferably in the range of 0.05 to 100 g / l 0 min. When using low density polyethylene (LDP E) or linear low density polyethylene (LLDPE), its density is generally a 0.900 to 0. Of 930 g / cm 2 range, 190 ° C, 2. The melt flow rate (MFR) measured at a load of 16 kg is preferably in the range of 0.05 to: 100 gZ for 10 minutes. If the melt flow rate exceeds 100 g / 10 minutes, the molded article of the present invention has insufficient mechanical strength and heat resistance, and if the melt flow rate is less than 05 g Z10 minutes, it is used to obtain the molded article of the present invention. When molding a material, the flowability is poor and the molding processability is undesirably reduced.
ポリプロピレン系榭脂としては、 ポリプロピレン (ホモポリマー) 、 プロピレ ンとエチレン、 ブテン一 1、 ペンテン一 1、 へキセン一 1等の他の α—ォレフィ ンとの共重合体樹脂 (ブロック、 ランダム共重合体を含む) 等を挙げることがで さる。  Examples of the polypropylene resin include polypropylene (homopolymer) and copolymer resin (block, random copolymer) of propylene and other α-olefins such as ethylene, butene-11, pentene-11, hexene-11. (Including coalescence).
本発明の成形品を得るために使用するポリプロピレン系樹脂の 230°C、 2. 16 k g荷重で測定されたメルトフローレート (MFR) は、 0. 1〜:! O O g /10分の範囲であることが好ましい。 メルトフローレートが 100 g/10分 を超えると、 本発明成形品の機械的強度、 耐熱性が不十分であり、 また 0. l g /10分より小さいと本発明成形品を得るために成形を行う際、 流動性が悪く、 成形加工性が低下して望ましくない。  The melt flow rate (MFR) of the polypropylene resin used to obtain the molded article of the present invention measured at 230 ° C and under a load of 2.16 kg is 0.1 to :! It is preferably in the range of O O g / 10 min. If the melt flow rate exceeds 100 g / 10 minutes, the mechanical strength and heat resistance of the molded article of the present invention are insufficient, and if the melt flow rate is less than 0.1 lg / 10 minutes, molding is performed to obtain the molded article of the present invention. In this case, the flowability is poor and the molding processability is undesirably reduced.
本発明成形品を得るために好ましく使用するポリオレフイン系樹脂は、 上述の 如くポリェチレン系樹脂及び/又はポリプロピレン系樹脂からなるが、 例えば本 発明の成形品を電動工具ハウジングの用途に使用する場合、 内蔵するモーターの 発熱によりハウジングそのものも高温となり耐熱性が要求されるので、 ポリプロ ピレン系樹脂は耐熱性が高くより好ましい。 更に、 ラジエータータンク等の用途 に使用する場合は、 高温のクーラント液に接するため、 この場合も耐熱性が要求 され、 ポリプロピレン系樹脂がより好ましい。 し力 しながら、 ポリプロピレンの ホモポリマーは一般に酸化分解し易く、 長期使用時の分子量低下により、 機械的 強度が低下する傾向にある。 一方、 ポリエチレンは一般に酸ィヒ分解せず、 架橋に より機械的強度を維持又は向上させる傾向がある。 そのため、 ポリプロピレン系 樹脂を使用する際、 特に、 耐久性が要求される用途では、 ポリプロピレンのホモ ポリマーとポリエチレン系榭脂とを併用するか、 又はプロピレンモノマーとェチ レン系モノマーのランダム若しくはプロックポリマーを使用又は併用することが 好ましい場合がある。 The polyolefin resin preferably used for obtaining the molded article of the present invention is composed of a polyethylene resin and / or a polypropylene resin as described above. For example, when the molded article of the present invention is used for a power tool housing, the Motor Since the housing itself becomes high temperature due to heat generation and heat resistance is required, a polypropylene resin is more preferable because of its high heat resistance. Furthermore, when used in applications such as radiator tanks, they come in contact with high-temperature coolant liquids, and therefore also require heat resistance in this case, and polypropylene resins are more preferable. However, polypropylene homopolymers are generally susceptible to oxidative degradation, and their mechanical strength tends to decrease due to molecular weight reduction during long-term use. On the other hand, polyethylene generally does not decompose with acid and tends to maintain or improve mechanical strength by crosslinking. Therefore, when using a polypropylene resin, especially in applications where durability is required, a homopolymer of polypropylene and a polyethylene resin are used in combination, or a random or block polymer of a propylene monomer and an ethylene monomer is used. It may be preferable to use or use together.
なお、 本発明の熱可塑性樹脂成形品中の熱可塑性樹脂は、 ゴム状重合体として 好適に用いられるエチレン · α—ォレフイン共重合体ゴム又はそれに類似の構造 を持つ重合体と親和性が高く、 高強度のものが得られることから、 ポリオレフィ ン系樹脂であることが好ましいが、 上述の如くポリスチレン系樹脂、 ポリフエ二 レンエーテル系樹脂等のポリオレフィン系樹脂以外の熱可塑性樹脂も使用するこ とができる。  The thermoplastic resin in the thermoplastic resin molded article of the present invention has a high affinity for an ethylene-α-olefin copolymer rubber suitably used as a rubber-like polymer or a polymer having a structure similar thereto, It is preferable to use a polyolefin resin because a high-strength resin can be obtained, but it is also possible to use a thermoplastic resin other than a polyolefin resin such as a polystyrene resin and a polyphenylene ether resin as described above. it can.
ポリオレフイン系榭脂以外の熱可塑性樹脂を使用する場合は、 ゴム状重合体と して好適に用いられるエチレン · ひ一ォレフィン共重合体ゴムと相溶性が必ずし も良くない場合が多い。 その場合は相溶化剤を使用する。 相溶化剤としては、 分 子内にポリオレフィン系成分と、 使用する熱可塑性榭脂の成分又はその熱可塑性 樹脂と相溶する成分とを共に持つ高分子材料等を挙げることができる。 その例と して、 例えばポリスチレン系樹脂の場合は、 水素添加スチレン一ブタジエンブロ ック樹脂、 スチレングラフトポリエチレン等を挙げることができる。 ポリスチレ ン系樹脂以外の熱可塑性樹脂を使用する場合の相溶化剤は、 同じような考え方で その材料を選定する。  When a thermoplastic resin other than a polyolefin-based resin is used, the compatibility with the ethylene-polyolefin copolymer rubber preferably used as the rubber-like polymer is often not necessarily good. In that case, a compatibilizer is used. Examples of the compatibilizer include a polymer material having both a polyolefin-based component and a thermoplastic resin component to be used in the molecule or a component compatible with the thermoplastic resin. Examples of the polystyrene resin include hydrogenated styrene-butadiene block resin and styrene-grafted polyethylene. When using a thermoplastic resin other than a polystyrene resin, the compatibilizer should be selected in a similar way.
本発明の熱可塑性樹脂成形品は、 上述の如く少なくともガラス繊維及ぴ好まし くはゴム状重合体とを含む熱可塑性樹脂からなるが、 必要に応じてその他の成分、 熱可塑性を付与するマトリックスである熱可塑性樹脂以外のポリマー (改質剤) 、 軟質剤、 粉末状無機フィラー、 ゥイスカー及び可塑剤等を含有することが可能で ある。 マトリックスである熱可塑性樹脂以外のポリマー (改質剤) として、 特に ガラス繊維と本発明の熱可塑性樹脂とを界面接着させることのできる熱可塑性榭 脂等を挙げることができる。 例えば、 本発明の熱可塑性樹脂として好適に用いる ポリオレフイン系樹脂の場合、 ガラス繊維とマトリックスである熱可塑性樹脂と の界面接着性を向上させる材料として、 例えばマレイン酸変成ポリオレフィン又 はマレイン酸との共重合ポリオレフイン、 アクリル酸変成ポリオレフイン又はァ クリル酸との共重合ポリオレフイン、 フマル酸変成ポリオレフイン又はフマル酸 との共重合ポリォレフィン等を挙げることができる。 このような改質剤を共存さ せることが耐衝撃性の向上に有効である。 The thermoplastic resin molded article of the present invention is composed of a thermoplastic resin containing at least glass fiber and preferably a rubber-like polymer as described above, and other components, if necessary, a matrix for imparting thermoplasticity. Polymers other than thermoplastic resins (modifiers), It can contain softeners, powdered inorganic fillers, whiskers and plasticizers. Examples of the polymer (modifier) other than the thermoplastic resin serving as the matrix include a thermoplastic resin capable of interfacially bonding the glass fiber and the thermoplastic resin of the present invention. For example, in the case of a polyolefin resin suitably used as the thermoplastic resin of the present invention, as a material for improving the interfacial adhesion between the glass fiber and the thermoplastic resin as a matrix, for example, a copolymer of maleic acid-modified polyolefin or maleic acid is used. Examples thereof include polymerized polyolefin, acrylic acid-modified polyolefin or copolymerized polyolefin with acrylic acid, fumaric acid-modified polyolefin, and copolymerized polyolefin with fumaric acid. The coexistence of such a modifier is effective for improving the impact resistance.
軟質剤としては、 パラフィン系、 ナフテン系などのプロセスオイルを使用する ことができる。 軟質剤を共存させる時、 剛性はやや低下する傾向にあるが、 耐衝 撃性を更にアップする効果がある。 また、 本発明の成形品を得るために加工を行 う際、 流動性を改良できる効果もあると同時に、 更に、 成形品を落下させた場合 には、 衝撃により周辺部が白化することがある。 この白ィ匕は、 製品価値を低下さ せる力 軟質剤はこの白化を改善する効果もある。  As the softener, a process oil such as a paraffinic or naphthenic oil can be used. When a softener is present, the stiffness tends to decrease slightly, but it has the effect of further improving the impact resistance. In addition, when processing is performed to obtain the molded article of the present invention, there is an effect that fluidity can be improved, and when the molded article is dropped, the peripheral part may be whitened due to impact. . The softening agent has the effect of improving the whitening.
粉末状の無機フイラ一としては、 例えば、 タルク、 マイ力、 クレー、 炭酸カル シゥム、 炭酸マグネシウム、 シリカ、 カーボンブラック、 酸化チタン、 水酸化マ グネシゥム、 水酸ィ匕アルミニウム等が挙げられる。 この中でタルクは、 本発明の 成形品の成分である熱可塑性樹脂として好適に用いられるポリオレフイン系樹脂 の剛性をァップすることが可能となり特に好ましい。 タルクを添加する場合は、 その量は 1〜 5 0重量%、 好ましくは 5〜 4 0重量%、 より好ましくは 5〜 3 0 重量%、 特に好ましくは 1 0〜2 0重量%である。 タルクを共存させる場合は、 熱可塑性樹脂とガラス繊維との組み合わせに共存させてもよいし、 また、 好まし くは熱可塑性樹脂、 ガラス繊維及びゴム状重合体との組み合わせとして共存させ てもよい。  Examples of the powdery inorganic filler include talc, myric, clay, calcium carbonate, magnesium carbonate, silica, carbon black, titanium oxide, magnesium hydroxide, magnesium hydroxide, aluminum hydroxide, and the like. Among them, talc is particularly preferable because it can increase the rigidity of a polyolefin-based resin suitably used as a thermoplastic resin which is a component of the molded article of the present invention. When talc is added, its amount is 1 to 50% by weight, preferably 5 to 40% by weight, more preferably 5 to 30% by weight, particularly preferably 10 to 20% by weight. When talc is made to coexist, it may be made to coexist in a combination of a thermoplastic resin and glass fiber, or preferably in a combination of a thermoplastic resin, glass fiber and a rubbery polymer. .
可塑剤としては、 例えば、 ポリエチレングリコール、 ジォクチルフタレート (D O P ) 等のフタル酸エステ 等が挙げられる。 また、 その他の添加剤、 例え ば、 有機 ·無機顔料、 熱安定剤、 酸化防止剤、 紫外線吸収剤、 光安定剤、 難燃剤、 シリコンオイル、 アンチブロッキング剤、 発泡剤、 帯電防止剤、 抗菌剤等も好適 に使用される。 Examples of the plasticizer include phthalate esters such as polyethylene glycol and octyl phthalate (DOP). Also, other additives, such as organic and inorganic pigments, heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, flame retardants, Silicone oil, antiblocking agents, foaming agents, antistatic agents, antibacterial agents and the like are also suitably used.
次に本発明の熱可塑性樹脂成形品の好まし 、製造方法について述べる。  Next, a preferred method for producing the thermoplastic resin molded article of the present invention will be described.
本発明の成形品は、 ガラス繊維そのもの又はラテックス若しくは熱可塑性樹脂等 で固めたガラス繊維等と熱可塑性樹脂とをブレンドし、 このプレンド品を直接成 形することにより得られる。 好ましくはガラス繊維そのもの又はラテックス若し くは熱可塑性樹脂で固めたガラス繊維等とゴム状重合体 (好ましくは部分的又は 完全に架橋されたゴム状重合体) を含む熱可塑性樹脂 (以下、 熱可塑性エラスト マーと称する) 及ぴ必要に応じて熱可塑性樹脂をブレンドし、 このブレンド品を 直接射出成形する方法で本発明の成形品を得る。 この方法を実施する場合、 混練 が射出成形時の一度で済むため、 二軸押出機でプレンドし更に射出成形すること を要する短繊維法に比較して、 成形品中の繊維長を長く維持することができ、 高 い剛性の成形品を得ることができる。 更に好ましい方法は、 ガラス繊維の束 (口 一ビング) をラテックスに浸漬する力 若しくはロービングに熱可塑性樹脂を含 浸させるか、 又は熱可塑性樹脂を押出してロービングに樹脂を被覆して、 ペレツ ト長と同じ長さのガラス繊維を含む熱可塑性樹脂ペレット (以下、 長繊維ペレツ トと称す) を作製し、 これと熱可塑性樹脂ペレットとをペレットブレンドし、 こ のプレンド品を射出成形する方法である。 成形品中にゴム状重合体を一成分とし て含む場合は、 上記長繊維ペレットとゴム状重量体 (好ましくは部分的又は完全 に架橋されたゴム状重合体) を含む熱可塑性樹脂ペレット (以下、 熱可塑性エラ ストマーペレッ トと称す) 、 必要に応じて熱可塑性樹脂べレットをぺレットブレ ンドし、 このブレンド品を射出成形する。 成形品中にタルクを一成分として含む 場合は、 上記長繊維ペレットとタルクを含む熱可塑性樹脂ペレット、 好ましくは 熱可塑性エラストマ一ペレツト、 必要に応じて熱可塑性樹脂ペレツ トをペレット ブレンドし、 このブレンド品を射出成形する。 熱可塑性樹脂としてポリオレフィ ン系榭脂を使用する場合、 この樹脂とガラス繊維との接着性を上げるために好ま しく添加するマトリックスである熱可塑性樹脂以外のポリマーは、 ガラス繊維を 被覆する熱可塑性樹脂中、 熱可塑性エラストマ一中又は熱可塑性樹脂中に添カロし たもののいずれか、 又はその組合せを用いる。 ここで最も好適に用いられる部分的又は完全架橋されたゴム状重合体を含む熱 可塑性樹脂からなる、 架橋ゴムを含む熱可塑性エラストマ一の製造方法を、 熱可 塑性樹脂としてポリオレフイン系樹脂を例に挙げて説明する。 The molded article of the present invention can be obtained by blending glass fiber itself or glass fiber hardened with latex or a thermoplastic resin with a thermoplastic resin, and directly molding this blended article. Preferably, a thermoplastic resin containing a glassy fiber or a rubbery polymer (preferably a partially or completely crosslinked rubbery polymer) and a glass fiber or the like hardened with a latex or a thermoplastic resin (hereinafter referred to as “thermoplastic”). The thermoplastic resin is blended with a thermoplastic resin if necessary, and the molded product of the present invention is obtained by a method of directly injection-molding the blended product. When this method is carried out, kneading is performed only once at the time of injection molding, so that the fiber length in the molded product is maintained longer than the short fiber method which requires blending with a twin-screw extruder and injection molding. Therefore, a molded product having high rigidity can be obtained. A more preferable method is to impregnate a thermoplastic resin into a force for dipping a bundle of glass fibers (or a bing) into a latex or a roving, or to extrude a thermoplastic resin and coat the roving with a resin, thereby forming a pellet length. This is a method in which thermoplastic resin pellets containing glass fibers of the same length as above (hereinafter referred to as long fiber pellets) are prepared, and this is pellet-blended with the thermoplastic resin pellets, and this blended product is injection-molded. . When the molded article contains a rubber-like polymer as one component, thermoplastic resin pellets containing the above-mentioned long-fiber pellets and a rubber-like weight (preferably a partially or completely crosslinked rubber-like polymer) (hereinafter referred to as “thermoplastic pellets”). This is called thermoplastic elastomer pellets.) If necessary, blend the thermoplastic resin pellets with pellets and injection-mold this blend. When talc is contained as one component in the molded article, the above-mentioned long fiber pellets and thermoplastic resin pellets containing talc, preferably thermoplastic elastomer pellets, and if necessary, thermoplastic resin pellets are blended by pellet blending. The product is injection molded. When a polyolefin resin is used as the thermoplastic resin, a polymer other than the thermoplastic resin, which is a matrix preferably added to increase the adhesiveness between the resin and the glass fiber, is a thermoplastic resin that coats the glass fiber. Medium, thermoplastic elastomer or thermoplastic resin added with caro, or a combination thereof. Here, a method for producing a thermoplastic elastomer containing a crosslinked rubber, which is composed of a thermoplastic resin containing a partially or completely crosslinked rubbery polymer, which is most preferably used, is exemplified by a polyolefin resin as the thermoplastic resin. A description is given below.
好ましくは、 エチレンと α—ォレフィンを主体としたエチレン · α—才レフィ ン系共重合体及び Ζ又はそれに類似の構造を持つ重合体、 ポリオレフイン系樹脂、 架橋剤及び架橋助剤を二軸押出機、 パンバリーミキサー等で熱処理する。 この際、 好ましく使用する架橋剤としては、 有機過酸化物、 有機ァゾ化合物等のラジカル 開始剤が挙げられる。 ラジカル開始剤の具体的な例としては、 1 , 1一ビス ( t --ブチルパーォキシ) —3, 3, 5—トリメチルシク口へキサン、 1, 1—ビス ( t—へキシルバーォキシ) 一 3, 3, 5—トリメチルシク口へキサン、 1, 1 一ビス ( t一へキシルパ一ォキシ) シク口へキサン、 1 , 1 -ビス ( tーブチノレ バーオキシ) シク口ドデカン、 1, 1 _ビス ( tーブチノレパーォキシ) シク口へ キサン、 2 , 2一ビス ( tーブチノレバーオキシ) オクタン、 n—ブチルー 4, 4 一ビス ( t一プチノレパーォキシ) ブタン、 n—プチルー 4, 4一ビス ( t -プチ ルパーォキシ) バレレート等のパーォキシケタール類; ジー t—ブチルバーォキ シド、 ジクミノレノヽ。一ォキシド、 t一プチノレクミノレパーォキシド、 α, ' 一ビス ( t一プチノレパーォキシ一 m—ィソプロピル) ベンゼン、 a , a, ―ビス ( t― プチ^^パーォキシ) ジイソプロピルベンゼン、 2, 5—ジメチルー 2, 5 _ビス ( t—ブチルパーォキシ) へキサン及ぴ 2 , 5—ジメチルー 2, 5—ビス ( t— ブチルパーォキシ) へキシン _ 3等のジアルキルパーォキシド類;ァセチルパー ォキシド、 イソブチリルパーォキシド、 ォクタノィルパーォキシド、 デカノィル パーォキシド、 ラウロイルパーォキシド、 3, 5, 5—トリメチルへキサノィル パーォキシド、 ベンゾィルパーォキシド、 2, 4ージクロ口ベンゾィルパーォキ シド及ぴ m—トリオイルパーォキシド等のジァシルパーォキシド類; t一ブチル パーォキシアセテート、 t _ブチルパーォキシイソプチレート、 t一プチルパー ォキシ一 2—ェチルへキサノエート、 t一プチルパーォキシラウリ レート、 t— プチルパーォキシベンゾエート、 ジー t一ブチルパーォキシイソフタレート、 2, 5—ジメチノレー 2, 5—ジ (ベンゾィルパーォキシ) へキサン、 t一プチルパー ォキシマレイン酸、 t—プチルパーォキシィソプロピルカーボネート、 及ぴクミ ルパーォキシォクテ一ト等のパーォキシエステル類;並びに、 tーブチルヒドロ パーォキシド、 タメンヒドロパーォキシド、 ジィソプロピノレベンゼンヒドロパー ォキシド、 2, 5—ジメチルへキサン一 2, 5—ジヒドロパーォキシド及ぴ 1 , 1 , 3 , 3—テトラメチルブチルパーォキシド等のヒドロパーォキシド類を挙げ ることができる。 Preferably, an ethylene / α-olefin copolymer mainly composed of ethylene and α-olefin and a polymer having a structure similar to Ζ or a similar polymer, a polyolefin resin, a cross-linking agent and a cross-linking aid are used in a twin-screw extruder. Heat treatment with a Panbury mixer. In this case, the crosslinking agent preferably used includes a radical initiator such as an organic peroxide and an organic azo compound. Specific examples of the radical initiator include 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexyloxy) -1,3,3 , 5-Trimethylcyclohexane, 1,1-bis (t-hexylpropoxy) cyclohexane, 1,1-bis (t-butylinoxy) Dodecane, 1,1-bis (t-butyl) (Norepoxy) Cyclic hexane, 2,2-bis (t-butynoleveroxy) octane, n-butyl-4,4 Mono-bis (t-ptinoleperoxy) butane, n-butyl-4,4 Peroxyketals such as mono-bis (t-butyl peroxy) valerate; and di-t-butyl baroxyside, dicuminoleno. 1-oxide, t-ptinoleminoleopoxide, α, '-bis (t-ptinoleperoxy-1 m-isopropyl) benzene, a, a, -bis (t-petit ^^ peroxy) diisopropylbenzene, Dialkyl peroxides such as 2,5-dimethyl-2,5_bis (t-butylperoxy) hexane and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne_3; acetyl peroxide, isoacetate Butyryl peroxide, octanoyl peroxide, decanoyl peroxide, lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, benzoyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide and m-trioiloperoxide and other diacyl peroxides; t-butyl peroxyacetate, t_butyl peroxyi Soptylate, t-butyl peroxy-1-ethylhexanoate, t-butyl peroxylaurylate, t-butyl peroxybenzoate, g-t-butyl peroxyisophthalate, 2,5-dimethynolate 2,5-di (Benzoylperoxy) hexane, t-butyl peroxymaleic acid, t-butyl peroxyisopropyl carbonate, and Peroxy esters such as ruperoxy octoxide; t-butyl hydroperoxide, tamen hydroperoxide, diisopropinolebenzene hydroperoxide, 2,5-dimethylhexane-1,2,5-dihydro Hydroperoxides such as peroxide and 1,1,3,3-tetramethylbutyl peroxide can be mentioned.
これらの化合物の中では、 1 , 1一ビス (t一ブチルパーォキシ) 一 3, 3, 5—トリメチルシク口へキサン、 ジー t一プチルパーォキシド、 ジクミルパーォ キシド、 2, 5—ジメチルー 2, 5—ビス ( t一ブチルパーォキシ) へキサン及 ぴ 2, 5—ジメチルー 2, 5—ビス (t—ブチルパーォキシ) へキシン一 3が好 ましい。  Among these compounds, 1,1-bis (t-butylperoxy) -13,3,5-trimethylcyclohexane, di-t-butylperoxide, dicumyl peroxide, 2,5-dimethyl-2,5- Bis (t-butylperoxy) hexane and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexine-13 are preferred.
これらのラジカル開始剤は、 エチレン ' ーォレフイン系共重合体とポリオレ フィン系樹脂との 1 0 0重量部に対し、 0 . 0 2〜 3重量部、 好ましくは 0 . 0 5〜 1重量部の量で用いられる。 架橋のレベルは、 主としてこの量で決まる。 0. 0 2重量部未満では架橋が不十分であり、 3重量部を超えても大きく架橋率が向 上することはない。  These radical initiators are used in an amount of 0.02 to 3 parts by weight, preferably 0.05 to 1 part by weight, based on 100 parts by weight of the ethylene-olefin copolymer and the polyolefin resin. Used in The level of crosslinking is primarily determined by this amount. If the amount is less than 0.02 parts by weight, the crosslinking is insufficient, and if it exceeds 3 parts by weight, the crosslinking ratio is not significantly improved.
架橋助剤としては、 ジビュルベンゼン、 トリァリノレイソシァヌレート、 トリア リルシアヌレート、 ジアセトンジアクリルアミ ド、 ポリエチレンダリコールジァ タリレート、 ポリエチレングリコールジメタタリレート、 トリメチロールプロパ ントリメタタリレート、 トリメチロールプロパントリアタリレート、 エチレング リコールジメタクリレート、 トリエチレングリコーノレジメタクリレート、 ジェチ レングリコーノレジメタクリレート、 ジィソプロぺニノレベンゼン、 p—キノンジ才 キシム、 p, p ' ージベンゾイノレキノンジォキシム、 フエ二ノレマレイミ ド、 ァリ ルメタタリレート、 N, N ' — m—フエ二レンビスマレイミ ド、 ジァリルフタレ ート、 テトラァリルォキシェタン、 1 , 2—ポリブタジエン等が好ましく用いら れる。 これらの架橋助剤は複数のものを併用して用いてもよい。  Cross-linking aids include dibutylbenzene, triarinoleisocyanurate, triaryl cyanurate, diacetone diacrylamide, polyethylene dalicol diatalylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, Trimethylolpropane triatalylate, ethylene glycol dimethacrylate, triethylene glycol resmethacrylate, methylen glycolone resmethacrylate, disopropininolebenzene, p-quinone dixime, p, p 'dibenzoinolequinone dioxime, fu Ninole maleimide, aryl metathalylate, N, N'-m-phenylene bismaleimide, diaryl phthalate, tetraaryl oxetane, 1,2-polybutadiene, etc. are preferred. It is needed. These crosslinking aids may be used in combination of two or more.
架橋助剤は、 エチレン ' ひーォレフイン系共重合体とポリオレフイン系樹脂と の 1 0 0重量部に対し、 0 . 1〜 5重量部、 好ましくは 0 . 5〜 2重量部の量で 用いられる。 0 . 1重量部未満では架橋率が低く好ましくない。 5重量部を超え ても架橋率が大きく向上することはなく好ましくない。 架橋の方法として上記のように架橋剤と架橋助剤を使用することが好ましいが、 これ以外にフエノール樹脂又はビスマレイミド等を架橋剤として使用することも できる。 . The crosslinking aid is used in an amount of 0.1 to 5 parts by weight, and preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the ethylene 'olefin copolymer and the polyolefin resin. If the amount is less than 0.1 part by weight, the crosslinking rate is low, which is not preferable. If the amount exceeds 5 parts by weight, the crosslinking ratio is not significantly improved and is not preferable. It is preferable to use a cross-linking agent and a cross-linking assistant as described above as a cross-linking method. In addition, a phenol resin or bismaleimide may be used as the cross-linking agent. .
次に長繊維ペレツトの製造方法を述べる。  Next, a method for producing a long fiber pellet will be described.
その製造方法は、 溶融した熱可塑性樹脂中にガラス繊維のロービングを浸漬し、 その後所定の長さにペレツト化する方法、 ガラス繊維のロービングを張力下で引 き揃えながら熱可塑性樹脂を押出機により側方から押出し、 ガラス繊維の表面に 熱可塑性樹脂を押出し、 ペレット化する方法 (一般にプルトルージョン法と言わ れる方法) 、 又はェマルジヨン (ラテックス) 中にガラス繊維のロービングを浸 漬し、 その後乾燥し所定の長さにペレット化する方法等がある。 ガラス繊維に被 覆する熱可塑性樹脂は、 上述の樹脂を適宜選んで使用することができるが、 マト リックスとなる熱可塑性樹脂と同一であることが好ましい。 また、 ェマルジョン は、 マトリックスである熱可塑性樹脂と同一又は相溶するものを選ぶことが好ま しレ、。 エマノレジョンの例として、 例えば、 熱可塑性樹脂がポリオレフイン系樹脂 の場合は、 エチレン—酢酸ビニルェマルジヨン、 熱可塑性樹脂がポリスチレン系 樹脂、 変性ポリフエ二レンエーテル系樹脂の場合は、 スチレン一ブタジエンエマ ルジョン、 熱可塑性榭脂がポリアクリロニトリル一スチレン系樹脂 (A S ) 、 ポ リアクリロニトリ^ —ブタジエン一スチレン系榭 S旨 (A B S ) 、 ポリカーボネー ト系樹脂 (P C) 、 ポリエステル系樹脂 (P E T、 P B T等) の場合は、 アタリ ロニトリル一スチレンェマルジヨン、 熱可塑性樹脂がポリアミドの場合は、 ウレ タン系ェマ^^ジョン等を使用することができる。  The manufacturing method is a method of dipping a glass fiber roving in a molten thermoplastic resin and then pelletizing it to a predetermined length.The extruder extrudes the thermoplastic resin while aligning the glass fiber roving under tension. Extrusion from the side, extruding thermoplastic resin on the surface of glass fiber and pelletizing (general method called pultrusion method), or dipping glass fiber rovings in emulsion (latex) and then drying There is a method of pelletizing to a predetermined length. As the thermoplastic resin to be coated on the glass fiber, any of the above-mentioned resins can be appropriately selected and used, but is preferably the same as the thermoplastic resin to be a matrix. Also, it is preferable that the emulsion be the same as or compatible with the thermoplastic resin as the matrix. Examples of emanolions include, for example, ethylene-vinyl acetate emulsion when the thermoplastic resin is a polyolefin resin, and styrene-butadiene emulsion when the thermoplastic resin is a polystyrene resin or a modified polyphenylene ether resin. The thermoplastic resin is polyacrylonitrile-styrene resin (AS), polyacrylonitrile-butadiene-styrene resin (ABS), polycarbonate resin (PC), polyester resin (PET, PBT, etc.) In the case of), it is possible to use atari lonitrile-styrene emulsion, and when the thermoplastic resin is a polyamide, a urethane-based emulsion may be used.
このようにして得られた長繊維ペレットは、 通常、 2〜1 0 0 mm、 好ましく は 3〜5 0 mm、 より好ましくは 5〜 2 0 mmの長さである。 この長繊維ペレツ トの中には、 ペレット長と同じ長さのガラス繊維が含まれる。 この長繊維ペレツ トと熱可塑性樹脂のペレツトとを混合して適度な成形条件で射出成形するか、 又 は好ましくはこの長繊維ペレツトとゴム状重合体 (好ましくは部分的又は完全に 架橋されたゴム状重合体) を含む熱可塑性エラストマ一のペレツト及ぴ z又はタ ルクを含む熱可塑性樹脂、 必要に応じて熱可塑性樹脂のペレットとを混合して適 度な成形条件で射出成形する。 本発明の成形品を得るためには、 射出成形のほか、 押出成形、 圧縮成形等で成 形加工を行うことも可能である。 The long fiber pellets thus obtained are usually 2 to 100 mm, preferably 3 to 50 mm, more preferably 5 to 20 mm in length. This long fiber pellet contains glass fibers of the same length as the pellet length. This long fiber pellet is mixed with a thermoplastic resin pellet and injection-molded under appropriate molding conditions, or preferably, the long fiber pellet is mixed with a rubber-like polymer (preferably partially or completely cross-linked). A pellet of a thermoplastic elastomer containing a (rubber-like polymer), a thermoplastic resin containing z or a torque, and, if necessary, a pellet of a thermoplastic resin are mixed and injection-molded under appropriate molding conditions. In order to obtain the molded article of the present invention, it is possible to perform molding by extrusion molding, compression molding, or the like, in addition to injection molding.
このように製造された本発明の成形品は、 外観に優れ、 且つ高剛性 ·高強度で 更に耐熱性にも優れた製品となる。  The molded article of the present invention thus produced is a product having excellent appearance, high rigidity, high strength, and excellent heat resistance.
本発明の成形品は、 用途によっては成形品の表面を軟質化することが望まれ る。 例えば電動工具のハウジングにおいては、 電動工具を握る部分を軟質化する ことにより、 使用時に疲れない、 暖かみを感じる等の効果を付与することができ る。 本発明の成形品の表面を軟質ィ匕することは、 好ましくは、 例えば、 本発明の 成形品用材料と熱可塑性エラストマ一とを二色成形する、 本発明成形品を金型に 装填して熱可塑性エラストマーをィンサート成形する、 又は本発明の成形品用材 料と熱可塑性エラストマ一とを共押出する等の方法により積層品を作製すること により行われる。 熱可塑性エラストマ一としては、 上記ゴム状重合体 (好ましく は部分的又は完全に架橋されたゴム状重合体) を含む熱可塑性エラストマ一が好 ましい。 本発明の成形品中の熱可塑性樹脂及び好ましく共存させるゴム状重合体 とこの表面に積層する熱可塑性エラストマ一中の熱可塑性樹脂及びゴム状重合体 は、 各々両者で異なってもよいし、 同一であってもよい。 し力 しながら、 同一で あることが好ましい。 その理由は、 同一成分である方が成形品とこの上に積層す る熱可塑性エラストマ一との密着性が良いと同時に、 この材料をリサイクル使用 する場合、 成形品と熱可塑性エラストマ一とを剥離しなくても、 その積層品その ものを粉枠し、 強度が低下する分、 ガラス繊維を追加し、 その後これを原料とし て本発明の成形品の製造に再使用することができること等による。  The molded article of the present invention is desired to soften the surface of the molded article depending on the use. For example, in the housing of a power tool, by softening a portion for gripping the power tool, it is possible to impart effects such as not to be tired during use and to feel warmth. The soft molding of the surface of the molded article of the present invention is preferably performed, for example, by molding the molded article material of the present invention and a thermoplastic elastomer in two colors, and loading the molded article of the present invention in a mold. This is carried out by insert molding of a thermoplastic elastomer, or by co-extrusion of the molded article material of the present invention and a thermoplastic elastomer to produce a laminate. As the thermoplastic elastomer, a thermoplastic elastomer containing the above-mentioned rubbery polymer (preferably, a partially or completely crosslinked rubbery polymer) is preferable. The thermoplastic resin and the rubbery polymer preferably coexisting in the molded article of the present invention and the thermoplastic resin and the rubbery polymer in the thermoplastic elastomer laminated on this surface may be different from each other or the same. It may be. However, it is preferable that they be the same. The reason is that the same component has better adhesion between the molded product and the thermoplastic elastomer laminated on it, and at the same time, when this material is recycled, the molded product and the thermoplastic elastomer are peeled off Even if this is not done, the laminated product itself is powder-framed, glass fibers are added to the extent that the strength is reduced, and this can be reused as a raw material in the production of the molded article of the present invention.
以下、 本発明を実施例、 比較例により更に詳細に説明するが、 本発明はこれら に限定されるものではない。 なお、 これらの実施例及ぴ比較例において、 各種物 性の評価に用いた試験法、 原材料及び配合に使用した熱可塑性エラストマ一の製 造方法は以下の通りである。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In these examples and comparative examples, the test methods used for evaluating various physical properties, and the production methods of the thermoplastic elastomer used for the raw materials and the blending are as follows.
1 . 試験法 1. Test method
(1) 引張強度  (1) Tensile strength
J I S K 6 2 5 1に準拠した方法で 2 3 °Cで測定した。  The measurement was performed at 23 ° C. by a method according to JISK 6251.
(2) 曲げ強度 J I S K6758に準拠した方法で 23 °Cで測定した。 (2) Bending strength It was measured at 23 ° C by a method in accordance with JIS K6758.
(3) 曲げ弾性率  (3) Flexural modulus
J I S K 6758に準拠した方法で 23 °Cで測定した。  The measurement was performed at 23 ° C according to a method according to JIS K 6758.
(4) アイゾット衝撃強度  (4) Izod impact strength
J I S K6758に準拠した方法で 23 °Cで測定した。  The measurement was performed at 23 ° C according to a method according to JIS K6758.
(Vノッチ、 1/4インチ試験片)  (V notch, 1/4 inch specimen)
(5) 落錘衝撃強度  (5) Drop weight impact strength
落錘衝撃試験機 (東洋精機製作所製) を使用し、 落錘先端径 : 1 3. 6 mm、 重量: 6 · 5 k g、 落下高さ 100 c m、 ホルダー直径: 5 mm、 試験厚さ: 3mm、 温度: 23°C、 湿度 50%の条件で全吸収エネ ルギーを測定した。 値が大きい方が割れ難い。  Using a falling weight impact tester (manufactured by Toyo Seiki Seisakusho), tip diameter of falling weight: 13.6 mm, weight: 6.5 kg, falling height 100 cm, holder diameter: 5 mm, test thickness: 3 mm The total absorbed energy was measured at a temperature of 23 ° C and a humidity of 50%. Larger values are more difficult to crack.
(6) 耐熱性 (HDT)  (6) Heat resistance (HDT)
J I S K7207に準拠した方法で測定した。  It was measured by a method according to JIS K7207.
(7) 成形品中のガラス繊維の長さ  (7) Length of glass fiber in molded product
成形品を焼成し光学顕微鏡にて繊維の長さの分布を画像解析により測定し た。  The molded product was fired, and the distribution of fiber length was measured by image analysis using an optical microscope.
(8) ゴム状重合体の平均粒子径  (8) Average particle size of rubbery polymer
成形品をミクロトームにより成形時の流れに対して直角に切断した。 これ を電子顕微鏡により観察した。 画像解析により円換算数平均粒子径を測定 した。  The molded product was cut by a microtome at right angles to the flow during molding. This was observed with an electron microscope. The number average particle diameter in terms of yen was measured by image analysis.
(8) 架橋度 (8) Degree of crosslinking
架橋熱可塑性エラストマ一 0. 5 gを、 キシレン 20 Om 1中で 4時間リ フラックスさせる。 溶液を定量用濾紙で濾過し、 濾紙上の残さを真空乾燥 定後定量し、 架橋熱可塑性エラストマ一中のゴム状重合体の重量に対する 残さの重量の比率 (%) として算出した。  0.5 g of the crosslinked thermoplastic elastomer is refluxed for 4 hours in 20 ml of xylene. The solution was filtered with a filter paper for quantification, the residue on the filter paper was dried in vacuo, quantified, and calculated as the ratio (%) of the weight of the residue to the weight of the rubbery polymer in the crosslinked thermoplastic elastomer.
2. 原材料  2. Raw materials
(1) ゴム状重合体 (1) Rubbery polymer
(a) エチレン.オタテン一 1共重合体  (a) Ethylene / otaten-1 copolymer
特開平 3— 163088号公報に記載のメタ口セン触媒を用いた方法に より製造した。 共重合体のエチレン Zオタテン一 1の組成比は、 72/ 28 (重量比) であった (TPE—1と称する) A method using a meta-mouth catalyst described in JP-A-3-163088 Made from The composition ratio of ethylene Z-otaten-11 in the copolymer was 72/28 (weight ratio) (referred to as TPE-1)
(b) エチレン ·プロピレン · ジシク口ペンタジェン共重合体  (b) Ethylene / propylene / dicyclopentene copolymer
特開平 3— 163088号公報に記載のメタ口セン触媒を用いた方法に より製造した。 共重合体のエチレン/プロピレン Zジシクロペンタジェ ンの組成比は、 72/24/4 (重量比) であった。 (TPE— 2と称 する)  It was produced by a method using a meta-mouth catalyst described in JP-A-3-163088. The composition ratio of ethylene / propylene Z-dicyclopentagen of the copolymer was 72/24/4 (weight ratio). (Referred to as TPE-2)
(2) 熱可塑性樹脂 (2) Thermoplastic resin
(a) ポリプロピレン  (a) Polypropylene
日本ポリケム (株) 製、 ァイソタクチックホモポリプロピレン (MA0 Nippon Polychem Co., Ltd., isotactic homopolypropylene (MA0
3) (PPと称する) 3) (referred to as PP)
(b) エチレン (E)—プロピレン (PP)共重合樹脂一 1  (b) Ethylene (E) -propylene (PP) copolymer resin 1
日本ポリオレフイン (株) 製、 プロック E— PP樹脂 [EZPP=6Z Nippon Polyolefin Co., Ltd., block E-PP resin [EZPP = 6Z
94] (重量比) (PM97 OA) ] (EP— 1と称する) 94] (weight ratio) (PM97 OA)] (referred to as EP-1)
(c) エチレン(E)—プロピレン (PP)共重合樹脂一 2  (c) Ethylene (E) -propylene (PP) copolymer resin 1
日本ポリオレフイン (株) 製、 ランダム E-PP樹脂 [E/PP=7/ Nippon Polyolefin Co., Ltd., random E-PP resin [E / PP = 7 /
93 (重量比) (PM940M) (EP— 2と称する) 93 (weight ratio) (PM940M) (referred to as EP-2)
(d) マレイン化ポリプロピレン  (d) Maleated polypropylene
三井化学 (株) 製、 アドマー (F 305) (M— PPと称する) (e) マレイン化ポリエチレン  Admir (F 305) (M-PP) manufactured by Mitsui Chemicals, Inc. (e) Maleated polyethylene
三井化学 (株) 製、 アドマー (HB 030) (M—PEと称する) (f) 高密度ポリエチレン  Admar (HB030) (M-PE) manufactured by Mitsui Chemicals, Inc. (f) High density polyethylene
旭化成工業 (株) 製、 サンテック HD (B 470) (HDPEと称す る)  Suntech HD (B470) manufactured by Asahi Kasei Corporation (HDPE)
(g) ポリスチレン  (g) Polystyrene
旭化成工業 (株) 製、 スタイロン PS (683) (PSと称する) 旭化 成工業 (株) 製、 スタイロン HI PS (403) (HI PSと称する) (h) ポリ (アクリロニトリル一スチレン)  Asahi Kasei Kogyo Co., Ltd., Stylon PS (683) (referred to as PS) Asahi Kasei Kogyo Co., Ltd., Stylon HI PS (403) (referred to as HI PS) (h) Poly (acrylonitrile-styrene)
旭化成工業 (株) 製、 スタイラック AS (769) (ASと称する) (i) ポリ (アクリロニトリル一ブタジエン一スチレン) Styrac AS (769) (AS) manufactured by Asahi Kasei Corporation (i) Poly (acrylonitrile-butadiene-styrene)
旭化成工業 (株) 製、 スタイラック AB S (1 00) (AB Sと称す る)  Styrac AB S (100) (ABS) manufactured by Asahi Kasei Corporation
(j) ポリカーボネート  (j) Polycarbonate
三菱エンジニアリングプラスチックス (株) 製、 ノバレックス (702 Novalex (702, manufactured by Mitsubishi Engineering-Plastics Corporation)
A) (PCと称する) A) (referred to as PC)
(k) ポリカーボネート Zポリ (アクリロニトリル一ブタジエン一スチレン 旭化成工業 (株) 製 PCZABS (PC/ABSと称する)  (k) Polycarbonate Z-poly (acrylonitrile-butadiene-styrene PCZABS (PC / ABS) manufactured by Asahi Kasei Corporation)
(1) ポリエステル  (1) Polyester
PETボトル粉碎品 (PETと称する)  Ground PET bottle (referred to as PET)
(3) ラジカル開始剤  (3) Radical initiator
日本油脂社製、 2, 5—ジメチル— 2, 5—ビス ( t一プチルパーォキ シ) へキサン (パーへキサ 25 B) (POXと称する)  Nippon Oil & Fats Co., Ltd., 2,5-dimethyl-2,5-bis (t-butyl peroxy) hexane (Perhexa 25B) (referred to as POX)
(4) 架橋助剤  (4) Crosslinking aid
和光純薬製、 ジビニルベンゼン (DVBと称する)  Manufactured by Wako Pure Chemical, divinylbenzene (referred to as DVB)
(5) 軟化剤 (パラフィンオイル)  (5) Softener (paraffin oil)
出光興産製、 ダイアナプロセスオイル (PW— 380)  Idemitsu Kosan, Diana Process Oil (PW-380)
(6) ガラス繊維  (6) Glass fiber
旭フアイパー製ァミノシラン処理ガラス繊維ロービング (ER 740) (太さ : 1 3 μ m)  Aminosilane treated glass fiber roving (ER 740) manufactured by Asahi Fiber Co., Ltd. (thickness: 13 μm)
(7) タルク  (7) Talc
日本タルク (株) 製一般品 (タルクと称する)  General product made by Nippon Talc Co., Ltd. (referred to as talc)
架橋熱可塑性エラストマ一の製造方法  Method for producing crosslinked thermoplastic elastomer
(1) TPV- 1 (1) TPV-1
押出機として、 バレル中央部に注入口を有した 2軸押出機 (4 Omm0、 As an extruder, a twin screw extruder (4 Omm0,
L/D = 47) を用いた。 スクリューとしては注入口の前後に混練部を有 した 2条スクリューを用いた。 TPE—l/PP/POX/DVB=55. 6/44.4/0. 38/0. 74 (重量比) を混合しシリンダー温度 2 20°Cで溶融押出を行った。 得られた架橋熱可塑性ヱラストマ一の架橋度 は、 82%であった。 L / D = 47) was used. As the screw, a double screw having a kneading part before and after the injection port was used. TPE-1 / PP / POX / DVB = 55. 6 / 44.4 / 0. 38 / 0.74 (weight ratio) were mixed and melt-extruded at a cylinder temperature of 220 ° C. Degree of crosslinking of the obtained crosslinked thermoplastic elastomer Was 82%.
(2) TPV— 2  (2) TPV— 2
TPE— lZPPZPOXZDVBの比率を 55. 6/44. 4/0. 1 9/0. 37 (重量比) とすること以外(1)と同じ方法で架橋熱可塑性ェ ラストマーを得た。 この架橋熱可塑性エラストマ一の架橋度は、 55%で あった。  A crosslinked thermoplastic elastomer was obtained in the same manner as in (1) except that the ratio of TPE-lZPPZPOXZDVB was 55.6 / 44. 4 / 0.19 / 0.37 (weight ratio). The degree of crosslinking of this crosslinked thermoplastic elastomer was 55%.
(3) TP V- 3  (3) TP V-3
TPE— 1/P PZPOXZDVBを TPE_ 1/EP- 1/POX/D V Bとすること以外 (1)と同じ方法で架橋熱可塑性ェラストマ一を得た。 この架橋熱可塑性エラストマ一の架橋度は、 81%であった。  A crosslinked thermoplastic elastomer was obtained in the same manner as (1) except that TPE-1 / P PZPOXZDVB was changed to TPE_1 / EP-1 / POX / DVB. The degree of crosslinking of this crosslinked thermoplastic elastomer was 81%.
(4) TPV-4  (4) TPV-4
TPE- 1/P PZPOX/DVBを TPE— 1ZP P/HDPE/PO XZDVBとし、 その比率を 55. 6/33. 3/1 1. 1/0. 1 9/ 0. 37 (重量比) とすること以外(1)と同じ方法で架橋熱可塑性エラス トマ一を得た。 この架橋熱可塑性エラストマ一の架橋度は、 85%であつ た。  TPE-1 / P PZPOX / DVB is TPE-1ZP P / HDPE / PO XZDVB, and the ratio is 55.6 / 33. 3/1 1.1 / 0. 19 / 0.37 (weight ratio) Except for this, a crosslinked thermoplastic elastomer was obtained in the same manner as in (1). The degree of crosslinking of this crosslinked thermoplastic elastomer was 85%.
(5) TPV- 5 とすること以外(1)と同じ方法で架橋熱可塑性エラストマ一を得た。 この 架橋熱可塑 I1生ェラストマーの架橋度は、 ほぼ 100 %であつた。 (5) A crosslinked thermoplastic elastomer was obtained in the same manner as in (1) except that TPV-5 was used. Degree of crosslinking of the crosslinked thermoplastic I 1 production Erasutoma is Atsuta almost 100%.
(6) TPV- 6  (6) TPV-6
押出機の中央部にある注入口より TP E—1と PPの合計量 100重量部 に対して軟ィヒ剤 (パラフィンオイル) を 33重量部注入すること以外(1) と同じ方法で架橋熱可塑性エラストマ一を得た。 この架橋熱可塑性エラス トマ一の架橋度は、 82%であった。  Crosslinking heat is applied in the same manner as (1) except that 33 parts by weight of softener (paraffin oil) is injected from the injection port in the center of the extruder to 100 parts by weight of the total amount of TPE-1 and PP. A plastic elastomer was obtained. The degree of crosslinking of this crosslinked thermoplastic elastomer was 82%.
(7) TPV- 7  (7) TPV-7
TPE— 1ZP P/POX/DVBの比率を 70. 0/30. 0/0. 4 8/0. 93とし、 押出機の中央部にある注入口より TPE— 1と PPの 合計量 100重量部に対して軟化剤 (パラフィンオイル) を 20重量部注 入すること以外(1)と同じ方法で架橋熱可塑性エラストマ一を得た。 この 架橋熱可塑性エラストマ一の架橋度は、 8 1 %であった。 TPE-1ZP The ratio of P / POX / DVB is 70.0 / 30.0 / 0.4.8 / 0.93, and the total amount of TPE-1 and PP is 100 parts by weight from the injection port at the center of the extruder. 20 parts by weight of softener (paraffin oil) A crosslinked thermoplastic elastomer was obtained in the same manner as in (1) except that it was added. The degree of crosslinking of this crosslinked thermoplastic elastomer was 81%.
4. 非架橋熱可塑性エラストマ一の製造方法 4. Manufacturing method of non-crosslinked thermoplastic elastomer
(1) TPO- 1  (1) TPO-1
押出機として、 バレル中央部に注入口を有した 2軸押出機 (4 Omm0、 As an extruder, a twin screw extruder (4 Omm0,
L/D = 47) を用いた。 スクリユーとしては注入口の前後に混練部を有 した 2条スクリューを用いた。 TP E— 1/P P= 5 5. 6/44. 4 (重量比) を混合しシリンダー温度 200°Cで溶融押出を行った。 L / D = 47) was used. A screw with a kneading section before and after the injection port was used as the screw. TP E-1 / P P = 5 5.6 / 44.4 (weight ratio) was mixed and melt-extruded at a cylinder temperature of 200 ° C.
実施例 1  Example 1
1 3 //mの太さのガラス繊維のロービングを張力下で引き揃えながら 5 %M— P P/95%PPを押出機で側方から押出し、 ガラス繊維の表面にポリオレフィ ン系樹脂を押出被覆し、 長さ 7mmのペレットに切断し、 長繊維ペレット (GF _ 1と称する) を製造した。 この長繊維ペレットのガラス Zポリオレフイン系樹 脂との比率は、 5 6/44 (重量比) であった。 GF— 1、 P Pの各ペレットを 5 3. 6/46. 4 (重量比) で混合し、 成形温度を 240 °Cとし、 その他の成 形条件は一般的な条件とし、 射出成形機 (東芝 I S 45 PNV) により成形を実 施し、 成形品を得た。 成形品中の組成 (ガラス繊維の分布も含む) 及ぴその特性 を表 1に示す。  1 3 // M 5% M—PP / 95% PP is extruded from the side while extruding a roving of glass fiber of m thickness under tension, and the polyolefin resin is extrusion coated on the surface of the glass fiber. Then, it was cut into pellets having a length of 7 mm to produce long fiber pellets (referred to as GF_1). The ratio of the long fiber pellet to the glass Z polyolefin resin was 56/44 (weight ratio). The pellets of GF-1 and PP were mixed at 53.6 / 46.4 (weight ratio), the molding temperature was 240 ° C, and the other molding conditions were general conditions. The injection molding machine (Toshiba Molding was performed by IS 45 PNV) to obtain a molded product. Table 1 shows the composition (including the distribution of glass fibers) in the molded product and its properties.
比較例 1  Comparative Example 1
1 3 μπιの太さのガラス繊維のロービングを 7 mmに切断しチョップとした。 このチョップと P Pとを 30/70 (重量比) の比で混合し、 2軸押出機.(東芝 TEM- 35 B) を使用し、 樹脂温度 230。Cで押出しペレット化した。 このぺ レツトを原料として成形温度を 230°Cとし射出成形機 (東芝 I S 45 PNV) により成形を実施し、 成形品を得た。 成形品中の組成及びその特性を表 1に示す。 比較例 2  A roving of 13 μπι thick glass fiber was cut into 7 mm and chopped. This chop and PP were mixed at a ratio of 30/70 (weight ratio), and the resin temperature was 230 using a twin-screw extruder (Toshiba TEM-35B). C. Extruded and pelletized. Using this pellet as a raw material, molding was performed at an injection molding machine (Toshiba IS 45 PNV) at a molding temperature of 230 ° C to obtain a molded product. Table 1 shows the composition of the molded article and its properties. Comparative Example 2
実施例 1の GF— 1、 PPの各ペレッ トを 5 3. 6/46. 4 (重量比) で混 合した材料で、 成形温度を 290°Cとし、 成形時の背圧、 スクリュー回転数、 射 出スピードも極限状態に落とし、 実施例 1と異なり、 極端にシェア一がかかり難 い条件で成形を実施した。 得られた成形品中の 2 mm以上のガラス繊維は、 0. 5 mm以下は、 0%、 0. 5〜2. Ommは 49%、 0. 5 mm以上は 51%で 有ったが、 成形品の表面外観はガラス繊維の凝集に基づく凹凸により極めて悪か つた。 一方、 実施例 1で得られた成形品の外観は良好であった。 成形品中の組成 及ぴその特性を表 1に示す。 A material obtained by mixing each pellet of GF-1 and PP in Example 1 at 53.6 / 46.4 (weight ratio), the molding temperature was 290 ° C, the back pressure during molding, and the screw rotation speed. However, the firing speed was also reduced to an extreme state, and unlike Example 1, molding was carried out under conditions where it was extremely difficult to obtain the largest share. The glass fiber of 2 mm or more in the obtained molded product is 0. 5% or less was 0%, 0.5 to 2.Omm was 49%, and 0.5mm or more was 51%, but the surface appearance of the molded product was extremely bad due to unevenness due to glass fiber aggregation. I got it. On the other hand, the appearance of the molded product obtained in Example 1 was good. Table 1 shows the composition of the molded article and its properties.
実施例 2  Example 2
実施例 1で得られた長繊維ぺレット (G F— 1 ) を使用し、 GF— 1、 TPV 一 1、 PPの各ペレットを 53. 6/36. 0/10. 4 (重量比) で混合し、 成形温度を 240 °Cとし実施例 1と同じ射出成形機を使用して成形を実施し、 成 形品を得た。 成形品中の組成及びその特性を表 1に示す。  Using the long fiber pellet (GF-1) obtained in Example 1, each pellet of GF-1, TPV-11 and PP was mixed at 53.6 / 36.0 / 10.4 (weight ratio). Then, the molding temperature was set to 240 ° C., and molding was performed using the same injection molding machine as in Example 1 to obtain a molded product. Table 1 shows the composition of the molded article and its properties.
比較例 3  Comparative Example 3
1 3〃mの太さのガラス繊維のロービングを 7 mmに切断しチヨップとした。 このチョップ、 TPV_1、 ??とを53. 6/36. 0/10. 4 (重量比) の比で混合し、 比較例 1と同じ 2軸押出機を使用し、 榭脂温度 230°Cで押出し ペレット化した。 このペレットを原料として成形温度を 230 °Cとし実施例 1と 同じ射出成形機により成形を実施し、 成形品を得た。 成形品中の組成及びその特 性を表 1に示す。  A 13〃m thick glass fiber roving was cut to 7 mm and made into a chop. This chop, TPV_1,? ? Were mixed at a ratio of 53.6 / 36. 0 / 10.4 (weight ratio), and were extruded and pelletized at a resin temperature of 230 ° C using the same twin-screw extruder as in Comparative Example 1. Using the pellets as a raw material, molding was performed at the molding temperature of 230 ° C. using the same injection molding machine as in Example 1 to obtain a molded product. Table 1 shows the composition of the molded article and its characteristics.
比較例 4  Comparative Example 4
実施例 2の GF— 1、 TP V- 1、 PPの各ペレットを 53. 6/36. 0/ 10. 4 (重量比) で混合した材料で、 比較例 2と同じ条件で成形を実施した。 得られた成形品中の 2 mm以上のガラス繊維は、 0. 5 mm以下は 0%、 0. 5 〜2. Ommは 56%、 0. 5 mm以上は 44 %であったが、 成形品の表面外観 は比較例 2と同様ガラス繊維の凝集に基づく凹凸により極めて悪かった。 一方、 実施例 2で得られた成形品の外観は良好であった。 成形品中の組成及びその特性 を表 1に示す。  Molding was carried out under the same conditions as in Comparative Example 2 using a material obtained by mixing the pellets of GF-1, TPV-1, and PP of Example 2 at a ratio of 53.6 / 36.0 / 10.4 (weight ratio). . The glass fiber of 2 mm or more in the obtained molded product was 0% for 0.5 mm or less, 56% for 0.5 to 2.Omm, and 44% for 0.5 mm or more. As in Comparative Example 2, the surface appearance was extremely poor due to unevenness due to the aggregation of glass fibers. On the other hand, the appearance of the molded product obtained in Example 2 was good. Table 1 shows the composition of the molded article and its properties.
実施例 3  Example 3
成形温度を 225°Cとする以外実施例 2と同様に成形を実施して成形品を得た。 成形品中の組成及びその特性を表 1に示す。  Molding was performed in the same manner as in Example 2 except that the molding temperature was set to 225 ° C to obtain a molded product. Table 1 shows the composition of the molded article and its properties.
実施例 4  Example 4
TPV— 1を TP V— 2とすること以外実施例 2と同様に成形を実施して成形 品を得た。 成形品中の組成及びその特性を表 1に示す。 Molding was performed in the same manner as in Example 2 except that TPV-1 was changed to TPV-2. Product was obtained. Table 1 shows the composition of the molded article and its properties.
実施例 5  Example 5
TPV—1を TPO— 1とすること以外実施例 1と同様に成形を実施して成形 品を得た。 成形品中の組成及ぴその特性を表 1に示す。  Molding was performed in the same manner as in Example 1 except that TPO-1 was changed to TPO-1 to obtain a molded article. Table 1 shows the composition of the molded article and its properties.
実施例 6  Example 6
GF— 1、 TPV— 1、 PPの各ペレットを GF— 1/TPV— 1/PP=5 3. 6/18. 0/28. 4 (重量比) で混合すること以外実施例 2と同様に成 形を実施して成形品を得た。 成形品中の組成及びその特性を表 1に示す。  Same as Example 2 except that each pellet of GF-1, TPV-1, PP is mixed at GF-1 / TPV-1 / PP = 5 3.6 / 18. 0 / 28.4 (weight ratio). Molding was performed to obtain a molded product. Table 1 shows the composition of the molded article and its properties.
実施例 7  Example 7
GF— 1、 T P V— 1、 P Pの各ペレットを GF— 1/TP V— 1/P P= 3 5. 7/36. 0/28. 3 (重量比) で混合すること以外実施例 2と同様に成 形を実施して成形品を得た。 成形品中の組成及びその特性を表 1に示す。  Same as Example 2 except that GF-1, TPV-1, and PP pellets are mixed at GF-1 / TPV-1 / PP = 35.7 / 36.0 / 28.3 (weight ratio). Molding was performed to obtain a molded product. Table 1 shows the composition of the molded article and its properties.
実施例 8  Example 8
TPV— 1を TPV— 5とすること以外実施例 1と同様に成形を実施して成形 品を得た。 成形品中の組成及びその特性を表 2に示す。  Molding was performed in the same manner as in Example 1 except that TPV-1 was changed to TPV-5 to obtain a molded article. Table 2 shows the composition of the molded article and its properties.
実施例 9  Example 9
ガラス繊維に押出被覆する材料を 5 %M- P PZ 95 % P Pより 5 %M— P P Z95%EP— 1とすること以外実施例 1と同様にして、 長繊維ペレット (GF _ 2と称する) を製造した。 この長繊維ペレットのガラスノポリオレフイン系榭 脂との比率は、 56/44 (重量比) であった。 GF— 2、 TPV— 3、 EP— 1の各ペレットを 53. 6/36. 0/10. 4 (重量比) で混合し、 実施例 2 と同様に成形を実施し、 成形品を得た。 成形品中の組成及びその特性を表 2に示 す。  Except that the material to be extruded and coated on glass fiber is 5% M-P PZ 95% PP and 5% M-PP Z95% EP-1 In the same manner as in Example 1, long fiber pellets (referred to as GF_2) Was manufactured. The ratio of the long fiber pellets to the glassy polyolefin resin was 56/44 (weight ratio). Each pellet of GF-2, TPV-3 and EP-1 was mixed at 53.6 / 36.0 / 10.4 (weight ratio), and molding was performed in the same manner as in Example 2 to obtain a molded product . Table 2 shows the composition of the molded article and its properties.
実施例 10  Example 10
GF— 1、 TPV_1、 PPの各ペレットの成分、 組成を GF— 1ZTPV— 1/ΕΡ-2 = 53. 6/36. 0/10. 4 (重量比) で混合すること以外実 施例 2と同様に成形を実施して成形品を得た。 成形品中の組成及びその特性を表 2に示す。  Example 2 except that the components and compositions of GF-1, TPV_1, and PP pellets were mixed at GF-1ZTPV-1 / ΕΡ-2 = 53.6 / 36. 0 / 10.4 (weight ratio). Molding was performed in the same manner to obtain a molded product. Table 2 shows the composition of the molded article and its properties.
実施例 11 ガラス繊維に押出被覆する材料を 5 %M— PPZ95%PPより 5 %M- P P /71. 3%PP/23. 7%HDPEとすること以外実施例 1と同様にして、 長繊維ペレット (GF—3と称する) を製造した。 この長繊維ペレットのガラス ポリオレフイン系樹脂との比率は、 56/44 (重量比) であった。 GF— 3、 TPV— 4、 PPの各ペレットを 53. 6/36. 0/1 0. 4 (重量比) で混 合し、 実施例 2と同様に成形を実施し、 成形品を得た。 成形品中の組成及びその 特性を表 2に示す。 Example 11 Except that the material to be extruded on the glass fiber is changed from 5% M-PPZ95% PP to 5% M-PP / 71.3% PP / 23.7% HDPE, a long fiber pellet (GF —3). The ratio of the long fiber pellets to the glass polyolefin resin was 56/44 (weight ratio). The pellets of GF-3, TPV-4 and PP were mixed at 53.6 / 36.0 / 10.4 (weight ratio) and molded in the same manner as in Example 2 to obtain a molded product . Table 2 shows the composition of the molded article and its properties.
実施例 12  Example 12
GF_1、 TP V— 1の各ペレットの組成を 53. 6/46. 4 (重量比) で 混合すること以外実施例 2と同様に成形を実施して成形品を得た。 成形品中の組 成及びその特性を表 2に示すが、 落錘衝撃試験時の試験片は、 実施例 2の成形品 ではやや白化していたが、 実施例 12の成形品では全く白化していなかった。 実施例 13  Molding was performed in the same manner as in Example 2 except that the composition of each pellet of GF_1 and TPV-1 was mixed at 53.6 / 46.4 (weight ratio). Table 2 shows the composition of the molded product and its properties.The test piece during the drop weight impact test was slightly whitened in the molded product of Example 2 but completely whitened in the molded product of Example 12. I didn't. Example 13
TP V- 1 , P P及ぴタルクを、 56. 0/28. 5/15. 5の比率で混合 し、 2軸押出機 (東芝 TEM— 35B) で樹脂温度 230°Cで押出しペレッ ト化 した。 このペレットと GF_ 1の各ペレットを 64. 3/35. 7の比率 (重量 比) で混合し、 実施例 2と同様に成形を実施し、 成形品を得た。 成形品中の組成 及ぴその特性を表 3に示す。  TPV-1, PP and talc were mixed at a ratio of 56.0 / 28.5 / 5 / 15.5 and extruded into a pellet at a resin temperature of 230 ° C with a twin-screw extruder (Toshiba TEM-35B). . This pellet and each pellet of GF_1 were mixed at a ratio (weight ratio) of 64.3 / 35.7, and molding was performed in the same manner as in Example 2 to obtain a molded product. Table 3 shows the composition of the molded article and its properties.
実施例 14及ぴ 15  Examples 14 and 15
TPV— 1を TPV— 6とすること以外実施例 1と同様に成形を実施して成形 品を得た。 GF— 1、 TPV— 6、 P Pの各ペレッ トを実施例 14では、 53. 6/36. 0/10. 4、 実施例 1 5では、 53. 6/46. 4/0 (重量比) で混合し、 実施例 2と同様に成形を実施し、 成形品を得た。 成形品中の組成及び その特性を表 3に表す。  Molding was performed in the same manner as in Example 1 except that TPV-1 was changed to TPV-6 to obtain a molded article. For each pellet of GF-1, TPV-6 and PP, 53.6 / 36. 0 / 10.4 in Example 14 and 53.6 / 46.4 / 0/0 in Example 15 (weight ratio) And molded in the same manner as in Example 2 to obtain a molded product. Table 3 shows the composition of the molded article and its properties.
実施例 16  Example 16
13 μπιの太さのガラス繊維のロービングを張力下で引き揃えながら ASエマ ルジョン (ァクリロニトリル一スチレンラテックス。 ァクリロニトリノレ 25%、 固形分濃度 50重量%) 浴層にガラス繊維を浸漬し、 AS樹脂を付着させ、 乾燥 し、 長さ 5. 5mmのペレッ ト状に切断し、 長繊維ペレッ ト (GF— 4と称す る) を製造した。 この長繊維ペレットのガラス ZAS樹脂との比率は、 80Z2 0 (乾燥重量比) であった。 GF— 4、 PSの各ペレットを 25. 0/75. 0 (重量比) で混合し、 実施例 2と同様に成形を実施し、 成形品を得た。 成形品中 の組成及ぴその特性を表 4に示す。 AS emulsion (acrylonitrile-styrene latex; acrylonitrile 25%, solids concentration 50% by weight) while rubbing glass fiber roving of 13 μπι thickness under tension, dipped the glass fiber in the bath layer, AS resin is adhered, dried, cut into a 5.5 mm long pellet, and a long fiber pellet (GF-4) ) Was manufactured. The ratio of the long fiber pellet to the glass ZAS resin was 80Z20 (dry weight ratio). The pellets of GF-4 and PS were mixed at a ratio of 25.0 / 75.0 (weight ratio), and molded in the same manner as in Example 2 to obtain a molded product. Table 4 shows the composition of the molded article and its properties.
実施例 17  Example 17
PSを H I PSとすること以外実施例 16と同様に成形を実施して成形品を得 た。 成形品中の組成及びその特性を表 4に示す。  Molding was performed in the same manner as in Example 16 except that PS was changed to HIPS to obtain a molded product. Table 4 shows the composition of the molded article and its properties.
実施例 18  Example 18
PSを ASとすること以外実施例 16と同様に成形を実施して成形品を得た。 成形品中の組成及びその特性を表 4に示す。  Molding was performed in the same manner as in Example 16 except that PS was set to AS to obtain a molded product. Table 4 shows the composition of the molded article and its properties.
実施例 19  Example 19
P Sを AB Sとすること以外実施例 16と同様に成形を実施して成形品を得た。 成形品中の組成及びその特性を表 4に示す。  Molding was performed in the same manner as in Example 16 except that P S was changed to A B S to obtain a molded product. Table 4 shows the composition of the molded article and its properties.
実施例 20  Example 20
PSを PCとすること以外実施例 16と同様に成形を実施して成形品を得た。 成形品中の組成及ぴその特性を表 4に示す。  Molding was performed in the same manner as in Example 16 except that PS was changed to PC to obtain a molded product. Table 4 shows the composition of the molded article and its properties.
実施例 21  Example 21
PSを PCZABSとすること以外実施例 16と同様に成形を実施して成形品 を得た。 成形品中の組成及びその特性を表 4に示す。  Molding was performed in the same manner as in Example 16 except that PS was PCZABS to obtain a molded product. Table 4 shows the composition of the molded article and its properties.
実施例 22  Example 22
PSを PETとすること以外実施例 16と同様に成形を実施して成形品を得た。 成形品中の組成及びその特性を表 4に示す。  Molding was performed in the same manner as in Example 16 except that PS was PET, and a molded article was obtained. Table 4 shows the composition of the molded article and its properties.
実施例 23  Example 23
ガラス繊維に押出被覆する材料を 5 %M- P PZ 95 %P Pから 5 %M— P E Z95%HDPEに変えたこと以外実施例 1と同様にして、 長繊維ペレット (G F— 5と称する) を製造した。 この長繊維ペレットのガラス/ポリオレフイン系 樹脂との比率は、 56Z44 (重量比) であった。 GF—5、 HDPEの各ペレ ットを 53. 6/46. 4 (重量比) で混合し、 実施例 1と同様に成形を実施し、 成形品を得た。 成形品中の組成及びその特性を表 4に示す。 実施例 2 4 A long fiber pellet (referred to as GF-5) was prepared in the same manner as in Example 1 except that the material to be extrusion-coated on the glass fiber was changed from 5% M-P PZ 95% PP to 5% M-PE Z 95% HDPE. Manufactured. The ratio of the long fiber pellets to the glass / polyolefin resin was 56Z44 (weight ratio). Each pellet of GF-5 and HDPE was mixed at 53.6 / 46.4 (weight ratio) and molded in the same manner as in Example 1 to obtain a molded product. Table 4 shows the composition of the molded article and its properties. Example 2 4
実施例 1と同様の成形機を使用し、 実施例 1及び実施例 2で得られた成形品を 4 0 °Cに設定した金型に装填し、 シリンダー温度 2 4 0 °〇で丁?¥—7をィンサ ート成形した。 得られた積層品の密着性は極めて高く、 両者の界面を剥離させる ことはできなかった。 また、 熱可塑性エラストマ一の表面硬度 (A硬度) は 7 8 であり、 成形品の軟質感は極めて優れたものであった。 Using the same molding machine as in Example 1, the molded articles obtained in Example 1 and Example 2 were loaded into a mold set at 40 ° C. Insert-molded ¥ -7. The obtained laminate had extremely high adhesion, and the interface between the two could not be peeled off. The surface hardness (A hardness) of the thermoplastic elastomer was 78, and the softness of the molded product was extremely excellent.
産業上の利用可能性 Industrial applicability
本発明の熱可塑性樹脂成形品は、 ラジェータタンク等の自動車部品、 電動工具 ハウジング等の工業部品、 事務椅子等の事務用部品のほか、 電気部品、 日用品、 建材等を始めとする高剛性且つ高強度が要求される用途に使用可能であり、 産業 界に果たす役割は大きい。 The thermoplastic resin molded article of the present invention has high rigidity and high rigidity, such as automobile parts such as radiator tanks, industrial parts such as power tool housings, office parts such as office chairs, electric parts, daily necessities, and building materials. It can be used for applications that require strength, and plays a major role in the industrial world.
表 1 table 1
Figure imgf000029_0001
Figure imgf000029_0001
表 2 Table 2
Figure imgf000030_0002
Figure imgf000030_0002
表 3 Table 3
Figure imgf000030_0001
表 4
Figure imgf000030_0001
Table 4
Figure imgf000031_0001
Figure imgf000031_0001

Claims

請求の範囲 The scope of the claims
1. ガラス繊維と熱可塑性樹脂とを含む熱可塑性樹脂成形品であって、 該ガラ ス繊維は 1〜6 0重量0 /0の含有量で含まれ、 且つ 0 . 5 mm以下の長さのガラス 繊維が 9 0〜: 1 0 %、 0 . 5〜2 mmの長さのガラス繊維が 1 0〜9 0 %、 2 mm以上の長さのガラス繊維が 0〜 3 0 %である熱可塑性樹脂成形品。 1. A thermoplastic resin molded article comprising a glass fiber and a thermoplastic resin, the glass fibers are contained in a content of 1-6 0 weight 0/0, and 0. 5 mm or less in length 90 to 90% of glass fiber, 10 to 90% of glass fiber of 0.5 to 2 mm length, and 0 to 30% of glass fiber of 2 mm or more length Resin molded products.
2. 更にゴム状重合体を 1〜4 0重量%の含有量で含む請求項 1記載の熱可塑 性樹脂成形品。  2. The thermoplastic resin molded article according to claim 1, further comprising a rubbery polymer in a content of 1 to 40% by weight.
3. 更にタルクを 1〜 5 0重量%の含有量で含む請求項 1又は 2記載の熱可塑 性樹脂成形品。  3. The thermoplastic resin molded article according to claim 1, further comprising talc in a content of 1 to 50% by weight.
4. 熱可塑性樹脂はポリオレフイン系樹脂である請求項:!〜 3のいずれか一項 記載の熱可塑性樹脂成形品。  4. The thermoplastic resin is a polyolefin resin. The thermoplastic resin molded product according to any one of claims 1 to 3.
5. ポリオレフイン系樹脂はポリプロピレン系樹脂を主として含むものである 請求項 4記載の熱可塑性樹脂成形品。  5. The thermoplastic resin molded article according to claim 4, wherein the polyolefin-based resin mainly contains a polypropylene-based resin.
6. ゴム状重合体は、 エチレンと炭素数 3〜2 0の α—ォレフィンを主として 含むエチレン · α—ォレフィン系共重合体である請求項 2〜 5のいずれか一項記 載の熱可塑性樹脂成形品。 6. The thermoplastic resin according to any one of claims 2 to 5, wherein the rubbery polymer is an ethylene-α-olefin copolymer containing mainly ethylene and α -olefin having 3 to 20 carbon atoms. Molding.
7. ゴム状重合体は、 部分的又は完全に架橋したものである請求項 2〜 6のい ずれか一項記載の熱可塑性樹脂成形品。  7. The thermoplastic resin molded article according to any one of claims 2 to 6, wherein the rubbery polymer is partially or completely crosslinked.
8. 平均直径:!〜 5 0 mのガラス繊維ロービングを熱可塑性樹脂で被覆し、 更に平均長さ 1〜2 5 mmに切断して得られたガラス繊維を含有する熱可塑性樹 脂ペレツトと、  8. Average diameter:! A thermoplastic resin pellet containing glass fiber obtained by coating a glass fiber roving of ~ 50 m with a thermoplastic resin and further cutting it to an average length of 1 to 25 mm;
熱可塑性樹脂ペレット、 ゴム状重合体を含有する熱可塑性樹脂ペレット、 タル クを含有する熱可塑性樹脂ペレツト、 及びゴム状重合体及びタルクを含有する熱 可塑性樹脂ペレツトからなる群から選ばれた少なくとも一種の樹脂ペレツト とを混合し成形する工程を含む、 請求項 1〜 7のいずれか一項記載の熱可塑性 樹脂成形品の製造方法。  At least one selected from the group consisting of thermoplastic resin pellets, thermoplastic resin pellets containing a rubbery polymer, thermoplastic resin pellets containing talc, and thermoplastic resin pellets containing a rubbery polymer and talc. The method for producing a thermoplastic resin molded article according to any one of claims 1 to 7, comprising a step of mixing and molding the resin pellet of (1).
9. 請求項 1〜 7のいずれか一項記載の熱可塑性樹脂成形品が熱可塑性エラス トマ一で被覆されている、 熱可塑性エラストマ一と熱可塑性樹脂との積層成形品。 9. A laminated molded article of a thermoplastic elastomer and a thermoplastic resin, wherein the molded article of the thermoplastic resin according to any one of claims 1 to 7 is coated with a thermoplastic elastomer.
10. 熱可塑性エラストマ一は、 ポリオレフイン系の熱可塑性エラストマ一であ る請求項 8記載の積層成形品。 10. The laminated molded product according to claim 8, wherein the thermoplastic elastomer is a polyolefin-based thermoplastic elastomer.
PCT/JP2000/000794 2000-02-14 2000-02-14 Thermoplastic resin formed article having high rigidity and high strength WO2001059009A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2000/000794 WO2001059009A1 (en) 2000-02-14 2000-02-14 Thermoplastic resin formed article having high rigidity and high strength
CNB008061831A CN1175052C (en) 2000-02-14 2000-02-14 Thermoplastic resin formed article having high-rigidity and high-strength
DE10084451T DE10084451T1 (en) 2000-02-14 2000-02-14 Molded body made of thermoplastic resin with high rigidity and high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000794 WO2001059009A1 (en) 2000-02-14 2000-02-14 Thermoplastic resin formed article having high rigidity and high strength

Publications (1)

Publication Number Publication Date
WO2001059009A1 true WO2001059009A1 (en) 2001-08-16

Family

ID=11735680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000794 WO2001059009A1 (en) 2000-02-14 2000-02-14 Thermoplastic resin formed article having high rigidity and high strength

Country Status (3)

Country Link
CN (1) CN1175052C (en)
DE (1) DE10084451T1 (en)
WO (1) WO2001059009A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036521A1 (en) * 2003-10-14 2005-04-21 Kabushiki Kaisha Kawai Gakki Seisakusho Repetition lever of grand piano
JP2005255733A (en) * 2004-03-09 2005-09-22 Asahi Kasei Chemicals Corp Molded article of automobile underhood structure part
JP2008202013A (en) * 2007-02-23 2008-09-04 Daicel Polymer Ltd Automotive exterior resin part
JP2009185150A (en) * 2008-02-05 2009-08-20 Idemitsu Kosan Co Ltd Heat conductive resin composition and its resin molded article
KR101476286B1 (en) * 2013-03-26 2014-12-24 동국실업 주식회사 Polypropylene resin composition
US20150259511A1 (en) * 2013-09-27 2015-09-17 Sumitomo Riko Company Limited Glass-fiber-reinforced thermoplastic resin molding product, and production method therefor
JP2015203049A (en) * 2014-04-11 2015-11-16 テクノポリマー株式会社 Tubular body for lens-barrel and lens-barrel
WO2016152560A1 (en) * 2015-03-26 2016-09-29 住友理工株式会社 Glass-fiber-reinforced thermoplastic resin molded article and method for manufacturing same
US10472475B2 (en) 2017-03-31 2019-11-12 Sumitomo Riko Company Limited Method of producing glass-fiber-reinforced thermoplastic resin molded object and glass-fiber-reinforced thermoplastic resin molded object obtained by the method
WO2020091051A1 (en) * 2018-11-02 2020-05-07 株式会社プライムポリマー Long fiber-reinforced propylene-based resin composition and long fiber-reinforced molded body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175158B2 (en) * 2013-11-29 2015-11-03 Sumitomo Chemical Company, Limited Resin composition
KR20170006683A (en) * 2015-07-09 2017-01-18 한국파렛트풀주식회사 Composition comprising at least two kinds of mixed resin including recycled resin, glass fiber and olefin rubber-resin
WO2016013819A1 (en) * 2014-07-25 2016-01-28 한국컨테이너풀 주식회사 Composition comprising at least two resins, fiber glass and olefin-based rubber resin
CN112266615A (en) * 2020-11-19 2021-01-26 南京特塑复合材料有限公司 Preparation method of polyphenylene sulfide composite material with high dimensional stability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234665A (en) * 1988-07-22 1990-02-05 Tokai Rubber Ind Ltd Conductive resin comosition
JPH0292952A (en) * 1988-09-29 1990-04-03 Unitika Ltd Phenolic resin molding material composition
EP0446752A1 (en) * 1990-03-13 1991-09-18 Mitsubishi Petrochemical Co., Ltd. Polypropylene resin composition for blow molding
WO1998021281A1 (en) * 1996-11-14 1998-05-22 Kawasaki Steel Corporation Long glass fiber-reinforced conductive thermoplastic resin molding and process for preparing the same
JPH10219027A (en) * 1997-02-06 1998-08-18 Nitto Boseki Co Ltd Powdery glass fiber-reinforced resin composition
JPH10298364A (en) * 1997-04-24 1998-11-10 Calp Corp Reinforced polyolefin resin composition and formed article made of the composition
JPH11129246A (en) * 1997-10-28 1999-05-18 Idemitsu Petrochem Co Ltd Glass fiber reinforced thermoplastic resin pellet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234665A (en) * 1988-07-22 1990-02-05 Tokai Rubber Ind Ltd Conductive resin comosition
JPH0292952A (en) * 1988-09-29 1990-04-03 Unitika Ltd Phenolic resin molding material composition
EP0446752A1 (en) * 1990-03-13 1991-09-18 Mitsubishi Petrochemical Co., Ltd. Polypropylene resin composition for blow molding
WO1998021281A1 (en) * 1996-11-14 1998-05-22 Kawasaki Steel Corporation Long glass fiber-reinforced conductive thermoplastic resin molding and process for preparing the same
JPH10219027A (en) * 1997-02-06 1998-08-18 Nitto Boseki Co Ltd Powdery glass fiber-reinforced resin composition
JPH10298364A (en) * 1997-04-24 1998-11-10 Calp Corp Reinforced polyolefin resin composition and formed article made of the composition
JPH11129246A (en) * 1997-10-28 1999-05-18 Idemitsu Petrochem Co Ltd Glass fiber reinforced thermoplastic resin pellet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678977B2 (en) 2003-10-14 2010-03-16 Kabushiki Kaisha Kawai Gakki Seisakusho Repetition lever of grand piano
WO2005036521A1 (en) * 2003-10-14 2005-04-21 Kabushiki Kaisha Kawai Gakki Seisakusho Repetition lever of grand piano
JP2005255733A (en) * 2004-03-09 2005-09-22 Asahi Kasei Chemicals Corp Molded article of automobile underhood structure part
JP2008202013A (en) * 2007-02-23 2008-09-04 Daicel Polymer Ltd Automotive exterior resin part
JP2009185150A (en) * 2008-02-05 2009-08-20 Idemitsu Kosan Co Ltd Heat conductive resin composition and its resin molded article
KR101476286B1 (en) * 2013-03-26 2014-12-24 동국실업 주식회사 Polypropylene resin composition
US10351693B2 (en) 2013-09-27 2019-07-16 Sumitomo Riko Company Limited Glass-fiber-reinforced thermoplastic resin molding product, and production method therefor
US20150259511A1 (en) * 2013-09-27 2015-09-17 Sumitomo Riko Company Limited Glass-fiber-reinforced thermoplastic resin molding product, and production method therefor
JP2015203049A (en) * 2014-04-11 2015-11-16 テクノポリマー株式会社 Tubular body for lens-barrel and lens-barrel
WO2016152560A1 (en) * 2015-03-26 2016-09-29 住友理工株式会社 Glass-fiber-reinforced thermoplastic resin molded article and method for manufacturing same
CN106661241A (en) * 2015-03-26 2017-05-10 住友理工株式会社 Glass-fiber-reinforced thermoplastic resin molded article and method for manufacturing same
CN106661241B (en) * 2015-03-26 2018-01-02 住友理工株式会社 Fiber-reinforced thermoplastics formed body and its preparation method
US10279517B2 (en) 2015-03-26 2019-05-07 Sumitomo Riko Company Limited Glass-fiber-reinforced thermoplastic resin molding product, and production method therefor
JP2016183297A (en) * 2015-03-26 2016-10-20 住友理工株式会社 Glass fiber-reinforced thermoplastic resin molding and manufacturing method thereof
US10472475B2 (en) 2017-03-31 2019-11-12 Sumitomo Riko Company Limited Method of producing glass-fiber-reinforced thermoplastic resin molded object and glass-fiber-reinforced thermoplastic resin molded object obtained by the method
WO2020091051A1 (en) * 2018-11-02 2020-05-07 株式会社プライムポリマー Long fiber-reinforced propylene-based resin composition and long fiber-reinforced molded body

Also Published As

Publication number Publication date
CN1175052C (en) 2004-11-10
DE10084451T1 (en) 2002-09-26
CN1347437A (en) 2002-05-01

Similar Documents

Publication Publication Date Title
US6747094B2 (en) High impact thermoplastic resin composition
US6653401B2 (en) Thermoplastic elastomer composition
JP2016538390A (en) Polyamide molding compound for large molded parts
US9238731B2 (en) Reinforcing additives for composite materials
WO2001059009A1 (en) Thermoplastic resin formed article having high rigidity and high strength
JP2001146533A (en) Highly impact-resistant thermoplastic resin composition
JP4372359B2 (en) Method for producing rubber composition
JP2011137067A (en) Automobile interior part reduced with squeak noise
WO2000061681A1 (en) Rubber composition
US20070299160A1 (en) Insulating Extrudates from Polyolefin Blends
JP5052826B2 (en) Propylene-based resin composition and molded article comprising the composition
JP2002295741A (en) Pipe material of polypropylene-based resin
JP2006328307A (en) Injection-molded product
JP6512054B2 (en) Method for producing resin composition
JP3893071B2 (en) Recycled plastic material and molded article using compatibilizer
JP2001294760A (en) Thermoplastic resin composition having high strength and high rigidity
JP2000109613A (en) High-strength thermoplastic resin composition
JP2001106835A (en) High-strength polyolefin resin composition
CN114144457A (en) Thermoplastic elastomer composition, and joint member and method for producing same
JP2001081246A (en) Material for tool
JP4308347B2 (en) Method for producing thermoplastic elastomer composition
JP4758588B2 (en) Cross-linked olefin rubber composition
JP2001131364A (en) Material resistant to antifreezing fluid for automotive parts
JP2001146538A (en) Impact-resistant thermoplastic polystyrene resin composition
JP2002003616A (en) Resin pellet containing long fibers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00806183.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP US

ENP Entry into the national phase

Ref document number: 2001 558151

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09958746

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10084451

Country of ref document: DE

Date of ref document: 20020926

WWE Wipo information: entry into national phase

Ref document number: 10084451

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607