JP4758588B2 - Cross-linked olefin rubber composition - Google Patents

Cross-linked olefin rubber composition Download PDF

Info

Publication number
JP4758588B2
JP4758588B2 JP2001564274A JP2001564274A JP4758588B2 JP 4758588 B2 JP4758588 B2 JP 4758588B2 JP 2001564274 A JP2001564274 A JP 2001564274A JP 2001564274 A JP2001564274 A JP 2001564274A JP 4758588 B2 JP4758588 B2 JP 4758588B2
Authority
JP
Japan
Prior art keywords
olefin
crosslinking
weight
degree
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001564274A
Other languages
Japanese (ja)
Inventor
一 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Application granted granted Critical
Publication of JP4758588B2 publication Critical patent/JP4758588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes

Description

【0001】
技術分野
本発明は、オレフィン系ゴム組成物に関する。更に詳しくは、機械的強度、耐熱性、耐油性に優れたオレフィン系ゴム組成物に関する。
【0002】
背景技術
ラジカル架橋性オレフィン系ゴムとポリプロピレン(PP)等のラジカル架橋性のないオレフィン系樹脂とをラジカル開始剤の存在下、押出機中で溶融混練させながら架橋する、いわゆる動的架橋による熱可塑性ゴム組成物は、既に公知の技術であり、自動車部品等の用途に広く使用されている。
【0003】
このようなオレフィン系ゴムとして、エチレン−プロピレン−ジエンゴム(EPDM)組成物又はメタロセン触媒により製造されたオレフィン系エラストマー組成物(特開平8−120127号公報、特開平9−137001号公報、特開平9−104787号公報、特開平10−87912号公報)が知られている。しかしながら、上記組成物は機械的強度が必ずしも充分でなく、実用的使用に耐えるオレフィン系ゴム組成物が求められている。
【0004】
発明の開示
本発明は、このような現状に鑑み、上記のような問題点のない、即ち機械的特性に優れたオレフィン系ゴム組成物を提供することを目的とするものである。
【0005】
本発明者らは機械的強度に優れたオレフィン系ゴム組成物を得るべく鋭意検討した結果、エチレンとα−オレフィンとを含み、ある特定の架橋構造を有するオレフィン系ゴム組成物が、驚くべきことに機械的強度が飛躍的に向上することを見出し、本発明を完成した。
【0006】
即ち本発明は、(A)エチレン単位と炭素数3〜20のα−オレフィン単位を含むエチレン・α−オレフィン共重合体20〜80重量部と(B)ホモのアイソタクチックポリプロピレンあるいはプロピレンとエチレン、ブテン−1、ペンテン−1、ヘキセン−1から選ばれるα−オレフィンとのアイソタクチック共重合樹脂(ブロック、ランダムを含む)20〜80重量部((A)と(B)の合計量が100重量部)とを含む架橋された組成物であって、(D)架橋開始剤及び(E)架橋助剤により架橋されたものであって、該(E)が多官能単量体と単官能単量体からなり、該(A)の架橋度が50%以上であり、かつ該(A)の膨潤度が5〜40である架橋オレフィン系ゴム組成物(但し、前記(A)は、α−オレフィンの共重合比率が20〜45重量%または密度が0.8〜0.9g/cm3であって、かつ、架橋オレフィン系ゴム組成物に後から熱可塑性エラストマー1〜500重量部を添加した場合を除く)を提供するものである。
【0007】
発明を実施するための最良の形態
以下、本発明に関して詳しく述べる。
【0008】
本発明の組成物は、(A)特定の架橋構造を有するエチレン・α−オレフィン共重合体と(B)オレフィン系樹脂とを含む。
【0009】
ここで、(A)は架橋度が50%以上であることが重要であり、好ましくは60%以上であり、より好ましくは70%以上、最も好ましくは80%以上、極めて好ましくは90%以上である。架橋度が50%未満の場合、引張強度、圧縮永久歪み(C−set)等の機械的強度及び耐油性、耐熱性が低下する。
【0010】
また、(A)は膨潤度が5〜40であることが必須であり、好ましくは10〜35であり、より好ましくは10〜30、最も好ましくは10〜25、極めて好ましくは10〜20である。膨潤度は架橋密度の尺度であり、従来のオレフィン系ゴムは、膨潤度は5未満であったが、本発明者は膨潤度が5〜40の間にある場合のみ、卓越した機械特性、耐熱性及び耐油性が発現することを見出し、本発明を完成した。
【0011】
以下に本発明の各成分について詳細に説明する。
【0012】
本発明において、(A)エチレン・α−オレフィン共重合体は、例えばエチレン単位及び炭素数が3〜20のα−オレフィン単位を含むエチレン・α−オレフィン共重合体である。
【0013】
上記炭素数3〜20のα−オレフィンとしては、例えば、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1、4−メチルペンテン−1、ヘプテン−1、オクテン−1、ノネン−1、デセン−1、ウンデセン−1、ドデセン−1等が挙げられる。中でもヘキセン−1、4−メチルペンテン−1、及びオクテン−1が好ましく、特に好ましくはオクテン−1である。オクテン−1は少量でも共重合体を柔軟化する効果に優れ、得られた共重合体は機械的強度に優れている。
【0014】
本発明において用いられるエチレン・α−オレフィン共重合体は、公知のメタロセン系触媒又はチーグラー系触媒により製造することが好ましい。
【0015】
一般にはメタロセン系触媒は、チタン、ジルコニウム等のIV族金属のシクロペンタジエニル誘導体と助触媒からなり、重合触媒として高活性であるだけでなく、チーグラー系触媒と比較して、得られる重合体の分子量分布が狭く、共重合体中のコモノマーである炭素数3〜20のα−オレフィンの分布が均一である。
【0016】
本発明において用いられるエチレン・α−オレフィン共重合体は、α−オレフィンの共重合比率が1〜50重量%であることが好ましく、更に好ましくは10〜40重量%、最も好ましくは20〜30重量%である。α−オレフィンの共重合比率が50重量%を超えると、組成物の硬度、引張強度等の低下が大きく、一方、1重量%未満では組成物の硬度が高く、機械的強度が低下する傾向にある。
【0017】
(A)の密度は、0.8〜0.9g/cm3の範囲にあることが好ましい。この範囲の密度を有するエチレン・α−オレフィン共重合体を用いることにより、柔軟性に優れ、硬度の低い熱可塑性ゴム組成物を得ることができる。
【0018】
本発明において用いられる(A)エチレン・α−オレフィン共重合体は、長鎖分岐を有していることが好ましい。長鎖分岐が存在することで、機械的強度を落とさずに、共重合されているα−オレフィンの比率(重量%)に比して、密度をより小さくすることが可能となり、低密度、低硬度及び高強度のゴムを得ることができる。長鎖分岐を有するオレフィン系ゴムは、USP5,278,272等に記載されている。
【0019】
また、(A)エチレン・α−オレフィン共重合体は、室温以上の温度にDSCの融点ピークを有することが好ましい。融点ピークを有するとき、融点以下の温度範囲では、共重合体は形態が安定しており、取扱い性に優れ、ベタツキも少ない。
【0020】
また、本発明において用いられる(A)のメルトインデックスは、0.01〜100g/10分(190℃、2.16kg荷重)の範囲のものが好ましく、更に好ましくは0.2〜10g/10分である。
【0021】
本発明において、(A)はエチレン単位とα−オレフィン単位を必須成分とし、必要に応じてその他のビニル単量体単位を含有してもよい。また(A)中にエチレン単位とα−オレフィン単位を有していさえすればよく、例えば、ポリスチレン系、ポリオレフィン系、ポリエステル系、ポリウレタン系、1,2−ポリブタジエン系、ポリ塩化ビニル系熱可塑性エラストマーを水素添加して、最終的に構造中にエチレン単位とα−オレフィン単位を含有する共重合体も(A)に包含される。
【0022】
本発明において用いられる(A)としては、複数の種類のものを混合して用いてもよい。そのような場合には、加工性の更なる向上を図ることが可能となる。
【0023】
本発明において(B)オレフィン系樹脂としては、ポリエチレン、ホモのアイソタクチックポリプロピレン、プロピレンとエチレン、ブテン−1、ペンテン−1、ヘキセン−1等の他のα−オレフィンとのアイソタクチック共重合樹脂(ブロック、ランダム共重合体を含む)等が挙げられる。
【0024】
これらの樹脂から選ばれる少なくとも1種以上の樹脂が、(A)と(B)の合計量100重量部に対して1〜99重量部の組成比で用いられる。好ましくは5〜90重量部、更に好ましくは20〜80重量部である。1重量部未満では組成物の流動性、加工性が低下し、99重量部を超えると組成物の柔軟性が不十分であり、望ましくない。
【0025】
また、本発明において用いられるオレフィン系樹脂のメルトインデックスは、0.1〜100g/10分(230℃、2.16kg荷重)の範囲が好ましい。100g/10分を超えると、熱可塑性エラストマー組成物の耐熱性、機械的強度が不十分であり、また0.1g/10分より小さいと流動性が悪く、成形加工性が低下して好ましくない。
【0026】
本発明の組成物において、加工性の向上のために必要に応じて、(C)軟化剤を配合することができる。
【0027】
上記(C)としては、パラフィン系、ナフテン系などのプロセスオイルが好ましい。これらは組成物の硬度、柔軟性の調整用に5〜500重量部、好ましくは10〜150重量部用いる。5重量部未満では柔軟性、加工性が不足し、500重量部を超えるとオイルのブリードが顕著となり好ましくない。
【0028】
本発明の組成物は、先に説明した(A)特定のエチレン・α−オレフィン共重合体、(B)オレフィン系樹脂、及び(C)軟化剤を特定の組成比で組み合わせることにより、機械的強度と柔軟性、加工性のバランスが改善され、好ましく用いることができる。
【0029】
本発明において提供される組成物は、(D)架橋開始剤、又は(D)及び(E)架橋助剤により、部分的に架橋されていることが必要である。この架橋により、更に耐摩耗性や機械的強度、耐熱性等を向上させることが可能となる。
【0030】
上記(D)架橋開始剤は、(A)の動的架橋を行うためのフェノール架橋剤又はラジカル発生剤等であり、例えば有機過酸化物又は有機アゾ化合物等が好ましい。これにより、耐摩耗性や機械的強度、耐熱性等を向上させることが可能となる。
【0031】
ここで、好ましく使用される上記有機過酸化物は、1分間半減期温度T1が100〜250℃であることが好ましく、150〜200℃であることがより好ましい。またペンタデカン分子中の水素引き抜き能から算出される架橋効率εが20〜60であることが好ましく、30〜50であることがより好ましい。
【0032】
このようなラジカル開始剤の具体的な例として、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロドデカン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(t−ブチルパーオキシ)オクタン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)ブタン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート等のパーオキシケタール類;ジ−t−ブチルペルオキシド、ジクミルペルオキシド、t−ブチルクミルペルオキシド、α,α’−ビス(t−ブチルペルオキシ−m−イソプロピル)ベンゼン、α,α’−ビス(t−ブチルペルオキシ)ジイソプロピルベンゼン、2,5−ジメチル−2,5−ビス(t−ブチルペルオキシ)ヘキサン及び2,5−ジメチル−2,5−ビス(t−ブチルペルオキシ)ヘキシン−3等のジアルキルペルオキシド類;
アセチルペルオキシド、イソブチリルペルオキシド、オクタノイルペルオキシド、デカノイルペルオキシド、ラウロイルペルオキシド、3,5,5−トリメチルヘキサノイルペルオキシド、ベンゾイルペルオキシド、2,4−ジクロロベンゾイルペルオキシド及びm−トリオイルペルオキシド等のジアシルペルオキシド類;t−ブチルペルオキシアセテート、t−ブチルペルオキシイソブチレート、t−ブチルペルオキシ−2−エチルヘキサノエート、t−ブチルペルオキシラウリレート、t−ブチルペルオキシベンゾエート、ジ−t−ブチルペルオキシイソフタレート、2,5−ジメチル−2,5−ジ(ベンゾイルペルオキシ)ヘキサン、t−ブチルペルオキシマレイン酸、t−ブチルペルオキシイソプロピルカーボネート、及びクミルペルオキシオクテート等のペルオキシエステル類;並びに、t−ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、2,5−ジメチルヘキサン−2,5−ジヒドロペルオキシド及び1,1,3,3−テトラメチルブチルヒドロペルオキシド等のヒドロペルオキシド類を挙げることができる。
【0033】
これらの化合物の中では、1,1−ビス(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、ジ−t−ブチルペルオキシド、ジクミルペルオキシド、2,5−ジメチル−2,5−ビス(t−ブチルペルオキシ)ヘキサン及び2,5−ジメチル−2,5−ビス(t−ブチルペルオキシ)ヘキシン−3が好ましい。
【0034】
これらの(D)架橋開始剤は、(A)と(B)からなる組成物100重量部に対し0.02〜3重量部、好ましくは0.05〜1重量部の量で用いられる。0.02重量部未満では架橋が不十分であり、3重量部を超えても組成物の物性は向上せず、好ましくない。
【0035】
更に、(E)架橋助剤としては、単官能単量体又は多官能単量体が挙げられる。上記単官能単量体は、ラジカル重合性のビニル系単量体が好ましく、芳香族ビニル単量体、アクリロニトリル、メタクリロニトリル等の不飽和ニトリル単量体、アクリル酸エステル単量体、メタクリル酸エステル単量体、アクリル酸単量体、メタクリル酸単量体、無水マレイン酸単量体、N−置換マレイミド単量体等である。また多官能単量体としては、ジビニルベンゼン、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアセトンジアクリルアミド、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、エチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ジイソプロペニルベンゼン、p−キノンジオキシム、p,p′−ジベンゾイルキノンジオキシム、フェニルマレイミド、アリルメタクリレート、N,N’−m−フェニレンビスマレイミド、ジアリルフタレート、テトラアリルオキシエタン、1,2−ポリブタジエン等が好ましく用いられる。これらの架橋助剤は複数のものを併用して用いてもよい。
【0036】
これらの架橋助剤は、(A)と(B)からなる組成物100重量部に対し0.1〜5重量部、好ましくは0.5〜2重量部の量で用いられる。0.1重量部未満では架橋が不十分であり、5重量部を超えても組成物の物性は向上せず過剰の架橋助剤が残存することになり好ましくない。
【0037】
また、本発明の組成物には、その特徴を損ねない程度に他の樹脂、エラストマーを添加してもよい。
【0038】
また、本発明の組成物には、その特徴を損ねない程度に無機フィラー及び可塑剤を含有することが可能である。ここで用いる無機フィラーとしては、例えば、炭酸カルシウム、炭酸マグネシウム、シリカ、カーボンブラック、ガラス繊維、酸化チタン、クレー、マイカ、タルク、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。また、可塑剤としては、例えば、ポリエチレングリコール、ジオクチルフタレート(DOP)等のフタル酸エステル等が挙げられる。また、その他の添加剤、例えば、有機・無機顔料、熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、難燃剤、シリコンオイル、アンチブロッキング剤、発泡剤、帯電防止剤、抗菌剤等も好適に使用される。
【0039】
本発明の組成物の製造には、通常の樹脂組成物、ゴム組成物の製造に用いられるバンバリーミキサー、ニーダー、単軸押出機、2軸押出機等を使用する一般的な方法を採用することが可能である。とりわけ効率的に動的架橋を達成するためには2軸押出機が好ましく用いられる。2軸押出機は、オレフィン系エラストマーとプロピレン系樹脂とを均一かつ微細に分散させ、さらに他の成分を添加させて、架橋反応を生じせしめ、本発明の組成物を連続的に製造するのにより適している。
【0040】
本発明において、(A)及び(B)はペレット、パウダー、クラム等の細分化された形態にあることが好ましい。
【0041】
本発明の組成物は、具体例として、次のような加工工程を経由して製造することができる。即ち、(A)と(B)とをよく混合し、押出機のホッパーに投入する。架橋開始剤及び架橋助剤は、(A)と(B)とともに当初から添加してもよいし、押出機の途中から添加してもよい。また(C)は押出機の途中から添加してもよいし、当初と途中とに分けて添加してもよい。(A)と(B)は一部を押出機の途中から添加してもよい。押出機内で加熱溶融し混練する際に、(A)と前記架橋開始剤及び架橋助剤とが架橋反応し、さらに(C)を添加して溶融混練することにより架橋反応と混練分散とを充分行わせた後、押出機から組成物を取り出す。ペレタイズして本発明の組成物のペレットを得ることができる。
【0042】
本発明において、(A)の架橋度及び膨潤度は、以下のように定義される。組成物の重量W0を、オルトジクロロベンゼン200ml中で20時間リフラックスし、溶液をフィルターで濾過し、膨潤組成物の重量(W1)を測定する。次いで、上記膨潤組成物を100℃で真空乾燥後、再度重量(W2)を測定する。このようにして架橋度及び膨潤度は、以下のように算出される。
【0043】
架橋度=(W2/W0)×100 (%)
膨潤度=W1/W2
【0044】
架橋度及び膨潤度の制御は、架橋開始剤及び架橋助剤の種類及び添加量、反応温度、反応方式、軟化剤の添加方法等の調整により行われる。
【0045】
例えば、架橋度の増大は、架橋開始剤又は架橋助剤を増量し、架橋開始剤の分解温度以上であり、かつできるだけ低い温度で、長時間反応を行うことにより達成される。また、膨潤度の増大は、官能基数の少ない多官能架橋助剤、又は重合性のビニル単量体を用いて反応速度を抑制することにより達成される。さらに、架橋開始剤の量の削減、3官能性ではなく2官能性の架橋助剤の使用、メタクリル酸エステル単量体又は芳香族ビニル単量体等のビニル系単量体の使用、低温での反応等により架橋剤や膨潤度の増大を達成することもできる。しかしながら、架橋開始剤及び架橋助剤を過度に添加すると架橋度は増大するが、膨潤度が低下し、本発明の要件を満足しない。また、過度に高活性な架橋開始剤及び架橋助剤を使用したり、高温反応の条件を使用したりすると、同様に架橋度は増大するが、膨潤度が低下し、本発明の要件を満足しない。
【0046】
また、一方で、(A)に前もって少量の(C)軟化剤を吸収させながら、架橋開始剤及び架橋助剤を(A)に配合すると、架橋反応が穏和に進行するために、膨潤度の低下を抑制しつつ、架橋度を増大することができる。
【0047】
本発明においては、所望の架橋度及び膨潤度を達成するための、反応方式に関する具体的な製造方法として、例えば、
混練度M=(π2/2)(L/D)D3(N/Q)
(但し、Lは原料添加部を基点としたダイ方向の押出機長(mm)、Dは押出機バレル内径(mm)、Qは吐出量(kg/h)、及びNはスクリュー回転数(rpm)である。)として、この混練度Mが
10×106≦M≦1000×106
であることが重要である。Mが10×106未満では動的架橋が進まないために架橋度が50%未満となり機械的強度が低く、一方Mが1000×106を超えると過度のせん断力のために、同様に架橋度が50%未満となり機械的強度が低下する。
【0048】
本発明において、所望の架橋度及び膨潤度を達成するための、反応温度に関する具体的な手法として、例えば、(D)架橋開始剤の1分間半減期温度(℃)をT1として、下式 T1−100<T2<T1+40
2+1<T3<T2+200
を満たす溶融温度条件で溶融混練を行うことが好ましい。即ち、まず溶融温度T2(℃)で、次いで溶融温度T3(℃)で溶融混練を行うことが挙げられる。とりわけ原料添加口を基点としてダイ方向に長さLを有する溶融押出機において、原料添加口から0.1L〜0.5Lの長さの押出機ゾーンを溶融温度T2(℃)に設定して、まず溶融混練を行い、次いでその後の押出機ゾーンを溶融温度T3(℃)に設定して溶融混練を行うのである。ここで、特にT1が150〜250℃であることが好ましく、溶融押出機の各ゾーンのT1又はT2は均一温度であってもよいし、又は温度勾配を有していてもよい。
【0049】
本発明において、所望の架橋度及び膨潤度を達成するための、(C)軟化剤の添加方法に関する具体的な重要かつ好ましい手法として、先端部からの距離を異にする一箇所のメインフィード部と複数箇所のサイドフィードが可能な供給用部とを有する押出機を用い、(A)、(B)及び(C)を溶融混練して動的架橋する際に、(C)を複数箇所のフィード供給用部に分割してフィードすることが挙げられる。ここで、(C)を複数箇所のフィード供給用部に分割してフィードすることが重要である。(C)を分割フィードすることにより、押出機の前段での動的架橋時の溶融粘度が低下して反応速度が抑制され、膨潤度が増大する。(C)の分割回数又は添加量により、膨潤度を制御することができる。
【0050】
こうして得られたオレフィン系ゴム組成物から任意の成形方法により各種成形品を製造することができる。成形方法としては、射出成形、押出成形、圧縮成形、ブロー成形、カレンダー成形、発泡成形等が好ましく用いられる。
【0051】
以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれらの例に限定されるものではない。なお、これらの実施例及び比較例において、各種物性の評価に用いた試験法は以下の通りである。
【0052】
(1)架橋度及び膨潤度
組成物の重量W0を、オルトジクロロベンゼン200ml中で20時間リフラックスし、溶液をフィルターで濾過し、膨潤組成物の重量(W1)を測定する。次いで、上記膨潤組成物を100℃で真空乾燥後、再度重量(W2)を測定する。このようにして、架橋度及び膨潤度は以下のように算出される。
【0053】
架橋度=(W2/W0)×100 (%)
膨潤度=W1/W2
【0054】
(2)表面硬度
2mm厚シートを4枚重ねて、ASTM D2240に準じ、Aタイプにて23℃雰囲気下にて評価した。
【0055】
(3)引張破断強度[kgf/cm2
JIS K6251に準じ、23℃にて評価した。
【0056】
(4)引張破断伸度[%]
JIS K6251に準じ、23℃にて評価した。
【0057】
(5)光安定性
光安定性試験機として米国ATLAS Electric Devices Co.製ATLAS CI35W Weatherometerを用い、JIS K7102に基づいた方法で評価した。照射条件としては、試験機内部温度55℃、湿度55%、雨無し、キセノン光(波長340nm、エネルギー0.30W/m2)300時間照射とした。照射後、シートの外観を目視で以下の基準で外観評価を行った。
◎ 極めて良好。
○ 良好。
△ 良好であるが、ややざらつく。
× 全体的にざらつく。光沢無し。
【0058】
(6)熱安定性
シートをギヤオーブン中で120℃、100時間の条件で加熱し、JIS K6251に準拠した引張破断強度の初期値に対する加熱試験後の値の比を引張破断強度の保持率(%)と定義し、熱安定性の尺度とした。
【0059】
(7)耐ブリード性
120℃雰囲気下にて、100時間放置後、成形品表面を観察し評価した。
◎:極めて良好。
○:良好。
△:成形品表面に少しオイル状物質が付着している。
×:成形品表面にオイル状物質が多量に付着し、べたつき感が著しい。
【0060】
(8)外観
成形品表面を観察し、目視により評価した。
◎:極めて良好。
○:良好。
△:成形品表面に少しオイル状物質が付着している。
×:成形品表面にオイル状物質が多量に付着し、べたつき感が著しい。
【0061】
実施例及び比較例で用いる各成分としては以下のものを用いた。
【0062】
(i)エチレン・α−オレフィン共重合体
1)エチレン・オクテン−1共重合体(EOM−1)
特開平3−163088号公報に記載のメタロセン触媒を用いた方法により製造した。共重合体のエチレン/オクテン−1の組成比は、重量比で72/28である(EOM−1と称する)。
【0063】
2)エチレン・オクテン−1共重合体(EOM−2)
通常のチーグラー触媒を用いた方法により製造した。共重合体のエチレン/オクテン−1の組成比は、重量比で72/28である(EOM−2と称する)。
【0064】
3)エチレン/プロピレン/ジシクロペンタジエン共重合体(EPDM−1)
特開平3−163088号公報に記載のメタロセン触媒を用いた方法により製造した。共重合体のエチレン/プロピレン/ジシクロベンタジエンの組成比は、重量比で72/24/4である(EPDM−1と称する)。
【0065】
4)エチレン/プロピレン/ジシクロペンタジエン共重合体(EPDM−2)
通常のチーグラー触媒を用いた方法により製造した。共重合体のエチレン/プロピレン/ジシクロベンタジエンの組成比は、重量比で72/24/4である(EPDM−2と称する)。
【0066】
(ii)オレフィン系樹脂
ポリプロピレン
日本ポリケム(株)製、アイソタクチックポリプロピレン(PPと称する)
(iii)パラフィン系オイル
出光興産(株)製、ダイアナプロセスオイル PW−380(MOと称する)
(iv)架橋開始剤
1)日本油脂(株)製、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン(商品名パーヘキサ25B)(POX−1と称する)
2)日本油脂(株)製、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3(商品名パーヘキシン25B)(POX−2と称する)
(v)架橋助剤
1)和光純薬(株)製、ジビニルベンゼン(DVBと称する)
2)日本化成(株)製、トリアリルイソシアヌレート(TAICと称する)
3)大内新興化学(株)製、N,N’−mフェニレンビスマレイミド(PMIと称する)
4)旭化成工業(株)製、メタクリル酸メチル(MMAと称する)
5)旭化成工業(株)製、スチレン(STと称する)
【0067】
比較例1〜12
押出機として、バレル中央部に注入口を有した2軸押出機(40mmφ、L/D=47)を用いた。スクリューとしては注入口の前後に混練部を有した2条スクリューを用いた。
【0068】
(A)成分/PP/POX−1/DVB/MO=65/35/0.5/1.0/45(重量部)からなる混合物を、まずMO以外の成分を2軸押出機に導入し、引き続いて、押出機の中央部にある注入口からMOをポンプで注入し、下記の条件で溶融押出を行った。即ち、溶融押出条件は、溶融押出温度220℃、吐出量Q=12kg/h、押出機バレル内径D=25mm、押出機長をL(mm)とした時のL/D=47、及びスクリュー回転数N=280rpmとした。
【0069】
上記条件を基準として、架橋開始剤及び架橋助剤の種類、添加量、反応温度、反応方式を調整することにより架橋度及び膨潤度を制御した。具体的には、架橋度の増大のためには、架橋開始剤又は架橋助剤を増量し、かつラジカル開始剤の分解温度以上であり、かつできるだけ低い温度で、長時間反応を行った。一方、膨潤度の増大は反応速度を抑制することが重要であり、例えば架橋開始剤量の削減、低温反応という手法で行った。(A)に前もって少量のMOを吸収させながら、POX、DVBを(A)に配合することにより、膨潤度の低下を抑制しつつ、架橋度を増大させた。
【0070】
このようにして得られたゴム組成物から200℃にて圧縮成形により2mm厚のシートを作成し、各機械的特性を評価した。
【0071】
その結果を表1に示す。
【0072】
【表1】

Figure 0004758588
【0073】
表1によると、本願の架橋度及び膨潤度の要件を満足した組成物は引張破断強度、引張破断伸度等の機械的強度に優れていることが分かるが、メタロセン触媒を用いて製造されたエチレンと炭素数3〜20のα−オレフィンからなるエチレン・α−オレフィン共重合体、とりわけメタロセン系触媒を用いて製造された、エチレンとオクテン−1との共重合体は卓越した機械的強度を付与することが分かる。
【0074】
比較例13〜18
比較例5において、以下の定義に従って混練度Mを変更すること以外、同様の実験を繰り返した。その結果を表2に示す。
【0075】
M=(π2/2)(L/D)D3(N/Q)
(但し、Lは原料添加部を基点としたダイ方向の押出機長(mm)、Dは押出機バレル内径(mm)、Qは吐出量(kg/h)、及びNはスクリュー回転数(rpm)であり、ここでD=25mm、L/D=47とした。)
【0076】
【表2】
Figure 0004758588
【0077】
表2によると、10×106≦M≦1000×106の混練度Mの範囲で製造することにより、本発明における要件を満足する架橋度及び膨潤度が達成されることが分かる。
【0078】
実施例1〜2及び比較例19〜30
比較例5において、以下の定義に従って、溶融温度T2(℃)で、まず溶融混練を行い、次いで溶融温度T3(℃)で溶融混練を行った以外、同様の実験を繰り返した。その結果を表3及び4に示す。
【0079】
【表3】
Figure 0004758588
【0080】
表3によると、以下の溶融温度条件で製造を行うことにより、本発明における要件を満足する架橋度及び膨潤度が達成されることが分かる。
【0081】
1:(C)の1分間半減期温度(℃)
1−100<T2<T1+40
2+1<T3<T2+200
【0082】
【表4】
Figure 0004758588
【0083】
また表4によると、架橋助剤として、二官能のDVB、PMIよりも三官能のTAICの方が架橋密度が上昇するために、膨潤度が低下し、軟化剤の保持性が高くなり、耐ブリード性が向上することが分かる。
【0084】
また、三官能のTAICは外観をやや低下させるが、単官能単量体のMMAを併用することにより、外観と耐ブリード性のバランス特性が向上することが判明した。
【0085】
比較例31〜33
比較例5において、MO45重量部を表5記載の分割比率に従って分割した以外、同様の実験を繰り返した。その結果を表5に示す。
【0086】
【表5】
Figure 0004758588
【0087】
表5によると、MOを分割フィードすることにより、押出機の前段での動的架橋時の溶融粘度が低下して反応速度が抑制され、架橋度を保持しつつ、膨潤度が増大することが分かる。
【0088】
産業上の利用可能性
本発明のオレフィン系ゴム組成物は、優れた機械的強度、耐熱性、耐油性を有しているので、自動車用部品、自動車用内装材、エアバッグカバー、機械部品、電気部品、ケーブル、ホース、ベルト、玩具、雑貨、日用品、建材、シート、フィルム等を始めとする用途に幅広く使用可能であり、産業界に果たす役割は大きい。[0001]
  Technical field
  The present invention relates to an olefin rubber composition. More specifically, the present invention relates to an olefin rubber composition having excellent mechanical strength, heat resistance, and oil resistance.
[0002]
  Background art
  Thermoplastic rubber composition by so-called dynamic cross-linking, in which radical cross-linkable olefin rubber and non-radical cross-linkable olefin resin such as polypropylene (PP) are cross-linked while melt kneaded in an extruder in the presence of a radical initiator. The thing is already a well-known technique and is widely used for applications such as automobile parts.
[0003]
  As such an olefin rubber, an ethylene-propylene-diene rubber (EPDM) composition or an olefin elastomer composition produced by a metallocene catalyst (JP-A-8-120127, JP-A-9-137001, JP-A-9). No. -104787 and JP-A-10-87912) are known. However, the above composition does not necessarily have sufficient mechanical strength, and an olefin-based rubber composition that can withstand practical use is demanded.
[0004]
  Disclosure of the invention
  In view of such a current situation, an object of the present invention is to provide an olefin rubber composition that does not have the above-described problems, that is, excellent in mechanical properties.
[0005]
  As a result of intensive studies to obtain an olefin rubber composition excellent in mechanical strength, the present inventors have surprisingly found an olefin rubber composition containing ethylene and α-olefin and having a specific cross-linked structure. The present inventors have found that the mechanical strength is dramatically improved and thus completed the present invention.
[0006]
  That is, the present invention comprises (A) 20 to 80 parts by weight of an ethylene / α-olefin copolymer containing an ethylene unit and an α-olefin unit having 3 to 20 carbon atoms, and (B) a homoisotactic polypropylene or propylene and ethylene. , Butene-1, pentene-1, and hexene-1, an isotactic copolymer resin (including block and random) with an α-olefin selected from 20 to 80 parts by weight (the total amount of (A) and (B) is 100 parts by weight), and a crosslinked composition comprising (D) a crosslinking initiator and (E) a crosslinking assistant, wherein (E) is a polyfunctional monomer and a monomer. It consists of a functional monomer, the crosslinking degree of (A) is 50% or more, and the swelling degree of (A) is 5-40Cross-linkingOlefin rubber composition (however,And before(A) has a copolymerization ratio of α-olefin of 20 to 45% by weight.OrDensity is 0.8-0.9g / cmThreeInAnd 1 to 500 parts by weight of a thermoplastic elastomer was added to the crosslinked olefin rubber composition later.Except for cases).
[0007]
  BEST MODE FOR CARRYING OUT THE INVENTION
  Hereinafter, the present invention will be described in detail.
[0008]
  The composition of the present invention includes (A) an ethylene / α-olefin copolymer having a specific crosslinked structure and (B) an olefin resin.
[0009]
  Here, it is important that (A) has a degree of crosslinking of 50% or more, preferably 60% or more, more preferably 70% or more, most preferably 80% or more, and most preferably 90% or more. is there. When the degree of crosslinking is less than 50%, mechanical strength such as tensile strength and compression set (C-set), oil resistance, and heat resistance are lowered.
[0010]
  Moreover, it is essential that (A) has a degree of swelling of 5 to 40, preferably 10 to 35, more preferably 10 to 30, most preferably 10 to 25, and most preferably 10 to 20. . The degree of swelling is a measure of crosslink density, and the conventional olefin rubber has a degree of swelling of less than 5, but the present inventor has excellent mechanical properties and heat resistance only when the degree of swelling is between 5 and 40. As a result, the present invention was completed.
[0011]
  Hereinafter, each component of the present invention will be described in detail.
[0012]
  In the present invention, the (A) ethylene / α-olefin copolymer is, for example, an ethylene / α-olefin copolymer containing an ethylene unit and an α-olefin unit having 3 to 20 carbon atoms.
[0013]
  Examples of the α-olefin having 3 to 20 carbon atoms include propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, heptene-1, octene-1, nonene-1, and decene-. 1, undecene-1, dodecene-1, and the like. Among them, hexene-1, 4-methylpentene-1, and octene-1 are preferable, and octene-1 is particularly preferable. Octene-1 is excellent in the effect of softening the copolymer even in a small amount, and the obtained copolymer is excellent in mechanical strength.
[0014]
  The ethylene / α-olefin copolymer used in the present invention is preferably produced by a known metallocene catalyst or Ziegler catalyst.
[0015]
  In general, a metallocene catalyst comprises a cyclopentadienyl derivative of a group IV metal such as titanium or zirconium and a co-catalyst, and is not only highly active as a polymerization catalyst but also a polymer obtained in comparison with a Ziegler catalyst. The molecular weight distribution is narrow and the distribution of the α-olefin having 3 to 20 carbon atoms, which is a comonomer in the copolymer, is uniform.
[0016]
  The ethylene / α-olefin copolymer used in the present invention preferably has an α-olefin copolymerization ratio of 1 to 50% by weight, more preferably 10 to 40% by weight, most preferably 20 to 30% by weight. %. When the copolymerization ratio of the α-olefin exceeds 50% by weight, the hardness and tensile strength of the composition are greatly decreased. On the other hand, when it is less than 1% by weight, the composition has a high hardness and the mechanical strength tends to decrease. is there.
[0017]
  The density of (A) is 0.8 to 0.9 g / cm.ThreeIt is preferable that it exists in the range. By using an ethylene / α-olefin copolymer having a density in this range, a thermoplastic rubber composition having excellent flexibility and low hardness can be obtained.
[0018]
  The (A) ethylene / α-olefin copolymer used in the present invention preferably has a long chain branch. Due to the presence of long chain branching, it is possible to make the density smaller compared to the proportion (% by weight) of the α-olefin copolymerized without reducing the mechanical strength. Rubber with high hardness and high strength can be obtained. Olefin-based rubbers having long chain branches are described in USP 5,278,272 and the like.
[0019]
  The (A) ethylene / α-olefin copolymer preferably has a DSC melting point peak at a temperature of room temperature or higher. When having a melting point peak, in the temperature range below the melting point, the copolymer has a stable form, excellent handleability, and little stickiness.
[0020]
  The melt index (A) used in the present invention is preferably in the range of 0.01 to 100 g / 10 min (190 ° C., 2.16 kg load), more preferably 0.2 to 10 g / 10 min. It is.
[0021]
  In the present invention, (A) contains an ethylene unit and an α-olefin unit as essential components, and may contain other vinyl monomer units as necessary. Further, it is only necessary to have an ethylene unit and an α-olefin unit in (A). For example, polystyrene, polyolefin, polyester, polyurethane, 1,2-polybutadiene, polyvinyl chloride thermoplastic elastomer A copolymer containing ethylene units and α-olefin units in the final structure is also included in (A).
[0022]
  As (A) used in the present invention, a plurality of types may be mixed and used. In such a case, the workability can be further improved.
[0023]
  In the present invention, (B) the olefin resin is polyethylene, homoisotactic polypropylene, isotactic copolymerization of propylene with other α-olefins such as ethylene, butene-1, pentene-1, hexene-1. Examples thereof include resins (including blocks and random copolymers).
[0024]
  At least one resin selected from these resins is used in a composition ratio of 1 to 99 parts by weight with respect to 100 parts by weight of the total amount of (A) and (B). Preferably it is 5-90 weight part, More preferably, it is 20-80 weight part. If it is less than 1 part by weight, the fluidity and processability of the composition will be reduced, and if it exceeds 99 parts by weight, the composition will have insufficient flexibility, which is undesirable.
[0025]
  Moreover, the melt index of the olefin resin used in the present invention is preferably in the range of 0.1 to 100 g / 10 min (230 ° C., 2.16 kg load). If it exceeds 100 g / 10 min, the heat resistance and mechanical strength of the thermoplastic elastomer composition are insufficient, and if it is less than 0.1 g / 10 min, the fluidity is poor and the molding processability is unfavorable. .
[0026]
  In the composition of the present invention, (C) a softening agent can be blended as necessary for improving workability.
[0027]
  As said (C), process oils, such as a paraffin type and a naphthene type, are preferable. These are used in an amount of 5 to 500 parts by weight, preferably 10 to 150 parts by weight, for adjusting the hardness and flexibility of the composition. If it is less than 5 parts by weight, the flexibility and workability are insufficient, and if it exceeds 500 parts by weight, the oil bleed becomes remarkable, which is not preferable.
[0028]
  The composition of the present invention is obtained by combining the above-described (A) specific ethylene / α-olefin copolymer, (B) olefin resin, and (C) softener in a specific composition ratio. The balance between strength, flexibility and processability is improved, and it can be preferably used.
[0029]
  The composition provided in the present invention needs to be partially crosslinked by (D) a crosslinking initiator or (D) and (E) a crosslinking assistant. This cross-linking can further improve wear resistance, mechanical strength, heat resistance, and the like.
[0030]
  The (D) crosslinking initiator is a phenol crosslinking agent or a radical generator for performing the dynamic crosslinking of (A), for example, an organic peroxide or an organic azo compound is preferable. This makes it possible to improve wear resistance, mechanical strength, heat resistance, and the like.
[0031]
  Here, the organic peroxide preferably used is a 1 minute half-life temperature T1Is preferably 100 to 250 ° C, more preferably 150 to 200 ° C. Further, the crosslinking efficiency ε calculated from the hydrogen abstraction ability in the pentadecane molecule is preferably 20 to 60, and more preferably 30 to 50.
[0032]
  Specific examples of such radical initiators include 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -3, 3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) octane, n-butyl-4,4-bis (t-butylperoxy) butane, n-butyl-4,4-bis (t-butylperoxy) valerate, etc. Peroxyketals; di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, α, α′-bis (t-butylperoxy-m-iso Propyl) benzene, α, α′-bis (t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane and 2,5-dimethyl-2,5-bis ( dialkyl peroxides such as t-butylperoxy) hexyne-3;
Diacyl peroxides such as acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, decanoyl peroxide, lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide and m-trioyl peroxide T-butyl peroxyacetate, t-butylperoxyisobutyrate, t-butylperoxy-2-ethylhexanoate, t-butylperoxylaurate, t-butylperoxybenzoate, di-t-butylperoxyisophthalate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxymaleic acid, t-butylperoxyisopropylcarbonate, and cumylpe Peroxyesters such as oxyoctate; and t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide and 1,1,3,3-tetramethyl Mention may be made of hydroperoxides such as butyl hydroperoxide.
[0033]
  Among these compounds, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, di-t-butyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-bis (T-Butylperoxy) hexane and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 are preferred.
[0034]
  These (D) crosslinking initiators are used in an amount of 0.02 to 3 parts by weight, preferably 0.05 to 1 part by weight, based on 100 parts by weight of the composition comprising (A) and (B). If it is less than 0.02 parts by weight, crosslinking is insufficient, and if it exceeds 3 parts by weight, the physical properties of the composition are not improved, which is not preferable.
[0035]
  Furthermore, as (E) crosslinking aid, a monofunctional monomer or a polyfunctional monomer can be used. The monofunctional monomer is preferably a radical polymerizable vinyl monomer, and is an aromatic vinyl monomer, an unsaturated nitrile monomer such as acrylonitrile or methacrylonitrile, an acrylate ester monomer, or methacrylic acid. Examples thereof include ester monomers, acrylic acid monomers, methacrylic acid monomers, maleic anhydride monomers, and N-substituted maleimide monomers. Polyfunctional monomers include divinylbenzene, triallyl isocyanurate, triallyl cyanurate, diacetone diacrylamide, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, ethylene Glycol dimethacrylate, triethylene glycol dimethacrylate, diethylene glycol dimethacrylate, diisopropenylbenzene, p-quinonedioxime, p, p'-dibenzoylquinonedioxime, phenylmaleimide, allyl methacrylate, N, N'-m-phenylene Bismaleimide, diallyl phthalate, tetraallyloxyethane, 1,2-polybutadiene and the like are preferably used. A plurality of these crosslinking assistants may be used in combination.
[0036]
  These crosslinking aids are used in an amount of 0.1 to 5 parts by weight, preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the composition comprising (A) and (B). If it is less than 0.1 part by weight, crosslinking is insufficient, and if it exceeds 5 parts by weight, the physical properties of the composition are not improved, and an excessive crosslinking aid remains, which is not preferable.
[0037]
  Moreover, you may add another resin and an elastomer to the composition of this invention to such an extent that the characteristic is not impaired.
[0038]
  In addition, the composition of the present invention can contain an inorganic filler and a plasticizer to the extent that the characteristics are not impaired. Examples of the inorganic filler used here include calcium carbonate, magnesium carbonate, silica, carbon black, glass fiber, titanium oxide, clay, mica, talc, magnesium hydroxide, and aluminum hydroxide. Examples of the plasticizer include phthalic acid esters such as polyethylene glycol and dioctyl phthalate (DOP). Other additives such as organic / inorganic pigments, heat stabilizers, antioxidants, UV absorbers, light stabilizers, flame retardants, silicone oil, antiblocking agents, foaming agents, antistatic agents, antibacterial agents, etc. Are also preferably used.
[0039]
  For the production of the composition of the present invention, a general method using a Banbury mixer, a kneader, a single-screw extruder, a twin-screw extruder, etc. used for the production of ordinary resin compositions and rubber compositions should be adopted. Is possible. In particular, a twin screw extruder is preferably used in order to achieve dynamic crosslinking efficiently. In the twin-screw extruder, the olefin-based elastomer and the propylene-based resin are uniformly and finely dispersed, and other components are added to cause a crosslinking reaction, thereby continuously producing the composition of the present invention. Is suitable.
[0040]
  In the present invention, it is preferable that (A) and (B) are in a subdivided form such as pellets, powders, crumbs and the like.
[0041]
  As a specific example, the composition of the present invention can be produced through the following processing steps. That is, (A) and (B) are mixed well and put into a hopper of an extruder. The crosslinking initiator and the crosslinking assistant may be added from the beginning together with (A) and (B), or may be added from the middle of the extruder. Moreover, (C) may be added from the middle of the extruder, or may be added separately at the beginning and midway. (A) and (B) may be partially added from the middle of the extruder. When heat-melting and kneading in an extruder, (A), the crosslinking initiator and the crosslinking aid are subjected to a crosslinking reaction, and (C) is further added to melt-kneading to sufficiently achieve the crosslinking reaction and kneading dispersion. After doing so, the composition is removed from the extruder. It can be pelletized to obtain pellets of the composition of the present invention.
[0042]
  In the present invention, the crosslinking degree and swelling degree of (A) are defined as follows. Composition weight W0Is refluxed in 200 ml of orthodichlorobenzene for 20 hours, the solution is filtered through a filter, and the weight of the swollen composition (W1). Next, the swelling composition is vacuum-dried at 100 ° C. and then again weight (W2). In this way, the degree of crosslinking and the degree of swelling are calculated as follows.
[0043]
        Degree of crosslinking = (W2/ W0) X 100 (%)
        Swelling degree = W1/ W2
[0044]
  The degree of crosslinking and the degree of swelling are controlled by adjusting the types and addition amounts of the crosslinking initiator and the crosslinking assistant, the reaction temperature, the reaction method, the method of adding the softening agent, and the like.
[0045]
  For example, an increase in the degree of crosslinking is achieved by increasing the amount of the crosslinking initiator or crosslinking aid and performing the reaction for a long time at a temperature that is equal to or higher than the decomposition temperature of the crosslinking initiator and as low as possible. Further, the increase in the degree of swelling is achieved by suppressing the reaction rate using a polyfunctional crosslinking aid having a small number of functional groups or a polymerizable vinyl monomer. Furthermore, the amount of crosslinking initiator is reduced, the use of a bifunctional crosslinking aid instead of trifunctional, the use of a vinyl monomer such as a methacrylic acid ester monomer or an aromatic vinyl monomer, at a low temperature. It is also possible to achieve an increase in the crosslinking agent and the degree of swelling by the above reaction. However, when the crosslinking initiator and the crosslinking aid are excessively added, the degree of crosslinking increases, but the degree of swelling decreases and the requirements of the present invention are not satisfied. In addition, if an excessively high activity crosslinking initiator and crosslinking aid are used, or if a high temperature reaction condition is used, the degree of crosslinking similarly increases, but the degree of swelling decreases and satisfies the requirements of the present invention. do not do.
[0046]
  On the other hand, when a crosslinking initiator and a crosslinking assistant are blended in (A) while absorbing a small amount of (C) softener in advance in (A), the crosslinking reaction proceeds moderately. The degree of crosslinking can be increased while suppressing the decrease.
[0047]
  In the present invention, as a specific production method relating to a reaction system for achieving a desired degree of crosslinking and swelling, for example,
        Kneading degree M = (π2/ 2) (L / D) DThree(N / Q)
(However, L is the length of the extruder in the die direction (mm) starting from the raw material addition part, D is the inner diameter of the barrel of the extruder (mm), Q is the discharge amount (kg / h), and N is the screw speed (rpm). The degree of kneading M is
        10x106≦ M ≦ 1000 × 106
It is important that M is 10 × 106If the ratio is less than 50%, dynamic crosslinking does not proceed, so the degree of crosslinking is less than 50% and the mechanical strength is low, while M is 1000 × 10.6Exceeding this causes excessive shearing force, so that the degree of cross-linking is similarly less than 50% and the mechanical strength is lowered.
[0048]
  In the present invention, as a specific method relating to the reaction temperature for achieving the desired degree of crosslinking and swelling, for example, (D) the 1 minute half-life temperature (° C.) of the crosslinking initiator is expressed as T1As T1−100 <T2<T1+40
        T2+1 <TThree<T2+200
It is preferable to perform melt kneading under a melting temperature condition that satisfies the above conditions. First, the melting temperature T2(° C.) and then the melting temperature TThreeAnd melt kneading at (° C.). In particular, in a melt extruder having a length L in the die direction starting from the raw material addition port, an extruder zone having a length of 0.1 L to 0.5 L from the raw material addition port is melted at a melting temperature T.2(° C.), the melt kneading is performed first, and then the subsequent extruder zone is set to the melting temperature TThreeMelting and kneading is performed at (° C.). Where in particular T1Is preferably 150 to 250 ° C., and T in each zone of the melt extruder1Or T2May be a uniform temperature or may have a temperature gradient.
[0049]
  In the present invention, as a specific important and preferable method regarding the addition method of the softening agent (C) for achieving the desired degree of crosslinking and swelling, one main feed portion at different distances from the tip portion And (A), (B), and (C) are melt-kneaded and dynamically cross-linked using an extruder having a feeding part capable of side feeding at a plurality of locations. For example, the feed may be divided into feed parts. Here, it is important to divide and feed (C) into a plurality of feed supply sections. By dividing and feeding (C), the melt viscosity at the time of dynamic crosslinking in the former stage of the extruder is lowered, the reaction rate is suppressed, and the degree of swelling is increased. The degree of swelling can be controlled by the number of divisions (C) or the amount added.
[0050]
  Various molded articles can be produced from the olefin rubber composition thus obtained by any molding method. As the molding method, injection molding, extrusion molding, compression molding, blow molding, calendar molding, foam molding, or the like is preferably used.
[0051]
  EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these examples. In these examples and comparative examples, the test methods used for evaluating various physical properties are as follows.
[0052]
  (1) Degree of crosslinking and degree of swelling
  Composition weight W0Is refluxed in 200 ml of orthodichlorobenzene for 20 hours, the solution is filtered through a filter, and the weight of the swollen composition (W1). Next, the swelling composition is vacuum-dried at 100 ° C. and then again weight (W2). In this way, the degree of crosslinking and the degree of swelling are calculated as follows.
[0053]
        Degree of crosslinking = (W2/ W0) X 100 (%)
        Swelling degree = W1/ W2
[0054]
  (2) Surface hardness
  Four 2 mm thick sheets were stacked and evaluated according to ASTM D2240 in the A type at 23 ° C. atmosphere.
[0055]
  (3) Tensile breaking strength [kgf / cm2]
  Evaluation was performed at 23 ° C. according to JIS K6251.
[0056]
  (4) Tensile elongation at break [%]
  Evaluation was performed at 23 ° C. according to JIS K6251.
[0057]
  (5) Light stability
  An ATLAS CI35W Weatherometer manufactured by ATLAS Electric Devices Co. (USA) was used as a light stability tester, and evaluation was performed by a method based on JIS K7102. As irradiation conditions, the internal temperature of the tester was 55 ° C., the humidity was 55%, there was no rain, xenon light (wavelength 340 nm, energy 0.30 W / m2) Irradiation for 300 hours. After irradiation, the appearance of the sheet was visually evaluated based on the following criteria.
◎ Very good.
○ Good.
Δ: Good but slightly rough.
× Roughness overall. No gloss.
[0058]
  (6) Thermal stability
  The sheet was heated in a gear oven at 120 ° C. for 100 hours, and the ratio of the value after the heating test to the initial value of the tensile strength at break according to JIS K6251 was defined as the retention rate (%) of the tensile strength at break. A measure of thermal stability.
[0059]
  (7) Bleed resistance
  After leaving for 100 hours in a 120 ° C. atmosphere, the surface of the molded product was observed and evaluated.
A: Very good.
○: Good.
Δ: A little oily substance is adhered to the surface of the molded product.
X: A large amount of oily substance adheres to the surface of the molded product, and the sticky feeling is remarkable.
[0060]
  (8) Appearance
  The surface of the molded product was observed and evaluated visually.
A: Very good.
○: Good.
Δ: A little oily substance is adhered to the surface of the molded product.
X: A large amount of oily substance adheres to the surface of the molded product, and the sticky feeling is remarkable.
[0061]
  The following were used as each component used in Examples and Comparative Examples.
[0062]
  (I) Ethylene / α-olefin copolymer
  1) Ethylene / octene-1 copolymer (EOM-1)
  It was produced by a method using a metallocene catalyst described in JP-A-3-16388. The composition ratio of ethylene / octene-1 in the copolymer is 72/28 by weight (referred to as EOM-1).
[0063]
  2) Ethylene octene-1 copolymer (EOM-2)
  It was produced by a method using an ordinary Ziegler catalyst. The composition ratio of ethylene / octene-1 in the copolymer is 72/28 by weight (referred to as EOM-2).
[0064]
  3) Ethylene / propylene / dicyclopentadiene copolymer (EPDM-1)
  It was produced by a method using a metallocene catalyst described in JP-A-3-16388. The composition ratio of ethylene / propylene / dicyclopentadiene in the copolymer is 72/24/4 in weight ratio (referred to as EPDM-1).
[0065]
  4) Ethylene / propylene / dicyclopentadiene copolymer (EPDM-2)
  It was produced by a method using an ordinary Ziegler catalyst. The composition ratio of ethylene / propylene / dicyclopentadiene in the copolymer is 72/24/4 by weight (referred to as EPDM-2).
[0066]
  (Ii) Olefin resin
  polypropylene
  Nippon Polychem Co., Ltd. Isotactic Polypropylene (PP)
  (Iii) Paraffinic oil
  Idemitsu Kosan Co., Ltd., Diana Process Oil PW-380 (referred to as MO)
  (Iv) Cross-linking initiator
  1) 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane (trade name Perhexa 25B) (referred to as POX-1) manufactured by NOF Corporation
  2) 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 (trade name perhexine 25B) (named POX-2) manufactured by NOF Corporation
  (V) Crosslinking aid
  1) Divinylbenzene (referred to as DVB) manufactured by Wako Pure Chemical Industries, Ltd.
  2) Trial isocyanurate (referred to as TAIC) manufactured by Nippon Kasei Co., Ltd.
  3) N, N'-m phenylene bismaleimide (referred to as PMI) manufactured by Ouchi Shinsei Chemical Co., Ltd.
  4) Methyl methacrylate (referred to as MMA) manufactured by Asahi Kasei Corporation
  5) Asahi Kasei Kogyo Co., Ltd., styrene (ST)
[0067]
  Comparative Examples 1-12
  As the extruder, a twin-screw extruder (40 mmφ, L / D = 47) having an injection port at the center of the barrel was used. As the screw, a two-thread screw having kneading parts before and after the injection port was used.
[0068]
  (A) Component / PP / POX-1 / DVB / MO = 65/35 / 0.5 / 1.0 / 45 (parts by weight) A mixture other than MO was first introduced into a twin screw extruder. Subsequently, MO was injected from the injection port at the center of the extruder by a pump, and melt extrusion was performed under the following conditions. That is, melt extrusion conditions were: melt extrusion temperature 220 ° C., discharge rate Q = 12 kg / h, extruder barrel inner diameter D = 25 mm, L / D = 47 when the extruder length is L (mm), and screw rotation speed N = 280 rpm.
[0069]
  On the basis of the above conditions, the degree of crosslinking and the degree of swelling were controlled by adjusting the type, addition amount, reaction temperature, and reaction method of the crosslinking initiator and the crosslinking assistant. Specifically, in order to increase the degree of crosslinking, the amount of crosslinking initiator or crosslinking assistant was increased, and the reaction was carried out for a long time at a temperature that is higher than the decomposition temperature of the radical initiator and as low as possible. On the other hand, to increase the degree of swelling, it is important to suppress the reaction rate, and for example, it was performed by a technique of reducing the amount of crosslinking initiator and low-temperature reaction. By blending POX and DVB into (A) while absorbing a small amount of MO in advance in (A), the degree of crosslinking was increased while suppressing a decrease in the degree of swelling.
[0070]
  A sheet having a thickness of 2 mm was prepared from the rubber composition thus obtained by compression molding at 200 ° C., and each mechanical property was evaluated.
[0071]
  The results are shown in Table 1.
[0072]
[Table 1]
Figure 0004758588
[0073]
  According to Table 1, it can be seen that the composition satisfying the requirements of the degree of crosslinking and the degree of swelling of the present application is excellent in mechanical strength such as tensile strength at break and tensile elongation at break, but was produced using a metallocene catalyst. An ethylene / α-olefin copolymer composed of ethylene and an α-olefin having 3 to 20 carbon atoms, especially a copolymer of ethylene and octene-1 produced using a metallocene-based catalyst, has excellent mechanical strength. You can see that
[0074]
  Comparative Examples 13-18
  Comparative Example 5The same experiment was repeated except that the kneading degree M was changed according to the following definition. The results are shown in Table 2.
[0075]
        M = (π2/ 2) (L / D) DThree(N / Q)
(However, L is the length of the extruder in the die direction (mm) starting from the raw material addition part, D is the inner diameter of the barrel of the extruder (mm), Q is the discharge amount (kg / h), and N is the screw speed (rpm). Where D = 25 mm and L / D = 47.)
[0076]
[Table 2]
Figure 0004758588
[0077]
  According to Table 2, 10 × 106≦ M ≦ 1000 × 106It can be seen that the degree of cross-linking and the degree of swelling satisfying the requirements in the present invention can be achieved by manufacturing in the range of the kneading degree M.
[0078]
  Examples 1-2 and Comparative Examples 19-30
  Comparative Example 5In the melting temperature T according to the following definition:2(° C.), first, kneading and then melting temperature TThreeThe same experiment was repeated except that melt kneading was performed at (° C.). The results are shown in Tables 3 and 4.
[0079]
[Table 3]
Figure 0004758588
[0080]
  According to Table 3, it can be seen that the degree of crosslinking and the degree of swelling satisfying the requirements of the present invention can be achieved by carrying out the production under the following melting temperature conditions.
[0081]
        T1: (C) 1 minute half-life temperature (° C)
        T1−100 <T2<T1+40
          T2+1 <TThree<T2+200
[0082]
[Table 4]
Figure 0004758588
[0083]
  Also, according to Table 4, as the crosslinking aid, trifunctional TAIC has a higher crosslinking density than bifunctional DVB and PMI, so that the degree of swelling is lowered, the retention of the softener is increased, and the resistance to resistance is increased. It can be seen that the bleeding property is improved.
[0084]
  Trifunctional TAIC slightly reduces the appearance, but it has been found that the use of a monofunctional monomer, MMA, improves the balance between appearance and bleed resistance.
[0085]
  Comparative Examples 31-33
  Comparative Example 5The same experiment was repeated except that 45 parts by weight of MO was divided according to the split ratios shown in Table 5. The results are shown in Table 5.
[0086]
[Table 5]
Figure 0004758588
[0087]
  According to Table 5, by dividing and feeding MO, the melt viscosity at the time of dynamic crosslinking in the former stage of the extruder is lowered, the reaction rate is suppressed, and the degree of swelling is increased while maintaining the degree of crosslinking. I understand.
[0088]
  Industrial applicability
  Since the olefin rubber composition of the present invention has excellent mechanical strength, heat resistance, and oil resistance, it is used for automobile parts, automobile interior materials, airbag covers, machine parts, electrical parts, cables, hoses. , Belts, toys, miscellaneous goods, daily necessities, building materials, sheets, films, etc. can be used widely, and play a major role in the industry.

Claims (5)

(A)エチレン単位と炭素数3〜20のα−オレフィン単位を含むエチレン・α−オレフィン共重合体20〜80重量部と(B)ホモのアイソタクチックポリプロピレンあるいはプロピレンとエチレン、ブテン−1、ペンテン−1、ヘキセン−1から選ばれるα−オレフィンとのアイソタクチック共重合樹脂(ブロック、ランダムを含む)20〜80重量部((A)と(B)の合計量が100重量部)とを含む架橋された組成物であって、(D)架橋開始剤及び(E)架橋助剤により架橋されたものであって、該(E)が多官能単量体と単官能単量体からなり、該(A)の架橋度が50%以上であり、かつ該(A)の膨潤度が5〜40である架橋オレフィン系ゴム組成物(但し、前記(A)は、α−オレフィンの共重合比率が20〜45重量%または密度が0.8〜0.9g/cm3であって、かつ、架橋オレフィン系ゴム組成物に後から熱可塑性エラストマー1〜500重量部を添加した場合を除く)。(A) 20-80 parts by weight of an ethylene / α-olefin copolymer containing an ethylene unit and an α-olefin unit having 3 to 20 carbon atoms, and (B) a homoisotactic polypropylene or propylene and ethylene, butene-1, 20-80 parts by weight of an isotactic copolymer resin (including block and random) with an α-olefin selected from pentene-1 and hexene-1 (the total amount of (A) and (B) is 100 parts by weight) A crosslinked composition comprising (D) a crosslinking initiator and (E) a crosslinking aid, wherein (E) comprises a polyfunctional monomer and a monofunctional monomer. becomes, the degree of crosslinking of the (a) is 50% and the degree of swelling of 5 to 40 in a crosslinked olefin rubber composition (a) (provided, however, pre-Symbol (a) is, alpha-olefin copolymerization ratio of 20 to 45 wt% Others unless density I 0.8 to 0.9 g / cm 3 der, and the addition of the thermoplastic elastomer 1-500 parts by weight after-crosslinked olefin rubber composition). 前記(A)がメタロセン触媒を用いて製造された、エチレン単位と炭素数3〜20のα−オレフィン単位を含むエチレン・α−オレフィン共重合体である請求項1記載の架橋オレフィン系ゴム組成物。2. The crosslinked olefin rubber composition according to claim 1, wherein the (A) is an ethylene / α-olefin copolymer produced using a metallocene catalyst and containing an ethylene unit and an α-olefin unit having 3 to 20 carbon atoms. . 膨潤度が10〜40である請求項1又は2記載の架橋オレフィン系ゴム組成物。The crosslinked olefin rubber composition according to claim 1 or 2, which has a degree of swelling of 10 to 40. 更に軟化剤(C)5〜500重量部を含む請求項1〜3のいずれか一項記載の架橋オレフィン系ゴム組成物。Furthermore, the bridge | crosslinking olefin type rubber composition as described in any one of Claims 1-3 containing 5-500 weight part of softening agents (C). 前記(D)を、前記(A)と(B)からなる組成物100重量部に対し0.5〜3重量部用いる、請求項1〜4のいずれか一項記載の架橋オレフィン系ゴム組成物。The crosslinked olefin rubber composition according to any one of claims 1 to 4, wherein the (D) is used in an amount of 0.5 to 3 parts by weight with respect to 100 parts by weight of the composition comprising the (A) and (B). .
JP2001564274A 2000-02-28 2000-02-28 Cross-linked olefin rubber composition Expired - Lifetime JP4758588B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001140 WO2001064783A1 (en) 2000-02-28 2000-02-28 Olefin rubber composition

Publications (1)

Publication Number Publication Date
JP4758588B2 true JP4758588B2 (en) 2011-08-31

Family

ID=11735730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001564274A Expired - Lifetime JP4758588B2 (en) 2000-02-28 2000-02-28 Cross-linked olefin rubber composition

Country Status (3)

Country Link
JP (1) JP4758588B2 (en)
DE (1) DE10084514B4 (en)
WO (1) WO2001064783A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1897909A1 (en) * 2006-09-11 2008-03-12 DSMIP Assets B.V. Composite comprising a thermosetting resin
CN102105527A (en) * 2008-07-23 2011-06-22 沙特基础工业公司 Process for preparing modified polypropylene compositions
CN114181452B (en) * 2021-10-29 2023-10-31 金发科技股份有限公司 Polypropylene composition and preparation method and application thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258639A (en) * 1991-02-12 1992-09-14 Showa Denko Kk Production of thermoplastic elastomer
JPH07138378A (en) * 1993-11-15 1995-05-30 Sumitomo Chem Co Ltd Production of thermoplastic elastomer composition
JPH0977932A (en) * 1995-09-11 1997-03-25 Sekisui Chem Co Ltd Polyolefin resin composition and molded product
JPH10182901A (en) * 1996-10-28 1998-07-07 Mitsui Chem Inc Olefinic thermoplastic elastomer composition
JPH10287776A (en) * 1997-04-14 1998-10-27 Asahi Chem Ind Co Ltd Partially crosslinked thermoplastic elastomer composition
JP2000072933A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Olefin elastomer composition
JP2000072928A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Extruded sheet
JP2000071269A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Calendered molding
JP2000072907A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Expanded material
JP2000103909A (en) * 1998-09-29 2000-04-11 Asahi Chem Ind Co Ltd Production of elastomer composition
JP4213791B2 (en) * 1998-08-31 2009-01-21 旭化成ケミカルズ株式会社 Blow molding
JP4283352B2 (en) * 1998-08-31 2009-06-24 旭化成ケミカルズ株式会社 Injection molded product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2219052A1 (en) * 1996-10-28 1998-04-28 Mitsui Chemicals, Incorporated Olefin thermoplastic elastomer composition
DE19834580A1 (en) * 1998-07-31 2000-02-03 Bayer Ag Rubber polymers with a high gel content and a high degree of swelling

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258639A (en) * 1991-02-12 1992-09-14 Showa Denko Kk Production of thermoplastic elastomer
JPH07138378A (en) * 1993-11-15 1995-05-30 Sumitomo Chem Co Ltd Production of thermoplastic elastomer composition
JPH0977932A (en) * 1995-09-11 1997-03-25 Sekisui Chem Co Ltd Polyolefin resin composition and molded product
JPH10182901A (en) * 1996-10-28 1998-07-07 Mitsui Chem Inc Olefinic thermoplastic elastomer composition
JPH10287776A (en) * 1997-04-14 1998-10-27 Asahi Chem Ind Co Ltd Partially crosslinked thermoplastic elastomer composition
JP2000072933A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Olefin elastomer composition
JP2000072928A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Extruded sheet
JP2000071269A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Calendered molding
JP2000072907A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Expanded material
JP4213791B2 (en) * 1998-08-31 2009-01-21 旭化成ケミカルズ株式会社 Blow molding
JP4283352B2 (en) * 1998-08-31 2009-06-24 旭化成ケミカルズ株式会社 Injection molded product
JP2000103909A (en) * 1998-09-29 2000-04-11 Asahi Chem Ind Co Ltd Production of elastomer composition

Also Published As

Publication number Publication date
DE10084514B4 (en) 2007-05-24
DE10084514T1 (en) 2002-06-20
WO2001064783A1 (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP3240621B2 (en) Olefin-based thermoplastic elastomer composition
US6653401B2 (en) Thermoplastic elastomer composition
JP4372359B2 (en) Method for producing rubber composition
JP2001146533A (en) Highly impact-resistant thermoplastic resin composition
JP4477245B2 (en) Rubber composition
US7491771B2 (en) Olefinic rubber composition
JPH10287775A (en) Low-hardness thermoplastic elastomer composition
JP4758588B2 (en) Cross-linked olefin rubber composition
JP2000063732A (en) Floor-covering material
JP3359505B2 (en) Thermoplastic polymer composition
JP4213791B2 (en) Blow molding
JP2000290432A (en) Highly strong rubbery composition
JP2004149709A (en) Method for producing thermoplastic elastomer composition with good appearance
JP4283352B2 (en) Injection molded product
JP2001233996A (en) Rubber-based composition
JPH10287776A (en) Partially crosslinked thermoplastic elastomer composition
JP2000063581A (en) Waterproof sheet
JP2000169640A (en) Thermoplastic elastomer composition
JP2000063582A (en) Wallpaper
JP2000072892A (en) Thermoplastic elastomer composition excellent in abrasion resistance
JP2000072885A (en) Thermoplastic elastomer composition having excellent mechanical strength
JP2000007850A (en) Thermoplastic polymer composition
JP2002265690A (en) Impact-resistant styrenic thermoplastic resin composition
JP2000072928A (en) Extruded sheet
JP2000026671A (en) Olefin based thermoplastic elastomer composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Ref document number: 4758588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term