WO2001064783A1 - Olefin rubber composition - Google Patents

Olefin rubber composition Download PDF

Info

Publication number
WO2001064783A1
WO2001064783A1 PCT/JP2000/001140 JP0001140W WO0164783A1 WO 2001064783 A1 WO2001064783 A1 WO 2001064783A1 JP 0001140 W JP0001140 W JP 0001140W WO 0164783 A1 WO0164783 A1 WO 0164783A1
Authority
WO
WIPO (PCT)
Prior art keywords
crosslinking
olefin
degree
weight
ethylene
Prior art date
Application number
PCT/JP2000/001140
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Nishihara
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to PCT/JP2000/001140 priority Critical patent/WO2001064783A1/en
Priority to JP2001564274A priority patent/JP4758588B2/en
Priority to DE10084514T priority patent/DE10084514B4/en
Publication of WO2001064783A1 publication Critical patent/WO2001064783A1/en
Priority to US11/425,935 priority patent/US7491771B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes

Definitions

  • the present invention relates to an olefin rubber composition. More specifically, the present invention relates to an olefin rubber composition having excellent mechanical strength, heat resistance, and oil resistance.
  • Radical crosslinkable olefin-based rubber and olefinic resin without radical crosslinkability such as polypropylene (PP) are crosslinked by melt-kneading in an extruder in the presence of a radical initiator in the presence of a radical initiator.
  • the composition is a known technique, and is widely used for applications such as automobile parts.
  • Examples of such an olefin rubber include an ethylene-propylene-gen rubber (EPDM) composition or an olefin-based elastomer composition produced by a metallocene catalyst (Japanese Patent Application Laid-Open Nos. 8-120127 and 9-191). No. 1,370,001, Japanese Patent Application Laid-Open No. Hei 9-110787, Japanese Patent Application Laid-Open No. Hei 10-87912) are known. However, the above composition does not always have sufficient mechanical strength, and there is a need for an olefin rubber composition that can withstand practical use.
  • EPDM ethylene-propylene-gen rubber
  • olefin-based elastomer composition produced by a metallocene catalyst
  • An object of the present invention is to provide an olefin rubber composition which does not have the above-mentioned problems in view of the current situation, that is, has excellent mechanical properties.
  • the present inventors have conducted intensive studies to obtain an olefin rubber composition having excellent mechanical strength, and as a result, it has been found that an olefin rubber composition containing ethylene and hyolefin and having a specific crosslinked structure is surprising. Finally, they found that the mechanical strength was dramatically improved, and completed the present invention.
  • the present invention relates to (A) 1 to 99 parts by weight of an ethylene / ⁇ -olefin copolymer containing ethylene and a carbon-containing unit having 3 to 20 carbon atoms, and 1 to 99 parts by weight of a ( ⁇ ) olefin resin ( A partially or completely crosslinked composition containing ( ⁇ ) and ( ⁇ ) in a total amount of 100 parts by weight, wherein the degree of crosslinking of ( ⁇ ) is 50% or more; And said BEST MODE FOR degree of swelling out the c invention is to provide a Orefin rubber composition which is 5-4 0 (A)
  • composition of the present invention comprises (A) an ethylene / ⁇ -olefin copolymer having a specific crosslinked structure, and ( ⁇ ) an olefin resin.
  • ( ⁇ ) is important that the degree of cross-linking is 50% or more, preferably 60% or more, more preferably 70% or more, most preferably 80% or more, and extremely preferably. Is 90% or more. If the degree of crosslinking is less than 50%, the mechanical strength such as tensile strength and permanent compression set (C-set), oil resistance, and heat resistance are reduced.
  • C-set permanent compression set
  • (A) has a swelling degree of 5 to 40, preferably 10 to 35, more preferably 10 to 30 and most preferably 10 to 25, It is preferably from 10 to 20.
  • the degree of swelling is a measure of the crosslink density, whereas conventional olefin rubbers had a degree of swelling of less than 5, but the present inventor has obtained excellent mechanical properties, only when the degree of swelling is between 5 and 40. The inventors have found that heat resistance and oil resistance develop, and have completed the present invention.
  • the ethylene-ct-olefin copolymer is, for example, an ethylene- ⁇ -olefin copolymer containing an ethylene unit and an ⁇ -olefin unit having 3 to 20 carbon atoms.
  • Examples of the ⁇ -olefins having 3 to 20 carbon atoms include propylene, butene-11, pentene-11, hexene-1, 4-methylpentene-11, heptene-1, otaten-1, nonene-1 and decene-1. 1, Dedecene-1 and Dodesen-1 etc. Among them, hexene-1, 4-methylpentene-11 and octene-11 are preferred, and octene-11 is particularly preferred. Otathene-11 is excellent in the effect of softening the copolymer even in a small amount, and the obtained copolymer is excellent in mechanical strength.
  • the ethylene'hydroolefin copolymer used in the present invention is preferably produced by using a known metacene catalyst or a Ziegler catalyst.
  • meta-acene catalysts are composed of a cyclopentenyl derivative of a Group IV metal such as titanium or zirconium and a co-catalyst.
  • a Group IV metal such as titanium or zirconium
  • the molecular weight distribution of the obtained polymer is narrow, and the distribution of the comonomer ⁇ -olefin having 3 to 20 carbon atoms in the copolymer is uniform.
  • the ethylene'-olefin copolymer used in the present invention has an ⁇ -olefin copolymerization ratio of 1 to 50% by weight. /. It is preferably, more preferably 1 0 to 40 wt 0/0, most preferably from 20 to 30 wt%.
  • the co-polymerization ratio of hyolefine exceeds 50% by weight, the hardness and tensile strength of the composition are greatly reduced, while when it is less than 1% by weight, the hardness of the composition is high and the mechanical strength tends to be reduced. It is in.
  • the density of ( ⁇ ) is preferably in the range of 0.8 to 0.9 gZcm °.
  • the use of the ethylene / thioolefin copolymer having a density in this range makes it possible to obtain a thermoplastic rubber composition having excellent flexibility and low hardness.
  • the (A) ethylene' ⁇ -olefin copolymer used in the present invention preferably has a long-chain branch.
  • the presence of long-chain branching enables the density to be lower than the ratio (% by weight) of copolymerized hyolephine without lowering the mechanical strength. Low hardness and high strength rubber can be obtained.
  • Olefin rubbers having long chain branches are described in US Pat. No. 5,278,272 and the like.
  • the ethylene-thioolefin copolymer has a DSC melting point peak at a temperature of room temperature or higher.
  • the copolymer has a melting point peak, in a temperature range below the melting point, the copolymer has a stable morphology, is excellent in handleability, and has little stickiness.
  • melt index of (A) used in the present invention is preferably in the range of 0.01 to 100 gZlO content (190 ° C, 2.16 kg load), and more preferably 0.1 to 100 kg. 2-: 10 gZl 0 min.
  • (A) contains an ethylene unit and an ⁇ -olefin unit as essential components, and may contain other vinyl monomer units as necessary.
  • ( ⁇ ) has an ethylene unit and a hyolef ⁇ ⁇ in unit.
  • examples thereof include polystyrene, polyolefin, polyester, polyurethane, 1,2 polybutadiene, and polychlorinated vinyl.
  • Hydrogenated thermoplastic elastomers, and finally copolymers containing ethylene units and ⁇ - olefin units in the structure are also included in ( ⁇ ). It is.
  • the olefin resin may be an isotactic copolymer resin of polyethylene, homo isotactic polypropylene, propylene and other olefins such as ethylene, butene-11, pentene-11, and hexene-1 ( And random copolymers).
  • At least one resin selected from these resins is used in a composition ratio of 1 to 99 parts by weight based on a total of 100 parts by weight of (A) and (B). Preferably it is 5 to 90 parts by weight, more preferably 20 to 80 parts by weight. If the amount is less than 1 part by weight, the fluidity and processability of the composition decrease, and if it exceeds 99 parts by weight, the flexibility of the composition is insufficient, which is not desirable.
  • the melt index of the olefin resin used in the present invention is 0.:! It is preferably in the range of ⁇ 10 g / 10 min (230 ° C, 2.16 kg load). If it exceeds 100 gZl 0 minutes, the heat resistance and mechanical strength of the thermoplastic elastomer composition will be insufficient, and if it is less than 0.1 gZi 0 minutes, the fluidity will be poor and the moldability will be reduced. Is not preferred.
  • (C) a softening agent can be blended as needed to improve processability.
  • process oils such as paraffinic and naphthenic are preferred. These are used in an amount of 5 to 50 parts by weight, preferably 10 to 150 parts by weight, for adjusting the hardness and flexibility of the composition. If the amount is less than 5 parts by weight, flexibility and workability are insufficient, and if it exceeds 500 parts by weight, oil bleeding becomes remarkable, which is not preferable.
  • composition of the present invention can be obtained by combining (A) a specific ethylene.co-olefin copolymer, (B) an olefin resin, and (C) a softening agent in a specific composition ratio, thereby obtaining a mechanical
  • A a specific ethylene.co-olefin copolymer
  • B an olefin resin
  • C a softening agent
  • composition provided in the present invention needs to be partially cross-linked by (D) a cross-linking initiator or (D) and (E) a cross-linking aid.
  • D) a cross-linking initiator or (D) and (E) a cross-linking aid In this bridge This makes it possible to further improve wear resistance, mechanical strength, heat resistance, and the like.
  • D) above crosslinking initiator also Fuyunoru crosslinking agent for performing a dynamic cross-linking of (A) is a radical generator or the like, for example, an organic peroxide or an organic ⁇ zo compounds is preferably les, c which This makes it possible to improve wear resistance, mechanical strength, heat resistance, and the like.
  • the organic peroxide preferably used has a one-minute half-life temperature T, of preferably 100 to 250 ° C, and more preferably 150 to 200 ° C. More preferred.
  • the crosslinking efficiency ⁇ calculated from the hydrogen abstraction ability in the pentadecane molecule is preferably from 20 to 60, and more preferably from 30 to 50.
  • radical initiators include 1,1-bis (t-butyloxy) 13,3,5-trimethylcyclohexane, 1,1-bis (t-hexyloxy) 13, 3,5-Trimethylcyclohexane, 1,1-bis (t-hexyloxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t-butylperoxy) cyclo Veroxy such as xane, 2,2-bis (t-butylperoxy) octane, n-butynolee 4,4-bis (t-butylperoxy) butane, n-butyl-4,4-bis (t-butylperoxy) valerate Ketals; di-t-butylperoxide, dicumylperoxide, t-butylcumylperoxide, ⁇ , a'-bis (t-butylperoxide-1m-a Propyl)
  • 1,1-bis (t-butylperoxy) -1,3,3,5-trimethinolecyclohexane, di-t-butylperoxide, dicumylperoxide, 2,5-dimethyl-2, 5-bis (t-butylperoxy) hexane and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexine-13 are preferred.
  • crosslinking initiators are used in an amount of 0.02 to 3 parts by weight, preferably 0.05 to 1 part by weight, per 100 parts by weight of the composition comprising (A) and (B). Used. If the amount is less than 0.02 parts by weight, the crosslinking is insufficient, and if it exceeds 3 parts by weight, the physical properties of the composition are not improved, which is not preferable.
  • a crosslinking assistant includes a monofunctional monomer or a polyfunctional monomer.
  • the monofunctional monomer is preferably a radical polymerizable vinyl monomer, and is an aromatic vinyl monomer, an unsaturated nitrile monomer such as acrylonitrile and methacrylonitrile, and an acrylate monomer.
  • methacrylic acid ester monomers acrylic acid monomers, methacrylic acid monomers, maleic anhydride monomers, and N-substituted maleimide monomers.
  • the polyfunctional monomers include divinylbenzene, triallyl isocyanurate, triaryl cyanurate, diacetone diacrylamide, polyethylene glycol diatalylate, polyethylene glycol dimethacrylate, and trimethylolpropane trimethacrylate.
  • Trimethylolpropane triatalylate ethylene glycolone resin methacrylate, triethylene glycolone resin methacrylate, diethylene glycol dimethacrylate, diisopropenyl benzene, p-quinone dioxime, ⁇ , ⁇ '-dibenzoylquinone dioxime, phenyl maleimimi De, ant ⁇ methacrylate, N, N'-m-phenylenebismaleimide, jia Rylphthalate, tetraaryloxetane, 1,2-polybutadiene and the like are preferably used. These crosslinking aids may be used in combination of two or more.
  • crosslinking aids are used in an amount of 0.1 to 5 parts by weight, preferably 0.5 to 2 parts by weight, per 100 parts by weight of the composition comprising (A) and (B). When the amount is less than 0.1 part by weight, the crosslinking is insufficient. When the amount exceeds 5 parts by weight, the physical properties of the composition are not improved and an excessive amount of the crosslinking aid remains, which is not preferable.
  • the composition of the present invention can contain an inorganic filler and a plasticizer to such an extent that the characteristics thereof are not impaired.
  • the inorganic filler used here includes, for example, calcium carbonate, magnesium carbonate, silica, carbon black, glass fiber, titanium oxide, clay, Myriki, Tanorek, magnesium hydroxide, aluminum hydroxide and the like.
  • the plasticizer include phthalic acid esters such as polyethylene glycol and octyl phthalate (D ⁇ P).
  • other additives such as organic and inorganic pigments, heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, flame retardants, silicone oils, antiblocking agents, foaming agents, antistatic agents, antibacterial agents, etc. Are also preferably used.
  • a general method using a Banbury mixer, a kneader, a single-screw extruder, a twin-screw extruder, etc., which are used for the production of ordinary resin compositions and rubber compositions, is employed. It is possible to In order to achieve dynamic crosslinking particularly efficiently, a twin-screw extruder is preferably used.
  • the twin-screw extruder uniformly and finely disperses the olefin-based elastomer and the propylene-based resin, and further adds other components to cause a crosslinking reaction, thereby continuously producing the composition of the present invention. More suitable for
  • (A) and (B) are preferably in a finely divided form such as pellets, powders and crumbs.
  • the composition of the present invention can be produced via the following processing steps. That is, (A) and (B) are mixed well and put into a hopper of an extruder.
  • the crosslinking initiator and the crosslinking assistant may be added together with (A) and (B) from the beginning. Alternatively, it may be added in the middle of the extruder.
  • (C) may be added from the middle of the extruder, or may be added separately at the beginning and during the middle.
  • (A) and (B) may be partially added in the middle of the extruder.
  • the degree of crosslinking and the degree of swelling of (A) are defined as follows.
  • the weight of the composition, W 0, is refluxed in 200 ml of orthodichlorobenzene for 20 hours, the solution is filtered through a filter, and the weight of the swelling composition (W ⁇ is measured. After vacuum drying the composition at 1 oo ° C., the weight (w 2 ) is measured again, and the degree of crosslinking and the degree of swelling are calculated as follows.
  • the degree of crosslinking and the degree of swelling are controlled by adjusting the types and amounts of the crosslinking initiator and the crosslinking aid, the reaction temperature, the reaction method, the method of adding the softener, and the like.
  • an increase in the degree of crosslinking can be achieved by increasing the amount of a crosslinking initiator or a crosslinking aid and performing a reaction at a temperature not lower than the decomposition temperature of the crosslinking initiator and as low as possible for a long time.
  • the increase in the degree of swelling can be achieved by suppressing the reaction rate using a polyfunctional crosslinking auxiliary having a small number of functional groups or a polymerizable vinyl monomer.
  • reduce the amount of crosslinking initiator use trifunctional rather than trifunctional crosslinking aids, use vinyl monomers such as methacrylate monomers or aromatic vinyl monomers,
  • the crosslinking agent can also increase the degree of swelling by the reaction described above.
  • Kneading degree ⁇ ( ⁇ 2/2) (L / D) D 3 (N / Q)
  • L is the extruder length (mm) in the die direction from the raw material addition section
  • D is the extruder barrel inner diameter (mm)
  • Q is the discharge rate (kg / h)
  • N is the screw rotation speed (r pm).
  • M is less than 10 ⁇ 10 6 , dynamic crosslinking does not proceed and the degree of crosslinking is less than 50%, resulting in low mechanical strength.On the other hand, if M exceeds 1 ⁇ 100 ⁇ 10 D , excessive shear force Therefore, the degree of crosslinking is also less than 50%, and the mechanical strength is reduced.
  • the melt kneading is performed first at a melting temperature of 2 (° C) and then at a melting temperature T 3 (° C).
  • the extruder zone having a length of 0.1 L to 0.5 L from the raw material addition port is melted at a melting temperature T 2 (° C )
  • Melt kneading is performed first, and then the extruder zone is set to a melting temperature T 3 (° C.) to perform melt kneading.
  • T 1 is a 1 50 to 250 ° C
  • T ⁇ of each zone of the melting extruder T 2 are may uniformly temperature derconnection also, or have a temperature gradient Good.
  • (C) As a specific important and preferable method for adding a softening agent to achieve a desired degree of crosslinking and swelling, one main feed portion having a different distance from a tip portion is used.
  • (A), (B) and (C) are melt-kneaded and dynamically cross-linked by using an extruder having Feed to the feed supply section of I can do it.
  • the melt viscosity at the time of dynamic crosslinking in the former stage of the extruder is reduced, the reaction rate is suppressed, and the degree of swelling is increased.
  • the degree of swelling can be controlled by the number of divisions or the amount of addition of (C).
  • Various molded articles can be produced from the obtained olefin rubber composition by an arbitrary molding method.
  • the molding method injection molding, extrusion molding, compression molding, blow molding, calender molding, foam molding and the like are preferably used.
  • test methods used for evaluating various physical properties are as follows.
  • the weight W 0 of the composition is refluxed in o-dichlorobenzene 20 Om 1 for 20 hours, the solution is filtered through a filter, and the weight of the swelling composition (W ⁇ is measured. After vacuum drying at C, the weight (W 2 ) is measured again, and the degree of crosslinking and the degree of swelling are calculated as follows.
  • An ATLAS CI35W Weatherometer manufactured by ATLAS Electric Devices Co., USA was used as a light stability tester, and the evaluation was performed by a method based on JISK7102.
  • the irradiation conditions were as follows: 55 ° C internal temperature, 55% humidity, no rain, xenon light (wavelength 340 nm, energy 0.30 W / m 2 ) for 300 hours. After irradiation, The appearance of the sample was visually evaluated according to the following criteria.
  • the sheet is heated in a gear oven at 120 ° C for 100 hours, and the ratio of the value after the heating test to the initial value of the tensile breaking strength in accordance with JISK 6251 is the retention rate of the tensile breaking strength (%).
  • the retention rate of the tensile breaking strength (%) was defined as a measure of thermal stability.
  • the surface of the molded product was observed and evaluated visually.
  • The oily substance is slightly attached to the surface of the molded product.
  • EPDM-1 Ethylene / propylene dicyclopentadiene copolymer (EPDM-1) Produced by a method using a meta-mouth catalyst described in JP-A-3-163030.
  • the composition ratio of ethylene Z propylene Z dicycloventagen in the copolymer is 72Z 24/4 by weight (referred to as EPDM-1).
  • Ethylene Z propylene Z dicyclopentadiene copolymer (EPDM-2) It was produced by a method using a usual Ziegler catalyst. Copolymer ethylene
  • composition ratio of Z propylene Z dicyclopentadiene is 72/24/4 by weight (referred to as EPDM-2).
  • MMA Methyl methacrylate
  • the screw used was a two-section screw with a kneading section before and after the injection port.
  • melt extrusion temperature 220 C
  • discharge rate Q 12 kgZh
  • extruder barrel inner diameter D 25 mm
  • L / D 47 when extruder length is L (mm)
  • the degree of crosslinking and the degree of swelling were controlled by adjusting the type, amount of addition, reaction temperature and reaction system of the crosslinking initiator and the crosslinking aid. Specifically, in order to increase the degree of cross-linking, the amount of the cross-linking initiator or cross-linking aid was increased, and the reaction was carried out for a long time at a temperature not lower than the decomposition temperature of the radical initiator and as low as possible. On the other hand, it is important to suppress the reaction rate to increase the degree of swelling. For example, reduction in the amount of crosslinking initiator and low-temperature reaction were performed. By incorporating P ⁇ X and DVB into (A) while absorbing a small amount of MO in advance in (A), the degree of cross-linking was increased while suppressing the decrease in swelling.
  • a composition satisfying the requirements of the degree of crosslinking and swelling of the present application is excellent in mechanical strength such as tensile breaking strength and tensile breaking elongation.
  • Ethylene ⁇ -olefin copolymer consisting of produced ethylene and phosphorein having 3 to 20 carbon atoms, especially a copolymer of ethylene and otaten-1 produced using a meta-acene catalyst. It can be seen that it provides excellent mechanical strength.
  • Example 2 the same experiment was repeated, except that the kneading degree ⁇ ⁇ ⁇ ⁇ was changed according to the following definition. The results are shown in Table 2.
  • Example 2 the following definitions, at a melt temperature T 2 (° C), performed first melt mixing kneading, followed except that were melt-kneaded at a melting temperature T 3 (° C), Ri Repetitive Similar experiments I returned. Tables 3 and 4 show the results. Table 3
  • trifunctional TAIC has a higher crosslink density than bifunctional DVB or PMI, so that the degree of swelling decreases and the retention of the softener increases. It can be seen that the bleed resistance is improved.
  • split feed of MO reduces the melt viscosity during dynamic bridging in the former stage of the extruder, reduces the reaction rate, and increases the degree of swelling while maintaining the degree of crosslinking. I understand.
  • the olefin rubber composition of the present invention has excellent mechanical strength, heat resistance, and oil resistance, it is used for automobile parts, automobile interior materials, airbag covers, mechanical parts, electric parts, cables, and hoses. , Belts, toys, miscellaneous goods, daily necessities, building materials, sheets, films, and other applications, and plays a major role in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A partly or wholly crosslinked olefin rubber composition comprising (A) 1 to 99 parts by weight of an ethylene/α-olefin copolymer comprising ethylene units and C3-20 α-olefin units and (B) 1 to 99 parts by weight of an olefin resin (the sum of components (A) and (B) is 100 parts by weight), wherein the component (A) has a degree of crosslinking of 50 % or higher and a degree of swelling of 5 to 40.

Description

明 細 書 ォレフィン系ゴム,組成物 技術分野  Description Olefin rubber, composition Technical field
本発明は、 ォレフィン系ゴム組成物に関する。 更に詳しくは、 機械的強度、 耐 熱性、 耐油性に優れたォレフィン系ゴム組成物に関する。  The present invention relates to an olefin rubber composition. More specifically, the present invention relates to an olefin rubber composition having excellent mechanical strength, heat resistance, and oil resistance.
背景技術  Background art
ラジカル架橋性ォレフイン系ゴムとポリプロピレン (P P ) 等のラジカル架橋 性のないォレフィン系樹脂とをラジカル開始剤の存在下、 押出機中で溶融混練さ せながら架橋する、 いわゆる動的架橋による熱可塑性ゴム組成物は、 既に公知の 技術であり、 自動車部品等の用途に広く使用されている。  Radical crosslinkable olefin-based rubber and olefinic resin without radical crosslinkability such as polypropylene (PP) are crosslinked by melt-kneading in an extruder in the presence of a radical initiator in the presence of a radical initiator. The composition is a known technique, and is widely used for applications such as automobile parts.
このようなォレフィン系ゴムとして、 エチレン一プロピレン一ジェンゴム (E P DM) 組成物又はメタロセン触媒により製造されたォレフイン系エラストマ一 組成物 (特開平 8— 1 2 0 1 2 7号公報、 特開平 9 一 1 3 7 0 0 1号公報、 特開 平 9 一 1 0 4 7 8 7号公報、 特開平 1 0— 8 7 9 1 2号公報) が知られている。 しかしながら、 上記組成物は機械的強度が必ずしも充分でなく、 実用的使用に耐 えるォレフィン系ゴム組成物が求められている。  Examples of such an olefin rubber include an ethylene-propylene-gen rubber (EPDM) composition or an olefin-based elastomer composition produced by a metallocene catalyst (Japanese Patent Application Laid-Open Nos. 8-120127 and 9-191). No. 1,370,001, Japanese Patent Application Laid-Open No. Hei 9-110787, Japanese Patent Application Laid-Open No. Hei 10-87912) are known. However, the above composition does not always have sufficient mechanical strength, and there is a need for an olefin rubber composition that can withstand practical use.
発明の開示  Disclosure of the invention
本発明は、 このような現状に鑑み、 上記のような問題点のない、 即ち機械的特 性に優れたォレフィン系ゴム組成物を提供することを目的とするものである。 本発明者らは機械的強度に優れたォレフイン系ゴム組成物を得るべく鋭意検討 した結果、 エチレンとひーォレフィンとを含み、 ある特定の架橋構造を有するォ レフイン系ゴム組成物が、 驚くべきことに機械的強度が飛躍的に向上することを 見出し、 本発明を完成した。  An object of the present invention is to provide an olefin rubber composition which does not have the above-mentioned problems in view of the current situation, that is, has excellent mechanical properties. The present inventors have conducted intensive studies to obtain an olefin rubber composition having excellent mechanical strength, and as a result, it has been found that an olefin rubber composition containing ethylene and hyolefin and having a specific crosslinked structure is surprising. Finally, they found that the mechanical strength was dramatically improved, and completed the present invention.
即ち本発明は、 (A) エチレンと炭素数 3〜2 0のひーォレフイン単位を含む エチレン · α—ォレフィン共重合体 1〜9 9重量部と (Β ) ォレフィン系樹脂 1 〜9 9重量部 ( (Α) と (Β ) の合計量が 1 0 0重量部) とを含む部分的又は完 全に架橋された組成物であって、 該 (Α) の架橋度が 5 0 %以上であり、 かつ該 (A) の膨潤度が 5〜4 0であるォレフィン系ゴム組成物を提供するものである c 発明を実施するための最良の形態 That is, the present invention relates to (A) 1 to 99 parts by weight of an ethylene / α-olefin copolymer containing ethylene and a carbon-containing unit having 3 to 20 carbon atoms, and 1 to 99 parts by weight of a (Β) olefin resin ( A partially or completely crosslinked composition containing (Α) and (Β) in a total amount of 100 parts by weight, wherein the degree of crosslinking of (Α) is 50% or more; And said BEST MODE FOR degree of swelling out the c invention is to provide a Orefin rubber composition which is 5-4 0 (A)
以下、 本発明に関して詳しく述べる。 Hereinafter, the present invention will be described in detail.
本発明の組成物は、 (A) 特定の架橋構造を有するエチレン · α—才レフイン 共重合体と (Β ) ォレフィン系樹脂とを含む。  The composition of the present invention comprises (A) an ethylene / α-olefin copolymer having a specific crosslinked structure, and (Β) an olefin resin.
ここで、 (Α) は架橋度が 5 0 %以上であることが重要であり、 好ましくは 6 0 %以上であり、 より好ましくは 7 0 %以上、 最も好ましくは 8 0 %以上、 極め て好ましくは 9 0 %以上である。 架橋度が 5 0 %未満の場合、 引張強度、 圧縮永 久歪み (C一 s e t ) 等の機械的強度及び耐油性、 耐熱性が低下する。  Here, (Α) is important that the degree of cross-linking is 50% or more, preferably 60% or more, more preferably 70% or more, most preferably 80% or more, and extremely preferably. Is 90% or more. If the degree of crosslinking is less than 50%, the mechanical strength such as tensile strength and permanent compression set (C-set), oil resistance, and heat resistance are reduced.
また、 (A) は膨潤度が 5〜4 0であることが必須であり、 好ましくは 1 0〜 3 5であり、 より好ましくは 1 0〜3 0、 最も好ましくは 1 0〜2 5、 極めて好 ましくは 1 0〜2 0である。 膨潤度は架橋密度の尺度であり、 従来のォレフィン 系ゴムは、 膨潤度は 5未満であつたが、 本発明者は膨潤度が 5〜4 0の間にある 場合のみ、 卓越した機械特性、 耐熱性及び耐油性が発現することを見出し、 本発 明を完成した。  Further, it is essential that (A) has a swelling degree of 5 to 40, preferably 10 to 35, more preferably 10 to 30 and most preferably 10 to 25, It is preferably from 10 to 20. The degree of swelling is a measure of the crosslink density, whereas conventional olefin rubbers had a degree of swelling of less than 5, but the present inventor has obtained excellent mechanical properties, only when the degree of swelling is between 5 and 40. The inventors have found that heat resistance and oil resistance develop, and have completed the present invention.
以下に本発明の各成分について詳細に説明する。  Hereinafter, each component of the present invention will be described in detail.
本発明において、 (A) エチレン ' ctーォレフイン共重合体は、 例えばェチレ ン単位及び炭素数が 3〜2 0の α—ォレフィン単位を含むエチレン · α—ォレフ ィン共重合体である。  In the present invention, (A) the ethylene-ct-olefin copolymer is, for example, an ethylene-α-olefin copolymer containing an ethylene unit and an α-olefin unit having 3 to 20 carbon atoms.
上記炭素数 3〜 2 0の α—ォレフインとしては、 例えば、 プロピレン、 ブテン 一 1、 ペンテン一 1、 へキセン一 1、 4ーメチルペンテン一 1、 ヘプテン一 1、 オタテン一 1、 ノネン— 1、 デセン一 1、 ゥンデセン一 1、 ドデセン一 1等が挙 げられる。 中でもへキセン一 1、 4—メチルペンテン一 1、 及びォクテン一 1が 好ましく、 特に好ましくはォクテン一 1である。 オタテン一 1は少量でも共重合 体を柔軟化する効果に優れ、 得られた共重合体は機械的強度に優れている。  Examples of the α-olefins having 3 to 20 carbon atoms include propylene, butene-11, pentene-11, hexene-1, 4-methylpentene-11, heptene-1, otaten-1, nonene-1 and decene-1. 1, Dedecene-1 and Dodesen-1 etc. Among them, hexene-1, 4-methylpentene-11 and octene-11 are preferred, and octene-11 is particularly preferred. Otathene-11 is excellent in the effect of softening the copolymer even in a small amount, and the obtained copolymer is excellent in mechanical strength.
本発明において用いられるエチレン ' ひ一ォレフィン共重合体は、 公知のメタ 口セン系触媒又はチーグラー系触媒により製造することが好ましい。  The ethylene'hydroolefin copolymer used in the present invention is preferably produced by using a known metacene catalyst or a Ziegler catalyst.
一般にはメタ口セン系触媒は、 チタン、 ジルコニウム等の IV族金属のシクロべ ンタジェニル誘導体と助触媒からなり、 重合触媒として高活性であるだけでなく、 チーグラー系触媒と比較して、 得られる重合体の分子量分布が狭く、 共重合体中 のコモノマーである炭素数 3〜 20の α—ォレフインの分布が均一である。 In general, meta-acene catalysts are composed of a cyclopentenyl derivative of a Group IV metal such as titanium or zirconium and a co-catalyst. Compared with the Ziegler-based catalyst, the molecular weight distribution of the obtained polymer is narrow, and the distribution of the comonomer α-olefin having 3 to 20 carbon atoms in the copolymer is uniform.
本発明において用いられるエチレン ' ひーォレフイン共重合体は、 α—ォレフ インの共重合比率が 1〜50重量。 /。であることが好ましく、 更に好ましくは 1 0 〜40重量0 /0、 最も好ましくは 20〜30重量%である。 ひーォレフインの共重 合比率が 50重量%を超えると、 組成物の硬度、 引張強度等の低下が大きく、 一 方、 1重量%未満では組成物の硬度が高く、 機械的強度が低下する傾向にある。 The ethylene'-olefin copolymer used in the present invention has an α-olefin copolymerization ratio of 1 to 50% by weight. /. It is preferably, more preferably 1 0 to 40 wt 0/0, most preferably from 20 to 30 wt%. When the co-polymerization ratio of hyolefine exceeds 50% by weight, the hardness and tensile strength of the composition are greatly reduced, while when it is less than 1% by weight, the hardness of the composition is high and the mechanical strength tends to be reduced. It is in.
(Α) の密度は、 0. 8〜0. 9 gZcm°の範囲にあることが好ましレ、。 こ の範囲の密度を有するエチレン · ひーォレフイン共重合体を用いることにより、 柔軟性に優れ、 硬度の低い熱可塑性ゴム組成物を得ることができる。  The density of (Α) is preferably in the range of 0.8 to 0.9 gZcm °. The use of the ethylene / thioolefin copolymer having a density in this range makes it possible to obtain a thermoplastic rubber composition having excellent flexibility and low hardness.
本発明において用いられる (A) エチレン ' α—ォレフイン共重合体は、 長鎖 分岐を有していることが好ましレ、。 長鎖分岐が存在することで、 機械的強度を落 とさずに、 共重合されているひーォレフインの比率 (重量%) に比して、 密度を より小さくすることが可能となり、 低密度、 低硬度及び高強度のゴムを得ること ができる。 長鎖分岐を有するォレフィン系ゴムは、 US Ρ 5, 278, 272等 に記載されている。  The (A) ethylene'α-olefin copolymer used in the present invention preferably has a long-chain branch. The presence of long-chain branching enables the density to be lower than the ratio (% by weight) of copolymerized hyolephine without lowering the mechanical strength. Low hardness and high strength rubber can be obtained. Olefin rubbers having long chain branches are described in US Pat. No. 5,278,272 and the like.
また、 (A) エチレン ' ひーォレフイン共重合体は、 室温以上の温度に DSC の融点ピークを有することが好ましい。 融点ピークを有するとき、 融点以下の温 度範囲では、 共重合体は形態が安定しており、 取扱い性に優れ、 ベタツキも少な い。  Further, it is preferable that (A) the ethylene-thioolefin copolymer has a DSC melting point peak at a temperature of room temperature or higher. When the copolymer has a melting point peak, in a temperature range below the melting point, the copolymer has a stable morphology, is excellent in handleability, and has little stickiness.
また、 本発明において用いられる (A) のメルトインデックスは、 0. 01〜 l O O gZl O分 (1 90°C、 2. 1 6 k g荷重) の範囲のものが好ましく、 更 に好ましくは 0. 2〜: 1 0 gZl 0分である。  Further, the melt index of (A) used in the present invention is preferably in the range of 0.01 to 100 gZlO content (190 ° C, 2.16 kg load), and more preferably 0.1 to 100 kg. 2-: 10 gZl 0 min.
本発明において、 (A) はエチレン単位と α—ォレフイン単位を必須成分とし、 必要に応じてその他のビニル単量体単位を含有してもよい。 また (Α) 中にェチ レン単位とひーォレフイン単位を有していさえすればよく、 例えば、 ポリスチレ ン系、 ポリオレフイン系、 ポリエステル系、 ポリウレタン系、 1, 2_ポリブタ ジェン系、 ポリ塩化ビュル系熱可塑性エラストマ一を水素添加して、 最終的に構 造中にエチレン単位と α—才レフイン単位を含有する共重合体も (Α) に包含さ れる。 In the present invention, (A) contains an ethylene unit and an α-olefin unit as essential components, and may contain other vinyl monomer units as necessary. In addition, it is only necessary that (Α) has an ethylene unit and a hyolef 単 位 in unit. Examples thereof include polystyrene, polyolefin, polyester, polyurethane, 1,2 polybutadiene, and polychlorinated vinyl. Hydrogenated thermoplastic elastomers, and finally copolymers containing ethylene units and α- olefin units in the structure are also included in (Α). It is.
本発明において用いられる (A) としては、 複数の種類のものを混合して用い てもよい。 そのような場合には、 加工性の更なる向上を図ることが可能となる。 本発明において (B) ォレフィン系樹脂としては、 ポリエチレン、 ホモのアイ ソタクチックポリプロピレン、 ブロピレンとエチレン、 ブテン一 1、 ペンテン一 1、 へキセン一 1等の他のひーォレフインとのァイソタクチック共重合樹脂 (ブ ロック、 ランダム共重合体を含む) 等が挙げられる。  As (A) used in the present invention, a plurality of types may be mixed and used. In such a case, the workability can be further improved. In the present invention, (B) the olefin resin may be an isotactic copolymer resin of polyethylene, homo isotactic polypropylene, propylene and other olefins such as ethylene, butene-11, pentene-11, and hexene-1 ( And random copolymers).
これらの樹脂から選ばれる少なくとも 1種以上の樹脂が、 (A) と (B) の合 計量 1 00重量部に対して 1〜99重量部の組成比で用いられる。 好ましくは 5 〜90重量部、 更に好ましくは 20〜80重量部である。 1重量部未満では組成 物の流動性、 加工性が低下し、 99重量部を超えると組成物の柔軟性が不十分で あり、 望ましくない。  At least one resin selected from these resins is used in a composition ratio of 1 to 99 parts by weight based on a total of 100 parts by weight of (A) and (B). Preferably it is 5 to 90 parts by weight, more preferably 20 to 80 parts by weight. If the amount is less than 1 part by weight, the fluidity and processability of the composition decrease, and if it exceeds 99 parts by weight, the flexibility of the composition is insufficient, which is not desirable.
また、 本発明において用いられるォレフィン系樹脂のメルトインデッタスは、 0. :!〜 l O O g/10分 (230°C、 2. 1 6 k g荷重) の範囲が好ましい。 1 00 gZl 0分を超えると、 熱可塑性エラストマ一組成物の耐熱性、 機械的強 度が不十分であり、 また 0. 1 gZi 0分より小さいと流動性が悪く、 成形加工 性が低下して好ましくない。  The melt index of the olefin resin used in the present invention is 0.:! It is preferably in the range of ~ 10 g / 10 min (230 ° C, 2.16 kg load). If it exceeds 100 gZl 0 minutes, the heat resistance and mechanical strength of the thermoplastic elastomer composition will be insufficient, and if it is less than 0.1 gZi 0 minutes, the fluidity will be poor and the moldability will be reduced. Is not preferred.
本発明の組成物において、 加工性の向上のために必要に応じて、 (C) 軟化剤 を配合することができる。  In the composition of the present invention, (C) a softening agent can be blended as needed to improve processability.
上記 (C) としては、 パラフィン系、 ナフテン系などのプロセスオイルが好ま しい。 これらは組成物の硬度、 柔軟性の調整用に 5〜 50◦重量部、 好ましくは 10〜1 50重量部用いる。 5重量部未満では柔軟性、 加工性が不足し、 500 重量部を超えるとオイルのブリードが顕著となり好ましくない。  As (C) above, process oils such as paraffinic and naphthenic are preferred. These are used in an amount of 5 to 50 parts by weight, preferably 10 to 150 parts by weight, for adjusting the hardness and flexibility of the composition. If the amount is less than 5 parts by weight, flexibility and workability are insufficient, and if it exceeds 500 parts by weight, oil bleeding becomes remarkable, which is not preferable.
本発明の組成物は、 先に説明した (A) 特定のエチレン . c ーォレフイン共重 合体、 (B) ォレフィン系樹脂、 及び (C) 軟化剤を特定の組成比で組み合わせ ることにより、 機械的強度と柔軟性、 加工性のバランスが改善され、 好ましく用 いることができる。  The composition of the present invention can be obtained by combining (A) a specific ethylene.co-olefin copolymer, (B) an olefin resin, and (C) a softening agent in a specific composition ratio, thereby obtaining a mechanical The balance between strength, flexibility and workability is improved, and it can be used preferably.
本発明において提供される組成物は、 (D) 架橋開始剤、 又は (D) 及び (E) 架橋助剤により、 部分的に架橋されていることが必要である。 この架橋に より、 更に耐摩耗性や機械的強度、 耐熱性等を向上させることが可能となる。 上記 (D ) 架橋開始剤は、 (A) の動的架橋を行うためのフユノール架橋剤又 はラジカル発生剤等であり、 例えば有機過酸化物又は有機ァゾ化合物等が好まし レ、 c これにより、 耐摩耗性や機械的強度、 耐熱性等を向上させることが可能とな る。 The composition provided in the present invention needs to be partially cross-linked by (D) a cross-linking initiator or (D) and (E) a cross-linking aid. In this bridge This makes it possible to further improve wear resistance, mechanical strength, heat resistance, and the like. (D) above crosslinking initiator, also Fuyunoru crosslinking agent for performing a dynamic cross-linking of (A) is a radical generator or the like, for example, an organic peroxide or an organic § zo compounds is preferably les, c which This makes it possible to improve wear resistance, mechanical strength, heat resistance, and the like.
ここで、 好ましく使用される上記有機過酸化物は、 1分間半減期温度 T ,が 1 0 0〜 2 5 0 °Cであることが好ましく、 1 5 0〜 2 0 0 °Cであることがより好ま しい。 またペンタデカン分子中の水素引き抜き能から算出される架橋効率 εが 2 0〜 6 0であることが好ましく、 3 0〜 5 0であることがより好ましレ、。  Here, the organic peroxide preferably used has a one-minute half-life temperature T, of preferably 100 to 250 ° C, and more preferably 150 to 200 ° C. More preferred. Further, the crosslinking efficiency ε calculated from the hydrogen abstraction ability in the pentadecane molecule is preferably from 20 to 60, and more preferably from 30 to 50.
このようなラジカル開始剤の具体的な例として、 1 , 1 一ビス ( tーブチルバ ーォキシ) 一 3, 3, 5—トリメチルシクロへキサン、 1 , 1 —ビス (t—へキ シルバーォキシ) 一 3, 3, 5 —トリメチルシクロへキサン、 1 , 1—ビス (t 一へキシルバーォキシ) シクロへキサン、 1 , 1 一ビス ( t 一ブチルパーォキ シ) シクロドデカン、 1 , 1 一ビス (t 一ブチルパーォキシ) シクロへキサン、 2 , 2—ビス (t 一ブチルバーオキシ) オクタン、 n—ブチノレー 4, 4 一ビス ( t 一ブチルパーォキシ) ブタン、 n—ブチルー 4, 4一ビス (t 一ブチルパー ォキシ) バレレート等のバーオキシケタール類; ジ一 t 一ブチルペルォキシド、 ジクミルペルォキシド、 tーブチルクミルペルォキシド、 α, a ' 一ビス ( t 一 ブチルペルォキシ一m—イソプロピル) ベンゼン、 a , a ' 一ビス (t—ブチル ペルォキシ) ジイソプロピルベンゼン、 2, 5—ジメチノレー 2, 5—ビス (t— ブチルペルォキシ) へキサン及び 2, 5 —ジメチルー 2, 5—ビス ( t 一ブチル ペルォキシ) へキシン— 3等のジアルキルペルォキシド類;  Specific examples of such radical initiators include 1,1-bis (t-butyloxy) 13,3,5-trimethylcyclohexane, 1,1-bis (t-hexyloxy) 13, 3,5-Trimethylcyclohexane, 1,1-bis (t-hexyloxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t-butylperoxy) cyclo Veroxy such as xane, 2,2-bis (t-butylperoxy) octane, n-butynolee 4,4-bis (t-butylperoxy) butane, n-butyl-4,4-bis (t-butylperoxy) valerate Ketals; di-t-butylperoxide, dicumylperoxide, t-butylcumylperoxide, α, a'-bis (t-butylperoxide-1m-a Propyl) benzene, a, a'-Bis (t-butylperoxy) diisopropylbenzene, 2,5-dimethinoley 2,5-bis (t-butylperoxy) hexane and 2,5-dimethyl-2,5-bis (t-butyl) Butyl peroxy) hexine-dialkylperoxides such as 3;
ァセチルペルォキシド、 イソブチリルペルォキシド、 ォクタノィルペルォキシド、 デカノィルペルォキシド、 ラウロイルベルォキシド、 3, 5, 5—トリメチルへ キサノィルペルォキシド、 ベンゾィルペルォキシド、 2, 4ージクロ口べンゾィ ルペルォキシド及び m—トリオイルペルォキシド等のジァシルペルォキシド類; t 一ブチルペルォキシァセテ一ト、 t 一ブチルペルォキシィソブチレート、 t― ブチルペルォキシ一 2—ェチノレへキサノエート、 tーブチルぺノレォキシラウリレ ート、 t 一ブチルペルォキシベンゾエート、 ジー t 一ブチルペルォキシィソフタ レート、 2 , 5—ジメチルー 2, 5—ジ (ベンゾィルベルォキシ) へキサン、 t 一ブチルペルォキシマレイン酸、 t—ブチルペルォキシィソプロピルカーボネー ト、 及びタミルペルォキシォクテート等のペルォキシエステル類;並びに、 t 一 ブチルヒ ドロぺノレォキシド、 クメンヒ ドロペルォキシド、 ジィソプロピルべンゼ ンヒ ドロペルォキシド、 2, 5 —ジメチルへキサン一 2, 5—ジヒ ドロペルォキ シド及び 1 , 1 , 3, 3—テトラメチルブチルヒ ド口ベルォキシド等のヒ ドロべ ルォキシド類を挙げることができる。 Acetylperoxide, isobutyrylperoxide, octanoylperoxide, decanolylperoxide, lauroylbeloxide, 3,5,5-trimethylhexanoylperoxide, benzoy Diperoxides such as ruperoxide, 2,4-dichlorobenzene benzoyl peroxide and m-trioylperoxide; t-butylperoxyacetate, t-butylperoxysitol Butyrate, t-butylperoxy-l-2-ethynolehexanoate, t-butyl-peroxyloxylate, t-butylperoxybenzoate, g-t-butylperoxysofta 2,5-dimethyl-2,5-di (benzoylberoxy) hexane, t-butylperoxymaleic acid, t-butylperoxyisopropyl carbonate, and tamylperoxy Peroxyesters such as citrate; and t-butylhydroxyperenoxide, cumenehydroperoxide, diisopropylpropylbenzenehydroperoxide, 2,5-dimethylhexane-1,2,5-dihydroperoxide and 1,1,3,3,1 Hydroperoxides such as 3-tetramethylbutylhydroxide belloxide can be mentioned.
これらの化合物の中では、 1 , 1 一ビス ( t 一ブチルペルォキシ) 一 3, 3, 5—トリメチノレシクロへキサン、 ジー t 一ブチルペルォキシド、 ジクミルペルォ キシド、 2, 5—ジメチル— 2, 5—ビス ( t—ブチルペルォキシ) へキサン及 び 2, 5 —ジメチルー 2, 5 —ビス (t 一ブチルペルォキシ) へキシン一 3が好 ましい。  Among these compounds, 1,1-bis (t-butylperoxy) -1,3,3,5-trimethinolecyclohexane, di-t-butylperoxide, dicumylperoxide, 2,5-dimethyl-2, 5-bis (t-butylperoxy) hexane and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexine-13 are preferred.
これらの (D ) 架橋開始剤は、 (A) と (B ) からなる組成物 1 0 0重量部に 対し 0 . 0 2〜 3重量部、 好ましくは 0 . 0 5〜 1重量部の量で用いられる。 0 . 0 2重量部未満では架橋が不十分であり、 3重量部を超えても組成物の物性は向 上せず、 好ましくない。  These (D) crosslinking initiators are used in an amount of 0.02 to 3 parts by weight, preferably 0.05 to 1 part by weight, per 100 parts by weight of the composition comprising (A) and (B). Used. If the amount is less than 0.02 parts by weight, the crosslinking is insufficient, and if it exceeds 3 parts by weight, the physical properties of the composition are not improved, which is not preferable.
更に、 (E ) 架橋助剤としては、 単官能単量体又は多官能単量体が挙げられる。 上記単官能単量体は、 ラジカル重合性のビニル系単量体が好ましく、 芳香族ビニ ル単量体、 アクリロニトリル、 メタタリロニトリル等の不飽和二トリル単量体、 アクリル酸エステル単量体、 メタクリル酸エステル単量体、 アクリル酸単量体、 メタタリル酸単量体、 無水マレイン酸単量体、 N—置換マレイミ ド単量体等であ る。 また多官能単量体としては、 ジビニルベンゼン、 トリアリルイソシァヌレー ト、 トリァリルシアヌレート、 ジアセトンジアクリルアミ ド、 ポリエチレングリ コールジアタリレート、 ポリエチレングリコールジメタクリレート、 トリメチロ —ルプロパントリメタクリレート、 トリメチロールプロパントリアタリレート、 エチレングリコーノレジメタクリレート、 トリエチレングリコーノレジメタクリレー ト、 ジエチレングリコールジメタタリレート、 ジイソプロぺニルベンゼン、 p— キノンジォキシム、 ρ, ρ ' —ジベンゾィルキノンジォキシム、 フエニルマレイ ミ ド、 アリ^^メタクリ レート、 N, N ' —m—フエ二レンビスマレイミ ド、 ジァ リルフタレート、 テトラァリルォキシェタン、 1, 2—ポリブタジエン等が好ま しく用いられる。 これらの架橋助剤は複数のものを併用して用いてもよい。 これらの架橋助剤は、 (A) と (B ) からなる組成物 1 0 0重量部に対し 0 . 1〜5重量部、 好ましくは 0 . 5〜 2重量部の量で用いられる。 0 . 1重量部未 満では架橋が不十分であり、 5重量部を超えても組成物の物性は向上せず過剰の 架橋助剤が残存することになり好ましくない。 Further, (E) a crosslinking assistant includes a monofunctional monomer or a polyfunctional monomer. The monofunctional monomer is preferably a radical polymerizable vinyl monomer, and is an aromatic vinyl monomer, an unsaturated nitrile monomer such as acrylonitrile and methacrylonitrile, and an acrylate monomer. And methacrylic acid ester monomers, acrylic acid monomers, methacrylic acid monomers, maleic anhydride monomers, and N-substituted maleimide monomers. The polyfunctional monomers include divinylbenzene, triallyl isocyanurate, triaryl cyanurate, diacetone diacrylamide, polyethylene glycol diatalylate, polyethylene glycol dimethacrylate, and trimethylolpropane trimethacrylate. , Trimethylolpropane triatalylate, ethylene glycolone resin methacrylate, triethylene glycolone resin methacrylate, diethylene glycol dimethacrylate, diisopropenyl benzene, p-quinone dioxime, ρ, ρ'-dibenzoylquinone dioxime, phenyl maleimimi De, ant ^^ methacrylate, N, N'-m-phenylenebismaleimide, jia Rylphthalate, tetraaryloxetane, 1,2-polybutadiene and the like are preferably used. These crosslinking aids may be used in combination of two or more. These crosslinking aids are used in an amount of 0.1 to 5 parts by weight, preferably 0.5 to 2 parts by weight, per 100 parts by weight of the composition comprising (A) and (B). When the amount is less than 0.1 part by weight, the crosslinking is insufficient. When the amount exceeds 5 parts by weight, the physical properties of the composition are not improved and an excessive amount of the crosslinking aid remains, which is not preferable.
また、 本発明の組成物には、 その特徴を損ねない程度に他の樹脂、 エラストマ 一を添加してもよレ、。  In addition, other resins and elastomers may be added to the composition of the present invention to such an extent that its characteristics are not impaired.
また、 本発明の組成物には、 その特徴を損ねない程度に無機フィラー及び可塑 剤を含有することが可能である。 ここで用いる無機フイラ一としては、 例えば、 炭酸カルシウム、 炭酸マグネシウム、 シリカ、 カーボンブラック、 ガラス繊維、 酸化チタン、 クレー、 マイ力、 タノレク、 水酸化マグネシウム、 水酸化アルミニゥ ム等が挙げられる。 また、 可塑剤としては、 例えば、 ポリエチレングリコール、 ジォクチルフタレート (D〇P ) 等のフタル酸エステル等が挙げられる。 また、 その他の添加剤、 例えば、 有機 ·無機顔料、 熱安定剤、 酸化防止剤、 紫外線吸収 剤、 光安定剤、 難燃剤、 シリコンオイル、 アンチブロッキング剤、 発泡剤、 帯電 防止剤、 抗菌剤等も好適に使用される。  Further, the composition of the present invention can contain an inorganic filler and a plasticizer to such an extent that the characteristics thereof are not impaired. The inorganic filler used here includes, for example, calcium carbonate, magnesium carbonate, silica, carbon black, glass fiber, titanium oxide, clay, Myriki, Tanorek, magnesium hydroxide, aluminum hydroxide and the like. Examples of the plasticizer include phthalic acid esters such as polyethylene glycol and octyl phthalate (D〇P). Also, other additives such as organic and inorganic pigments, heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, flame retardants, silicone oils, antiblocking agents, foaming agents, antistatic agents, antibacterial agents, etc. Are also preferably used.
本発明の組成物の製造には、 通常の樹脂組成物、 ゴム組成物の製造に用いられ るバンバリ一ミキサー、 ニーダー、 単軸押出機、 2軸押出機等を使用する一般的 な方法を採用することが可能である。 とりわけ効率的に動的架橋を達成するため には 2軸押出機が好ましく用いられる。 2軸押出機は、 ォレフィン系エラス トマ 一とプロピレン系樹脂とを均一かつ微細に分散させ、 さらに他の成分を添加させ て、 架橋反応を生じせしめ、 本発明の組成物を連続的に製造するのにより適して いる。  For the production of the composition of the present invention, a general method using a Banbury mixer, a kneader, a single-screw extruder, a twin-screw extruder, etc., which are used for the production of ordinary resin compositions and rubber compositions, is employed. It is possible to In order to achieve dynamic crosslinking particularly efficiently, a twin-screw extruder is preferably used. The twin-screw extruder uniformly and finely disperses the olefin-based elastomer and the propylene-based resin, and further adds other components to cause a crosslinking reaction, thereby continuously producing the composition of the present invention. More suitable for
本発明において、 (A) 及び (B ) はペレッ ト、 パウダー、 クラム等の細分化 された形態にあることが好ましい。  In the present invention, (A) and (B) are preferably in a finely divided form such as pellets, powders and crumbs.
本発明の組成物は、 具体例として、 次のような加工工程を経由して製造するこ とができる。 即ち、 (A) と (B ) とをよく混合し、 押出機のホッパーに投入す る。 架橋開始剤及び架橋助剤は、 (A) と (B ) とともに当初から添加してもよ いし、 押出機の途中から添加してもよい。 また (C ) は押出機の途中から添加し てもよいし、 当初と途中とに分けて添カ卩してもよい。 (A) と (B ) は一部を押 出機の途中から添加してもよい。 押出機内で加熱溶融し混練する際に、 (A) と 前記架橋開始剤及び架橋助剤とが架橋反応し、 さらに (C ) を添加して溶融混練 することにより架橋反応と混練分散とを充分行わせた後、 押出機から組成物を取 り出す。 ペレタイズして本発明の組成物のペレツトを得ることができる c As a specific example, the composition of the present invention can be produced via the following processing steps. That is, (A) and (B) are mixed well and put into a hopper of an extruder. The crosslinking initiator and the crosslinking assistant may be added together with (A) and (B) from the beginning. Alternatively, it may be added in the middle of the extruder. Also, (C) may be added from the middle of the extruder, or may be added separately at the beginning and during the middle. (A) and (B) may be partially added in the middle of the extruder. When heat-melting and kneading in an extruder, (A) and the above-mentioned crosslinking initiator and crosslinking assistant undergo a crosslinking reaction, and (C) is further added and melt-kneaded, whereby the crosslinking reaction and kneading dispersion are sufficiently performed. After doing so, remove the composition from the extruder. Can be pelletized to obtain a pellet of the composition of the invention c
本発明において、 (A) の架橋度及び膨潤度は、 以下のように定義される。 組 成物の重量 W 0を、 オルトジクロロベンゼン 2 0 0 m l中で 2 0時間リフラック スし、 溶液をフィルターで濾過し、 膨潤組成物の重量 (W ^ を測定する。 次い で、 上記膨潤組成物を 1 o o °cで真空乾燥後、 再度重量 (w2 ) を測定する。 こ のようにして架橋度及び膨潤度は、 以下のように算出される。 In the present invention, the degree of crosslinking and the degree of swelling of (A) are defined as follows. The weight of the composition, W 0, is refluxed in 200 ml of orthodichlorobenzene for 20 hours, the solution is filtered through a filter, and the weight of the swelling composition (W ^ is measured. After vacuum drying the composition at 1 oo ° C., the weight (w 2 ) is measured again, and the degree of crosslinking and the degree of swelling are calculated as follows.
架橋度 = (W 2 W0 ) X 1 0 0 (%) Degree of crosslinking = (W 2 W 0 ) X 1 0 0 (%)
膨潤度 =W l Zw2 Swelling degree = W l Zw 2
架橋度及び膨潤度の制御は、 架橋開始剤及び架橋助剤の種類及び添加量、 反応 温度、 反応方式、 軟化剤の添加方法等の調整により行われる。  The degree of crosslinking and the degree of swelling are controlled by adjusting the types and amounts of the crosslinking initiator and the crosslinking aid, the reaction temperature, the reaction method, the method of adding the softener, and the like.
例えば、 架橋度の増大は、 架橋開始剤又は架橋助剤を増量し、 架橋開始剤の分 解温度以上であり、 かつできるだけ低い温度で、 長時間反応を行うことにより達 成される。 また、 膨潤度の増大は、 官能基数の少ない多官能架橋助剤、 又は重合 性のビニル単量体を用いて反応速度を抑制することにより達成される。 さらに、 架橋開始剤の量の削減、 3官能性ではなく 2官能性の架橋助剤の使用、 メタクリ ル酸エステル単量体又は芳香族ビニル単量体等のビニル系単量体の使用、 低温で の反応等により架橋剤ゃ膨潤度の増大を達成することもできる。 しかしながら、 架橋開始剤及び架橋助剤を過度に添加すると架橋度は増大するが、 膨潤度が低下 し、 本発明の要件を満足しない。 また、 過度に高活性な架橋開始剤及び架橋助剤 を使用したり、 高温反応の条件を使用したりすると、 同様に架橋度は増大するが、 膨潤度が低下し、 本発明の要件を満足しない。  For example, an increase in the degree of crosslinking can be achieved by increasing the amount of a crosslinking initiator or a crosslinking aid and performing a reaction at a temperature not lower than the decomposition temperature of the crosslinking initiator and as low as possible for a long time. The increase in the degree of swelling can be achieved by suppressing the reaction rate using a polyfunctional crosslinking auxiliary having a small number of functional groups or a polymerizable vinyl monomer. In addition, reduce the amount of crosslinking initiator, use trifunctional rather than trifunctional crosslinking aids, use vinyl monomers such as methacrylate monomers or aromatic vinyl monomers, The crosslinking agent can also increase the degree of swelling by the reaction described above. However, when a crosslinking initiator and a crosslinking assistant are added excessively, the degree of crosslinking increases, but the degree of swelling decreases, and the requirements of the present invention are not satisfied. When an excessively active crosslinking initiator and crosslinking aid are used, or when high-temperature reaction conditions are used, the degree of crosslinking also increases, but the degree of swelling decreases, and the requirements of the present invention are satisfied. do not do.
また、 一方で、 (A) に前もって少量の (C ) 軟化剤を吸収させながら、 架橋 開始剤及び架橋助剤を (A) に配合すると、 架橋反応が穏和に進行するために、 膨潤度の低下を抑制しつつ、 架橋度を増大することができる。 本発明においては、 所望の架橋度及び膨潤度を達成するための、 反応方式に関 する具体的な製造方法として、 例えば、 On the other hand, if a crosslinking initiator and a crosslinking assistant are added to (A) while a small amount of (C) a softening agent is absorbed in advance in (A), the crosslinking reaction proceeds gently. The degree of crosslinking can be increased while suppressing the decrease. In the present invention, as a specific production method relating to the reaction system to achieve the desired degree of crosslinking and swelling, for example,
混練度 Μ= (π 2/2) (L/D) D3 (N/Q) Kneading degree Μ = (π 2/2) (L / D) D 3 (N / Q)
(但し、 Lは原料添加部を基点としたダイ方向の押出機長 (mm) 、 Dは押出 機バレル内径 (mm) 、 Qは吐出量 (k g/h) 、 及び Nはスク リュー回転数 (r pm) である。 ) として、 この混練度 Mが  (However, L is the extruder length (mm) in the die direction from the raw material addition section, D is the extruder barrel inner diameter (mm), Q is the discharge rate (kg / h), and N is the screw rotation speed (r pm).
1 0 X 1 0 °≤M≤ 1 0 0 0 X 1 0 °  1 0 X 1 0 ° ≤ M ≤ 1 0 0 0 X 1 0 °
であることが重要である。 Mが 1 0 X 1 06未満では動的架橋が進まないために 架橋度が 50%未満となり機械的強度が低く、 一方 Mが 1 ◦ 00 X 1 0 Dを超え ると過度のせん断力のために、 同様に架橋度が 50%未満となり機械的強度が低 下する。 It is important that If M is less than 10 × 10 6 , dynamic crosslinking does not proceed and the degree of crosslinking is less than 50%, resulting in low mechanical strength.On the other hand, if M exceeds 1 × 100 × 10 D , excessive shear force Therefore, the degree of crosslinking is also less than 50%, and the mechanical strength is reduced.
本発明において、 所望の架橋度及び膨潤度を達成するための、 反応温度に関す る具体的な手法として、 例えば、 (D) 架橋開始剤の 1分間半減期温度 (°C) を T 1として、 下式In the present invention, as a specific method relating to the reaction temperature in order to achieve a desired degree of crosslinking and swelling degree, for example, (D) a one-minute half-life temperature (° C) of a crosslinking initiator as T 1 , Below formula
Figure imgf000010_0001
Figure imgf000010_0001
Τ2+ 1 <Τ32+ 200 Τ 2 + 1 <Τ 32 + 200
を満たす溶融温度条件で溶融混練を行うことが好ましい。 即ち、 まず溶融温度 Τ 2 (°c) で、 次いで溶融温度 T3 (°C) で溶融混練を行うことが挙げられる。 と りわけ原料添加口を基点としてダイ方向に長さ Lを有する溶融押出機において、 原料添加口から 0. 1 L〜0. 5 Lの長さの押出機ゾーンを溶融温度 T 2 (°C) に設定して、 まず溶融混練を行い、 次いでその後の押出機ゾーンを溶融温度 T3 (°C) に設定して溶融混練を行うのである。 ここで、 特に T 1が 1 50〜250 °Cであることが好ましく、 溶融押出機の各ゾーンの T丄又は T 2は均一温度であ つてもよいし、 又は温度勾配を有していてもよい。 It is preferable to perform the melt-kneading under the melting temperature condition satisfying the following. That is, the melt kneading is performed first at a melting temperature of 2 (° C) and then at a melting temperature T 3 (° C). In particular, in a melt extruder having a length L in the die direction starting from the raw material addition port, the extruder zone having a length of 0.1 L to 0.5 L from the raw material addition port is melted at a melting temperature T 2 (° C ), Melt kneading is performed first, and then the extruder zone is set to a melting temperature T 3 (° C.) to perform melt kneading. Here, in particular, it is preferred that T 1 is a 1 50 to 250 ° C, T丄又of each zone of the melting extruder T 2 are may uniformly temperature der connexion also, or have a temperature gradient Good.
本発明において、 所望の架橋度及び膨潤度を達成するための、 (C) 軟化剤の 添加方法に関する具体的な重要かつ好ましい手法として、 先端部からの距離を異 にする一箇所のメインフィード部と複数箇所のサイドフィードが可能な供給用部 とを有する押出機を用い、 (A) 、 (B) 及び (C) を溶融混練して動的架橋す る際に、 (C) を複数箇所のフィード供給用部に分割してフィードすることが挙 げられる。 ここで、 (c) を複数箇所のフィード供給用部に分割してフィードす ることが重要である。 (C) を分割フィードすることにより、 押出機の前段での 動的架橋時の溶融粘度が低下して反応速度が抑制され、 膨潤度が増大する。 In the present invention, (C) As a specific important and preferable method for adding a softening agent to achieve a desired degree of crosslinking and swelling, one main feed portion having a different distance from a tip portion is used. When (A), (B) and (C) are melt-kneaded and dynamically cross-linked by using an extruder having Feed to the feed supply section of I can do it. Here, it is important to feed (c) by dividing it into a plurality of feed supply units. By dividing and feeding (C), the melt viscosity at the time of dynamic crosslinking in the former stage of the extruder is reduced, the reaction rate is suppressed, and the degree of swelling is increased.
(C) の分割回数又は添加量により、 膨潤度を制御することができる。  The degree of swelling can be controlled by the number of divisions or the amount of addition of (C).
こうして得られたォレフィン系ゴム組成物から任意の成形方法により各種成形 品を製造することができる。 成形方法としては、 射出成形、 押出成形、 圧縮成形、 ブロー成形、 カレンダー成形、 発泡成形等が好ましく用いられる。  Various molded articles can be produced from the obtained olefin rubber composition by an arbitrary molding method. As the molding method, injection molding, extrusion molding, compression molding, blow molding, calender molding, foam molding and the like are preferably used.
以下、 本発明を実施例及び比較例により詳細に説明するが、 本発明はこれらの 例に限定されるものではない。 なお、 これらの実施例及び比較例において、 各種 物性の評価に用いた試験法は以下の通りである。  Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In these examples and comparative examples, the test methods used for evaluating various physical properties are as follows.
(1) 架橋度及び膨潤度  (1) Degree of crosslinking and degree of swelling
組成物の重量 W0を、 オルトジクロロベンゼン 20 Om 1中で 20時間リフラ ックスし、 溶液をフィルターで濾過し、 膨潤組成物の重量 (W^ を測定する。 次いで、 上記膨潤組成物を 100°Cで真空乾燥後、 再度重量 (W2) を測定する。 このようにして、 架橋度及び膨潤度は以下のように算出される。 The weight W 0 of the composition is refluxed in o-dichlorobenzene 20 Om 1 for 20 hours, the solution is filtered through a filter, and the weight of the swelling composition (W ^ is measured. After vacuum drying at C, the weight (W 2 ) is measured again, and the degree of crosslinking and the degree of swelling are calculated as follows.
架橋度 = (W2/W0) X 1 00 (%) Degree of crosslinking = (W 2 / W 0 ) X 100 (%)
膨潤度 =WlZw2 Swelling degree = Wl Zw 2
(2) 表面硬度  (2) Surface hardness
2 mm厚シートを 4枚重ねて、 ASTM D2240に準じ、 Aタイプにて 2 3 °C雰囲気下にて評価した。  Four 2 mm-thick sheets were stacked, and evaluated according to ASTM D2240 using an A type at 23 ° C.
(3) 引張破断強度 [k g f Zcm2] (3) Tensile breaking strength [kgf Zcm 2 ]
J I S K625 1に準じ、 23°Cにて評価した。  It was evaluated at 23 ° C according to JIS K6251.
(4) 引張破断伸度 [%]  (4) Tensile elongation at break [%]
J I S K625 1に準じ、 23°Cにて評価した。  It was evaluated at 23 ° C according to JIS K6251.
(5) 光安定性  (5) Light stability
光安定性試験機と して米国 ATLAS Electric Devices Co.製 ATLAS CI35W Weatherometer を用い、 J I S K 7 1 02に基づいた方法で評価した。 照射条 件としては、 試験機内部温度 55°C、 湿度 55%、 雨無し、 キセノン光 (波長 3 40 nm、 エネルギー 0. 30W/m2) 300時間照射とした。 照射後、 シー トの外観を目視で以下の基準で外観評価を行つた。 An ATLAS CI35W Weatherometer manufactured by ATLAS Electric Devices Co., USA was used as a light stability tester, and the evaluation was performed by a method based on JISK7102. The irradiation conditions were as follows: 55 ° C internal temperature, 55% humidity, no rain, xenon light (wavelength 340 nm, energy 0.30 W / m 2 ) for 300 hours. After irradiation, The appearance of the sample was visually evaluated according to the following criteria.
◎ 極めて良好。  ◎ Very good.
〇 良好。  〇 Good.
△ 良好であるが、 ややざらつく。  △ Good, but slightly rough.
X 全体的にざらつく。 光沢無し。  X Overall grainy. No gloss.
(6) 熱安定性  (6) Thermal stability
シートをギヤオーブン中で 1 20°C、 1 00時間の条件で加熱し、 J I S K 6251に準拠した引張破断強度の初期値に対する加熱試験後の値の比を引張破 断強度の保持率 (%) と定義し、 熱安定性の尺度とした。  The sheet is heated in a gear oven at 120 ° C for 100 hours, and the ratio of the value after the heating test to the initial value of the tensile breaking strength in accordance with JISK 6251 is the retention rate of the tensile breaking strength (%). Was defined as a measure of thermal stability.
(7) 耐ブリード性  (7) Bleed resistance
1 20°C雰囲気下にて、 100時間放置後、 成形品表面を観察し評価した。  After left for 100 hours in an atmosphere of 120 ° C, the surface of the molded product was observed and evaluated.
◎:極めて良好。  A: Very good.
〇:良好。  〇: Good.
△:成形品表面に少しオイル状物質が付着している。  Δ: A little oily substance adhered to the surface of the molded product.
X :成形品表面にオイル状物質が多量に付着し、 ベたつき感が著しい。 X: A large amount of oily substance adheres to the surface of the molded product, and the stickiness is remarkable.
(8) 外観 (8) Appearance
成形品表面を観察し、 目視により評価した。  The surface of the molded product was observed and evaluated visually.
◎:極めて良好。  A: Very good.
〇:良好。  〇: Good.
Δ:成形品表面に少しオイル状物質が付着している。  Δ: The oily substance is slightly attached to the surface of the molded product.
X :成形品表面にオイル状物質が多量に付着し、 ベたつき感が著しい。 実施例及び比較例で用いる各成分としては以下のものを用いた。  X: A large amount of oily substance adheres to the surface of the molded product, and the stickiness is remarkable. The following were used as each component used in Examples and Comparative Examples.
( i ) エチレン · α—ォレフイン共重合体  (i) Ethylene-α-olefin copolymer
1) エチレン .ォクテン一 1共重合体 (ΕΟΜ— 1)  1) Ethylene octene-1 copolymer (ΕΟΜ-1)
特開平 3— 1 63088号公報に記載のメタ口セン触媒を用いた方法によ り製造した。 共重合体のエチレン Ζォクテン一 1の組成比は、 重量比で 72 Ζ28である (ΕΟΜ— 1と称する) 。  It was produced by a method using a meta-mouth catalyst described in JP-A-3-163088. The composition ratio of ethylene octene-11 in the copolymer is 72-28 by weight (referred to as ΕΟΜ-1).
2) エチレン .オタテン一 1共重合体 (ΕΟΜ— 2) —②  2) Ethylene / Otate-1 copolymer (ΕΟΜ— 2) —②
通常のチーグラー触媒を用いた方法により製造した。 共重合体のエチレン ノォクテン— 1の組成比は、 重量比で 72/28である (EOM— 2と称す る) 。 It was prepared by a method using an ordinary Ziegler catalyst. Copolymer ethylene The composition ratio of Nocten-1 is 72/28 by weight (referred to as EOM-2).
3) エチレン/プロピレン ジシクロペンタジェン共重合体 (EPDM— 1) 特開平 3— 163088号公報に記載のメタ口セン触媒を用いた方法によ り製造した。 共重合体のエチレン Zプロピレン Zジシクロベンタジェンの組 成比は、 重量比で 72Z 24/4である (EPDM— 1と称する) 。  3) Ethylene / propylene dicyclopentadiene copolymer (EPDM-1) Produced by a method using a meta-mouth catalyst described in JP-A-3-163030. The composition ratio of ethylene Z propylene Z dicycloventagen in the copolymer is 72Z 24/4 by weight (referred to as EPDM-1).
4) エチレン Zプロピレン Zジシクロペンタジェン共重合体 (EPDM— 2) 通常のチーグラー触媒を用いた方法により製造した。 共重合体のエチレン 4) Ethylene Z propylene Z dicyclopentadiene copolymer (EPDM-2) It was produced by a method using a usual Ziegler catalyst. Copolymer ethylene
Zプロピレン Zジシクロペンタジェンの組成比は、 重量比で 72/24/4 である (EPDM— 2と称する) 。 The composition ratio of Z propylene Z dicyclopentadiene is 72/24/4 by weight (referred to as EPDM-2).
(ii) ォレフィン系樹脂  (ii) Olefin resin
ポリプロピレン  Polypropylene
日本ポリケム (株) 製、 ァイソタクチックポリプロピレン (PPと称する) Nippon Polychem Co., Ltd., isotactic polypropylene (referred to as PP)
(iii) パラフィン系オイル (iii) Paraffin oil
出光興産 (株) 製、 ダイアナプロセスオイル PW— 380 (MOと称する) Diana Process Oil, manufactured by Idemitsu Kosan Co., Ltd. PW-380 (referred to as MO)
(iv) 架橋開始剤 (iv) Crosslinking initiator
1) 日本油脂 (株) 製、 2, 5—ジメチルー 2, 5—ビス (t一ブチルバーオ キシ) へキサン (商品名パーへキサ 25 B) (POX— 1と称する) 1) Nippon Yushi Co., Ltd., 2,5-dimethyl-2,5-bis (t-butylbaroxy) hexane (trade name: Perhexa 25B) (referred to as POX-1)
2) 日本油脂 (株) 製、 2, 5—ジメチル— 2, 5—ビス (t一ブチルバーオ キシ) へキシン一 3 (商品名パーへキシン 25 B) (POX— 2と称する)2) Nippon Yushi Co., Ltd., 2,5-dimethyl-2,5-bis (t-butyl baroxy) hexine-1 3 (trade name perhexin 25 B) (referred to as POX-2)
(V) 架橋助剤 (V) Crosslinking aid
1) 和光純薬 (株) 製、 ジビニルベンゼン (DVBと称する)  1) Wako Pure Chemical Industries, Ltd., divinylbenzene (referred to as DVB)
2) 日本化成 (株) 製、 トリアリルイソシァヌレート (TA I Cと称する) 2) Triallyl isocyanurate (TAIC) manufactured by Nippon Kasei Co., Ltd.
3) 大内新興化学 (株) 製、 N, N, —mフエ二レンビスマレイミ ド (PMI と称する) 3) Ouchi Shinko Chemical Co., Ltd., N, N, -m phenylene bismaleide (PMI)
4) 旭化成工業 (株) 製、 メタクリル酸メチル (MM Aと称する)  4) Methyl methacrylate (MMA) manufactured by Asahi Kasei Kogyo Co., Ltd.
5) 旭化成工業 (株) 製、 スチレン (STと称する)  5) Styrene (referred to as ST) manufactured by Asahi Kasei Kogyo Co., Ltd.
実施例 1〜 8及び比較例 1〜 4 押出機として、 バレル中央部に注入口を有した 2軸押出機 (4 Omm0、Examples 1 to 8 and Comparative Examples 1 to 4 As an extruder, a twin screw extruder (4 Omm0,
D=47) を用いた。 スク リューとしては注入口の前後に混練部を有した 2条ス クリユーを用いた。 D = 47) was used. The screw used was a two-section screw with a kneading section before and after the injection port.
(A) 成分 ZP PZPOX— 1 ZDVB/MO= 65/35Z0. 5/ 1. 0/45 (重量部) からなる混合物を、 まず M〇以外の成分を 2軸押出機に導入し、 引き続いて、 押出機の中央部にある注入口から M〇をポンプで注入し、 下記の条 件で溶融押出を行った。 即ち、 溶融押出条件は、 溶融押出温度 220=C、 吐出量 Q= 12 k gZh、 押出機バレル内径 D= 25mm、 押出機長を L (mm) とし た時の L/D=47、 及びスクリユー回転数 N= 280 r pmとした: (A) Component ZP PZPOX—1 ZDVB / MO = 65 / 35Z0.5 / 1.0 / 45 (parts by weight) A mixture other than M〇 is first introduced into a twin-screw extruder, followed by M〇 was injected by a pump from the injection port in the center of the extruder, and melt extrusion was performed under the following conditions. The melt extrusion conditions were as follows: melt extrusion temperature 220 = C, discharge rate Q = 12 kgZh, extruder barrel inner diameter D = 25 mm, L / D = 47 when extruder length is L (mm), and screw rotation The number N = 280 rpm was set:
上記条件を基準として、 架橋開始剤及び架橋助剤の種類、 添加量、 反応温度、 反応方式を調整することにより架橋度及び膨潤度を制御した。 具体的には、 架橋 度の増大のためには、 架橋開始剤又は架橋助剤を増量し、 かつラジカル開始剤の 分解温度以上であり、 かつできるだけ低い温度で、 長時間反応を行った。 一方、 膨潤度の増大は反応速度を抑制することが重要であり、 例えば架橋開始剤量の削 減、 低温反応という手法で行った。 (A) に前もって少量の MOを吸収させなが ら、 P〇X、 DVBを (A) に配合することにより、 膨潤度の低下を抑制しつつ、 架橋度を増大させた。  On the basis of the above conditions, the degree of crosslinking and the degree of swelling were controlled by adjusting the type, amount of addition, reaction temperature and reaction system of the crosslinking initiator and the crosslinking aid. Specifically, in order to increase the degree of cross-linking, the amount of the cross-linking initiator or cross-linking aid was increased, and the reaction was carried out for a long time at a temperature not lower than the decomposition temperature of the radical initiator and as low as possible. On the other hand, it is important to suppress the reaction rate to increase the degree of swelling. For example, reduction in the amount of crosslinking initiator and low-temperature reaction were performed. By incorporating P〇X and DVB into (A) while absorbing a small amount of MO in advance in (A), the degree of cross-linking was increased while suppressing the decrease in swelling.
このようにして得られたゴム組成物から 200°Cにて圧縮成形により 2 mm厚 のシートを作成し、 各機械的特性を評価した。  From the rubber composition thus obtained, a sheet having a thickness of 2 mm was formed by compression molding at 200 ° C, and each mechanical property was evaluated.
その結果を表 1に示す。 The results are shown in Table 1.
表 1 table 1
比較例 実施例 比較例 比較例 実施例  Comparative example Example Comparative example Comparative example Example
1 1 2 3 2  1 1 2 3 2
ゴム種 E OM- 1  Rubber type E OM- 1
M
架橋度 % 4 5 5 0 7 5 7 4 i 4  Degree of crosslinking% 4 5 5 0 7 5 7 4 i 4
Special
性 膨潤度 1 5 1 6 3 5 1 Swelling degree 1 5 1 6 3 5 1
 丄
硬度 6 8 6 9 6 9 7 1 ( U  Hardness 6 8 6 9 6 9 7 1 (U
物 引張破断強度 kgf/cm 2 5 0 7 1 7 0 8 0 i Object Tensile breaking strength kgf / cm 2 5 0 7 1 7 0 8 0 i
丄 5  丄 5
Sex
引張破断伸び % 1 2 0 3 9 0 3 0 0 3 4 0 ο Ζ Π U 実施例 実施例 実施例 比較例 実施例 天ノ JUL 17 'J ^r JlE 17リ 3 4 5 4 6 7 8 ゴ ゴム種 E OM- 1 EOM- 2 EFDM- 1 EPDM- 2 ム  Tensile elongation at break% 1 2 0 3 9 0 3 0 0 3 4 0 ο Ζ Π U Example Example Example Example Comparative example Example Amano JUL 17 'J ^ r JlE 17 Li 3 4 5 4 6 7 8 Rubber Species E OM- 1 EOM- 2 EFDM- 1 EPDM- 2
架橋度 % 7 3 7 4 7 5 7 6 7 5 7 6 7 5 特  Degree of crosslinking% 7 3 7 4 7 5 7 6 7 5 7 6 7 5
性 膨潤度 2 0 3 0 4 0 4 2 1 4 1 5 1 6 硬度 7 0 7 1 6 9 6 9 7 0 7 1 7 0 物 Swelling degree 2 0 3 0 4 0 4 2 1 4 1 5 1 6 Hardness 7 0 7 1 6 9 6 9 7 0 7 1 7 0
引張破断強度 kgf/cm 2 1 2 1 8 5 8 0 4 5 8 1 6 3 6 0 性 Tensile breaking strength kgf / cm 2 1 2 1 8 5 8 0 4 5 8 1 6 3 6 0
引張破断伸び % 4 9 0 4 4 0 4 0 0 2 8 0 4 0 0 3 8 0 3 5 0 Tensile elongation at break% 4 9 0 4 4 0 4 0 0 2 8 0 4 0 0 3 8 0 3 5 0
表 1によると、 本願の架橋度及び膨潤度の要件を満足した組成物は引張破断強 度、 引張破断伸度等の機械的強度に優れていることが分かるが、 メタ口セン触媒 を用いて製造されたエチレンと炭素数 3〜 2 0のひーォレフインからなるェチレ ン · α—ォレフィン共重合体、 とりわけメタ口セン系触媒を用いて製造された、 エチレンとオタテン— 1との共重合体は卓越した機械的強度を付与することが分 かる。 According to Table 1, it can be seen that a composition satisfying the requirements of the degree of crosslinking and swelling of the present application is excellent in mechanical strength such as tensile breaking strength and tensile breaking elongation. Ethylene α-olefin copolymer consisting of produced ethylene and phosphorein having 3 to 20 carbon atoms, especially a copolymer of ethylene and otaten-1 produced using a meta-acene catalyst. It can be seen that it provides excellent mechanical strength.
実施例 9〜 1 1及び比較例 5〜 7  Examples 9 to 11 and Comparative Examples 5 to 7
実施例 2において、 以下の定義に従って混練度 Μを変更すること以外、 同様の 実験を繰り返した。 その結果を表 2に示す。  In Example 2, the same experiment was repeated, except that the kneading degree に 従 っ て was changed according to the following definition. The results are shown in Table 2.
Μ= {κ 2 /2) (L/Ό) D 3 (N/Q) Μ = {κ 2/2) (L / Ό) D 3 (N / Q)
(但し、 Lは原料添加部を基点としたダイ方向の押出機長 (mm) 、 Dは押出機 バレル内径 (mm) 、 Qは吐出量 (k gZh) 、 及び Nはスクリュー回転数 ( r pm) であり、 ここで D= 2 5mm、 LZD= 4 7とした。 ) (Where, L is die direction with starting from the raw material addition unit extrusion Captain (mm), D is the extruder barrel inner diameter (m m), Q is the discharge amount (k gZh), and N is a screw revolution speed (r pm ), Where D = 25 mm and LZD = 47.)
表 2 Table 2
実施例 比較例  Example Comparative example
9 1 0 1 1 5 6 7 製造条件  9 1 0 1 1 5 6 7 Manufacturing conditions
N 300 300 2750 300 300 2800 N 300 300 2750 300 300 2800
Q 10 100 10 120 300 10Q 10 100 10 120 300 10
M(X106) 109 11 997 9 4 1015 架橋度 (%) 7 5 6 9 5 9 5 2 4 3 4 8 膨潤度 1 6 2 0 8 4 2 3 8 3 硬度 7 1 6 8 7 3 6 3 5 0 7 8 引張破断強度 M (X10 6 ) 109 11 997 9 4 1015 Degree of crosslinking (%) 7 5 6 9 5 9 5 2 4 3 4 8 Degree of swelling 1 6 2 0 8 4 2 3 8 3 Hardness 7 1 6 8 7 3 6 3 5 0 7 8 Tensile breaking strength
1 2 8 1 0 5 1 3 0 5 6 4 8 6 1 (kgf/cm2) 1 2 8 1 0 5 1 3 0 5 6 4 8 6 1 (kgf / cm 2 )
引張破断伸度 (%) 5 1 0 4 0 0 5 1 5 2 1 0 3 2 0 1 2 0 表 2によると、 1 0 X 1 06≤M≤ 1000 X 1 06の混練度 Mの範囲で製造 することにより、 本発明における要件を満足する架橋度及び膨潤度が達成される ことが分かる。 Tensile elongation at break (%) 5 1 0 4 0 0 5 1 5 2 1 0 3 2 0 1 2 0 According to Table 2, by producing a range of 1 0 X 1 0 6 ≤M≤ 1000 X 1 0 6 kneading degree M, it can be seen that the degree of crosslinking and swelling satisfying the requirements in the present invention are achieved .
実施例 1 2〜 23及び比較例 8〜 9  Examples 12 to 23 and Comparative Examples 8 to 9
実施例 2において、 以下の定義に従って、 溶融温度 T 2 (°C) で、 まず溶融混 練を行い、 次いで溶融温度 T3 (°C) で溶融混練を行った以外、 同様の実験を繰 り返した。 その結果を表 3及び 4に示す。 表 3 In Example 2, the following definitions, at a melt temperature T 2 (° C), performed first melt mixing kneading, followed except that were melt-kneaded at a melting temperature T 3 (° C), Ri Repetitive Similar experiments I returned. Tables 3 and 4 show the results. Table 3
Figure imgf000017_0001
Figure imgf000017_0001
P0X-1の場合 1 =180 80<T2<220 Τ 2 + 1 < Τ 3 < Τ 2 +200 For P0X-1 1 = 180 80 <T 2 <220 Τ 2 + 1 <Τ 32 +200
Ρ0Χ-2の場合 Τ!=194 94<Τ2<234 Τ 2 + 1 < Τ 3く Τ 2 +200 表 3によると、 以下の溶融温度条件で製造を行うことにより、 本発明における 要件を満足する架橋度及び膨潤度が達成されることが分かる。 According to Ρ0Χ-2 when Τ! = 194 94 <Τ 2 <234 Τ 2 + 1 <Τ 3 rather T 2 +200 Table 3, by carrying out the preparation under the following melting temperature, satisfying the requirements of the present invention It can be seen that a high degree of crosslinking and swelling is achieved.
Τχ : (C) の 1分間半減期温度 (°c) Τ χ : 1 minute half-life temperature of (C) (° c)
T! - 1 00<Τ 2< ! + 40  T! -1 00 <Τ 2 <! + 40
Τ + 1 <Τ <Τ 9 + 200 表 4 Τ + 1 <Τ <Τ 9 + 200 Table 4
Figure imgf000018_0001
また表 4によると、 架橋助剤として、 二官能の DVB、 PMIよりも三官能の TA I Cの方が架橋密度が上昇するために、 膨潤度が低下し、 軟化剤の保持性が 高くなり、 耐ブリード性が向上することが分かる。
Figure imgf000018_0001
According to Table 4, as a crosslinking aid, trifunctional TAIC has a higher crosslink density than bifunctional DVB or PMI, so that the degree of swelling decreases and the retention of the softener increases. It can be seen that the bleed resistance is improved.
また、 三官能の TA I Cは外観をやや低下させるが、 単官能単量体の MMAを 併用することにより、 外観と耐ブリード性のバランス特性が向上することが判明 した。  It was also found that the trifunctional TAIC slightly reduced the appearance, but the combined use of the monofunctional monomer MMA improved the balance between appearance and bleed resistance.
実施例 24〜 26  Examples 24 to 26
実施例 2において、 MO 45重量部を表 5記載の分割比率に従って分割した以 外、 同様の実験を繰り返した。 その結果を表 5に示す。 表 5 The same experiment as in Example 2 was repeated except that 45 parts by weight of MO was divided according to the division ratio shown in Table 5. Table 5 shows the results. Table 5
Figure imgf000019_0001
表 5によると、 MOを分割フィードすることにより、 押出機の前段での動的架 橋時の溶融粘度が低下して反応速度が抑制され、 架橋度を保持しつつ、 膨潤度が 増大することが分かる。
Figure imgf000019_0001
According to Table 5, split feed of MO reduces the melt viscosity during dynamic bridging in the former stage of the extruder, reduces the reaction rate, and increases the degree of swelling while maintaining the degree of crosslinking. I understand.
産業上の利用可能性  Industrial applicability
本発明のォレフィン系ゴム組成物は、 優れた機械的強度、 耐熱性、 耐油性を有 しているので、 自動車用部品、 自動車用内装材、 エアバッグカバー、 機械部品、 電気部品、 ケーブル、 ホース、 ベルト、 玩具、 雑貨、 日用品、 建材、 シート、 フ イルム等を始めとする用途に幅広く使用可能であり、 産業界に果たす役割は大き レ  Since the olefin rubber composition of the present invention has excellent mechanical strength, heat resistance, and oil resistance, it is used for automobile parts, automobile interior materials, airbag covers, mechanical parts, electric parts, cables, and hoses. , Belts, toys, miscellaneous goods, daily necessities, building materials, sheets, films, and other applications, and plays a major role in industry.

Claims

請求の範囲 The scope of the claims
1. (A) エチレン単位と炭素数 3〜2 0の α—ォレフイン単位を含むェチレ ン · ctーォレフイン共重合体 1〜9 9重量部と (B ) ォレフィン系樹脂 1〜9 9 重量部 ( (A) と (B ) の合計量が 1 0 0重量部) とを含む架橋された組成物で あって、 該 (A) の架橋度が 5 0 %以上であり、 かつ該 (A) の膨潤度が 5〜4 0であるォレフィン系ゴム組成物。 1. (A) 1-99 parts by weight of an ethylene-ct-olefin copolymer containing an ethylene unit and an α-olefin unit having 3 to 20 carbon atoms and (B) 1 to 99 parts by weight of an olefin resin (( A crosslinked composition containing (A) and (B) in a total amount of 100 parts by weight), wherein the degree of crosslinking of (A) is 50% or more, and the swelling of (A) An olefin rubber composition having a degree of 5 to 40.
2. 前記 (A) がメタ口セン触媒を用いて製造された、 エチレン単位と炭素数 3〜2 0の α—ォレフィン単位を含むエチレン · ctーォレフイン共重合体である 請求項 1記載のォレフィン系ゴム組成物。  2. The olefin-based system according to claim 1, wherein (A) is an ethylene-ct-olefin copolymer containing an ethylene unit and an α-olefin unit having 3 to 20 carbon atoms, which is produced using a meta-mouth catalyst. Rubber composition.
3. 膨潤度が 1 0〜4 0である請求項 1又は 2記載のォレフィン系ゴム組成物。 3. The olefin rubber composition according to claim 1 or 2, having a swelling degree of 10 to 40.
4. 更に軟化剤 (C ) 5〜5 0 0重量部を含む請求項 1〜3のいずれか一項記 載のォレフィン系ゴム組成物。 4. The olefin rubber composition according to any one of claims 1 to 3, further comprising 5 to 500 parts by weight of a softener (C).
5. (D) 架橋開始剤、 又は該 (D ) 及び (E ) 架橋助剤により架橋されたも のである請求項 1〜4のいずれか一項に記載のォレフィン系ゴム組成物。  5. The olefin rubber composition according to any one of claims 1 to 4, which is cross-linked by (D) a cross-linking initiator or (D) and (E) a cross-linking aid.
6. 前記 (E ) 架橋助剤が多官能単量体と単官能単量体からなる請求項 5記載 のォレフイン系ゴム組成物。  6. The olefin rubber composition according to claim 5, wherein the (E) crosslinking aid comprises a polyfunctional monomer and a monofunctional monomer.
PCT/JP2000/001140 1998-08-31 2000-02-28 Olefin rubber composition WO2001064783A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2000/001140 WO2001064783A1 (en) 2000-02-28 2000-02-28 Olefin rubber composition
JP2001564274A JP4758588B2 (en) 2000-02-28 2000-02-28 Cross-linked olefin rubber composition
DE10084514T DE10084514B4 (en) 2000-02-28 2000-02-28 Olefinic rubber composition
US11/425,935 US7491771B2 (en) 1998-08-31 2006-06-22 Olefinic rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001140 WO2001064783A1 (en) 2000-02-28 2000-02-28 Olefin rubber composition

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09958233 A-371-Of-International 2000-02-28
US11/425,935 Division US7491771B2 (en) 1998-08-31 2006-06-22 Olefinic rubber composition

Publications (1)

Publication Number Publication Date
WO2001064783A1 true WO2001064783A1 (en) 2001-09-07

Family

ID=11735730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001140 WO2001064783A1 (en) 1998-08-31 2000-02-28 Olefin rubber composition

Country Status (3)

Country Link
JP (1) JP4758588B2 (en)
DE (1) DE10084514B4 (en)
WO (1) WO2001064783A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516987B (en) * 2006-09-11 2011-08-10 帝斯曼知识产权资产管理有限公司 Composite comprising a thermosetting resin
JP2011528733A (en) * 2008-07-23 2011-11-24 サウディ ベーシック インダストリーズ コーポレイション Process for preparing a modified polypropylene composition
CN114181452A (en) * 2021-10-29 2022-03-15 金发科技股份有限公司 Polypropylene composition and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258639A (en) * 1991-02-12 1992-09-14 Showa Denko Kk Production of thermoplastic elastomer
JPH07138378A (en) * 1993-11-15 1995-05-30 Sumitomo Chem Co Ltd Production of thermoplastic elastomer composition
JPH0977932A (en) * 1995-09-11 1997-03-25 Sekisui Chem Co Ltd Polyolefin resin composition and molded product
EP0838497A1 (en) * 1996-10-28 1998-04-29 Mitsui Chemicals, Inc. Olefin thermoplastic elastomer composition
JPH10287776A (en) * 1997-04-14 1998-10-27 Asahi Chem Ind Co Ltd Partially crosslinked thermoplastic elastomer composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3780663B2 (en) * 1996-10-28 2006-05-31 三井化学株式会社 Olefin-based thermoplastic elastomer composition
DE19834580A1 (en) * 1998-07-31 2000-02-03 Bayer Ag Rubber polymers with a high gel content and a high degree of swelling
JP2000072933A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Olefin elastomer composition
JP2000072928A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Extruded sheet
JP2000071269A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Calendered molding
JP4283352B2 (en) * 1998-08-31 2009-06-24 旭化成ケミカルズ株式会社 Injection molded product
JP2000072907A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Expanded material
JP4213791B2 (en) * 1998-08-31 2009-01-21 旭化成ケミカルズ株式会社 Blow molding
JP2000103909A (en) * 1998-09-29 2000-04-11 Asahi Chem Ind Co Ltd Production of elastomer composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258639A (en) * 1991-02-12 1992-09-14 Showa Denko Kk Production of thermoplastic elastomer
JPH07138378A (en) * 1993-11-15 1995-05-30 Sumitomo Chem Co Ltd Production of thermoplastic elastomer composition
JPH0977932A (en) * 1995-09-11 1997-03-25 Sekisui Chem Co Ltd Polyolefin resin composition and molded product
EP0838497A1 (en) * 1996-10-28 1998-04-29 Mitsui Chemicals, Inc. Olefin thermoplastic elastomer composition
JPH10287776A (en) * 1997-04-14 1998-10-27 Asahi Chem Ind Co Ltd Partially crosslinked thermoplastic elastomer composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516987B (en) * 2006-09-11 2011-08-10 帝斯曼知识产权资产管理有限公司 Composite comprising a thermosetting resin
JP2011528733A (en) * 2008-07-23 2011-11-24 サウディ ベーシック インダストリーズ コーポレイション Process for preparing a modified polypropylene composition
CN114181452A (en) * 2021-10-29 2022-03-15 金发科技股份有限公司 Polypropylene composition and preparation method and application thereof
CN114181452B (en) * 2021-10-29 2023-10-31 金发科技股份有限公司 Polypropylene composition and preparation method and application thereof

Also Published As

Publication number Publication date
JP4758588B2 (en) 2011-08-31
DE10084514B4 (en) 2007-05-24
DE10084514T1 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
US6653401B2 (en) Thermoplastic elastomer composition
JP4372359B2 (en) Method for producing rubber composition
JP4477245B2 (en) Rubber composition
JPH10287775A (en) Low-hardness thermoplastic elastomer composition
WO2001064783A1 (en) Olefin rubber composition
JP2000063732A (en) Floor-covering material
JP2002146131A (en) Composite elastomer composition
JP2000143896A (en) Preparation of functionalized elastomer composition
JP2000072933A (en) Olefin elastomer composition
JP4213791B2 (en) Blow molding
JP2000290432A (en) Highly strong rubbery composition
JP4283352B2 (en) Injection molded product
JP2000169640A (en) Thermoplastic elastomer composition
JP2000063581A (en) Waterproof sheet
JP2000103909A (en) Production of elastomer composition
JP2001233996A (en) Rubber-based composition
JPH10287776A (en) Partially crosslinked thermoplastic elastomer composition
JP2000063582A (en) Wallpaper
JP2000072885A (en) Thermoplastic elastomer composition having excellent mechanical strength
JP2000007850A (en) Thermoplastic polymer composition
JP2000044692A (en) Car interior part
JP2000072928A (en) Extruded sheet
JP2000063590A (en) Sealing material
JP2000063592A (en) Automotive exterior material
JP2000071269A (en) Calendered molding

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

ENP Entry into the national phase

Ref document number: 2001 564274

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09958233

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10084514

Country of ref document: DE

Date of ref document: 20020620

WWE Wipo information: entry into national phase

Ref document number: 10084514

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607