JPH04253109A - Deformable conductive elastomer - Google Patents

Deformable conductive elastomer

Info

Publication number
JPH04253109A
JPH04253109A JP41690890A JP41690890A JPH04253109A JP H04253109 A JPH04253109 A JP H04253109A JP 41690890 A JP41690890 A JP 41690890A JP 41690890 A JP41690890 A JP 41690890A JP H04253109 A JPH04253109 A JP H04253109A
Authority
JP
Japan
Prior art keywords
particles
conductive
elastomer
conductive elastomer
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41690890A
Other languages
Japanese (ja)
Other versions
JPH077607B2 (en
Inventor
Teruo Okamoto
岡本 照男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INABA RUBBER KK
Original Assignee
INABA RUBBER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INABA RUBBER KK filed Critical INABA RUBBER KK
Priority to JP41690890A priority Critical patent/JPH077607B2/en
Publication of JPH04253109A publication Critical patent/JPH04253109A/en
Publication of JPH077607B2 publication Critical patent/JPH077607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To change resistance value well in response to the specified deformation state by mixing and dispersing respectively specified elastomer particles, conductive particles, and hollow elastic micro spheres in a non-conductive elastomer. CONSTITUTION:Elastomer particles with 10-300mum particle size, conductive particles with 1-40mum particle size, and hollow elastic microspheres with 10-150mum particle size are mixed and dispered in a non-conductive elastomer. If necessary, an elastomer mainly containing silicone rubber or liquid silicone rubber with silicone varnish and silicone raw rubber or an silicone adhesive mainly consisting of them is used as the non-conductive elastomer. Consequently, the hardness becoming high due to the mixing of the conductive particles can be lowered and the maximum limit of expansion degree and rubber elasticity are increased, so that this deformable conductive elastomer is prevented from becoming fragile.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、無加圧及び無伸長等の
無変形状態においては高抵抗値を示すと共に、圧縮、伸
長、ねじり、曲げ等の変形時においては抵抗値が好適に
低下するように構成された変形導電性エラストマーに係
り、特に、抵抗変化範囲が広く、直線性、耐久性、応答
性に優れた変形導電性エラストマーに関するものである
[Industrial Application Field] The present invention exhibits a high resistance value in a non-deformed state such as no pressure and no extension, and the resistance value suitably decreases during deformation such as compression, extension, twisting, and bending. The present invention relates to a deformable conductive elastomer having a wide resistance change range and excellent linearity, durability, and responsiveness.

【0002】0002

【従来の技術】従来におけるこの種の変形導電性エラス
トマーとしては、シリコーンゴム,エチレンプロピレン
ゴム,クロロプレンゴム等の合成ゴムや、ゴム弾性を示
す熱可塑性エラストマー等の非導電性エラストマーに、
金属粒子,カーボンブラック,黒鉛粒子等の導電性付与
剤を混合分散させてなる感圧導電性ゴムが公知となって
いると共に、上記と同様の非導電性エラストマーに、金
属繊維,炭素短繊維,雲母をニッケルメッキした薄片状
導電性フィラー等の導電性付与剤を混合分散させてなる
伸長導電性エラストマーが公知となっている。前記感圧
導電性ゴムは、主として加圧、圧縮変形により抵抗値が
変化するものであり、また前記伸長導電性エラストマー
は、主として伸長変形により抵抗値が変化するものであ
る。
[Prior Art] Conventional deformable conductive elastomers of this type include synthetic rubbers such as silicone rubber, ethylene propylene rubber, and chloroprene rubber, and non-conductive elastomers such as thermoplastic elastomers exhibiting rubber elasticity.
Pressure-sensitive conductive rubbers made by mixing and dispersing conductivity-imparting agents such as metal particles, carbon black, and graphite particles are known, and in addition, metal fibers, short carbon fibers, An elongated conductive elastomer prepared by mixing and dispersing a conductivity-imparting agent such as a flaky conductive filler made of nickel-plated mica is known. The resistance value of the pressure-sensitive conductive rubber changes mainly due to pressurization and compression deformation, and the resistance value of the elongated conductive elastomer changes mainly due to elongation deformation.

【0003】具体例を述べると、前記感圧導電性ゴムに
関しては、例えば特公昭56―9187号公報及び特公
昭56―54019号公報に、導電性粒子として、角を
落とした礫状の人造黒鉛粒子を用いてなる感圧導電性ゴ
ム組成物が開示されており、また特開昭62―1126
41号公報には、球状粒子とした高分子材料を焼成・炭
化してなる導電性粒子を用いた感圧導電性エラストマー
組成物が開示されており、更に特公昭60―722号公
報及び特公昭60―723号公報には、液状シリコーン
ゴム中に、シランカップリング剤で表面処理した導電性
金属粒子を分散させると共に、発泡剤として、溶解度パ
ラメータが9.8以上のn−プロピルアルコール,n−
ブチルアルコール等の有機化合物或いはN−ニトロソ基
を有する有機化合物を用いた感圧導電性材料が開示され
ている。一方、前記伸長導電性エラストマーの具体例と
して、例えば特開昭61―80708号公報には、高分
子エラストマーのポリウレタンに、面内径と厚みとの比
が2対1以上で100対1未満である雲母やガラス等の
薄片状導電性フィラーにニッケルや銅メッキ等を施した
ものを混合分散させてなる変形導電性高分子エラストマ
ーが開示されている。
To give a specific example, regarding the pressure-sensitive conductive rubber, for example, in Japanese Patent Publication No. 56-9187 and Japanese Patent Publication No. 56-54019, artificial graphite in the form of gravel with rounded corners is used as conductive particles. A pressure-sensitive conductive rubber composition using particles has been disclosed, and Japanese Patent Application Laid-Open No. 1126/1983
Publication No. 41 discloses a pressure-sensitive conductive elastomer composition using conductive particles obtained by firing and carbonizing a polymeric material in the form of spherical particles. 60-723 discloses that conductive metal particles surface-treated with a silane coupling agent are dispersed in a liquid silicone rubber, and n-propyl alcohol, n-propyl alcohol with a solubility parameter of 9.8 or more is used as a blowing agent.
Pressure-sensitive conductive materials using organic compounds such as butyl alcohol or organic compounds having an N-nitroso group have been disclosed. On the other hand, as a specific example of the elongated conductive elastomer, for example, JP-A-61-80708 discloses that the ratio of the in-plane diameter to the thickness of the polymer elastomer polyurethane is 2:1 or more and less than 100:1. A deformable conductive polymer elastomer is disclosed, which is made by mixing and dispersing a flaky conductive filler such as mica or glass plated with nickel or copper.

【0004】0004

【発明が解決しようとする課題】しかるに、上記従来の
感圧導電性ゴム及び伸長導電性エラストマーは、特定の
変形態様に対してのみ有用な機能を発揮するものであり
、両者には夫々以下に示すような問題点があった。即ち
、前記感圧導電性ゴムは、加圧、圧縮変形に対してのみ
良好な抵抗値の変化を示すものであって、伸長変形に対
しては適度な抵抗値の変化を示さないのに対し、前記伸
長導電性エラストマーは、伸長変形に対してのみ良好な
抵抗値の変化を示すものであって、加圧、圧縮変形に対
しては適度な抵抗値の変化を示さないという問題点があ
る。これは、前記両者が使用される目的及び用途が相異
なっていることに起因して必然的に生じる問題である。 また、前記感圧導電性ゴムとしては、非導電性エラスト
マー中に黒鉛粒子や球状炭素粒子でなる導電性粒子を配
合してなるものの使用が試みられているが、このような
単純な配合手段では、非導電性エラストマーのみの変形
に基づいて導電性粒子が相互に接触し或いは離反するこ
ととなり、従来の非導電性エラストマーの有するゴム弾
性等の諸特質が所要の条件を満たしていないことに起因
して、加圧、圧縮変形に伴う圧力変化に対する抵抗値の
変化が急激となりつまり感度が過剰に高くなり、広い圧
力変化範囲にわたって抵抗値が徐々に変化していくとい
う好適な特性が得られず、而も圧力変化に対する抵抗値
の変化特性に所望の直線性が得られないという不具合を
招く。更に、この種の感圧導電性ゴムにおいては、加圧
、圧縮変形時に抵抗値を適度に低下させようとすれば、
非導電性エラストマー中に比較的多量の導電性粒子を配
合せねばならず、これに起因して、見かけ上の硬さが高
くなると共に材料自体が脆くなり、このため曲げ強度及
び引張強度が低下するという不具合を招く。
[Problems to be Solved by the Invention] However, the above-mentioned conventional pressure-sensitive conductive rubber and elongated conductive elastomer exhibit useful functions only in specific deformations, and both have the following respectively. There were problems as shown. That is, the pressure-sensitive conductive rubber shows a good change in resistance value only when subjected to pressure and compression deformation, and does not show a moderate change in resistance value when subjected to elongation deformation. However, the elongated conductive elastomer exhibits a good change in resistance value only when subjected to elongation deformation, and has a problem in that it does not show an appropriate change in resistance value when subjected to pressure or compression deformation. . This is a problem that inevitably arises because the purposes and uses for which the two are used are different. Furthermore, attempts have been made to use a pressure-sensitive conductive rubber made by blending conductive particles such as graphite particles or spherical carbon particles into a non-conductive elastomer, but such a simple compounding method is insufficient. , conductive particles come into contact with each other or separate from each other based on the deformation of the non-conductive elastomer alone, and this is due to the fact that the various properties of conventional non-conductive elastomers, such as rubber elasticity, do not meet the required conditions. As a result, the change in resistance value against pressure changes due to pressurization and compression deformation becomes abrupt, which means that the sensitivity becomes excessively high, making it impossible to obtain the favorable characteristic that the resistance value gradually changes over a wide range of pressure changes. However, this results in a problem that the desired linearity cannot be obtained in the change characteristics of the resistance value with respect to pressure changes. Furthermore, in this type of pressure-sensitive conductive rubber, if you want to reduce the resistance value appropriately during pressurization and compression deformation,
A relatively large amount of conductive particles must be incorporated into the non-conductive elastomer, which increases the apparent hardness and makes the material itself brittle, which reduces its bending and tensile strength. This will cause problems.

【0005】本発明は上記諸事情に鑑みてなされたもの
であり、変形態様の差異に起因する抵抗値変化の問題点
、抵抗値の変化範囲や直線性等の抵抗変化特性の問題点
、材料強度の問題点等を総合的に検討することによって
、圧縮、伸長、曲げ、ねじり等の種々の変形態様に対し
て良好な抵抗値の変化を示し、且つ抵抗値の変化範囲が
広く、而も直線性、耐久性、応答性に優れた新規な変形
導電性エラストマーを提供することを技術的課題とする
ものである。
The present invention has been made in view of the above circumstances, and addresses the problems of resistance change due to differences in deformation, problems of resistance change characteristics such as resistance change range and linearity, and materials. By comprehensively considering strength issues, etc., we found that the resistance value changes well under various deformations such as compression, extension, bending, and torsion, and the resistance value changes over a wide range. The technical objective is to provide a novel deformable conductive elastomer with excellent linearity, durability, and responsiveness.

【課題を解決するための手段】本発明に係る変形導電性
エラストマーは、上記技術的課題を達成すべく、以下に
示すように構成したことを特徴とする。即ち、非導電性
エラストマー中に、粒子径が10乃至300μmのエラ
ストマー粒子と、粒子径が1乃至40μmの導電性粒子
と、粒子径が10乃至150μmの中空状弾性マイクロ
スフェアーとが分散されていることを要旨とするもので
ある。そして、必要に応じて、前記非導電性エラストマ
ーとしては、シリコーンゴムを採用し、又は、液状シリ
コーンゴムと、シリコーンワニス及びシリコーン生ゴム
若しくはこれらを主成分とするシリコーン粘着剤とから
なるエラストマーを採用する。また、前記エラストマー
粒子としては、架橋シリコーンゴム粉を採用する。更に
、前記導電性粒子としては、球状炭素粒子で且つその表
面に粒子径が0.05乃至0.2μmの絶縁性粒子を3
0乃至70%の表面積分率で付着させたものを採用する
。この場合、前記絶縁性粒子としてはカルシウム粒子を
用いることができる。更に又、前記中空状弾性マイクロ
スフェアーとしては、塩化ビニリデンとアクリロニトリ
ルのコポリマーを殻としたものを採用する。
[Means for Solving the Problems] The deformable conductive elastomer according to the present invention is characterized by being constructed as shown below in order to achieve the above technical problem. That is, elastomer particles with a particle size of 10 to 300 μm, conductive particles with a particle size of 1 to 40 μm, and hollow elastic microspheres with a particle size of 10 to 150 μm are dispersed in a non-conductive elastomer. The main point is that If necessary, silicone rubber is used as the non-conductive elastomer, or an elastomer consisting of liquid silicone rubber, silicone varnish, silicone raw rubber, or a silicone adhesive containing these as main components is used. . Further, as the elastomer particles, crosslinked silicone rubber powder is used. Furthermore, the conductive particles are spherical carbon particles with 3 insulating particles having a particle size of 0.05 to 0.2 μm on the surface thereof.
Adhesive materials with a surface area fraction of 0 to 70% are used. In this case, calcium particles can be used as the insulating particles. Furthermore, as the hollow elastic microspheres, those having a shell made of a copolymer of vinylidene chloride and acrylonitrile are used.

【0006】[0006]

【作用】非導電性エラストマーとしては、従来のものを
用いることができ、中でも1液常温硬化シリコーンゴム
が好適である。1液常温硬化シリコーンゴムとしては、
空気中の湿気で加水分解を起して架橋が進行する縮合型
のものが例示され、オキシム型,アルコール型,アセト
ン型,酢酸型等を使用することができる。これらの中で
、アセトン型や酢酸型のものは、硬化速度、腐蝕性、臭
気等の点で特性が劣るので、オキシム型若しくはアルコ
ール型を使用することが好ましい。また、必要により上
記液状シリコーンゴムに、シリコーンワニス、詳しくは
、シラノール基を有するポリシロキサンをトルエン,キ
シレン等の有機溶剤で希釈したものと、平均分子量が1
5万から50万の直鎖状ポリシロキサンからなるシリコ
ーン生ゴムを加えた混合物、或いは上記液状シリコーン
ゴムに、シリコーンワニスとシリコーン生ゴム,充填剤
,可塑剤を主成分とするシリコーン粘着剤を加えた混合
物を使用すれば、上記液状シリコーンゴム単体の場合よ
り、導電性粒子との接着力及び当該変形導電性エラスト
マーの引裂強度を改善することができる。
[Function] As the non-conductive elastomer, conventional ones can be used, and one-component room-temperature curing silicone rubber is particularly suitable. As a one-component room temperature curing silicone rubber,
Examples include condensation type materials in which crosslinking occurs through hydrolysis in the air, and oxime type, alcohol type, acetone type, acetic acid type, etc. can be used. Among these, the acetone type and acetic acid type have inferior properties in terms of curing speed, corrosivity, odor, etc., so it is preferable to use the oxime type or alcohol type. In addition, if necessary, a silicone varnish, specifically a polysiloxane having a silanol group diluted with an organic solvent such as toluene or xylene, and a silicone varnish having an average molecular weight of 1
A mixture of silicone raw rubber consisting of 50,000 to 500,000 linear polysiloxane, or a mixture of the above liquid silicone rubber and a silicone adhesive whose main components are silicone varnish, silicone raw rubber, filler, and plasticizer. By using the liquid silicone rubber alone, it is possible to improve the adhesive force with the conductive particles and the tear strength of the deformed conductive elastomer, compared to the case of using the liquid silicone rubber alone.

【0007】上記非導電性エラストマー中に導電性付与
剤として分散される導電性粒子としては、ニッケル,銅
,金,銀,ステンレス,アルミニウム,鉄,クロム等或
いはこれらの合金でなる金属粒子や、黒鉛,炭素粒子等
を使用することができる。これらの中の具体例としては
、スチレン,塩化ビニル,塩化ビニリデン等の微小球を
空気中で300℃まで加熱し、次いで不活性ガス中で1
000℃まで加熱焼成したメソカーボンマイクロビーズ
、或いはフェノール樹脂,フラン樹脂等の微小球状粒子
を真空中で800℃から1000℃に加熱処理したガラ
ス状微小球状炭素粒子(真球に近い独立粒子)が挙げら
れる。この導電性粒子の粒子径については、1μm未満
の場合は粒子の製造が困難であると共に、粒子径が小さ
くなると抵抗変化が少なくなる。一方、粒子径が40μ
mを超えると抵抗変化が荒くなるので、1乃至40μm
とする必要がある。また、この導電性粒子の全組成物中
に占める配合割合については、45乃至55容量%が好
ましく、45容量%未満の場合には抵抗値が高くなり、
55容量%を超える場合には常導電状態となりやすい。 更に、この導電性粒子と上記非導電性エラストマーとの
接着力を向上させる手段としては、導電性粒子の適切な
表面処理が挙げられる。この導電性粒子の適切な表面処
理の一例として、導電性粒子が球状炭素粒子である場合
にはその表面に粒子径が0.05乃至0.2μmの絶縁
性粒子を30乃至70%の表面積分率で付着させること
が例示される。この絶縁性粒子としては、カルシウム,
酸化チタン,酸化ケイ素等の超微粒子を使用することが
できる。また、このように導電性粒子の表面に適度な表
面積分率で絶縁性粒子を付着させることにより、導電性
粒子が相互に接触した際に導通状態となる度合が適度に
緩和され、これに伴って当該変形導電性エラストマーの
変形に対する抵抗値変化がゆるやかになり更には変形に
対する抵抗値変化特性の直線性が改善されることとなる
[0007] The conductive particles dispersed as a conductivity imparting agent in the non-conductive elastomer include metal particles made of nickel, copper, gold, silver, stainless steel, aluminum, iron, chromium, etc. or alloys thereof; Graphite, carbon particles, etc. can be used. Specific examples of these include heating microspheres of styrene, vinyl chloride, vinylidene chloride, etc. to 300°C in air, and then heating them in an inert gas for 1 hour.
Glassy microspherical carbon particles (independent particles that are close to true spheres) are produced by heating and firing mesocarbon microbeads up to 000°C, or microspherical particles of phenol resin, furan resin, etc. in vacuum from 800°C to 1000°C. Can be mentioned. Regarding the particle size of the conductive particles, if the particle size is less than 1 μm, it is difficult to manufacture the particles, and as the particle size becomes smaller, the resistance change decreases. On the other hand, the particle size is 40μ
If it exceeds 1 to 40 μm, the resistance change will become rough.
It is necessary to do so. In addition, the proportion of the conductive particles in the total composition is preferably 45 to 55% by volume, and if it is less than 45% by volume, the resistance value becomes high.
If it exceeds 55% by volume, it tends to become a normal conductive state. Further, as a means for improving the adhesive force between the conductive particles and the non-conductive elastomer, appropriate surface treatment of the conductive particles can be mentioned. As an example of appropriate surface treatment of the conductive particles, when the conductive particles are spherical carbon particles, insulating particles with a particle size of 0.05 to 0.2 μm are applied to the surface of the conductive particles to cover 30 to 70% of the surface area. For example, it may be deposited at a certain rate. These insulating particles include calcium,
Ultrafine particles of titanium oxide, silicon oxide, etc. can be used. In addition, by attaching insulating particles to the surface of conductive particles with an appropriate surface area fraction, the degree to which the conductive particles become conductive when they come into contact with each other is moderately reduced, and accordingly. As a result, the resistance value changes with respect to deformation of the deformable conductive elastomer becomes gradual, and the linearity of the resistance value change characteristic with respect to deformation is further improved.

【0008】本発明の第1の特徴的構成要件であるエラ
ストマー粒子は、ゴム弾性を示すエラストマー又は架橋
ゴム粒子であり、このエラストマー粒子を当該変形導電
性エラストマー中に混合分散させることにより、非導電
性エラストマーのポリマーアロイ化(海、島構造)の構
築をするものであり、前記導電性粒子の配合に起因して
高くなる硬さを低下させると共に、伸び量の最大限界や
ゴム弾性を増加させ、当該変形導電性エラストマーが脆
くなるのを防止できる。従って、当該変形導電性エラス
トマーは、圧縮変形に対してのみならず伸長,ねじり,
曲げ変形に対しても充分な強度を有し、これらの全ての
変形に対して抵抗の変化を良好に示すことが可能となる
。このエラストマー粒子としては、ポリスチレンとブタ
ジエンゴムの共重合体、ポリエチレンとエチレンプロピ
レンゴムの共重合体、ウレタンとポリエステルの共重合
体等の熱可塑性エラストマーや、シリコーンゴム,フッ
素ゴム,EPDMゴム,アクリロニトリルゴム,クロロ
プレンゴム,スチレンブタジエンゴム等の架橋合成ゴム
を低温粉砕機で粉砕したもの或いは摩耗式製粉機で製造
したものを使用することができ、無定形或いは球状の粉
体,粒子状のものであればよく、上記非導電性エラスト
マーがシリコーンゴムでなる場合には架橋シリコーンゴ
ム粉が好適であるが、他のエラストマー粒子を採用する
場合にはシランカップリング剤等で適切な表面処理をし
て使用することもできる。このエラストマー粒子の粒子
径としては、10乃至300μmとする必要があり、特
に伸長変形の面から好ましいものとしては粒子径が50
乃至100μmのものが挙げられる。粒子径が10μm
未満の場合には粉砕が困難であり且つ補強の効果があま
り期待できず、粒子径が300μmを超えると上記導電
性粒子の分布状態が粗くなることに起因して電極を接続
する場合に導電性粒子と電極とが接触し難くなり抵抗値
のバラツキが発生するという問題がある。
The elastomer particles, which are the first characteristic component of the present invention, are elastomer or crosslinked rubber particles exhibiting rubber elasticity, and by mixing and dispersing the elastomer particles in the deformable conductive elastomer, non-conductive This method constructs a polymer alloy (sea, island structure) of a conductive elastomer, and reduces the hardness that increases due to the combination of conductive particles, as well as increases the maximum elongation limit and rubber elasticity. , it is possible to prevent the deformed conductive elastomer from becoming brittle. Therefore, the deformable conductive elastomer is not only resistant to compressive deformation, but also to elongation, twisting, and
It also has sufficient strength against bending deformation, and can show good changes in resistance against all of these deformations. Examples of the elastomer particles include thermoplastic elastomers such as copolymers of polystyrene and butadiene rubber, copolymers of polyethylene and ethylene propylene rubber, copolymers of urethane and polyester, silicone rubber, fluororubber, EPDM rubber, and acrylonitrile rubber. Cross-linked synthetic rubber such as , chloroprene rubber, styrene-butadiene rubber, etc., pulverized with a low-temperature pulverizer or manufactured with an abrasive pulverizer can be used, whether it is amorphous or spherical powder or particulate. If the non-conductive elastomer is made of silicone rubber, cross-linked silicone rubber powder is suitable; however, if other elastomer particles are used, they should be appropriately surface-treated with a silane coupling agent, etc. You can also. The particle size of these elastomer particles needs to be 10 to 300 μm, and particularly preferred from the viewpoint of elongation deformation is a particle size of 50 μm.
Examples include those with a diameter of 100 μm to 100 μm. Particle size is 10μm
If the particle size is less than 300 μm, it is difficult to crush and the reinforcing effect cannot be expected much. If the particle size exceeds 300 μm, the distribution of the conductive particles becomes coarse, making it difficult to conductive when connecting electrodes. There is a problem in that it becomes difficult for particles and electrodes to come into contact with each other, resulting in variations in resistance value.

【0009】本発明の第2の特徴的構成要件である中空
状弾性マイクロスフェアーは、弾性並びに衝撃吸収性に
優れた微小球体であり、これを非導電性エラストマー中
に混合分散させることにより、導電性粒子の配合に起因
して高くなる見かけ上の硬さを低下させると共に、非導
電性エラストマー特にシリコーンゴムの難点である耐久
性、衝撃強度を向上させることができる。この中空状弾
性マイクロスフェアーとしては、好ましくは塩化ビニリ
デンとアクリロニトリルのコポリマーを殻とし、膨脹剤
としてイソブタンを内包してカプセル化したものを、膨
脹・乾燥させたPVDCマイクロバルーンが例示される
が、勿論これに限定されるものではない。この中空状弾
性マイクロスフェアーの粒子径としては、10乃至15
0μmとする必要があり、特に弾性並びに衝撃吸収性の
面からより好ましいものとしては、粒子径が20乃至8
0μmで且つ平均粒子径が50μmであり、殻壁の厚さ
が凡そ0.1μmのものが挙げられる。粒子径が10μ
m未満の場合には粒子が細かくなって衝撃吸収性並びに
振動吸収性が低下し、一方粒子径が150μmを超える
と局部的或いは全体的に中空セル即ち中空状弾性マイク
ロスフェアーの占める割合が高くなり過ぎて当該変形導
電性エラストマーの強度が低下する。全組成物中に占め
る中空状弾性マイクロスフェアーの配合割合としては、
10乃至35容量%が好ましく、10容量%未満の場合
には耐久性及び衝撃吸収性をあまり改善することができ
ず、一方35容量%を超えると抵抗変化が少なくなり変
形に対する抵抗変化の特性が悪化する。また、中空状弾
性マイクロスフェアーは、上記の如く予め膨脹させたも
のを配合してもよいが、未膨脹のものをエラストマー相
に混合分散し、加熱膨脹させて前記粒子径の中空状弾性
マイクロスフェアーに調整することもできる。但し、こ
の場合には非導電性エラストマーの硬化条件や膨脹のタ
イミングのコントロールが微妙で製造が難しくなるとい
う問題があるので、膨脹済みの中空状弾性マイクロスフ
ェアーを混合分散させる方か好ましい。このような中空
状弾性マイクロスフェアーを配合した変形導電性エラス
トマーと、発泡剤を加えて得られる変形導電性エラスト
マーとを比較すると、発泡剤を加えたものの場合には、
発泡セルの形状、大きさが不均一であるのに対し、中空
状弾性マイクロスフェアーは、真球状で比較的粒子径が
そろっており、中空セルのサイズや量を比較的容易にコ
ントロールすることができ、而も中空状弾性マイクロス
フェアーは発泡セルより耐久性,衝撃吸収性が格段に優
れている。この結果、中空状弾性マイクロスフェアーを
配合した本発明の変形導電性エラストマーは、上記発泡
剤を加えたものに比べて、圧縮変形に対して優れた耐久
性,衝撃吸収性を示すことになる。
Hollow elastic microspheres, which are the second characteristic component of the present invention, are microspheres with excellent elasticity and shock absorption properties, and by mixing and dispersing them in a non-conductive elastomer, It is possible to reduce the apparent hardness that is increased due to the addition of conductive particles, and to improve the durability and impact strength, which are disadvantages of non-conductive elastomers, especially silicone rubbers. An example of the hollow elastic microspheres is a PVDC microballoon, which is formed by expanding and drying a shell made of a copolymer of vinylidene chloride and acrylonitrile and encapsulating isobutane as an expansion agent. Of course, it is not limited to this. The particle diameter of these hollow elastic microspheres is 10 to 15
It is necessary to set the particle size to 0 μm, and from the viewpoint of elasticity and shock absorption, it is more preferable that the particle size is between 20 and 8 μm.
Examples include those having a particle diameter of 0 μm, an average particle diameter of 50 μm, and a shell wall thickness of approximately 0.1 μm. Particle size is 10μ
If the particle size is less than 150 μm, the particles will become fine and the shock absorption and vibration absorption properties will decrease, while if the particle size exceeds 150 μm, the proportion of hollow cells, that is, hollow elastic microspheres, will be high locally or overall. If the deformed conductive elastomer becomes too much, the strength of the deformed conductive elastomer decreases. The proportion of hollow elastic microspheres in the total composition is as follows:
10 to 35% by volume is preferable; if it is less than 10% by volume, the durability and shock absorption properties cannot be improved much, while if it exceeds 35% by volume, the resistance change will be small and the characteristics of resistance change against deformation will be poor. Getting worse. The hollow elastic microspheres may be expanded in advance as described above, but unexpanded ones may be mixed and dispersed in the elastomer phase, heated and expanded, and the hollow elastic microspheres of the above particle size are formed. It can also be adjusted to sphere. However, in this case, there is a problem in that the curing conditions of the non-conductive elastomer and the timing of expansion are delicately controlled, making production difficult, so it is preferable to mix and disperse expanded hollow elastic microspheres. Comparing a deformable conductive elastomer containing such hollow elastic microspheres and a deformable conductive elastomer obtained by adding a foaming agent, it is found that in the case of the one with the foaming agent added,
In contrast to foamed cells, which have nonuniform shapes and sizes, hollow elastic microspheres are perfectly spherical and have relatively uniform particle diameters, making it relatively easy to control the size and amount of hollow cells. Moreover, hollow elastic microspheres have much better durability and shock absorption than foam cells. As a result, the deformable conductive elastomer of the present invention containing hollow elastic microspheres exhibits superior durability against compressive deformation and shock absorption properties compared to the elastomer containing the above-mentioned foaming agent. .

【0010】以上のように本発明に係る変形導電性エラ
ストマーは、粒子の製造の容易化及び抵抗変化の適切な
増大化を図るべく1乃至40μmの粒子径とされた導電
性粒子と、衝撃吸収性並びに振動吸収性の向上を図ると
共に中空部の占める割合を適切にして強度の向上を図る
べく10乃至150μmの粒子径とされた中空状弾性マ
イクロスフェアーと、導電性粒子の配合に起因して高く
なる硬さを低下させて脆性の改善を図ると共に非導電性
エラストマーのポリマーアロイ化(海、島構造)の構築
と粒子の粉砕の容易化及び導電性粒子の分布状態の適切
化を図るべく10乃至300μmの粒子径とされたエラ
ストマー粒子とを非導電性エラストマー中に分散させた
ものであるため、圧縮,伸長,ねじり,曲げ等のあらゆ
る変形に対して十分な強度が得られるばかりでなく、こ
れらの各変形に対する抵抗変化の特性は以下に示す通り
となる。即ち、圧縮変形に対しては、非導電性エラスト
マー中において適度な分布状態にあるエラストマー粒子
及び中空状弾性マイクロスフェアーが加圧力により押圧
されて微視的に考察すれば三次元方向に徐々に押し縮め
られることになり、従ってこれらと共に混合分散されて
いる導電性粒子が相互に三次元方向に接近し、これに起
因して導通状態となる導電性粒子の数が除々に増加し、
これにより抵抗値は加圧力が大きくなるに連れて除々に
低下していく。また、伸長変形に対しては、非導電性エ
ラストマーと混合分散されたエラストマー粒子及び中空
状弾性マイクロスフェアーが引張られることにより、引
張部の中心には引張方向と直交する方向に応力が加わり
、この応力によって導電性粒子が相互に三次元方向に接
近し、これに起因して導通状態となる導電性粒子の数が
除々に増加し、従って抵抗値は引張力が大きくなるに連
れて除々に低下していく。更に、ねじり、曲げ変形に対
しては、導電性粒子の粒子径が適切であることからつま
り導電性粒子の分布状態が適切であることから、前記圧
縮変形と伸長変形との双方の作用により抵抗値が良好に
変化していくこととなる。
As described above, the deformable conductive elastomer according to the present invention includes conductive particles having a particle size of 1 to 40 μm in order to facilitate particle production and appropriately increase resistance change, and shock absorbing particles. This is due to the combination of hollow elastic microspheres with a particle diameter of 10 to 150 μm and conductive particles in order to improve strength and vibration absorption, as well as improve strength by making the proportion of the hollow part appropriate. In addition to improving brittleness by lowering the hardness that increases due to oxidation, we aim to create a polymer alloy of non-conductive elastomer (sea, island structure), facilitate particle crushing, and optimize the distribution of conductive particles. Because it is made by dispersing elastomer particles with a particle size of preferably 10 to 300 μm in a non-conductive elastomer, it has sufficient strength against all deformations such as compression, elongation, twisting, and bending. Therefore, the characteristics of resistance change for each of these deformations are as shown below. In other words, in response to compressive deformation, the elastomer particles and hollow elastic microspheres, which are in a moderately distributed state in the non-conductive elastomer, are pressed by the pressurizing force, and if considered microscopically, they gradually deform in three dimensions. As a result, the conductive particles mixed and dispersed together approach each other in a three-dimensional direction, and as a result, the number of conductive particles that become electrically conductive gradually increases.
As a result, the resistance value gradually decreases as the pressing force increases. In addition, for elongation deformation, as the elastomer particles mixed and dispersed with the non-conductive elastomer and the hollow elastic microspheres are pulled, stress is applied to the center of the tension part in a direction perpendicular to the tension direction. This stress causes the conductive particles to approach each other in three dimensions, and as a result, the number of conductive particles that become conductive gradually increases, and therefore the resistance value gradually decreases as the tensile force increases. It continues to decline. Furthermore, since the particle diameter of the conductive particles is appropriate, that is, the distribution state of the conductive particles is appropriate, resistance to twisting and bending deformation is achieved through the effects of both compressive deformation and elongation deformation. The value will change favorably.

【0011】[0011]

【実施例】以下、本発明の実施例について述べるが、こ
れらの実施例は、本発明を限定する趣旨のものではない
。先ず、本発明に係る変形導電性エラストマーの実施例
1について説明する。粒子径1乃至20μmで平均粒子
径5μmの微小球状炭素粒子(カーボンマイクロビーズ
ICB−0510、日本カーボン株式会社製)40.8
重量部(65g)に、シリコーンゴム(SH861U、
東レ・ダウコーニング株式会社製)+架橋剤(RC−4
、東レ・ダウコーニング株式会社製)0.5部配合を1
60℃で20分間プレスキュアーした架橋シリコーンゴ
ムを粉砕機で50乃至200μmに粉砕してなるシリコ
ーンゴム粉18.8重量部(30g)と、粒子径10乃
至100μmで平均粒子径40μmの塩化ビニリデン及
びアクリロニトリルのコポリマーを殻とする中空状弾性
マイクロスフェアー(EXPANCEL−DE551、
エクスパンセル社(スウェーデン)製)0.4重量部(
0.6g)とを混合分散させた。次いで、このものに1
液常温硬化シリコーンゴム(KE−441、信越化学工
業株式会社製)40重量部(64g)を加えて混合機に
て5分間混合し、よく脱泡した。そして、ポリエチレン
製のモールド(200mm×100mm×2.0mm)
に上記混合物を移してシート状に成形し、温度15℃及
び湿度60乃至70%の条件下で24時間放置して硬化
させた後、70℃で1時間熱処理した。このようにして
得た試料の圧縮変形に対する抵抗の変化と、伸長変形に
対する抵抗の変化とを、夫々、以下に示すような手段を
講じて測定した。図4は、圧縮変形に対する抵抗変化の
特性を測定するための測定回路を示し、Eは直流定電圧
電源、Rは標準抵抗器、Pは加圧速度(5mm/分)、
Vは電圧変化、Cは試料(10mm×10mm×2.0
mm)を示す。また、図5は具体的測定装置を示し、A
は加圧及び伸長試験機、Bは小型荷重変換器、Dは動歪
測定器、Fはアナライジングレコーダ、G1,G2は測
定電極(金メッキ銅貼りプリント基板、20mm×20
mm×1.6mm)を示す。測定は、前記測定電極G1
,G2の間に試料Cを置き、更にこの電極G1,G2の
下に加圧力を測定するための小型荷重変換器Bを設置し
て、試料Cの上方から加圧速度Pで測定電極G1を降下
させて加圧し、この時の電圧Vから抵抗値を算出し、動
歪測定器Dより加圧力を出力した。この測定結果を図1
のグラフ(両対数目盛によるグラフ)に実施例1として
示した。図6は、伸長変形に対する抵抗変化の特性を測
定するための測定回路を示し、E、R、Vについては上
記図4に示すものと同様のものを使用し、H1,H2は
測定電極(金メッキ銅貼プリント基板、10mm×4m
m×1.6mm)、Tは伸長速度(5mm/分)、Iは
試料(15mm×4.0mm×2.0mm)を示す。ま
た、図7は具体的測定装置を示し、A,B,D,F,E
,Rについては上記図5に示すものと同様のものを使用
し、電極H1,H2を接続した試料IをチャックJ1,
J2で把持し、伸長速度TでチャックJ1を降下させて
試料Iを伸長させ、この時の電圧Vから抵抗値を算出し
、動歪測定器Dより伸長力を出力した。この測定結果を
図2のグラフ(片対数目盛によるグラフ)に実施例1と
して示した。
EXAMPLES Examples of the present invention will be described below, but these examples are not intended to limit the present invention. First, Example 1 of the deformable conductive elastomer according to the present invention will be described. Micro spherical carbon particles with a particle size of 1 to 20 μm and an average particle size of 5 μm (Carbon Microbeads ICB-0510, manufactured by Nippon Carbon Co., Ltd.) 40.8
Silicone rubber (SH861U,
manufactured by Dow Corning Toray Co., Ltd.) + crosslinking agent (RC-4
, manufactured by Dow Corning Toray Co., Ltd.)
18.8 parts by weight (30 g) of silicone rubber powder obtained by press-curing crosslinked silicone rubber at 60° C. for 20 minutes and pulverizing it to 50 to 200 μm in a crusher, vinylidene chloride having a particle size of 10 to 100 μm and an average particle size of 40 μm, and Hollow elastic microspheres with shells made of acrylonitrile copolymer (EXPANCEL-DE551,
Expansel (Sweden)) 0.4 parts by weight (
0.6g) were mixed and dispersed. Then add 1 to this one
40 parts by weight (64 g) of liquid room temperature curing silicone rubber (KE-441, manufactured by Shin-Etsu Chemical Co., Ltd.) was added and mixed for 5 minutes using a mixer to thoroughly defoam. And polyethylene mold (200mm x 100mm x 2.0mm)
The mixture was transferred to a room and formed into a sheet, left to cure for 24 hours at a temperature of 15° C. and a humidity of 60 to 70%, and then heat-treated at 70° C. for 1 hour. Changes in resistance to compression deformation and changes in resistance to elongation deformation of the sample thus obtained were measured using the following methods. Figure 4 shows a measurement circuit for measuring the characteristics of resistance change with respect to compressive deformation, where E is a DC constant voltage power supply, R is a standard resistor, P is pressurization speed (5 mm/min),
V is the voltage change, C is the sample (10 mm x 10 mm x 2.0
mm). In addition, FIG. 5 shows a specific measuring device, and A
is a pressure and extension tester, B is a small load transducer, D is a dynamic strain measuring device, F is an analyzing recorder, G1 and G2 are measurement electrodes (gold-plated copper-clad printed circuit board, 20 mm x 20
mm x 1.6 mm). The measurement is performed using the measurement electrode G1
, G2, a small load transducer B for measuring the pressure force is installed below the electrodes G1 and G2, and the measurement electrode G1 is placed from above the sample C at a pressure rate P. The resistance value was calculated from the voltage V at this time, and the applied force was output from the dynamic strain measuring device D. This measurement result is shown in Figure 1.
This is shown as Example 1 in the graph (graph on logarithmic scale). Figure 6 shows a measurement circuit for measuring the characteristics of resistance change with respect to elongation deformation. E, R, and V are similar to those shown in Figure 4 above, and H1 and H2 are measurement electrodes (gold plated). Copper-plated printed circuit board, 10mm x 4m
m x 1.6 mm), T indicates the elongation speed (5 mm/min), and I indicates the sample (15 mm x 4.0 mm x 2.0 mm). In addition, FIG. 7 shows a specific measuring device, A, B, D, F, E.
, R are similar to those shown in FIG.
J2 and lowered the chuck J1 at an elongation speed T to elongate the sample I. The resistance value was calculated from the voltage V at this time, and the elongation force was output from the dynamic strain meter D. The measurement results are shown as Example 1 in the graph of FIG. 2 (graph on a semi-logarithmic scale).

【0012】次に、本発明に係る変形導電性エラストマ
ーの実施例2について説明する。シリコーンゴム(KE
−971U、信越化学工業株式会社製)に架橋剤(C−
8A、信越化学工業株式会社製)0.4重量部を配合し
且つ混練りして160℃で15分間プレスキュアーした
架橋シリコーンゴムを粉砕機で50乃至300μmに粉
砕し、更にこれをSUS304ステンレス#70メッシ
ュのフィルターのふるいにかけてシリコーンゴム粉を得
た。そして、粒子径1乃至12μmのガラス状微小球状
炭素粒子(ガラスカーボン―P,GP−5X、大和田カ
ーボン工業株式会社製)42.1重量部(77g)に、
上記のシリコーンゴム粉11重量部(20g)と、粒子
径20乃至80μmの塩化ビニリデン及びアクリロニト
リルのコポリマーを殻とする中空状弾性マイクロスフェ
アー(F−80ED,松本油脂製薬株式会社製)0.4
3重量部(0.8g)とを混合分散させた。次いで、1
液常温硬化シリコーンゴム(SE5002,東レ・ダウ
コーニング株式会社製)27.3重量部(50g)と、
シリコーンゴム粘着剤(YR3340、東芝シリコーン
株式会社製)19.1重量部(35g)とを混合機にて
3分間混合した後、このものに上記のシリコーンゴム粉
と中空状弾性マイクロスフェアーとを混合分散させたガ
ラス状微小球状炭素粒子を加えて更に3分間混合し、よ
く脱泡した。そして、この混合物をポリプロピレン製の
モールド(150mm×200mm×2.0mm)に移
してシート状に成形し、温度15℃及び湿度60乃至7
0%の条件下で24時間放置して硬化させた後、70℃
で1時間熱処理した。この場合において、上記の微小球
状炭素粒子は、その表面に30乃至70%の表面積分率
で絶縁性粒子が付着してなるものであるが、このような
微小球状炭素粒子の製造方法の一例を述べると、5乃至
20μmのフェノール樹脂,エポキシ樹脂,ポリイミド
樹脂等を核とする粒子を母粒子とし、0.05乃至0.
2μmのカルシウム,チタン,シリカ等の絶縁性無機物
の超微粒子を子粒子とし、ハイブリダイザー等を用いて
この子粒子を前記母粒子に打ち込み固定、配列させるこ
とによりオーダードミクスチャを形成する。そして、こ
のものを真空中や不活性ガス中等において800乃至1
000℃の温度で加熱して炭素化することにより上記の
絶縁性粒子が付着してなる微小球状炭素粒子を得ること
ができる。以上のようにして得た試料の圧縮変形に対す
る抵抗の変化と、伸長変形に対する抵抗の変化とを前述
の実施例1の場合と同様の方法で測定し、この測定結果
を図1と図2のグラフに実施例2として示した。尚、図
1と図2のグラフに比較例として示したものは、実施例
2の配合でシリコーンゴム粉(エラストマー粒子)を混
入しなかった試料についての測定結果である。また、図
3に示すグラフ(両対数目盛によるグラフ)は、実施例
2と比較例の耐久性試験の結果を示し、夫々の試験は2
kg/cm2 の荷重で1秒間ON(加荷重状態)、3
秒間OFF(無荷重状態)の繰り返しを100万回行い
、この100万回目の加圧力と抵抗値の変化とを、前記
した初回目のデータと共に示したものである。更に、上
記実施例1,実施例2,比較例の各試料について、圧縮
変形に対する測定結果を表1に、伸長変形に対する測定
結果を表2に、曲げ変形に対する測定結果を表3に、ね
じり変形に対する測定結果を表4に、夫々数値として示
した。 尚、曲げ変形についての測定は、試料(35mm×4.
0mm×2.0mm)の長手方向両端部に電極を接続し
ておき、この試料の長手方向一端部を固定した状態でそ
の他端部に荷重を作用させて曲げ変形を生じさせ、この
時の電気抵抗値を取り出したものであり、また、ねじり
変形についての測定は、試料(35mm×4.0mm×
2.0mm)の長手方向両端部に電極を接続しておき、
この試料の長手方向一端部を固定した状態でその他端部
に中心軸線(長手方向に延びる中心軸線)回りに回転力
を与えてねじり変形を生じさせ、この時の電気抵抗値を
取り出したものである。
Next, Example 2 of the deformable conductive elastomer according to the present invention will be described. Silicone rubber (KE
-971U, manufactured by Shin-Etsu Chemical Co., Ltd.) and a crosslinking agent (C-
8A (manufactured by Shin-Etsu Chemical Co., Ltd.), kneaded, and press-cured at 160°C for 15 minutes, the crosslinked silicone rubber was ground to 50 to 300 μm using a grinder, and further crushed into SUS304 stainless steel # A silicone rubber powder was obtained by sieving through a 70 mesh filter. Then, 42.1 parts by weight (77 g) of glassy microspherical carbon particles (Glass Carbon-P, GP-5X, manufactured by Owada Carbon Kogyo Co., Ltd.) with a particle size of 1 to 12 μm,
11 parts by weight (20 g) of the above silicone rubber powder and 0.4 hollow elastic microspheres (F-80ED, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) whose shells are a copolymer of vinylidene chloride and acrylonitrile with a particle size of 20 to 80 μm.
3 parts by weight (0.8 g) were mixed and dispersed. Then 1
27.3 parts by weight (50 g) of liquid room temperature curing silicone rubber (SE5002, manufactured by Dow Corning Toray Co., Ltd.),
After mixing 19.1 parts by weight (35 g) of a silicone rubber adhesive (YR3340, manufactured by Toshiba Silicone Corporation) in a mixer for 3 minutes, the above silicone rubber powder and hollow elastic microspheres were added to this mixture. The mixed and dispersed glassy microspherical carbon particles were added and mixed for an additional 3 minutes to thoroughly defoam. Then, this mixture was transferred to a polypropylene mold (150 mm x 200 mm x 2.0 mm) and formed into a sheet, at a temperature of 15°C and a humidity of 60 to 7.
After curing for 24 hours under 0% condition, 70℃
It was heat-treated for 1 hour. In this case, the above-mentioned microspherical carbon particles have insulating particles attached to their surfaces with a surface area ratio of 30 to 70%. Specifically, the base particles are particles having a core of phenol resin, epoxy resin, polyimide resin, etc. with a diameter of 5 to 20 μm, and 0.05 to 0.0 μm.
Ultrafine particles of an insulating inorganic material such as calcium, titanium, silica, etc. having a diameter of 2 μm are used as child particles, and the child particles are implanted into the mother particles using a hybridizer or the like and fixed and arranged to form an ordered mixture. Then, store this material in a vacuum or inert gas, etc. to 800 to 1
By heating and carbonizing at a temperature of 1,000° C., microspherical carbon particles to which the above-mentioned insulating particles are attached can be obtained. Changes in resistance to compressive deformation and changes in resistance to elongation deformation of the sample obtained as described above were measured in the same manner as in Example 1, and the measurement results are shown in FIGS. 1 and 2. This is shown in the graph as Example 2. In addition, what is shown as a comparative example in the graphs of FIG. 1 and FIG. 2 is the measurement result of a sample in which the silicone rubber powder (elastomer particles) was not mixed in the formulation of Example 2. In addition, the graph shown in FIG. 3 (graph on logarithmic scale) shows the results of the durability test of Example 2 and Comparative Example, and each test
ON for 1 second with a load of kg/cm2 (loaded state), 3
OFF (no load state) for seconds was repeated 1 million times, and the changes in the pressurizing force and resistance value for the 1 millionth time are shown together with the data for the first time described above. Furthermore, for each sample of Example 1, Example 2, and Comparative Example, the measurement results for compressive deformation are shown in Table 1, the measurement results for elongation deformation are shown in Table 2, the measurement results for bending deformation are shown in Table 3, and the measurement results for torsional deformation are shown in Table 3. The measurement results for each are shown in Table 4 as numerical values. The bending deformation was measured using a sample (35 mm x 4.
Electrodes were connected to both longitudinal ends of the sample (0 mm x 2.0 mm), and while one longitudinal end of the sample was fixed, a load was applied to the other end to cause bending deformation. The resistance value was extracted, and the torsional deformation was measured using a sample (35 mm x 4.0 mm x
Connect electrodes to both longitudinal ends (2.0 mm),
While one longitudinal end of this sample was fixed, a rotational force was applied to the other end around the central axis (the central axis extending in the longitudinal direction) to cause torsional deformation, and the electrical resistance value at this time was extracted. be.

【0013】[0013]

【表1】[Table 1]

【0014】[0014]

【表2】[Table 2]

【0015】[0015]

【表3】[Table 3]

【0016】[0016]

【表4】[Table 4]

【0017】[0017]

【発明の効果】以上のように本発明に係る変形導電性エ
ラストマーによれば、非導電性エラストマー中に、ゴム
弾性を有するエラストマー粒子と、弾性及び衝撃吸収性
に富んだ中空状弾性マイクロスフェアーと、粒子径が適
切に設定された導電性粒子とを混合分散させることによ
り、従来の圧縮変形に対してのみ機能を発揮する感圧導
電性ゴムや伸長変形に対してのみ機能を発揮する伸長導
電性エラストマーのように特定の変形態様に対処できる
だけでなく、圧縮,伸長,ねじれ,曲げ等のあらゆる変
形に対して良好に抵抗変化を示し且つ充分な機能を発揮
できることとなり、用途の拡大を図ることが可能となる
。また、中空状弾性マイクロスフェアーを配合したこと
により、圧縮荷重に対する耐久性及び衝撃吸収性の向上
が図られると共に、エラストマー粒子を配合したことに
より、非導電性エラストマー中に導電性粒子と中空状弾
性マイクロスフェアーを含む海層とエラストマー粒子の
島層構造が構築され、圧縮及び伸長荷重に対する強度並
びに耐久性の向上及び抵抗値の変化範囲の拡大化が図ら
れ、更には両者を配合したことにより、各変形に対する
抵抗変化特性の直線性が改善されるばかりでなく応答性
の向上が図られることとなる。更に、上記導電性粒子の
表面に絶縁性粒子を適度な表面積分率で付着させておく
ことにより、非導電性エラストマーとの接着力が向上す
るばかりでなく、各変形に対する抵抗変化がゆるやかに
なり、各変形に対する抵抗変化特性の直線性の更なる改
善が図られることとなる。
As described above, according to the deformable conductive elastomer of the present invention, the non-conductive elastomer contains elastomer particles having rubber elasticity and hollow elastic microspheres having high elasticity and shock absorbing properties. By mixing and dispersing conductive particles with an appropriately set particle size, we can create a pressure-sensitive conductive rubber that only functions against conventional compression deformation, and an elongated conductive rubber that functions only against elongation deformation. Not only can it handle specific deformations like conductive elastomers, but it also exhibits good resistance changes against all kinds of deformations such as compression, elongation, twisting, and bending, and is able to exhibit sufficient functionality, expanding its uses. becomes possible. In addition, by blending hollow elastic microspheres, durability against compressive loads and shock absorption properties are improved, and by blending elastomer particles, conductive particles and hollow A sea layer containing elastic microspheres and an island layer structure of elastomer particles have been constructed, improving strength and durability against compression and extension loads, and expanding the range of change in resistance value.Furthermore, by combining both. This not only improves the linearity of the resistance change characteristics with respect to each deformation, but also improves responsiveness. Furthermore, by attaching insulating particles to the surface of the conductive particles at an appropriate surface area ratio, not only the adhesive strength with the non-conductive elastomer is improved, but also the change in resistance with respect to each deformation becomes gentler. , the linearity of the resistance change characteristics with respect to each deformation will be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1と実施例2及び比較例の圧縮変形に対
する抵抗変化特性を示すグラフである。
FIG. 1 is a graph showing resistance change characteristics with respect to compressive deformation of Example 1, Example 2, and Comparative Example.

【図2】実施例1と実施例2及び比較例の伸長変形に対
する抵抗変化特性を示すグラフである。
FIG. 2 is a graph showing resistance change characteristics with respect to elongation deformation of Example 1, Example 2, and Comparative Example.

【図3】実施例2と比較例の耐久試験に対する抵抗変化
特性を示すグラフである。
FIG. 3 is a graph showing resistance change characteristics for durability tests of Example 2 and Comparative Example.

【図4】実施例1及び実施例2の圧縮変形に対する測定
回路図である。
FIG. 4 is a measurement circuit diagram for compressive deformation in Example 1 and Example 2.

【図5】実施例1及び実施例2の圧縮変形に対する具体
的測定装置を示す概略構成図である。
FIG. 5 is a schematic configuration diagram showing a specific measuring device for compressive deformation in Examples 1 and 2;

【図6】実施例1及び実施例2の伸長変形に対する測定
回路図である。
FIG. 6 is a measurement circuit diagram for elongation deformation in Example 1 and Example 2.

【図7】実施例1及び実施例2の伸長変形に対する具体
的測定装置を示す概略構成図である。
FIG. 7 is a schematic configuration diagram showing a specific measuring device for elongation deformation in Examples 1 and 2.

【符号の説明】[Explanation of symbols]

A  加圧試験機(伸長試験機) B  小型荷重変換器 C  試料 D  動歪測定器 F  アナライジングレコーダ I  試料 A Pressure testing machine (extension testing machine) B. Small load converter C Sample D Dynamic strain measuring device F Analyzing recorder I Sample

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  非導電性エラストマー中に、粒子径が
10乃至300μmのエラストマー粒子と、粒子径が1
乃至40μmの導電性粒子と、粒子径が10乃至150
μmの中空状弾性マイクロスフェアーとが分散されてい
ることを特徴とする変形導電性エラストマー。
Claim 1: A non-conductive elastomer contains elastomer particles with a particle size of 10 to 300 μm and a particle size of 1
Conductive particles of 40 μm to 40 μm and particle diameters of 10 to 150 μm
A deformable conductive elastomer characterized by dispersing μm hollow elastic microspheres.
【請求項2】  非導電性エラストマーが、シリコーン
ゴム、又は、液状シリコーンゴムと、シリコーンワニス
及びシリコーン生ゴム若しくはこれらを主成分とするシ
リコーン粘着剤とからなる請求項1に記載の変形導電性
エラストマー。
2. The deformable conductive elastomer according to claim 1, wherein the non-conductive elastomer comprises silicone rubber or liquid silicone rubber, silicone varnish, silicone raw rubber, or a silicone adhesive containing these as main components.
【請求項3】  エラストマー粒子が、架橋シリコーン
ゴム粉である請求項1又は2に記載の変形導電性エラス
トマー。
3. The deformable conductive elastomer according to claim 1 or 2, wherein the elastomer particles are crosslinked silicone rubber powder.
【請求項4】  導電性粒子が、球状炭素粒子で且つそ
の表面に粒子径が0.05乃至0.2μmの絶縁性粒子
を30乃至70%の表面積分率で付着させたものである
請求項1乃至3のいずれかに記載の変形導電性エラスト
マー。
4. A claim in which the conductive particles are spherical carbon particles on which insulating particles having a particle diameter of 0.05 to 0.2 μm are adhered at a surface area ratio of 30 to 70%. 4. The deformable conductive elastomer according to any one of 1 to 3.
【請求項5】  絶縁性粒子が、カルシウム粒子である
請求項4に記載の変形導電性エラストマー。
5. The deformable conductive elastomer according to claim 4, wherein the insulating particles are calcium particles.
【請求項6】  中空状弾性マイクロスフェアーが、塩
化ビニリデンとアクリロニトリルのコポリマーを殻とす
るものである請求項1乃至5のいずれかに記載の変形導
電性エラストマー。
6. The deformable conductive elastomer according to claim 1, wherein the hollow elastic microspheres have a shell made of a copolymer of vinylidene chloride and acrylonitrile.
JP41690890A 1990-12-27 1990-12-27 Deformed conductive elastomer Expired - Fee Related JPH077607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41690890A JPH077607B2 (en) 1990-12-27 1990-12-27 Deformed conductive elastomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41690890A JPH077607B2 (en) 1990-12-27 1990-12-27 Deformed conductive elastomer

Publications (2)

Publication Number Publication Date
JPH04253109A true JPH04253109A (en) 1992-09-08
JPH077607B2 JPH077607B2 (en) 1995-01-30

Family

ID=18525086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41690890A Expired - Fee Related JPH077607B2 (en) 1990-12-27 1990-12-27 Deformed conductive elastomer

Country Status (1)

Country Link
JP (1) JPH077607B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186210A (en) * 1998-10-15 2000-07-04 Shin Etsu Chem Co Ltd Hollow-filler-containing silicone rubber composition
WO2007074652A1 (en) * 2005-12-26 2007-07-05 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
JP2009218029A (en) * 2008-03-10 2009-09-24 Panasonic Corp Pressure-sensitive conductive sheet and panel switch using the same
WO2018164125A1 (en) * 2017-03-09 2018-09-13 株式会社フジクラ Stretchable wiring body and stretchable substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336548A (en) * 1995-06-13 1996-12-24 Mizuho Ika Kogyo Kk Centrum screw of spine correcting device
JP5257896B2 (en) * 2009-05-22 2013-08-07 国立大学法人電気通信大学 Slip detection device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186210A (en) * 1998-10-15 2000-07-04 Shin Etsu Chem Co Ltd Hollow-filler-containing silicone rubber composition
WO2007074652A1 (en) * 2005-12-26 2007-07-05 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
JP2009218029A (en) * 2008-03-10 2009-09-24 Panasonic Corp Pressure-sensitive conductive sheet and panel switch using the same
WO2018164125A1 (en) * 2017-03-09 2018-09-13 株式会社フジクラ Stretchable wiring body and stretchable substrate
CN110268809A (en) * 2017-03-09 2019-09-20 株式会社藤仓 Retractility Wiring body and retractility substrate
JPWO2018164125A1 (en) * 2017-03-09 2019-11-07 株式会社フジクラ Elastic wiring body and elastic substrate

Also Published As

Publication number Publication date
JPH077607B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US5536568A (en) Variable-resistance conductive elastomer
KR100456045B1 (en) Pressure Sensitive Ink, Pressure Sensitive Ink Device, and Methods of Use
JP2002501949A (en) Polymer composition
JP5166714B2 (en) Cross-linked elastomer for sensor and method for producing the same
Ponnamma et al. Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites
US6495069B1 (en) Polymer composition
US5904978A (en) Electrically conductive polytetrafluoroethylene article
US5084211A (en) Anisotropically electroconductive adhesive
JP5186110B2 (en) Control method of relative permittivity, dielectric, mobile phone, and human phantom model
JP2008198425A (en) Flexible electrode and electronic equipment using it
CA2127379A1 (en) Pressure sensitive membrane and method therefor
Park et al. Mechanical, dielectric, and magnetic properties of the silicone elastomer with multi‐walled carbon nanotubes as a nanofiller
JPH04253109A (en) Deformable conductive elastomer
Aminabhavi et al. Electrical resistivity of carbon-black-loaded rubbers
JPH04349301A (en) Deformable conductive elastomer
Li et al. Facile fabrication of flexible TPU‐based microcellular nanocomposite piezoresistive sensors with tunable piezoresistivity via modulating cell structure
JPH0471108A (en) Pressure sensitive conductive elastomer
JP2003105108A (en) Heat conductive sheet
EP0210002A1 (en) Pressure responsive electrically conductive materials
JP4517225B2 (en) Pressure sensitive conductive elastomer
CN114822983A (en) Preparation method of fast-curing conductive paste
JPH0393109A (en) Pressure-sensitive conductive elastomer
JP3907431B2 (en) Resistor for pressure sensor and pressure sensor using the same
JPH0586813B2 (en)
JPS62249304A (en) Pressure sensitive conducting rubber material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees