JPH0586813B2 - - Google Patents

Info

Publication number
JPH0586813B2
JPH0586813B2 JP60204020A JP20402085A JPH0586813B2 JP H0586813 B2 JPH0586813 B2 JP H0586813B2 JP 60204020 A JP60204020 A JP 60204020A JP 20402085 A JP20402085 A JP 20402085A JP H0586813 B2 JPH0586813 B2 JP H0586813B2
Authority
JP
Japan
Prior art keywords
rubber
sheet
pressure
resistance value
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60204020A
Other languages
Japanese (ja)
Other versions
JPS6262841A (en
Inventor
Tomoji Mashita
Susumu Nagayasu
Yoshio Yamaguchi
Tooru Noguchi
Masahito Nakajima
Hajime Kakiuchi
Kizuo Tanida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP60204020A priority Critical patent/JPS6262841A/en
Priority to DE8686108731T priority patent/DE3674086D1/en
Priority to EP86108731A priority patent/EP0207450B1/en
Priority to AT86108731T priority patent/ATE56560T1/en
Priority to KR1019860005352A priority patent/KR910005578B1/en
Priority to US06/882,083 priority patent/US4765930A/en
Priority to CA000513033A priority patent/CA1303275C/en
Publication of JPS6262841A publication Critical patent/JPS6262841A/en
Publication of JPH0586813B2 publication Critical patent/JPH0586813B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は感圧導電性ゴムシートに係り、詳しく
はゴムに特定の無機質充填剤であるウイスカーを
混入した加硫したゴム組成物からなる厚さ約
200μm以下の薄膜であり、押圧力を受けたとき抵
抗値が著しく変化する感圧導電性ゴムシートに関
する。 (従来の技術) 従来、ゴム弾性体に導電性の優れたカーボンブ
ラツク、金属粒子等を混合充填したゴムシートが
加圧変形を受けることにより電気抵抗値が大幅に
低下することは、例えば特開昭55−5804号公報、
特開昭55−147549号公報、そして特開昭56−5840
号公報等において既に開示されている。 また、このほか導電性ゴムシートの感度を向上
させるためにシートの表層部に細胞構造の空隙部
を形成し、金属粉末等の導電材料を高充填に配合
したゴムシートが、例えば特開昭58−209810号公
報に開示されている。そして、更にゴムシートの
厚み方向に金属繊維を充填したもの(例えば特開
昭58−220307号公報)等が種々提案されている。 (発明が解決しようとする問題点) このように、従来の導電性ゴムシートが感圧導
電性を有する機構として、まず該シートが押圧力
によつて歪を受けると、この際シート体中に分散
配合されている導電性粒子同志の接触度合が増加
して電極間の抵抗値を減少させる形態を有するも
のであり、また他方導電性ゴムシートが両電極板
から押圧を受けると、電極板と導電性ゴムシート
との接面積が次第に増大し、その結果電気抵抗値
が減少する形態を有している。 しかし、前者の機構としてはマトリツクスの温
度変化などにより導電性粒子同志の接触確率が変
化しやすいうえに、シート体の圧縮変形によつて
導電性粒子とマトリツクスが分離して安定した抵
抗値が得られない欠点があると言われている。 また、後者の機構では長期にわたつて繰り返し
使用すると、大きな歪を受けるとゴムマトリツク
スの表面が疲労して硬化し、また耐クリープ特性
に欠け、その結果電極板がゴムマトリツクスの表
面に位置する導電材料と抵触し始めるため非加圧
時の電気抵抗値が減少し、加圧時の電気抵抗値の
変化を大きくすることができなくなり、結局長期
間にわたつて良好な感度を維持することが出来な
い欠点があると言われている。 本発明は導電性粒子同志の接触度合の変化によ
り電極間の抵抗値を変化させる感圧導電性ゴムシ
ートを改良するものであり、カーボンブラツクあ
るいは金属粒子などの導電性に優れた充填材を使
用せず、これに比べて導電性に劣る無機質充填材
であるウイスカーを使用することによりゴムマト
リツクスとの機械的結合を良好にし、且つシート
の厚みを薄くすることによつて押圧による電気抵
抗値を大きく低下させる新規な感圧導電性ゴムシ
ートを提供することを目的とする。 (問題点を解決するための手段) 電気絶縁性を有するゴム100重量部に、直径
0.05〜3μm、長さ5〜500μmからなる針状単結晶
体のウイスカーである無機質充填剤2〜400重量
部を分散配合したゴム組成物からなるゴム糊を塗
布し、加硫することにより固化することによつて
得られた厚さ20〜160μmのシートにした感圧導電
性ゴムシートにある。 本発明において電気絶縁性を有するマトリツク
スのゴムとしては、例えば天然ゴム、ポリブタジ
エンゴム、ポリイソプレンゴム、スチレン−ブタ
ジエン共重合体ゴム、ニトリルゴム、ブチルゴ
ム、クロロプレンゴム、アクリロニトリル−ブタ
ジエン共重合体ゴム、エチレン−プロピレン共重
合体ゴム、クロロスルフオン化ポリエチレンゴム
等があるが、そのうちこれらのゴムを2種類使用
することも可能である。そして、上記ゴムは機械
的強度及び耐熱性を向上させるために硫黄、硫黄
化合物又は過酸化物で架橋できるゴムを用い、又
架橋して使用される。 更に、無機質充填材であるウイスカーとして
は、α−炭化珪素(α−SiC)、β−炭化珪素
(β−SiC)、窒化珪素(Si3N4)、α−アルミナ
(Al2O3)、酸化チタン、酸化亜鉛、酸化スズ、黒
鉛、Fe、Cu、Ni等であり、直径0.05〜3μm、長
さ5〜500μm程度の形状からなる針状単結晶体で
ある。上記無機質充填材をゴムに添加するにあた
つては、前もつてシランカツプリン剤やチタンカ
ツプリング剤等で処理したり、ゴムと混合時にシ
ランカツプリング剤やチタンカツプリング剤を添
加することも可能である。これにより、ゴムへの
分散性がより良好となる。 上記ウイスカーの添加量は、ゴム100重量部に
対して2〜400重量部、好ましくは5〜200重量部
であり、もしウイスカーの添加量が2重量部未満
であれば感圧導電性の効果が小さくなる。一方、
400重量部を越えるとゴム中への混入分散が困難
となり、また得られたゴムシートは導電体になり
本発明の目的を達成しなくなる。 特に、本発明において使用するウイスカーは、
針状結晶体であるため、形態のもつ特異性からシ
ート状複合体表面へ突出しており、一方シート内
部ではウイスカーはランダムに分散している。こ
のため、シート状複合体が両電極板によつて加圧
されると、シート表面から突出しているウイスカ
ーと内部に分散しているウイスカーとが接触する
チヤンスが大きくなり感圧導電性を発揮するもの
と考えられる。 しかし、本発明のシート状複合体が厚さ200μm
を越えると押圧しても絶縁状態となり、何ら感圧
導電性を示さなくなるため、上記シート状複合体
の厚さを20〜160μm程度に保つ必要がある。 上記感圧導電性ゴムシートは、電気絶縁性を有
するゴムにウイスカー以外の他の無機質充填材、
そして必要に応じて通常ゴムに使用される軟化
剤、老化防止剤、加硫助剤、架橋剤等を添加し、
これらの各成分を例えばバンバリーミキサー、ニ
ーダーロールなどを用いて混練されたものをシー
ト体とし、あるいはこのようにして混練されたも
のを溶剤に溶かしてゴム糊として、これを基板の
上に塗布することにより薄膜を成型しこれを加硫
することにより製造することができる。 (実施例) 次に、本発明に具体的な実施例により更に詳細
に説明する。 実施例1〜4、比較例1〜3 第1表に示す配合にもとづき、ゴム配合物をバ
ンバリーミキサーで混練後、上記混練ゴムを溶剤
にとかしてゴム糊とし、これを平坦なアルミニウ
ム板上に塗布して塗膜を成形した後、オープンに
入れ加硫条件150℃×20分で加硫した。尚、第1
表に示すウイスカーSiCは直径約1μm、長さ約
100μm有し、またパウダーSiCは粒径約0.7μmを
有するものである。かくして得られた厚さ80μm
〜160μmの薄膜を30×33mmに切断してテストピー
スとし、これを無押圧時(但し、12gの電極板が
テストピースの上に置かれている)又は押圧時に
おける電気抵抗値を測定した。その結果は、第2
表に示される。 尚、電気抵抗値の測定は、まずテストピースを
約100gのテフロン板に挟持するが、この時テス
トピースとテフロン板の間に厚さ約0.3mmの銅板
を設置し、この一対の銅板を電極板としてデシタ
ルマルチメータにより抵抗値を求めた。加圧は上
側に位置するテフロン板に錘を設置することによ
り行つた。 この結果によると、同じ材質であつてもパウダ
ーよりウイスカーを混入したゴムシートは優れた
感圧導電性を示している。
(Industrial Application Field) The present invention relates to a pressure-sensitive conductive rubber sheet, and more specifically, it is made of a vulcanized rubber composition in which whiskers, which are specific inorganic fillers, are mixed into rubber.
This invention relates to a pressure-sensitive conductive rubber sheet that is a thin film of 200 μm or less and whose resistance value changes significantly when subjected to pressing force. (Prior art) Conventionally, it has been reported in Japanese Patent Publication, for example, that a rubber sheet made of a rubber elastic body mixed and filled with highly conductive carbon black, metal particles, etc. undergoes deformation under pressure, resulting in a significant decrease in electrical resistance. Publication No. 55-5804,
JP-A-55-147549 and JP-A-56-5840
This has already been disclosed in publications such as No. In addition, in order to improve the sensitivity of conductive rubber sheets, there are rubber sheets in which cellular structure voids are formed in the surface layer of the sheet, and a conductive material such as metal powder is highly loaded, for example, in JP-A-58. -Disclosed in Publication No. 209810. Further, various rubber sheets have been proposed in which metal fibers are filled in the thickness direction (for example, Japanese Patent Laid-Open No. 58-220307). (Problems to be Solved by the Invention) As described above, as a mechanism in which a conventional conductive rubber sheet has pressure-sensitive conductivity, when the sheet is first distorted by a pressing force, at this time, the sheet body is The degree of contact between the dispersed conductive particles increases and the resistance value between the electrodes decreases.On the other hand, when the conductive rubber sheet receives pressure from both electrode plates, it The contact area with the conductive rubber sheet gradually increases, and as a result, the electrical resistance value decreases. However, with the former mechanism, the probability of contact between conductive particles tends to change due to changes in the temperature of the matrix, etc., and the conductive particles and matrix separate due to compressive deformation of the sheet, resulting in a stable resistance value. It is said that there are some drawbacks that cannot be avoided. In addition, when the latter mechanism is repeatedly used over a long period of time, the surface of the rubber matrix becomes fatigued and hardened when subjected to large strains, and it also lacks creep resistance, resulting in the electrode plate being located on the surface of the rubber matrix. As the electrical resistance value starts to come into contact with the conductive material being applied, the electrical resistance value when no pressure is applied decreases, making it impossible to increase the change in electrical resistance value when pressure is applied, and ultimately maintaining good sensitivity over a long period of time. It is said that there is a drawback that it cannot be done. The present invention improves a pressure-sensitive conductive rubber sheet that changes the resistance value between electrodes by changing the degree of contact between conductive particles, and uses fillers with excellent conductivity such as carbon black or metal particles. By using whiskers, which are inorganic fillers with inferior conductivity compared to whiskers, the mechanical bond with the rubber matrix is improved, and by reducing the thickness of the sheet, the electrical resistance value due to pressure is reduced. The purpose of the present invention is to provide a novel pressure-sensitive conductive rubber sheet that significantly reduces the pressure-sensitive conductive rubber sheet. (Means for solving the problem) Add 100 parts by weight of electrically insulating rubber to
A rubber paste made of a rubber composition containing 2 to 400 parts by weight of an inorganic filler, which is a needle-shaped single crystal whisker having a diameter of 0.05 to 3 μm and a length of 5 to 500 μm, is applied and solidified by vulcanization. In particular, the obtained pressure-sensitive conductive rubber sheet is made into a sheet with a thickness of 20 to 160 μm. Examples of the matrix rubber having electrical insulation properties in the present invention include natural rubber, polybutadiene rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, butyl rubber, chloroprene rubber, acrylonitrile-butadiene copolymer rubber, and ethylene rubber. - There are propylene copolymer rubber, chlorosulfonated polyethylene rubber, etc., and it is also possible to use two types of these rubbers. In order to improve mechanical strength and heat resistance, the above-mentioned rubber is crosslinked with sulfur, a sulfur compound, or a peroxide, or is used after being crosslinked. Furthermore, whiskers which are inorganic fillers include α-silicon carbide (α-SiC), β-silicon carbide (β-SiC), silicon nitride (Si 3 N 4 ), α-alumina (Al 2 O 3 ), They are titanium oxide, zinc oxide, tin oxide, graphite, Fe, Cu, Ni, etc., and are needle-like single crystal bodies with a diameter of 0.05 to 3 μm and a length of about 5 to 500 μm. When adding the above inorganic filler to rubber, it is necessary to treat it with a silane coupling agent, titanium coupling agent, etc. beforehand, or to add a silane coupling agent or titanium coupling agent when mixing with the rubber. is also possible. This results in better dispersibility in rubber. The amount of whiskers added is 2 to 400 parts by weight, preferably 5 to 200 parts by weight, per 100 parts by weight of rubber. If the amount of whiskers added is less than 2 parts by weight, the pressure-sensitive conductivity effect will be reduced. becomes smaller. on the other hand,
If it exceeds 400 parts by weight, it will be difficult to mix and disperse it into the rubber, and the obtained rubber sheet will become a conductor, making it impossible to achieve the object of the present invention. In particular, the whiskers used in the present invention are
Because it is a needle-like crystal, it protrudes toward the surface of the sheet-like composite due to its unique morphology, while whiskers are randomly dispersed inside the sheet. Therefore, when the sheet-like composite is pressurized by both electrode plates, the chance that the whiskers protruding from the sheet surface and the whiskers dispersed inside the sheet come into contact increases, resulting in pressure-sensitive conductivity. considered to be a thing. However, the sheet-like composite of the present invention has a thickness of 200 μm.
If the thickness exceeds 100 µm, it becomes insulated even when pressed and does not exhibit any pressure-sensitive conductivity, so it is necessary to maintain the thickness of the sheet-like composite at about 20 to 160 μm. The above-mentioned pressure-sensitive conductive rubber sheet includes a rubber having electrical insulation properties and an inorganic filler other than whiskers.
Then, if necessary, softeners, anti-aging agents, vulcanization aids, crosslinking agents, etc. commonly used in rubber are added.
These components are kneaded using a Banbury mixer, kneader roll, etc. to make a sheet, or the thus kneaded product is dissolved in a solvent to make a rubber paste, which is applied onto the substrate. It can be manufactured by molding a thin film and vulcanizing it. (Example) Next, the present invention will be explained in more detail using specific examples. Examples 1 to 4, Comparative Examples 1 to 3 Based on the formulation shown in Table 1, the rubber compound was kneaded using a Banbury mixer, and the kneaded rubber was dissolved in a solvent to make rubber paste, which was spread on a flat aluminum plate. After applying and forming a coating film, it was placed in the open and vulcanized at 150°C for 20 minutes. Furthermore, the first
The whisker SiC shown in the table has a diameter of approximately 1 μm and a length of approximately
100 μm, and powder SiC has a particle size of about 0.7 μm. The thickness thus obtained is 80 μm.
A thin film of ~160 μm was cut into a 30×33 mm test piece, and its electrical resistance value was measured when no pressure was applied (however, a 12 g electrode plate was placed on the test piece) or when the test piece was pressed. The result is the second
Shown in the table. To measure the electrical resistance value, first, the test piece is held between approximately 100 g of Teflon plates. At this time, a copper plate of approximately 0.3 mm in thickness is installed between the test piece and the Teflon plate, and this pair of copper plates is used as an electrode plate. The resistance value was determined using a digital multimeter. Pressurization was performed by placing a weight on the Teflon plate located on the upper side. According to the results, even though the materials are the same, the rubber sheet mixed with whiskers has better pressure-sensitive conductivity than the powdered rubber sheet.

【表】【table】

【表】 変形実施例 前記実施例1,3そして4に示された配合を有
する各ゴムシートの厚さを約20μmから400μmま
で変量させることにより、得られたゴムシートの
無押圧時又は押圧時における電気抵抗値を測定し
た。 その結果は第3表に示されるが、これによると
ゴムシートの厚さが170μmを越えると、感圧導電
性の特性が現れなくなる。
[Table] Modified Examples By varying the thickness of each rubber sheet having the formulations shown in Examples 1, 3, and 4 from about 20 μm to 400 μm, the resulting rubber sheets were different when not pressed or when pressed. The electrical resistance value was measured. The results are shown in Table 3, which shows that when the thickness of the rubber sheet exceeds 170 μm, pressure-sensitive conductive properties no longer appear.

【表】 (発明の効果) 以上のように本発明の感圧導電性ゴムシート
は、ゴム中に所定範囲の直径と長さを有する針状
結晶体であるウイスカーが特定量混入分散し、し
かもその厚みが20〜160μmであつて、従来のよう
にカーボンブラツク等の導電材が混入されていな
いため、非加圧時にほぼ完全な絶縁状態を保持
し、一方加圧時には電気抵抗値が大きく低下する
感圧導電性を発揮し、また厚さが小さいため電極
板上に導電性の薄膜を直接形成しストロークの小
さなスイツチ等を製造できる効果を有している。
[Table] (Effects of the Invention) As described above, the pressure-sensitive conductive rubber sheet of the present invention has a specific amount of whiskers, which are needle-like crystals having a diameter and length within a predetermined range, mixed and dispersed in the rubber. Since the thickness is 20 to 160 μm and there is no conductive material such as carbon black mixed in as in the conventional case, it maintains an almost perfect insulation state when no pressure is applied, while the electrical resistance value decreases significantly when pressure is applied. It exhibits pressure-sensitive conductivity, and its small thickness makes it possible to form a conductive thin film directly on the electrode plate, making it possible to manufacture switches with small strokes.

Claims (1)

【特許請求の範囲】[Claims] 1 電気絶縁性を有するゴム100重量部に、直径
0.05〜3μm、長さ5〜500μmからなる針状単結晶
体のウイスカーである無機質充填剤2〜400重量
部を分散配合したゴム組成物からなるゴム糊を塗
布し、加硫することにより固化することによつて
得られた厚さ20〜160μmのシートからなることを
特徴とする感圧導電性ゴムシート。
1 Add 100 parts by weight of electrically insulating rubber to
A rubber paste made of a rubber composition containing 2 to 400 parts by weight of an inorganic filler, which is a needle-shaped single crystal whisker having a diameter of 0.05 to 3 μm and a length of 5 to 500 μm, is applied and solidified by vulcanization. A pressure-sensitive conductive rubber sheet comprising a sheet having a thickness of 20 to 160 μm.
JP60204020A 1985-07-03 1985-09-13 Pressure-sensitive electrically conductive rubber sheeet Granted JPS6262841A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60204020A JPS6262841A (en) 1985-09-13 1985-09-13 Pressure-sensitive electrically conductive rubber sheeet
DE8686108731T DE3674086D1 (en) 1985-07-03 1986-06-26 PRESSURE-SENSITIVE CONDUCTIVE RUBBER MATERIAL.
EP86108731A EP0207450B1 (en) 1985-07-03 1986-06-26 Pressure-sensitive conductive rubber material
AT86108731T ATE56560T1 (en) 1985-07-03 1986-06-26 PRESSURE SENSITIVE CONDUCTIVE RUBBER COMPOUND.
KR1019860005352A KR910005578B1 (en) 1985-07-03 1986-07-02 Pressure sensitive electric conduction rubber material
US06/882,083 US4765930A (en) 1985-07-03 1986-07-03 Pressure-responsive variable electrical resistive rubber material
CA000513033A CA1303275C (en) 1985-07-03 1986-07-03 Pressure responsive variable electrical resistive rubber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60204020A JPS6262841A (en) 1985-09-13 1985-09-13 Pressure-sensitive electrically conductive rubber sheeet

Publications (2)

Publication Number Publication Date
JPS6262841A JPS6262841A (en) 1987-03-19
JPH0586813B2 true JPH0586813B2 (en) 1993-12-14

Family

ID=16483433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60204020A Granted JPS6262841A (en) 1985-07-03 1985-09-13 Pressure-sensitive electrically conductive rubber sheeet

Country Status (1)

Country Link
JP (1) JPS6262841A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003078A1 (en) 2003-07-04 2005-01-13 Shi, Guangqiang A process for preparing 4-aminodiphenylamine
US8686188B2 (en) 2003-07-04 2014-04-01 Jiangsu Sinorgchem Technology Co., Ltd. Process for preparing 4-aminodiphenylamine
WO2014104283A1 (en) * 2012-12-28 2014-07-03 コンパニー ゼネラール デ エタブリッスマン ミシュラン Rubber composition for tire tread for winter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254742A (en) * 1985-09-03 1987-03-10 Mitsuboshi Belting Ltd Pressure-sensitive rubber molding
JPS6262872A (en) * 1985-09-12 1987-03-19 Seiko Kasei Kk Electrically conductive coating agent and electrically conductive material using said agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254742A (en) * 1985-09-03 1987-03-10 Mitsuboshi Belting Ltd Pressure-sensitive rubber molding
JPS6262872A (en) * 1985-09-12 1987-03-19 Seiko Kasei Kk Electrically conductive coating agent and electrically conductive material using said agent

Also Published As

Publication number Publication date
JPS6262841A (en) 1987-03-19

Similar Documents

Publication Publication Date Title
EP0207450B1 (en) Pressure-sensitive conductive rubber material
US5194480A (en) Thermally conductive elastomer
US4852646A (en) Thermally conductive gel materials
US20130148303A1 (en) Adhesive, thermally conductive, electrical insulators
JP2002501949A (en) Polymer composition
KR19990077035A (en) Pressure sensitive ink means, and methods of use
JP4655252B2 (en) Method for producing modified conductive elastomer
JP3882622B2 (en) PTC resistor
US4076652A (en) Elastic resistor compositions containing metallic-conductive particles and conductive lubricant particles
JPH0586813B2 (en)
JP3866569B2 (en) Thermal conductivity material
JP3564758B2 (en)   PTC composition
US3808678A (en) Method of making pressure-sensitive resistor element
JP4517225B2 (en) Pressure sensitive conductive elastomer
JPS587001B2 (en) Durable pressure sensitive resistor and its manufacturing method
WO1996005602A1 (en) Thermally conductive gel materials
JPS63215745A (en) Pressure-sensitive electroconductive elastomer composition
JPS6271109A (en) Pressure sensitive conductive material
JPH0471108A (en) Pressure sensitive conductive elastomer
JP3907431B2 (en) Resistor for pressure sensor and pressure sensor using the same
JPS6254742A (en) Pressure-sensitive rubber molding
JPS628406A (en) Pressure sensitive conducting rubber sheet
JP2005060204A (en) Conductive material-covered expanded graphite, graphite based conductive filler, conductive rubber material, rubber molding and method for producing rubber molding
JPS62249304A (en) Pressure sensitive conducting rubber material
JPH04253109A (en) Deformable conductive elastomer