US3808678A - Method of making pressure-sensitive resistor element - Google Patents

Method of making pressure-sensitive resistor element Download PDF

Info

Publication number
US3808678A
US3808678A US00281028A US28102872A US3808678A US 3808678 A US3808678 A US 3808678A US 00281028 A US00281028 A US 00281028A US 28102872 A US28102872 A US 28102872A US 3808678 A US3808678 A US 3808678A
Authority
US
United States
Prior art keywords
pressure
particles
sensitive resistor
resin
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00281028A
Inventor
S Kubo
M Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US00281028A priority Critical patent/US3808678A/en
Application granted granted Critical
Publication of US3808678A publication Critical patent/US3808678A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/106Adjustable resistors adjustable by mechanical pressure or force on resistive material dispersed in an elastic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making

Definitions

  • ABSTRACT I 52 US. Cl 29/610, 338/2, 338/5, A method for Producing a pressure-sensitive resistor 264/104 264/140 element comprising the steps of mixing conductive [51 1111. C1 H0lc 17/00 Particles with an elastic p y resin. p ri ing i [58] Field of Search 29/610, 613, 62]; 3338/2 particles subsequent to heat-molding them to a semi- 333 5 223 224 2125;2 1:4 40 104 hardened state, effecting a renewed heat-molding operation of aggregated particles under pressure at a [56] Reference Cit d suitable temperature, and attaching electrodes to said heat-molded particles. I 2,358,21 1 9/1944 Christensen et a1. 264/104 X 9 Claims, 7 Drawing Figures PATENTEBIAY 1 1914 SHKU 2 BF FIG. 2
  • the present invention relates to a pressure-sensitive resistor element and a method for producing the same.
  • pressure-sensitive resistor elements having elasticity for converting mechanical stress into an electrical signal, have been made of conductive rubber prepared in such a manner that rubber is mixed with powders of natural or artificial graphite and then subjected to vulcanization molding to produce the conductive rubber.
  • Such conductive rubber has disadvantageously resulted in small variation rate of resistance relative to the mechanical stress and in large hysteresis.
  • the conductive rubber for example, mixed with 20% by weight of graphite, has only a variation rate of resistance as small as 1.5 even when the mechanical stress as much as 4 kg/cm is applied thereto, the variation rate of resistance being here termed as .the ratio of the resistance value with no stress to the resistance value with a given stress.
  • An object of the present invention is to provide a pressure-sensitive resistor element having a large variation rate of resistance with respect to a given mechanical stress applied thereto and having small hysteresis.
  • Another object ofthe invention is to provide a In the drawings:
  • FIG. 1 is a perspective view of a pressure-sensitive resistor element prepared according to the present invention
  • FIG. 2 is a characteristic curve of resistance to applied load in a pressure-sensitive resistor element prepared according to the present invention
  • FlG. 3 is a hysteresis curve of current against load with a given voltage applied across a pressure-sensitive resistor element prepared according to the present invention
  • FIG. 4 is a cross-sectional view of a pressure-sensitive resistor element prepared according to the present invention wherein said element is covered with insulating tapes;
  • FIG. 5 is a cross-sectional view of a pressure-sensitive resistor element prepared according to the present invention wherein said element is covered with an elastic resin;
  • FlG. 6 is a perspective view of a pressure-sensitive resistor element prepared according to the present invention wherein said element is mounted on an elastic plate flexible responsive to tensile load;
  • FIG. 7 is a diagram of a characteristic curve of resistance in terms of tensile load as to a pressure-sensitive resistor element as shown in FIG. 6.
  • the present invention has objects to provide a pressure-sensitive resistor element having high sensitivity and good stability and to provide a method for producing the same wherein conductive particles are coated with a hardened elastic polymer resin and then subjected to heat-molding.
  • the conductive particles are kneaded into a mixture with the elastic polymer resin and then heated to a semi-hardened state and conductive particles coated with the polymer resin are prepared by pulverizing the semi-hardened particles.
  • the thus coated conductive particles are aggregated and molded by applying renewed heat treatment to thereby fabricate a pressure-sensitive resistor having small hysteresis with a uniform structure and having a large variation rate of resistance relative to the applied mechanical stress.
  • metallic electrodes are attached thereto by the use of a method of vapour-evaporation or by means of adhesive agents in order to provide a pressure-sensitive resistor element.
  • the application of the mechanical stress to the thus fabricated pressure-sensitive resistor element causes a contact surface between the conductive particles and contact pressure therebetween to be varied to thereby change the value of resistance.
  • the conductive particles are such particles as carbonaceous powders of to 600 mesh prepared by carbonizing or graphitizing a 'thermosetting resin selected from phenol or furan resins.
  • the spheric particles generally designated as glass-like carbon, are particularly suitable for conductive particles as compared with normal natural graphite or artificial graphite due to the facts of (l) the large variation rate of contact resistance; (2) strong duration against heat impact such as a spark or are discharge; (3) high mechanical strength; (4) isotropic nature relative to electric resistance; and (5) conformability to a spheric form.
  • the glass-like carbon is adapted for use as the conductive particles from which a pressure-sensitive resistor having a large variation rate of resistance and good stability is fabricated.
  • silicon resin having resistance to heat and chemical materials is preferably employed as the polymer resin.
  • the mixture ratio of the conductive particles to the polymer resin may be selected to be by weight 3/7 to 7/3 from the viewpoints of variation rate of resistance and stability.
  • the adhesion of the electrodes to the resistor is of great importance, and a good result can be obtained when the electrodes are adhesively fixed to the elastic pressure-sensitive resistor with the aid of a conductive adhesive agent.
  • the electrodes have conventionally been attached thereto with a thermosetting conductive adhesive, or by a metallic vapor-evaporation or metallic coating method.
  • a conductive pressure-sensitive adhesive agent wherein the pressure-sensitive adhesive is kneaded in mixture with conductive powders such as silver powder exhibits a stable characteristic and prevents the electrode from being exfoliated from the pressure-sensitive resistor because it'has the same elasticity as the pressure-sensitive resistor.
  • FIG. 1 there is shown a structure of the abovementioned pressure-sensitive resistor element wherein a pressure-sensitive resistor layer 3 is sandwiched by metallic electrodes 1 and 2, which are, respectively, fixed to the corresponding pressure-sensitive resistor layer with conductive pressure-sensitive adhesive agents 5 and 6.
  • the pressure-sensitive resistor element has the value of its resistance changed when the stress is applied thereto into the direction of an arrow A.
  • FIG. 2 shows a resistance-load diagram of the pressure-sensitive resistor element according to the present invention.
  • the glass-like carbonaceous particles having 250 to 300 mesh made of a graphitized' and carbonized thermosetting resin, are mixed with a weight ratio of 50 to 50 and then heated to obtain the semi-hardened particles.
  • the carbonaceous particles coated with the polymer resin are prepared, and they are again aggregated so that molding operations can be carried out under pressure at a suitable temperature to obtain the pressure-sensitive resistor.
  • the complete pressure-sensitive resistor element can be fabricated by providing the pressure-sensitive resistor with electrodes made of copper on both surfaces thereof by the use of the'conductive pressure-sensitive adhesive prepared by mixing a pressure sensitive adhesive made of silicon with silver powder.
  • the above-mentioned pressure-sensitive element may be covered with an insulating envelope for mechanical protection because of' its insufficient mechanical strength; alternatively, it may be covered with the elastic polymer resin along the circumference thereof with a view of increasing the moistureresistance or mechanical strength.
  • FIG. 4 there is shown another embodiment of the pressure-sensitive element wherein the element 7 is covered and printed by means of epoxy-adhesive tapes 8 and 9 encapsulated in a glass tube with leads l0 and 11 attached to the electrodes.
  • FIG. 5 shows still another embodiment of the pressure-sensitive, resistor element in which a pressure-sensitive resistor 12 is provided with electrodes 13 and 14 and covered with a silicon resin 15 therearound.
  • the pressure-sensitive resistor element prepared according to the present invention tends to be brittle when the tensile load is applied thereto.
  • the pressure-sensitive resistor .16 provided with electrodes 17 and 18 on both sides thereof is adhesively fixed to flexible elastics 19 with an adhesive as shown in FIG. '6.
  • the application of thetensile stress to the elastic plate 19 in the BB, direction allows the indirect application of the tensile load to the pressure-sensitive resistor 16.
  • this method makes possible the protection for a mechanically fragile pressure-sensitive resistor, further providing the possibility of arbitrarily changing the tensile load-resistance characteristic by selecting the material of the elastic plate.
  • FIG. 7 shows the resistance-tensile load characteristic of a pressure-sensitive resistor element having the structure as shown in FIG. 6.
  • cabonaceous particles having 250 to 300 mesh prepared by carbonizing and graphitizing a thermosetting resin is mixed with a silicon resin with a weight ratio of 60 to 40 and then heated to a semi-hardened state to prepare the carbonaceous particles covered with the resin through a step of pulverizing the semi-hardenedparticles. After that, these particles are again aggregated and subjected to molding operations under pressure at a suitable temperature to obtain a pressure-sensitive resistor having a dimension of an outer diameter of 5 mm and a thickness of 0.8 mm. As shown in FIG.
  • the pressure-sensitive resistor is then provided with electrodes 17 and 18 on both ends thereof with a conductive pressure-sensitive adhesive, and is adhesively fixed to an elastic plate 19 made of natural rubber 0.5 mm thick to accomplish the complete pressure-sensitive resistor element.
  • the thus prepared element exhibits a highly stable resistance-load characteristic as shown in FIG. 7 when the tensile load is applied thereto.
  • a method of making a pressure-sensitive resistance element comprising the steps of:
  • step (I) mixing particles of an electrically conductive material and an elastic polymer resin; 2. heating the mixture of step (I) to a semi-hardened state; 3. pulverizing the semi-hardened mixture of step (2) to obtain particles coated with said polymer resin;
  • step (3) 4. heating the'pulverized particles of step (3) under pressure to heat-mold said pulverized particles and form an aggregation of a desired shape;
  • said conductive particles are carbonaceous powders of between about 100 and 600 mesh prepared by carbonizing and graphitizing a therrnosetting resin selected from the group consisting of phenol and furan resins.

Abstract

A method for producing a pressure-sensitive resistor element comprising the steps of mixing conductive particles with an elastic polymer resin, pulverizing said particles subsequent to heat-molding them to a semi-hardened state, effecting a renewed heat-molding operation of aggregated particles under pressure at a suitable temperature, and attaching electrodes to said heatmolded particles.

Description

O United States Patent 1 1 1111 3,808,678 Kuhn et al. A May 7, 1974 METHOD OF MAKING 3,254,529 6/1966 Thurston... 338/2 x PRESSURESENSITIVE RESISTOR 3,382,574 5/1968 Chadwick 29/613 X 3,469,441 9/1969 Pohl 338/2 X ELEMENT 3,676,925 7/1972 Sato et a] 29/613 [75] Inventors; Shoichi Kubo; Masakazu Komatsu, 3,689,618 9/1972 Chadwick 264/104 both of Kashihara, Japan Primary ExaminerCharles W. Lanham [73] Asslgnee' i z g z z fg gs lndusma] Assistant Examiner-Victor A. DiPalma p Attorney, Agent, or Firm-Stevens, Davis, Miller & [22] Filed: Aug. 16, 1972 Mosher [21] Appl. No.: 281,028
[57] ABSTRACT I 52 US. Cl 29/610, 338/2, 338/5, A method for Producing a pressure-sensitive resistor 264/104 264/140 element comprising the steps of mixing conductive [51 1111. C1 H0lc 17/00 Particles with an elastic p y resin. p ri ing i [58] Field of Search 29/610, 613, 62]; 3338/2 particles subsequent to heat-molding them to a semi- 333 5 223 224 2125;2 1:4 40 104 hardened state, effecting a renewed heat-molding operation of aggregated particles under pressure at a [56] Reference Cit d suitable temperature, and attaching electrodes to said heat-molded particles. I 2,358,21 1 9/1944 Christensen et a1. 264/104 X 9 Claims, 7 Drawing Figures PATENTEBIAY 1 1914 SHKU 2 BF FIG. 2
RESISTANCE mm APPLIED LOAD (g) PATENTEBm 11814 3.808.678
' sum 3 or 4 FIG. 3
CURRENT (mA APPLIED LOAD (9) PATENTED 7 SHEET ls 0F 4 7 FIG. 7
*--- RESISTANCE (KS2 4'0 6 0 8 0 Ibo TENSVILE LOAD (g) METHOD OF MAKING PRESSURE-SENSITIVE RESISTOR ELEMENT The present invention relates to a pressure-sensitive resistor element and a method for producing the same.
Previously, pressure-sensitive resistor elements having elasticity, for converting mechanical stress into an electrical signal, have been made of conductive rubber prepared in such a manner that rubber is mixed with powders of natural or artificial graphite and then subjected to vulcanization molding to produce the conductive rubber.
Such conductive rubber, however, has disadvantageously resulted in small variation rate of resistance relative to the mechanical stress and in large hysteresis. The conductive rubber, for example, mixed with 20% by weight of graphite, has only a variation rate of resistance as small as 1.5 even when the mechanical stress as much as 4 kg/cm is applied thereto, the variation rate of resistance being here termed as .the ratio of the resistance value with no stress to the resistance value with a given stress.
Further, it was also difficult to attain uniform distribution of conductive particles among the rubber, thus resulting in an unstable pressure-sensitive resistor element.
An object of the present invention is to provide a pressure-sensitive resistor element having a large variation rate of resistance with respect to a given mechanical stress applied thereto and having small hysteresis.
Another object ofthe invention is to provide a In the drawings:
FIG. 1 is a perspective view of a pressure-sensitive resistor element prepared according to the present invention;
FIG. 2 is a characteristic curve of resistance to applied load in a pressure-sensitive resistor element prepared according to the present invention;
FlG. 3 is a hysteresis curve of current against load with a given voltage applied across a pressure-sensitive resistor element prepared according to the present invention;
FIG. 4 is a cross-sectional view of a pressure-sensitive resistor element prepared according to the present invention wherein said element is covered with insulating tapes;
FIG. 5 is a cross-sectional view of a pressure-sensitive resistor element prepared according to the present invention wherein said element is covered with an elastic resin;
FlG. 6 is a perspective view of a pressure-sensitive resistor element prepared according to the present invention wherein said element is mounted on an elastic plate flexible responsive to tensile load; and
FIG. 7 is a diagram of a characteristic curve of resistance in terms of tensile load as to a pressure-sensitive resistor element as shown in FIG. 6.
The present invention has objects to provide a pressure-sensitive resistor element having high sensitivity and good stability and to provide a method for producing the same wherein conductive particles are coated with a hardened elastic polymer resin and then subjected to heat-molding. In one embodiment of the present method, the conductive particles are kneaded into a mixture with the elastic polymer resin and then heated to a semi-hardened state and conductive particles coated with the polymer resin are prepared by pulverizing the semi-hardened particles. The thus coated conductive particles are aggregated and molded by applying renewed heat treatment to thereby fabricate a pressure-sensitive resistor having small hysteresis with a uniform structure and having a large variation rate of resistance relative to the applied mechanical stress.
Then, metallic electrodes are attached thereto by the use of a method of vapour-evaporation or by means of adhesive agents in order to provide a pressure-sensitive resistor element.
The application of the mechanical stress to the thus fabricated pressure-sensitive resistor element causes a contact surface between the conductive particles and contact pressure therebetween to be varied to thereby change the value of resistance.
Further, a smooth elastic deformation can be seen due to elasticity of polymer resin serving as a binder among the conductive particles.
The conductive particles, for example, are such particles as carbonaceous powders of to 600 mesh prepared by carbonizing or graphitizing a 'thermosetting resin selected from phenol or furan resins. The spheric particles, generally designated as glass-like carbon, are particularly suitable for conductive particles as compared with normal natural graphite or artificial graphite due to the facts of (l) the large variation rate of contact resistance; (2) strong duration against heat impact such as a spark or are discharge; (3) high mechanical strength; (4) isotropic nature relative to electric resistance; and (5) conformability to a spheric form. Thus the glass-like carbon is adapted for use as the conductive particles from which a pressure-sensitive resistor having a large variation rate of resistance and good stability is fabricated.
On the other hand, silicon resin having resistance to heat and chemical materials is preferably employed as the polymer resin.
The mixture ratio of the conductive particles to the polymer resin may be selected to be by weight 3/7 to 7/3 from the viewpoints of variation rate of resistance and stability.
The adhesion of the electrodes to the resistor is of great importance, and a good result can be obtained when the electrodes are adhesively fixed to the elastic pressure-sensitive resistor with the aid of a conductive adhesive agent. The electrodes have conventionally been attached thereto with a thermosetting conductive adhesive, or by a metallic vapor-evaporation or metallic coating method.
However, problems arise in such an adhesion; for example, there occurs a crack or exfoliation on the electrodes immediately upon the repeated application of stress because of the great difference of Young modulus of the electrode from that of the adhesive due to the elasticity of the pressure-sensitive resistor, thus resulting in the occurrence of unstable contact resistance between the elastic pressure-sensitive resistor and the electrode, thereby providing an unstable pressuresensitive resistor element.
On the other hand, a conductive pressure-sensitive adhesive agent wherein the pressure-sensitive adhesive is kneaded in mixture with conductive powders such as silver powder exhibits a stable characteristic and prevents the electrode from being exfoliated from the pressure-sensitive resistor because it'has the same elasticity as the pressure-sensitive resistor.
In FIG. 1 there is shown a structure of the abovementioned pressure-sensitive resistor element wherein a pressure-sensitive resistor layer 3 is sandwiched by metallic electrodes 1 and 2, which are, respectively, fixed to the corresponding pressure-sensitive resistor layer with conductive pressure-sensitive adhesive agents 5 and 6. The pressure-sensitive resistor element has the value of its resistance changed when the stress is applied thereto into the direction of an arrow A.
FIG. 2 shows a resistance-load diagram of the pressure-sensitive resistor element according to the present invention.
In this embodiment, the glass-like carbonaceous particles having 250 to 300 mesh, made of a graphitized' and carbonized thermosetting resin, are mixed with a weight ratio of 50 to 50 and then heated to obtain the semi-hardened particles. By pulverizing the so produced particles, the carbonaceous particles coated with the polymer resin are prepared, and they are again aggregated so that molding operations can be carried out under pressure at a suitable temperature to obtain the pressure-sensitive resistor. Then, the complete pressure-sensitive resistor element can be fabricated by providing the pressure-sensitive resistor with electrodes made of copper on both surfaces thereof by the use of the'conductive pressure-sensitive adhesive prepared by mixing a pressure sensitive adhesive made of silicon with silver powder.
A loading test was conducted as to the sample of the thus prepared pressure-sensitive resistor element hav-. ing a dimension of an outer diameter of 5 mm and a thickness of 0.8 mm with the copper electrodes attached thereto. The result is illustrated in FIG. 2 and Table I, revealing a large variation rate of resistance,
i.e. 1.2 X
I TABLE I APPLIED LOAD RESISTANCE o g 120 M0 800 g l0 0 rate of resistance the value of which rangeswithin 5% with respect to the initial value with an improved high resistance variation rate as compared with the conventional conductive rubber, thus confirming the provision of a high stability pressure-sensitive resistor element. Preferably,.the above-mentioned pressure-sensitive element may be covered with an insulating envelope for mechanical protection because of' its insufficient mechanical strength; alternatively, it may be covered with the elastic polymer resin along the circumference thereof with a view of increasing the moistureresistance or mechanical strength.
In FIG. 4 there is shown another embodiment of the pressure-sensitive element wherein the element 7 is covered and printed by means of epoxy-adhesive tapes 8 and 9 encapsulated in a glass tube with leads l0 and 11 attached to the electrodes.
On the other hand, FIG. 5 shows still another embodiment of the pressure-sensitive, resistor element in which a pressure-sensitive resistor 12 is provided with electrodes 13 and 14 and covered with a silicon resin 15 therearound. I
The pressure-sensitive resistor element prepared according to the present invention tends to be brittle when the tensile load is applied thereto. In order to remove the drawback, the pressure-sensitive resistor .16 provided with electrodes 17 and 18 on both sides thereof is adhesively fixed to flexible elastics 19 with an adhesive as shown in FIG. '6. As a result, the application of thetensile stress to the elastic plate 19 in the BB, direction allows the indirect application of the tensile load to the pressure-sensitive resistor 16. Thus, this method makes possible the protection for a mechanically fragile pressure-sensitive resistor, further providing the possibility of arbitrarily changing the tensile load-resistance characteristic by selecting the material of the elastic plate.
FIG. 7 shows the resistance-tensile load characteristic of a pressure-sensitive resistor element having the structure as shown in FIG. 6.
In this embodiment, cabonaceous particles having 250 to 300 mesh prepared by carbonizing and graphitizing a thermosetting resin is mixed with a silicon resin with a weight ratio of 60 to 40 and then heated to a semi-hardened state to prepare the carbonaceous particles covered with the resin through a step of pulverizing the semi-hardenedparticles. After that, these particles are again aggregated and subjected to molding operations under pressure at a suitable temperature to obtain a pressure-sensitive resistor having a dimension of an outer diameter of 5 mm and a thickness of 0.8 mm. As shown in FIG. 6, the pressure-sensitive resistor is then provided with electrodes 17 and 18 on both ends thereof with a conductive pressure-sensitive adhesive, and is adhesively fixed to an elastic plate 19 made of natural rubber 0.5 mm thick to accomplish the complete pressure-sensitive resistor element. The thus prepared element exhibits a highly stable resistance-load characteristic as shown in FIG. 7 when the tensile load is applied thereto.
What is claimed is: l. A method of making a pressure-sensitive resistance element, comprising the steps of:
l. mixing particles of an electrically conductive material and an elastic polymer resin; 2. heating the mixture of step (I) to a semi-hardened state; 3. pulverizing the semi-hardened mixture of step (2) to obtain particles coated with said polymer resin;
4. heating the'pulverized particles of step (3) under pressure to heat-mold said pulverized particles and form an aggregation of a desired shape; and
5. attaching electrodes to said aggregation of desired shape to form said pressure-sensitive resistance element.
2. The method according to claim 1, wherein said electrodes are attached to opposite surfaces of said aggregation with a conductive pressure-sensitive adhesive material.
3. The method according to claim 2, wherein said adhesive material is prepared by mixing silicon with silver powder.
4. The method according to claim 1, wherein said conductive particles are carbonaceous powders of between about 100 and 600 mesh prepared by carbonizing and graphitizing a therrnosetting resin selected from the group consisting of phenol and furan resins.
5. The method according to claim 4, wherein said polymer resin comprises a heat resistant silicon resin.
6. The method according to claim 5, wherein the mixture ratio by weight of conductive particles and polymer resin is selected from the range of between about 3:7 and 7:3.
7. The method according to claim 4, wherein said conductive particles have a mesh of between about 250 I and 300.
8. The method according to claim 7, wherein said conductive particles and resin particles are mixed with a weight ratio of approximately 111.
9. The method according to claim 7, wherein said conductive particles and resin particles are mixed with a weight ratio of approximately 3:2.

Claims (12)

  1. 2. The method according to claim 1, wherein said electrodes are attached to opposite surfaces of said aggregation with a conductive pressure-sensitive adhesive material.
  2. 2. heating the mixture of step (1) to a semi-hardened state;
  3. 3. pulverizing the semi-hardened mixture of step (2) to obtain particles coated with said polymer resin;
  4. 3. The method according to claim 2, wherein said adhesive material is prepared by mixing silicon with silver powder.
  5. 4. The method according to claim 1, wherein said conductive particles are carbonaceous powders of between about 100 and 600 mesh prepared by carbonizing and graphitizing a thermosetting resin selected from the group consisting of phenol and furan resins.
  6. 4. heating the pulverized particles of step (3) under pressure to heat-mold said pulverized particles and form an aggregation of a desired shape; and
  7. 5. attaching electrodes to said aggregation of desired shape to form said pressure-sensitive resistance element.
  8. 5. The method according to claim 4, wherein said polymer resin comprises a heat resistant silicon resin.
  9. 6. The method according to claim 5, wherein the mixture ratio by weight of conductive particles and polymer resin is selected from the range of between about 3:7 and 7:3.
  10. 7. The method according to claim 4, wherein said conductive particles have a mesh of between about 250 and 300.
  11. 8. The method according to claim 7, wherein said conductive particles and resin particles are mixed with a weight ratio of approximately 1:1.
  12. 9. The method according to claim 7, wherein said conductive particles and resin particles are mixed with a weight ratio of approximately 3:2.
US00281028A 1972-08-16 1972-08-16 Method of making pressure-sensitive resistor element Expired - Lifetime US3808678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00281028A US3808678A (en) 1972-08-16 1972-08-16 Method of making pressure-sensitive resistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00281028A US3808678A (en) 1972-08-16 1972-08-16 Method of making pressure-sensitive resistor element

Publications (1)

Publication Number Publication Date
US3808678A true US3808678A (en) 1974-05-07

Family

ID=23075666

Family Applications (1)

Application Number Title Priority Date Filing Date
US00281028A Expired - Lifetime US3808678A (en) 1972-08-16 1972-08-16 Method of making pressure-sensitive resistor element

Country Status (1)

Country Link
US (1) US3808678A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350652A (en) * 1979-01-18 1982-09-21 Basf Aktiengesellschaft Manufacture of electrically conductive polyolefin moldings, and their use
US4506250A (en) * 1981-05-16 1985-03-19 Crystalate Electronics Limited Strain gauge
US4633212A (en) * 1983-02-09 1986-12-30 Strain Measurement Dev Ltd Electrical strain gauge
US4708019A (en) * 1984-06-27 1987-11-24 Gte Laboratories Incorporated Measurement of strain employing a piezoresistive blend of a doped acetylene polymer and an elastomer
US4977386A (en) * 1987-10-13 1990-12-11 Leda Logarithmic Electrical Devices For Automation S.R.L. Electric resistor producible in a wide range of specific resistance values, and relative manufacturing process
US5095756A (en) * 1988-05-19 1992-03-17 Edwards Eric F R Linear movement sensors
US5948990A (en) * 1996-09-04 1999-09-07 Alps Electric Co., Ltd. Pressure-sensitive resistor
WO2003082103A1 (en) * 2002-03-29 2003-10-09 Koninklijke Philips Electronics N.V. A wearable monitoring system and method of manufacturing of a wearable monitoring system
CN106255606A (en) * 2014-05-02 2016-12-21 米其林企业总公司 For assessing the system of tire state
US20190152137A1 (en) * 2016-04-15 2019-05-23 Hewlett-Packard Development Company, L.P. Strain sensors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2358211A (en) * 1942-10-22 1944-09-12 Bell Telephone Labor Inc Method of forming resistors and the like
US3254529A (en) * 1963-03-29 1966-06-07 Bell Telephone Labor Inc Strain transducers insensitive to transverse and shear strains
US3382574A (en) * 1964-11-10 1968-05-14 Air Reduction Method of making an electrical resistor
US3469441A (en) * 1964-07-21 1969-09-30 Sci Tech Corp Methods of measuring strain
US3676925A (en) * 1970-07-28 1972-07-18 Matsushita Electric Ind Co Ltd Method for making molded carbon composition resistors
US3689618A (en) * 1970-08-05 1972-09-05 Air Reduction Use of an unadvanced silicone resin binder in resistor manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2358211A (en) * 1942-10-22 1944-09-12 Bell Telephone Labor Inc Method of forming resistors and the like
US3254529A (en) * 1963-03-29 1966-06-07 Bell Telephone Labor Inc Strain transducers insensitive to transverse and shear strains
US3469441A (en) * 1964-07-21 1969-09-30 Sci Tech Corp Methods of measuring strain
US3382574A (en) * 1964-11-10 1968-05-14 Air Reduction Method of making an electrical resistor
US3676925A (en) * 1970-07-28 1972-07-18 Matsushita Electric Ind Co Ltd Method for making molded carbon composition resistors
US3689618A (en) * 1970-08-05 1972-09-05 Air Reduction Use of an unadvanced silicone resin binder in resistor manufacture

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350652A (en) * 1979-01-18 1982-09-21 Basf Aktiengesellschaft Manufacture of electrically conductive polyolefin moldings, and their use
US4506250A (en) * 1981-05-16 1985-03-19 Crystalate Electronics Limited Strain gauge
US4633212A (en) * 1983-02-09 1986-12-30 Strain Measurement Dev Ltd Electrical strain gauge
US4680858A (en) * 1983-02-09 1987-07-21 Strain Measurement Devices Limited Method of manufacture of strain gauges
US4708019A (en) * 1984-06-27 1987-11-24 Gte Laboratories Incorporated Measurement of strain employing a piezoresistive blend of a doped acetylene polymer and an elastomer
US4977386A (en) * 1987-10-13 1990-12-11 Leda Logarithmic Electrical Devices For Automation S.R.L. Electric resistor producible in a wide range of specific resistance values, and relative manufacturing process
US5095756A (en) * 1988-05-19 1992-03-17 Edwards Eric F R Linear movement sensors
US5948990A (en) * 1996-09-04 1999-09-07 Alps Electric Co., Ltd. Pressure-sensitive resistor
WO2003082103A1 (en) * 2002-03-29 2003-10-09 Koninklijke Philips Electronics N.V. A wearable monitoring system and method of manufacturing of a wearable monitoring system
CN100360078C (en) * 2002-03-29 2008-01-09 皇家飞利浦电子股份有限公司 Wearable monitoring system and method of manufacturing of a wearable monitoring system
CN106255606A (en) * 2014-05-02 2016-12-21 米其林企业总公司 For assessing the system of tire state
CN106255606B (en) * 2014-05-02 2019-09-03 米其林企业总公司 System for assessing tire state
US20190152137A1 (en) * 2016-04-15 2019-05-23 Hewlett-Packard Development Company, L.P. Strain sensors
US11090862B2 (en) * 2016-04-15 2021-08-17 Hewlett-Packard Development Company, L.P. Strain sensors

Similar Documents

Publication Publication Date Title
US3808678A (en) Method of making pressure-sensitive resistor element
KR910005578B1 (en) Pressure sensitive electric conduction rubber material
KR19990077035A (en) Pressure sensitive ink means, and methods of use
US2951817A (en) Variable resistance material
US4449774A (en) Electroconductive rubbery member and elastic connector therewith
US3982320A (en) Method of making electrically conductive connector
DE69838245T2 (en) POLYMER COMPOSITION
US4163204A (en) Pressure-sensitive resistors
JPH01282802A (en) Pressure-sensitive resistance element
Yoshikawa et al. Piezoresistivity in Polymer‐Ceramic Composites
CA2318742A1 (en) Polymer composition
US3795048A (en) Method for manufacturing non-linear resistors
KR0133080B1 (en) Material for resistor body & non-linear resistor made thereof
DE2240286A1 (en) Pressure sensitive resistor - with resistance formed by moulding conducting particles coated with elastic resin
JPH0311602A (en) Resistance paste proper to manufacture of electric resistance layer and resistance layer manufactured from said resistance paste
KR101027778B1 (en) Piezoresistive composite with high hardness and conductivity and method for preparing the same
KR20170097340A (en) A planar heating film using carbon nanotube
EP1074997B1 (en) Conductive resin composition and encoder switch using the same
US3879572A (en) Printed electric circuit containing polybenzimidazole printing ink composition
JPH0436627A (en) Pressure-sensitive and conductive elastomer composition and pressure sensor using same
JP2000082608A (en) Pressure sensitive resistor and pressure sensitive sensor
Shui et al. A new electromechanical effect in discontinuous-filament elastomer-matrix composites
US3150342A (en) Non-linear resistors
JPS63230768A (en) Electrically conductive silicone resin
JPS6294901A (en) Pressure sensing resistance element