JPS63230768A - Electrically conductive silicone resin - Google Patents

Electrically conductive silicone resin

Info

Publication number
JPS63230768A
JPS63230768A JP6624487A JP6624487A JPS63230768A JP S63230768 A JPS63230768 A JP S63230768A JP 6624487 A JP6624487 A JP 6624487A JP 6624487 A JP6624487 A JP 6624487A JP S63230768 A JPS63230768 A JP S63230768A
Authority
JP
Japan
Prior art keywords
resin
silicone
silicone resin
formula
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6624487A
Other languages
Japanese (ja)
Inventor
Shuichi Osaka
大坂 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6624487A priority Critical patent/JPS63230768A/en
Publication of JPS63230768A publication Critical patent/JPS63230768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To provide the title resin which is inexpensive, has a low compression stress and is useful as an adhesive for use in fixing silicone elements to metallic lead frames, by blending a silicone resin with carbon. CONSTITUTION:A silicone resin (A) which is a base resin having a weight- average MW of 1,200-15,000 and a viscosity of 10-350CS and composed of 0-50wt.% compd. of formula I [wherein R1 is a (substd.)1-5C monovalent hydrocarbon group; m is 2-3; n is 1-2 and m+n=4], 0-80wt.% compd. of formula II (wherein R2 is R1; p and q are each 1-2, p+q=3; and Q is a benzene ring), 0-30wt.% compd. of formula III (wherein n is 5-47) and optionally, 0.01-10wt.% curing catalyst is blended with 1-2pts.wt. (per pt.wt. component A) spherical carbon (B) having a particle size not larger than 20mum and optionally, a colorant (C).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置に用いられるシリコーン導電性樹脂
に関する。さらに詳しくは、本発明はシリコン素子を金
属性のリードフレームに固着するばあいに接着剤として
用いられるシリコーン導電性樹脂に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silicone conductive resin used in semiconductor devices. More specifically, the present invention relates to a silicone conductive resin used as an adhesive when bonding a silicon element to a metal lead frame.

[従来の技術] 従来より半導体装置に用いられる導電性の接着剤にはベ
ース樹脂となるエポキシ系樹脂に導電担体として銀の微
細粉末を添加した導電性樹脂が広く用いられている。
[Prior Art] Conventionally, conductive resins made by adding fine silver powder as a conductive carrier to an epoxy resin as a base resin have been widely used as conductive adhesives used in semiconductor devices.

第1図は前記導電性樹脂が用いられた半導体装置の構造
を示す断面図である。該半導体装置は、導電層を形成す
るための導電性樹脂(6)でリードフレームのダイアタ
ッチエリア(2)に固着された半導体素子(1)、該半
導体素子(1)の電極とリードフレームのリードフィン
ガー(3)とを電気的に接続するためにボンディングさ
れた金属細線(4)および半導体素子(1)と金属線1
f(41とを機械的に保護するための樹脂成形部(5)
から構成されたものである。
FIG. 1 is a sectional view showing the structure of a semiconductor device using the conductive resin. The semiconductor device includes a semiconductor element (1) fixed to a die attach area (2) of a lead frame with a conductive resin (6) for forming a conductive layer, and an electrode of the semiconductor element (1) and an electrode of the lead frame. The thin metal wire (4) bonded to the lead finger (3) and the semiconductor element (1) and the metal wire 1
Resin molded part (5) for mechanically protecting f (41)
It is composed of.

ここで従来より用いられている導電性樹脂(6)のベー
ス樹脂はエポキシ系樹脂であり、たとえばノボラック型
エポキシ樹脂、ビスフェノールA型エポキシ樹脂や脂肪
族環状エポキシ樹脂などの基剤に硬化剤としてフェノー
ル樹脂または酸無水物を添加したものが多く用いられて
いる。かかるエポキシ樹脂に導電性を付与させるために
一般に薄片状の銀が多量に用いられており、その銀の含
有量は通常65〜85重山%である。
The base resin of the conductive resin (6) conventionally used here is an epoxy resin, for example, a novolak type epoxy resin, a bisphenol A type epoxy resin, an aliphatic cyclic epoxy resin, etc., and phenol as a curing agent. Those containing resin or acid anhydride are often used. In order to impart electrical conductivity to such epoxy resins, flaky silver is generally used in large amounts, and the silver content is usually 65 to 85%.

[発明が解決しようとする問題点コ しかしながら、前記エポキシ樹脂に薄片状の銀を含有さ
せた導電性樹脂の加熱硬化後の圧縮応力は、1800〜
190ON!? / e:taと大きいので、ダイヤタ
ッチエリア(21に固着された半導体素子(1)に対し
て圧縮応力が加わり、半導体素子(1)の変形が発生し
、半導体素子(1)の割れや電気特性変化がおこるなど
の問題があり、しかも多山の銀が用いられているので、
えられる半導体装置が高価となり、また銀の価格が高い
ので銀を回収することができるようにするためには樹脂
のポットライフが長くなり、したがって硬化時間が長く
なるなどの問題がある。
[Problems to be Solved by the Invention] However, the compressive stress after heat curing of the conductive resin in which the epoxy resin contains flaky silver is 1800~
190 ON! ? / e:ta is large, compressive stress is applied to the semiconductor element (1) fixed to the diamond touch area (21), deformation of the semiconductor element (1) occurs, cracking of the semiconductor element (1), electrical There are problems such as changes in properties, and since a large amount of silver is used,
The resulting semiconductor devices are expensive, and the price of silver is high, so in order to be able to recover the silver, the pot life of the resin becomes longer, and therefore the curing time becomes longer.

そこで本発明は前記のような従来技術の問題点を解消し
た導電性樹脂をつるためになされたもので、樹脂硬化後
の圧縮応力が小さく、しかも導電担体を高価な銀などの
貴金属から他の材料に変更することで、価格の低減化を
はかった導電性樹脂をうることを目的とする。
Therefore, the present invention has been devised to create a conductive resin that solves the problems of the prior art as described above. The aim is to create a conductive resin at a lower price by changing the material.

[問題点を解決するための手段] すなわち、本発明はシリコーン樹脂およびカーボンから
なるシリコーン導電性樹脂に関する。
[Means for Solving the Problems] That is, the present invention relates to a silicone conductive resin made of a silicone resin and carbon.

[作用および実施例] 本発明のシリコーン導電性樹脂はシリコーン樹脂および
カーボンからなる。
[Function and Examples] The silicone conductive resin of the present invention consists of a silicone resin and carbon.

前記シリコーン樹脂としてはたとえば、一般式(Ih)
  5i(OH)。(式中、R1は置換または非置換の
炭素数1〜6の1価の炭化水素基、■は2または3、n
は1または2を示し、l +n −4Fある)で表わさ
れる化合物0〜50重量%、一般式(10)  (R2
)  5iQSi(R2)、 (叶)、(式中、R2は
q 置換または非置換の炭素数1〜6の1価の炭化水素基、
pおよびqは1または2、Qはベンゼン環を示し、l)
 +Q−3である)で表わされる化合物0〜80重量%
および一般式 (C)13 )35in(Si(CHs )20)。5
i(CH3)s (式中、nは5〜47の整数を示す)
で表わされる化合物0〜30重量%ならびに必要に応じ
て添加される硬化用触媒0.01〜10重量%からなる
ベースレジンがあげられる。
As the silicone resin, for example, general formula (Ih)
5i(OH). (In the formula, R1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, ■ is 2 or 3, n
represents 1 or 2, and 0 to 50% by weight of the compound represented by the general formula (10) (R2
) 5iQSi(R2), (Kano), (wherein R2 is q-substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms,
p and q are 1 or 2, Q represents a benzene ring, l)
+Q-3) 0 to 80% by weight of the compound represented by
and general formula (C)13)35in(Si(CHs)20). 5
i(CH3)s (in the formula, n represents an integer from 5 to 47)
Examples include base resins containing 0 to 30% by weight of the compound represented by the formula and 0.01 to 10% by weight of a curing catalyst added as necessary.

ここで前記一般式(R1)  5i(OH)nで示され
るシリコーン樹脂の例としては(CsHs) (C)I
s )25i(0旧、(C@HS) 2(CHs) S
 i (0旧など、前記一般式%式% コーン樹脂の例としては など、前記一般式 %式% コーン樹脂の例としては (式中、nは10〜150の整数を示す)などがあげら
れる。
Here, as an example of the silicone resin represented by the general formula (R1) 5i(OH)n, (CsHs) (C)I
s ) 25i (0 old, (C@HS) 2 (CHs) S
Examples of corn resins include (where n represents an integer from 10 to 150), etc. .

前記シリコーン樹脂の重層平均分子量は1200〜15
000であり、また該樹脂の粘度は10〜350C8で
ある。
The layer average molecular weight of the silicone resin is 1200 to 15.
000, and the viscosity of the resin is 10 to 350C8.

前記カーボンとしては粒子径が20BM以下の球状もの
を用いるのが好ましい。該粒子径は、20−をこえ、球
状でないばあい、グラファイトの添加量を増やすと硬化
後のシート抵抗の増加あるいはシェア強度の低下が発生
することがある。
It is preferable to use spherical carbon having a particle diameter of 20 BM or less. If the particle size exceeds 20 mm and is not spherical, increasing the amount of graphite added may result in an increase in sheet resistance or a decrease in shear strength after curing.

前記カーボンは、前記シリコーン樹脂1重量部に対して
1〜2重通部添加して用いるのが好ましい。該カーボン
の添加量が1重量部未満であるばあい、キュア後のシー
ト抵抗が高くなり、たとえば基板またはGNDの電位が
上昇するなどの問題が発生する。また2重量部をこえる
とキュア後のシェア強度が大幅に低下する。
The carbon is preferably added in 1 to 2 parts per 1 part by weight of the silicone resin. If the amount of carbon added is less than 1 part by weight, the sheet resistance after curing increases, causing problems such as an increase in the potential of the substrate or GND. Moreover, if it exceeds 2 parts by weight, the shear strength after curing will decrease significantly.

前記カーボンをシリコーン樹脂に添加し、たとえばロー
ル、バンバリーミキサ−、ニーダなどの混合手段によっ
て均一な組成となるように混合することにより本発明の
シリコーン導電性樹脂がえられるが、該シリコーン導電
性樹脂にはざらに必要に応じてたとえばカーボンブラッ
クなどの着色剤を添加することができる。
The silicone conductive resin of the present invention can be obtained by adding the carbon to the silicone resin and mixing it to a uniform composition using a mixing means such as a roll, a Banbury mixer, or a kneader. In addition, a coloring agent such as carbon black may be added if necessary.

以下、実施例および比較例をあげて本発明をさらに詳細
に説明するが、本発明はかかる実施例のみに限定される
ものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited only to these Examples.

実施例1〜7および比較例1 第1表の配合割合となるようにシリコーン樹脂およびカ
ーボン(平均粒子径=50Å以下)を調整してシリコー
ン導電性樹脂を作製した。つぎにえられたシリコーン導
電性樹脂をライカイ機で60分間充分に混合したのち、
175℃で硬化させたときのキュア時間に対する圧縮応
力を下記の方法で測定した。その結果を第2表に示す。
Examples 1 to 7 and Comparative Example 1 Silicone conductive resins were prepared by adjusting the silicone resin and carbon (average particle size = 50 Å or less) to the blending ratios shown in Table 1. After thoroughly mixing the silicone conductive resin obtained next for 60 minutes in a Raikai machine,
Compressive stress with respect to curing time when cured at 175° C. was measured by the following method. The results are shown in Table 2.

また、硬化後のシリコーン導電性樹脂の物性として熱伝
導率および電気抵抗率を下記の測定方法で調べた。その
結果を第3表に示す。
In addition, as physical properties of the silicone conductive resin after curing, thermal conductivity and electrical resistivity were investigated using the following measurement methods. The results are shown in Table 3.

(圧縮応力) 縦16m5、横38+u、高さ5−の金型で樹脂形成し
、内部に歪計を内蔵させ、成形後のキュア時間に対し歪
計に加わる力がどのように変化するのかを調べた。
(Compressive stress) It is molded with resin in a mold measuring 16m5 long, 38+u wide, and 5-height, and has a built-in strain gauge inside.We investigated how the force applied to the strain gauge changes with the curing time after molding. Examined.

(熱伝導率) JIS A 1413に示された平板直接法にしたがっ
て測定した。なお、熱伝導率(λ)は次式にしたがって
求めた。
(Thermal conductivity) Measured according to the flat plate direct method shown in JIS A 1413. Note that the thermal conductivity (λ) was determined according to the following formula.

λ(にcal/m −hour−deo) −(Q/2
A)(41/Δ0)(式中、Qは主Fニー−9(D発生
熱l(0,86W) 、Aは主板の面積、1は試料厚さ
くl)、Δ0は試料の温度差である。) (電気抵抗率) JISに6911の熱硬化性プラスチック一般試験方法
に従って試料片寸法が厚さ2■、直径1100eの試料
を用いた。電極として黒鉛を用い、寸法2rlは50−
一として試料の体積抵抗Rx(Ω)を測定し、式、ov
 −(A/d) −Rx (式中、Aは試料の面積、d
は試料の厚さである)から体積抵抗率を求めた。
λ(nical/m -hour-deo) -(Q/2
A) (41/Δ0) (where Q is the main F knee-9 (D generated heat l (0,86W), A is the area of the main plate, 1 is the sample thickness l), and Δ0 is the temperature difference between the samples. (Electrical resistivity) A sample having a thickness of 2 cm and a diameter of 1100 mm was used in accordance with JIS 6911 General Test Methods for Thermosetting Plastics. Graphite is used as the electrode, and the dimension 2rl is 50-
The volume resistance Rx (Ω) of the sample is measured as one, and the formula, ov
-(A/d) -Rx (where A is the area of the sample, d
is the thickness of the sample).

[以下余白] 第    3    表 以上の結果から明らかなように、比較例1の従来のエポ
キシ導電性樹脂は、硬化1時間後のボストキュア時間を
延長しても、圧縮応力は1800〜1900Kg/CI
iと大きく、しがも変化せず、大きな圧縮応力を半導体
素子に加えつづけることになるのに対して、実施例1〜
7でえられた本発明のシリコーン導電性樹脂の硬化1時
間後の圧縮応力はボストキュア時間を延長しても、従来
のエポキシ導電性樹脂よりも約173小さいことがわか
る。さらに本発明のシリコーン導電性樹脂の電気抵抗率
および熱伝導率などは半導体素子の性能を左右する物性
に影響をおよぼすものではないことがわかる。
[Margin below] Table 3 As is clear from the results above, the conventional epoxy conductive resin of Comparative Example 1 had a compressive stress of 1800 to 1900 Kg/CI even if the post curing time after curing was extended for 1 hour.
In contrast, in Examples 1-
It can be seen that the compressive stress of the silicone conductive resin of the present invention obtained in No. 7 after curing for 1 hour is about 173 smaller than that of the conventional epoxy conductive resin even if the post cure time is extended. Furthermore, it can be seen that the electrical resistivity, thermal conductivity, etc. of the silicone conductive resin of the present invention do not affect the physical properties that affect the performance of semiconductor devices.

[発明の効果] 以上のように、本発明のシリコーン導電性樹脂は硬化後
の圧縮応力が小さいので、半導体装置の不良発生を抑制
することができ、しかも導電担体としてカーボンが用い
られているので、えられる半導体装置の価格を低減する
ことができるとともに硬化時間を短縮することができる
という効果を奏する。
[Effects of the Invention] As described above, the silicone conductive resin of the present invention has a small compressive stress after curing, so it is possible to suppress the occurrence of defects in semiconductor devices, and since carbon is used as a conductive carrier, it is possible to suppress the occurrence of defects in semiconductor devices. This has the effect that the cost of the semiconductor device obtained can be reduced and the curing time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の導電性樹脂が用いられた半導体装置の断
面図である。 (図面の符号) (1):半導体素子 (2):リードフレームのダイアタッチエリア (3):リードフレームのリードフィンガー(4):金
属細線 (5):樹脂成形部 (6):導電性樹脂
FIG. 1 is a sectional view of a semiconductor device using a conventional conductive resin. (Symbols in drawings) (1): Semiconductor element (2): Die attach area of lead frame (3): Lead finger of lead frame (4): Fine metal wire (5): Resin molded part (6): Conductive resin

Claims (1)

【特許請求の範囲】[Claims] (1)シリコーン樹脂およびカーボンからなるシリコー
ン導電性樹脂。
(1) Silicone conductive resin consisting of silicone resin and carbon.
JP6624487A 1987-03-20 1987-03-20 Electrically conductive silicone resin Pending JPS63230768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6624487A JPS63230768A (en) 1987-03-20 1987-03-20 Electrically conductive silicone resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6624487A JPS63230768A (en) 1987-03-20 1987-03-20 Electrically conductive silicone resin

Publications (1)

Publication Number Publication Date
JPS63230768A true JPS63230768A (en) 1988-09-27

Family

ID=13310260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6624487A Pending JPS63230768A (en) 1987-03-20 1987-03-20 Electrically conductive silicone resin

Country Status (1)

Country Link
JP (1) JPS63230768A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163950A (en) * 1988-12-16 1990-06-25 Matsushita Electric Ind Co Ltd Mounting of semiconductor device
JPH02219312A (en) * 1989-02-20 1990-08-31 Victor Co Of Japan Ltd Crystal resonator
JPH0598241A (en) * 1991-10-07 1993-04-20 Shin Etsu Chem Co Ltd Silicone rubber part fixed to substrate
JP2000109693A (en) * 1998-10-07 2000-04-18 Nok Corp Ptc composition and plane heater
WO2017002489A1 (en) * 2015-06-30 2017-01-05 信越化学工業株式会社 Heat dissipation material
WO2018147010A1 (en) * 2017-02-07 2018-08-16 信越化学工業株式会社 Novel mesogen-silicon compound (co)polymer and thermoplastic elastomer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163950A (en) * 1988-12-16 1990-06-25 Matsushita Electric Ind Co Ltd Mounting of semiconductor device
JPH0666355B2 (en) * 1988-12-16 1994-08-24 松下電器産業株式会社 Semiconductor device mounting body and mounting method thereof
JPH02219312A (en) * 1989-02-20 1990-08-31 Victor Co Of Japan Ltd Crystal resonator
JPH0598241A (en) * 1991-10-07 1993-04-20 Shin Etsu Chem Co Ltd Silicone rubber part fixed to substrate
JP2000109693A (en) * 1998-10-07 2000-04-18 Nok Corp Ptc composition and plane heater
WO2017002489A1 (en) * 2015-06-30 2017-01-05 信越化学工業株式会社 Heat dissipation material
JPWO2017002489A1 (en) * 2015-06-30 2018-03-29 信越化学工業株式会社 Heat dissipation material
EP3318593A4 (en) * 2015-06-30 2019-02-13 Shin-Etsu Chemical Co., Ltd. Heat dissipation material
US10590322B2 (en) 2015-06-30 2020-03-17 Shin-Etsu Chemical Co., Ltd. Heat dissipation material
WO2018147010A1 (en) * 2017-02-07 2018-08-16 信越化学工業株式会社 Novel mesogen-silicon compound (co)polymer and thermoplastic elastomer
JPWO2018147010A1 (en) * 2017-02-07 2019-11-07 信越化学工業株式会社 Novel mesogenic silicon compound (co) polymer and thermoplastic elastomer
US11142612B2 (en) 2017-02-07 2021-10-12 Shin-Etsu Chemical Co., Ltd. Mesogen-silicon compound (co)polymer and thermoplastic elastomer

Similar Documents

Publication Publication Date Title
KR920009738B1 (en) Epoxy resin composition
JPH0329259B2 (en)
JPS6056171B2 (en) epoxy resin composition
WO2021142752A1 (en) Organic silicon resin conductive adhesive, and preparation method therefor and application thereof
JPS63230768A (en) Electrically conductive silicone resin
EP0439171B1 (en) Epoxy resin composition and semiconductor device encapsulated therewith
JP2012241151A (en) Resin composition for sealing electronic part, and electronic part device using the same
US6288169B1 (en) Butadiene rubber particles with secondary particle sizes for epoxy resin encapsulant
JP2682359B2 (en) Silicone modified acid anhydride and method for producing the same
JP2001013015A (en) Filmy pressure sensitive sensor and semiconductor pressure sensitive ink for it
JPH0995651A (en) Electroconductive resin paste
JPH09310024A (en) Curable organopolysiloxane composition and semiconductor device
DE60306156T2 (en) HEAT-RELATED HARDENABLE LIQUID POLYMERIC COMPOSITION AND SEMICONDUCTORS MANUFACTURED WITH THIS COMPOSITION
Lutz et al. High performance electrically conductive silicone adhesives
JPH03259914A (en) Resin composition for sealing semiconductor and semiconductor device sealed therewith
JP3261845B2 (en) Semiconductor device
CN115433541B (en) Conductive adhesive and preparation method thereof
JP7181525B2 (en) Resin composition for producing allylphenol-maleimide copolymer for electronic component protective film, and electronic component protective film comprising the copolymer
JP2785553B2 (en) Tab-type semiconductor device sealing material and tab-type semiconductor device
JPH01189806A (en) Conductive resin paste
JPH0346486B2 (en)
JP2643714B2 (en) Liquid epoxy resin composition and cured product
JPH11100488A (en) Semiconductor apparatus and semiconductor-sealing epoxy resin composition used for the same
US6117930A (en) Resin systems for organosilicon-containing compositions
KR20020089870A (en) Anisotropic Conductive Film Including Silicon Intermediate