JP2000082608A - Pressure sensitive resistor and pressure sensitive sensor - Google Patents

Pressure sensitive resistor and pressure sensitive sensor

Info

Publication number
JP2000082608A
JP2000082608A JP11196176A JP19617699A JP2000082608A JP 2000082608 A JP2000082608 A JP 2000082608A JP 11196176 A JP11196176 A JP 11196176A JP 19617699 A JP19617699 A JP 19617699A JP 2000082608 A JP2000082608 A JP 2000082608A
Authority
JP
Japan
Prior art keywords
pressure
sensitive resistor
sensitive
film
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11196176A
Other languages
Japanese (ja)
Inventor
Shinji Totokawa
真志 都外川
Tomohisa Yoshimi
知久 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP11196176A priority Critical patent/JP2000082608A/en
Publication of JP2000082608A publication Critical patent/JP2000082608A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pressure sensitive resistor for operating the change of an electric resistance value with high sensitivity and for realizing excellent reproducibility and durability. SOLUTION: This pressure sensitive resistor is constituted of base polymer 10 made of resin in a range in which share hardness is JIS A50 or more and JIS D80 or less, conductive materials 2, and packing materials 3 with elasticity higher than that of the base polymer 10 in which the rate of a mean grain diameter to rough film thickness is 0.25-2. The conductive materials 2 and the packing materials 3 are dispersed in the base polymer 10 and formed like a film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,感圧センサ等の圧力変換装置に
用いられる感圧抵抗体,特にその感度および信頼性を向
上させた感圧抵抗体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure-sensitive resistor used in a pressure transducer such as a pressure-sensitive sensor, and more particularly to a pressure-sensitive resistor having improved sensitivity and reliability.

【0002】[0002]

【従来技術】従来,圧力により電気抵抗値を変化させる
圧力変換装置としては,例えば電極間に介在させた抵抗
体の体積抵抗変化を利用するもの,あるいは,電気的接
点間の表面接触抵抗変化を利用するものがある。前者
は,上記抵抗体として導電フィラーを分散させた導電性
ゴムを使用したものが代表的である。後者は,例えば特
公平5−22398号公報に示されているごとく,電気
的接点の一方に,半導体物質層を設けたものがある。
2. Description of the Related Art Conventionally, as a pressure conversion device for changing an electric resistance value by pressure, for example, a pressure conversion device utilizing a volume resistance change of a resistor interposed between electrodes, or a surface contact resistance change between electric contacts is used. There are things to use. The former typically uses a conductive rubber in which a conductive filler is dispersed as the resistor. As for the latter, there is one in which a semiconductor material layer is provided on one of the electrical contacts, as shown in, for example, Japanese Patent Publication No. 5-22398.

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来の圧
力変換装置においては,次の問題がある。即ち,従来の
圧力変換装置は,圧力に対する感度が未だ低く,また,
検出できる圧力範囲(荷重範囲)も狭い。そのため,上
記圧力変換装置をスイッチ等に利用することは可能であ
るが,リニアに荷重を検知する感圧センサとしての使用
には十分な性能を発揮し得ない。また,導電性ゴムを用
いた上記体積抵抗変化を利用したものにおいては,再現
性および耐久性にも劣る。そこで,従来より,感圧セン
サとして利用可能な優れた圧力変換装置を構成すべく,
優れた特性を有する感圧抵抗体の開発が望まれていた。
However, the conventional pressure converter has the following problems. That is, the conventional pressure converter has still low sensitivity to pressure,
The detectable pressure range (load range) is also narrow. Therefore, it is possible to use the pressure conversion device for a switch or the like, but it cannot exhibit sufficient performance for use as a pressure-sensitive sensor for linearly detecting a load. Further, in the case of using the above-mentioned change in volume resistance using conductive rubber, reproducibility and durability are poor. Therefore, in order to construct an excellent pressure transducer that can be used as a pressure-sensitive sensor,
The development of a pressure-sensitive resistor having excellent characteristics has been desired.

【0004】本発明は,かかる従来の問題点に鑑みてな
されたもので,電気抵抗値の変化を高感度に行うことが
でき,かつ,再現性および耐久性に優れた感圧抵抗体を
提供しようとするものである。
The present invention has been made in view of the above-mentioned conventional problems, and provides a pressure-sensitive resistor which can change the electric resistance value with high sensitivity and which is excellent in reproducibility and durability. What you want to do.

【0005】[0005]

【課題の解決手段】請求項1に記載の発明は,ショア硬
度がJIS A50以上,JIS D80以下の範囲内
にある樹脂よりなるベースポリマーと,導電材料と,前
記ベースポリマーよりも弾性率が高く,かつ,狙い膜厚
に対する平均粒径の比が0.25〜2の充填材とからな
り,前記導電材料及び前記充填材とが上記ベースポリマ
ー内に分散され,膜状に形成されることを特徴とする感
圧抵抗体にある。
According to the first aspect of the present invention, there is provided a base polymer made of a resin having a Shore hardness in a range of JIS A50 or more and JIS D80 or less, a conductive material, and an elastic modulus higher than that of the base polymer. And a filler having an average particle size ratio of 0.25 to 2 with respect to a target film thickness, wherein the conductive material and the filler are dispersed in the base polymer to form a film. Characteristic pressure-sensitive resistor.

【0006】本発明において最も注目すべきことは,ベ
ースポリマーとして上記特定の硬度を有する樹脂を用い
ていると共に,これに,上記特性を有する充填材を分散
させたことである。
The most remarkable point in the present invention is that a resin having the above-mentioned specific hardness is used as a base polymer, and a filler having the above-mentioned properties is dispersed in the resin.

【0007】上記ベースポリマーのショア硬度がJIS
A50未満の場合には,上記感圧抵抗体の塑性変形が
生じやすくなり,十分な耐久性が得られないという問題
がある。一方,JIS D80を超える場合には,例え
ば上記感圧抵抗体を膜状に形成した場合にこれを屈曲さ
せることが困難であるという問題がある。
The Shore hardness of the base polymer is JIS
If it is less than A50, plastic deformation of the pressure-sensitive resistor tends to occur, and there is a problem that sufficient durability cannot be obtained. On the other hand, when the pressure-sensitive resistor exceeds JIS D80, there is a problem that, for example, when the pressure-sensitive resistor is formed in a film shape, it is difficult to bend it.

【0008】上記充填材の特性の1つを特定するための
弾性率とは,応力と歪みの比例係数である。つまり,こ
の弾性率が大きいほど,同じ応力が作用した際の歪みが
小さいことを意味する。したがって,ベースポリマーと
充填材とに同じ応力が作用した場合には,ベースポリマ
ーの方が大きく歪む。
The elastic modulus for specifying one of the characteristics of the filler is a proportional coefficient between stress and strain. In other words, the larger the elastic modulus, the smaller the distortion when the same stress acts. Therefore, when the same stress acts on the base polymer and the filler, the base polymer is more distorted.

【0009】また,上記充填材としては,感圧抵抗体の
狙い膜厚に対する平均粒径の比が0.25〜2のものを
用いる。この感圧抵抗体の狙い膜厚に対する平均粒径の
比が0.25未満の充填材を用いると,上記感圧抵抗体
の表面粗度が小さくなりすぎるとともに,後述する充填
材添加による効果が発現しないという問題がある。一
方,感圧抵抗体の狙い膜厚に対する平均粒径の比が2よ
り大きい充填材を用いると,上記感圧抵抗体の表面粗度
が大きくなりすぎて,感圧抵抗体への接触が不充分とな
るという問題がある。さらに,上記充填材はベースポリ
マー内において分散される。ここでいう分散とは,上記
充填材の凝集が少なく,単独で分散している状態を言
う。
As the above-mentioned filler, a filler having a ratio of the average particle diameter to the target film thickness of the pressure-sensitive resistor of 0.25 to 2 is used. When a filler having a ratio of the average particle diameter to the target film thickness of the pressure-sensitive resistor of less than 0.25 is used, the surface roughness of the pressure-sensitive resistor becomes too small, and the effect of the addition of the filler described later is reduced. There is a problem that it does not appear. On the other hand, if a filler having a ratio of the average particle diameter to the target film thickness of the piezoresistive element larger than 2 is used, the surface roughness of the piezoresistive element becomes too large, and the contact with the piezoresistive element becomes impossible. There is a problem that it will be sufficient. Further, the filler is dispersed in the base polymer. The term “dispersion” as used herein refers to a state in which the filler is hardly aggregated and dispersed alone.

【0010】次に,上記請求項1に記載した感圧抵抗体
の作用効果について説明する。上記感圧抵抗体を感圧セ
ンサにおける電気的接点間に介在させた場合を考える
と,印加される荷重が低荷重域であるとき,上記接点間
において感圧抵抗体の表面での接触状態が変化して表面
接触抵抗値が変化する。
Next, the operation and effect of the pressure-sensitive resistor according to the first aspect will be described. Considering the case where the above-mentioned pressure-sensitive resistor is interposed between the electrical contacts of the pressure-sensitive sensor, the contact state on the surface of the pressure-sensitive resistor between the above-mentioned contacts when the applied load is in a low load range is considered. And the surface contact resistance changes.

【0011】この場合において,感圧抵抗体の狙い膜厚
に対する平均粒径の比が0.25〜2である充填材の分
散により,感圧抵抗体の表面は,適度に表面粗度が増大
した状態となっている。このため,荷重の増加による接
触面積の急激な増加を和らげることができる。これによ
り,上記感圧抵抗体は,低荷重域において,印加荷重の
変化に対する抵抗値変化を緩やかにすることができる。
In this case, the surface of the pressure-sensitive resistor has a moderately increased surface roughness due to the dispersion of the filler in which the ratio of the average particle diameter to the target film thickness of the pressure-sensitive resistor is 0.25 to 2. It is in a state where it has been done. Therefore, a sudden increase in the contact area due to an increase in the load can be mitigated. Thus, the pressure-sensitive resistor can moderately change the resistance value with respect to the change in the applied load in a low load range.

【0012】また,高荷重域においては,上記接触面積
の増大が飽和した後に,感圧抵抗体自体の変形による内
部抵抗の変化が始まる。このときの内部抵抗の変化を,
上記充填材の存在によって大きくすることができる。す
なわち,充填材の弾性率は,ベースポリマーのそれより
も高いので,感圧抵抗体の変形は,充填材の周囲に集中
した状態で生じる。これにより,充填材の周囲に位置す
る多数の導電材料は,荷重の変化に応じて互いの接触状
態に大きな変化を生じる。この結果,ベースポリマー中
に分散する導電材料による導電ネットワーク状態が変化
し,抵抗値が減少する。それ故,上記感圧抵抗体は,高
荷重域においても,荷重変化に対する電気抵抗変化の感
度を高感度にすることができる。
In a high load range, after the increase in the contact area is saturated, the internal resistance starts to change due to deformation of the pressure-sensitive resistor itself. The change in internal resistance at this time is
The size can be increased by the presence of the filler. That is, since the elastic modulus of the filler is higher than that of the base polymer, the deformation of the pressure-sensitive resistor occurs in a state concentrated around the filler. As a result, a large number of conductive materials located around the filler cause a large change in the state of contact with each other according to a change in load. As a result, the state of the conductive network due to the conductive material dispersed in the base polymer changes, and the resistance value decreases. Therefore, the above-mentioned pressure-sensitive resistor can increase the sensitivity of the electric resistance change to the load change even in the high load range.

【0013】上記のように,感圧抵抗体は,低荷重域か
ら高荷重域に渡って,荷重の変化に対する電気抵抗変化
の感度を高感度に維持することができ,かつ,その再現
性を得ることができる。
As described above, the pressure-sensitive resistor can maintain a high sensitivity of a change in electric resistance to a change in load from a low load range to a high load range, and can improve the reproducibility thereof. Obtainable.

【0014】次に,請求項2に記載のように,前記膜状
に形成される感圧抵抗体の表面粗度は,Rz5〜20μ
mの範囲内の値であることが好ましい。これにより,低
荷重域における荷重の変化に対する電気抵抗変化の感度
を実用レベルに維持することができる。
Next, as described in claim 2, the surface roughness of the pressure-sensitive resistor formed in a film shape is Rz 5 to 20 μm.
It is preferably a value within the range of m. As a result, the sensitivity of the electrical resistance change to the load change in the low load range can be maintained at a practical level.

【0015】また,請求項3に記載のように,前記ベー
スポリマーはポリエステル樹脂あるいはエポキシ樹脂の
いずれかであることが好ましい。この場合には,上記ベ
ースポリマーのショア硬度の範囲を容易に確保すること
ができる。そして,上述した硬度を有するポリエステル
樹脂やエポキシ樹脂のような熱硬化性合成樹脂を用いる
ことにより,塑性変形しにくく,優れた耐久性を有する
感圧抵抗体を得ることができる。
Preferably, the base polymer is one of a polyester resin and an epoxy resin. In this case, the range of the Shore hardness of the base polymer can be easily secured. By using a thermosetting synthetic resin such as a polyester resin or an epoxy resin having the above-described hardness, a pressure-sensitive resistor that is less likely to be plastically deformed and has excellent durability can be obtained.

【0016】また,請求項4に記載のように,前記導電
部材としては,カーボンブラックを用いることができ
る。また,請求項5に記載のように,前記カーボンブラ
ックはアセチレンブラックあるいはファーネスブラック
等の導電性カーボンを用いることができる。
Further, as the fourth aspect, carbon black can be used as the conductive member. Also, as the carbon black, conductive carbon such as acetylene black or furnace black can be used.

【0017】また,請求項6に記載のように,前記導電
部材の平均粒径は,20〜100nmであることが好ま
しい。導電部材の平均粒径が20nm未満の場合には,
導電性のぱらつきが大きいという問題が生ずるおそれが
あり,一方,100nmを超える場合には,感圧抵抗体
の膜がもろくなるおそれが生じる。
Preferably, the conductive member has an average particle size of 20 to 100 nm. When the average particle size of the conductive member is less than 20 nm,
There is a possibility that a problem of large variation in conductivity may occur. On the other hand, if it exceeds 100 nm, a film of the pressure-sensitive resistor may become brittle.

【0018】また,請求項7に記載するように,前記充
填材としては,球状シリコシ樹脂を用いることができ
る。球状シリコン樹脂は,硬化したシリコン樹脂の塊を
微粒子化処理することにより得ることができる。
Further, as described in claim 7, a spherical silicone resin can be used as the filler. The spherical silicone resin can be obtained by subjecting the cured silicone resin mass to a fine particle treatment.

【0019】また,請求項8に記載のように,前記充填
材の添加量は,5〜40重量%であることが好ましい。
上記充填材の添加重が5重量%未満の場合には,上記充
填材添加の効果が十分に発現しないとの問題がある。一
方,充填材の添加重が40重量%を超える場合には,上
記感圧抵抗体への接触が不充分となり,良好な感圧特性
が得られないという問題が生じる。
Preferably, the amount of the filler is 5 to 40% by weight.
If the addition weight of the filler is less than 5% by weight, there is a problem that the effect of the addition of the filler is not sufficiently exhibited. On the other hand, if the addition weight of the filler exceeds 40% by weight, the contact with the pressure-sensitive resistor becomes insufficient, and there is a problem that good pressure-sensitive characteristics cannot be obtained.

【0020】次に,請求項9に記載の発明は,請求項1
〜8のいずれか1項に記載の感圧抵抗体を所定のギャッ
プを介して対向配置するとともに,前記対向配置された
感圧抵抗体を両側から挟むように配置された一対の電極
と,前記一対の電極を両側から挟むように配置されたフ
ィルムとからなることを特徴とする感圧センサにある。
Next, the invention according to claim 9 is based on claim 1
9. A pair of electrodes arranged so as to oppose the pressure-sensitive resistor according to any one of Nos. To 8 via a predetermined gap, and to sandwich the opposing pressure-sensitive resistor from both sides; A pressure-sensitive sensor, comprising: a film disposed so as to sandwich a pair of electrodes from both sides.

【0021】また,請求項10に記載の発明は,第1の
フィルム上に形成された請求項1〜8のいずれか1項に
記載の感圧抵抗体と,前記感圧抵抗体と所定のギャップ
を介して配置される複数の電極と,前記複数の電極を支
持する第2のフィルムとからなることを特徴とする感圧
センサにある。
According to a tenth aspect of the present invention, there is provided the pressure-sensitive resistor according to any one of the first to eighth aspects, wherein the pressure-sensitive resistor is formed on a first film. The pressure-sensitive sensor comprises a plurality of electrodes arranged via a gap and a second film supporting the plurality of electrodes.

【0022】また,請求項11に記載の発明は,所定の
ギャップを介して配置された一対の感圧抵抗体と,前記
対向配置された一対の感圧抵抗体を両側から挟むように
配置された一対の電極と,前記一対の電極を両側から挟
むように配置されたフィルムとからなり,前記フィルム
に印加される荷重が低荷重範囲にあるとき,その印加荷
重の増加に応じて一対の感圧抵抗体の接触面積が徐々に
増加し,前記フィルムに印加される荷重が高荷重範囲と
なり,前記一対の感圧抵抗体の接触面積の増加が飽和し
た後には,印加荷重の増加に応じて前記一対の感圧抵抗
体自体の変形により内部抵抗を減少させるように構成さ
れることを特徴とする感圧センサにある。
According to an eleventh aspect of the present invention, the pair of pressure-sensitive resistors arranged via a predetermined gap and the pair of opposed pressure-sensitive resistors are arranged so as to sandwich the pair of pressure-sensitive resistors from both sides. A pair of electrodes, and a film arranged so as to sandwich the pair of electrodes from both sides. When the load applied to the film is in a low load range, the pair of senses increases according to the increase in the applied load. After the contact area of the piezoresistor gradually increases, the load applied to the film becomes a high load range, and after the increase in the contact area of the pair of piezoresistors saturates, the load increases according to the applied load. A pressure-sensitive sensor is configured to reduce internal resistance by deforming the pair of pressure-sensitive resistors themselves.

【0023】また,請求項12に記載の発明は,第1の
フィルム上に形成された感圧抵抗体と,前記感圧抵抗体
と所定のギャップを介して配置される少なくとも2個の
電極と,前記複数の電極を支持する第2のフィルムとか
らなり,前記第1及び第2のフィルムの少なくとも一方
に印加される荷重が低荷重範囲にあるとき,その印加荷
重の増加に応じて前記2個の電極と感圧抵抗体との接触
面積が徐々に増加し,前記第1及び第2のフィルムの少
なくとも一方に印加される荷重が高荷重範囲となり,前
記2個の電極と感圧抵抗体との接触面積の増加が飽和し
た後には,印加荷重の増加に応じて前記感圧抵抗体自体
の変形により内部抵抗を減少させるように構成されるこ
とを特徴とする感圧センサにある。
According to a twelfth aspect of the present invention, there is provided a pressure-sensitive resistor formed on a first film, and at least two electrodes disposed at a predetermined gap from the pressure-sensitive resistor. And a second film supporting the plurality of electrodes. When a load applied to at least one of the first and second films is in a low load range, the second film is increased in accordance with an increase in the applied load. The contact area between the two electrodes and the pressure-sensitive resistor gradually increases, and the load applied to at least one of the first and second films becomes a high load range. The pressure-sensitive sensor is configured to reduce internal resistance by deforming the pressure-sensitive resistor itself according to an increase in an applied load after an increase in an area of contact with the sensor is saturated.

【0024】そして,上記請求項9から請求項12に記
載した感圧センサを構成することにより,低荷重域から
高荷重域に渡って,荷重の変化に対する電気抵抗変化の
感度を高感度に維持することが可能な感圧センサを得る
ことができる。
By configuring the pressure-sensitive sensor according to the ninth to twelfth aspects, the sensitivity of a change in electric resistance to a change in load is maintained at high sensitivity from a low load range to a high load range. A pressure-sensitive sensor capable of performing the above-described operations can be obtained.

【0025】[0025]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる感圧抵抗体につき,図1〜
図3を用いて説明する。本例の感圧抵抗体1は,図1に
示すごとく,ショア硬度がJIS A50以上,JIS
D80以下の範囲内にある熱硬化性の合成樹脂よりな
るベースポリマー10と,カーボンブラックよりなる導
電材料2と,上記ベースポリマー10よりも弾性率が高
くかつ感圧抵抗体1の狙い膜厚に対する平均粒径の比が
0.25〜2である球状シリコン樹脂よりなる充填材3
とからなる。かつ,該充填材3は上記ベースポリマー1
0内に均一に分散している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A pressure-sensitive resistor according to an embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. As shown in FIG. 1, the pressure-sensitive resistor 1 of this example has a Shore hardness of JIS A50 or more,
D80 or less, a base polymer 10 made of a thermosetting synthetic resin, a conductive material 2 made of carbon black, and an elastic modulus higher than that of the base polymer 10 and the target film thickness of the pressure-sensitive resistor 1 Filler 3 made of spherical silicone resin having an average particle size ratio of 0.25 to 2
Consists of The filler 3 is the base polymer 1
It is uniformly dispersed in 0.

【0026】この感圧抵抗体1の作製は次のように行っ
た。まず,ベースポリマー10としては,硬化後のショ
ア硬度がJIS A60となるポリエステル樹脂を準備
した。また,導電材料2としてのアセチレンブラック
と,充填材3としての感圧抵抗体1の狙い膜厚に対する
平均粒径の比が1.5の球状シリコン樹脂を準備した。
充填剤3は,硬化したシリコン樹脂の塊を微粒子化する
ことにより得たものである。
The production of the pressure-sensitive resistor 1 was performed as follows. First, as the base polymer 10, a polyester resin having a Shore hardness after curing of JIS A60 was prepared. In addition, a spherical silicon resin was prepared in which the ratio of the average particle diameter to the target film thickness of the acetylene black as the conductive material 2 and the pressure-sensitive resistor 1 as the filler 3 was 1.5.
The filler 3 is obtained by making the hardened silicone resin mass into fine particles.

【0027】次に,得られる感圧抵抗体1における配合
率が,ベースポリマー10が80重量部,導電材料2が
20重量部,充填材3が10重量部となるように,これ
ら原料を配合する。このとき,溶剤,界面活性剤等を適
量添加することもできる。次いで,これらの原料を3本
ロールミル等により分散処理を行い,ペースト状の感圧
抵抗体(以下,感圧抵抗ペーストという)を作製する。
Next, these raw materials are blended so that the compounding ratio of the obtained pressure-sensitive resistor 1 is 80 parts by weight of the base polymer 10, 20 parts by weight of the conductive material 2 and 10 parts by weight of the filler 3. I do. At this time, an appropriate amount of a solvent, a surfactant and the like can be added. Next, these raw materials are subjected to a dispersion treatment using a three-roll mill or the like to produce a paste-shaped pressure-sensitive resistor (hereinafter, referred to as a pressure-sensitive resistor paste).

【0028】この感圧抵抗ペーストにおいては,上記球
状シリコン樹脂よりなる充填材3が均一に分散した状態
となる。これは,上記のごとく,球状シリコン樹脂を上
記微粒子化して得たことによって,球状単分散の微粉末
とすることができ,凝集を少なくできるためであると考
えられる。
In this pressure-sensitive resistance paste, the filler 3 made of the above-mentioned spherical silicon resin is in a state of being uniformly dispersed. It is considered that this is because, as described above, the spherical silicon resin is obtained by making the particles into the above-described fine particles, so that a spherical monodispersed fine powder can be obtained and aggregation can be reduced.

【0029】次いで,PET(ポリエチレンテレフタレ
ート),PEI(ポリエーテルイミド)等よりなるフィ
ルム5を準備し,このフィルム上に上記感圧抵抗ペース
トを所望のパターンとなるようスクリーン印刷法等によ
って配設する。次いで,熱風循環路において,温度12
0〜150℃に1〜2時間保持することにより,図1に
示すごとき感圧抵抗体1が得られた。なお,このときの
感圧抵抗体1の表面粗度は,感圧抵抗体1の狙い膜厚に
対する平均粒径の比が1.5の球状シリコン樹脂を分散
させたことにより,表面粗度として好ましい範囲である
Rz5〜20μmに含まれている。
Next, a film 5 made of PET (polyethylene terephthalate), PEI (polyetherimide) or the like is prepared, and the above-mentioned pressure-sensitive resistor paste is provided on this film by a screen printing method or the like so as to have a desired pattern. . Next, in the hot air circulation path, the temperature 12
By maintaining the temperature at 0 to 150 ° C. for 1 to 2 hours, a pressure-sensitive resistor 1 as shown in FIG. 1 was obtained. In this case, the surface roughness of the pressure-sensitive resistor 1 was determined as the surface roughness by dispersing a spherical silicon resin having a ratio of an average particle diameter to a target film thickness of the pressure-sensitive resistor 1 of 1.5. It is contained in a preferable range of Rz5 to 20 μm.

【0030】次に,本例の作用効果につき説明する。本
例の感圧抵抗体1においては,図2に示すごとく,上記
特定のサイズの球状シリコン樹脂よりなる充填材3をベ
ースポリマー内に略均一に分散させてあるので,感圧抵
抗体1の表面は,適度に表面粗度が増大した状態とな
る。
Next, the operation and effect of this embodiment will be described. In the pressure-sensitive resistor 1 of the present embodiment, as shown in FIG. 2, the filler 3 made of the spherical silicone resin having the specific size is substantially uniformly dispersed in the base polymer. The surface is in a state where the surface roughness is appropriately increased.

【0031】ここで,図2に示すごとく,2枚の感圧抵
抗体を感圧センサにおける電気的接点間に介在させた場
合を考える。この場合において,荷重を加えていくと,
上記適度な面粗度の影響により,凸部から徐々に接触面
積が増加するので接触面積の急激な増加が和らげるられ
る。それ故,感圧抵抗体1においては,荷重に対する表
面接触抵抗値の変化が穏やかとなり,低荷重域における
荷重に対する電気抵抗値変化の感度が実用的な状態に維
持される。
Here, as shown in FIG. 2, it is assumed that two pressure-sensitive resistors are interposed between the electrical contacts of the pressure-sensitive sensor. In this case, when a load is applied,
Due to the influence of the above-mentioned moderate surface roughness, the contact area gradually increases from the convex portion, so that a rapid increase in the contact area is moderated. Therefore, in the pressure-sensitive resistor 1, the change in the surface contact resistance with respect to the load becomes gentle, and the sensitivity of the change in the electric resistance with respect to the load in a low load region is maintained in a practical state.

【0032】また,高荷重域においては,上記接触面積
の増大が飽和した後に,感圧抵抗体自体の変形による内
部抵抗の変化が始まる。このとき,充填材3は球状シリ
コン樹脂よりなり,その弾性率はベースポリマー10よ
りも高い。そのため,図3(a)(b)に示すごとく,
感圧抵抗体1の変形は,充填材3自体はあまり変形せ
ず,その周囲に集中した状態で生じる。
In the high load range, after the increase in the contact area is saturated, the internal resistance starts to change due to the deformation of the pressure-sensitive resistor itself. At this time, the filler 3 is made of a spherical silicone resin, and its elastic modulus is higher than that of the base polymer 10. Therefore, as shown in FIGS.
The deformation of the pressure-sensitive resistor 1 occurs in a state where the filler 3 itself is not deformed so much and concentrated around the periphery.

【0033】これにより,図3(b)に示すごとく,充
填材3の周囲に位置するカーボンブラックよりなる多数
の導電材料2は,荷重の変化に応じて,互いの接触状態
に大きな変化を起こし,例えば新しい導電ネットワーク
e(図3(b))を形成する。それ故,感圧抵抗体1
は,高荷重域においても,荷重の変化に対する電気抵抗
変化を感度の高いものとすることができる。
As a result, as shown in FIG. 3B, the large number of conductive materials 2 made of carbon black located around the filler 3 cause a large change in the state of contact with each other according to the change in load. , For example, a new conductive network e (FIG. 3B) is formed. Therefore, the pressure-sensitive resistor 1
Can make the electric resistance change with respect to the load change highly sensitive even in the high load region.

【0034】このように,本例の感圧抵抗体1は,低荷
重域から高荷重域まで高感度の特性を維持することがで
き,かつ,その再現性を得ることができる。また,感圧
抵抗体1は,ベースポリマー10として上記硬度特性を
有する熱硬化性のポリエステル樹脂を用いていので,塑
性変形しにくく,優れた耐久性を得ることができる。
As described above, the pressure-sensitive resistor 1 of this embodiment can maintain high sensitivity characteristics from a low load range to a high load range, and can obtain reproducibility thereof. In addition, since the pressure-sensitive resistor 1 uses a thermosetting polyester resin having the above-described hardness characteristics as the base polymer 10, it is difficult to be plastically deformed, and excellent durability can be obtained.

【0035】実施形態例2 本例においては,実施形態例1の感圧抵抗体1(試料E
1)を用いて感圧センサ7を作製し,その性能を評価し
た。また,本例においては,各成分の配合料,硬度等を
変更した感圧抵抗体を複数準備し(試料E2〜E5,C
1,C2),同様に評価した。
Embodiment 2 In this embodiment, the pressure-sensitive resistor 1 of Embodiment 1 (sample E
A pressure-sensitive sensor 7 was manufactured using 1), and its performance was evaluated. Further, in this example, a plurality of pressure-sensitive resistors in which the compounding fee, hardness, and the like of each component were changed were prepared (samples E2 to E5, C
1, C2).

【0036】準備した各感圧抵抗体の成分配合料等を表
1に示す。試料E1は,上記のごとく実施形態例1にお
ける感圧抵抗体1である。試料E2は,試料E1の充填
材3の配合量を10重量部増やしたものである。試料E
3は,試料E2における充填材3のサイズを感圧抵抗体
1の狙い膜厚に対する平均粒径の比が0.6となるよう
にしたものである。
Table 1 shows the components and the like of the prepared pressure-sensitive resistors. The sample E1 is the pressure-sensitive resistor 1 in the first embodiment as described above. Sample E2 is obtained by increasing the blending amount of the filler 3 of sample E1 by 10 parts by weight. Sample E
Reference numeral 3 denotes the size of the filler 3 in the sample E2 such that the ratio of the average particle diameter to the target thickness of the pressure-sensitive resistor 1 becomes 0.6.

【0037】試料E4は,試料E1におけるベースポリ
マー10をショア硬度がJIS A80のエポキシ樹脂
に変更すると共にその配合量を85重量部まで増加し,
さらにアセチレンブラックの配合量を15重量部まで減
少させたものである。試料E5は,試料E1におけるベ
ースポリマー10をショア硬度がJIS D70のエポ
キシ樹脂に変更したものである。上記試料E1〜E5は
いずれも本発明品であり,上記特徴以外は試料E1と同
様である。
In the sample E4, the base polymer 10 in the sample E1 was changed to an epoxy resin having a Shore hardness of JIS A80 and the blending amount was increased to 85 parts by weight.
Further, the amount of acetylene black was reduced to 15 parts by weight. In sample E5, the base polymer 10 in sample E1 was changed to an epoxy resin having a Shore hardness of JIS D70. Each of the samples E1 to E5 is a product of the present invention, and is similar to the sample E1 except for the features described above.

【0038】試料C1は,試料E1における充填材3の
配合量を0とした比較例である。試料C2は,一般に感
圧抵抗体として販売されている市販品(商品名:FSR
PART#302(インターリンク社製))の比較品で
ある。
Sample C1 is a comparative example in which the amount of filler 3 in sample E1 was 0. Sample C2 is a commercially available product generally sold as a pressure-sensitive resistor (trade name: FSR
PART # 302 (manufactured by Interlink Corp.)).

【0039】次に,上記各感圧抵抗体(E1〜E5,C
1,C2)を用いて感圧センサ7を作製した。感圧セン
サ7は,図4に示すごとく,PET,PEI等よりなる
ベースフィルム71上にレジンAgよりなる導体部(電
極)72を設け,さらに導体部72上に感圧抵抗体1を
設けた。そして,2組の感圧抵抗体1をスペーサ75を
介して対面させることにより,空間層70を有する対面
電極型の感圧センサ7を構成した。なお,各感圧抵抗体
1の配設方法は,実施形態例1と同様である。
Next, each of the pressure-sensitive resistors (E1 to E5, C
1, C2) to produce a pressure-sensitive sensor 7. As shown in FIG. 4, the pressure-sensitive sensor 7 has a conductor (electrode) 72 made of resin Ag provided on a base film 71 made of PET, PEI or the like, and the pressure-sensitive resistor 1 provided on the conductor 72. . Then, the two sets of pressure-sensitive resistors 1 face each other via the spacer 75, thereby forming the facing electrode type pressure-sensitive sensor 7 having the space layer 70. The method of disposing each pressure sensitive resistor 1 is the same as that of the first embodiment.

【0040】次に,上記各感圧センサ7を用いて感圧感
度を測定した。感圧感度は,感圧センサ77に矢印A
(図4)方向の荷重を加え,その荷重に対する電気抵抗
値の変化の傾きにより求めた。また,電気抵抗値の測定
は,図4に示すごとく,各導体部72のリード部R1,
R2より行った。
Next, the pressure sensitivity was measured using each of the pressure sensors 7 described above. The pressure sensitivity is indicated by the arrow A on the pressure sensor 77.
(FIG. 4) A load in the direction was applied, and the slope was determined by a gradient of a change in electric resistance value with respect to the load. In addition, as shown in FIG.
Performed from R2.

【0041】測定結果を表1に示す。表1より知られる
ごとく,本発明品(E1〜E5)は,いずれも比較品
(C1,C2)よりも優れた感圧感度特性を示した。こ
の結果から,本発明の構成が感圧抵抗体の特性向上に非
常に有効であることが分かる。
Table 1 shows the measurement results. As can be seen from Table 1, the products of the present invention (E1 to E5) all exhibited better pressure sensitivity characteristics than the comparative products (C1, C2). From these results, it can be seen that the configuration of the present invention is very effective in improving the characteristics of the pressure-sensitive resistor.

【0042】[0042]

【表1】 [Table 1]

【0043】なお,本例においては,上記のごとく対面
電極側の感圧センサ7(図4)を用いたが,これに代え
て図5に示すごときショーティングバー型感圧センサ8
を用いた場合にも同様の作用効果が得られる。このショ
ーティングバー型感圧センサ8は,同図に示すごとく,
ベースフィルム81上に直接感圧抵抗体1を設け,これ
に対向して,ベースフィルム81上に導体部(電極)8
2を分割配置したものである。なお,符号85はスペー
サである。
In this embodiment, the pressure-sensitive sensor 7 (FIG. 4) on the facing electrode side is used as described above, but instead of this, a shorting bar type pressure-sensitive sensor 8 as shown in FIG.
The same operation and effect can be obtained also when using. This shorting bar type pressure sensor 8 is, as shown in FIG.
The pressure-sensitive resistor 1 is provided directly on the base film 81, and a conductor (electrode) 8 is provided on the base film 81 to face the pressure-sensitive resistor 1.
2 is divided and arranged. Reference numeral 85 denotes a spacer.

【0044】このショーティングバー型感圧センサにお
いては,一対の電極がくし歯形状に配置されており,荷
重を受けることによって,その一対の電極と感圧抵抗体
1との接触面横が増加するものである。上述の実施形態
例1,2では,充填材3として球状シリコン樹脂を用い
たが,これに限らず,上述した特性を有するものであれ
ば他の材料のものを用いても良い。例えば,熱膨張カプ
セル(マイクロバルーン)や,シリコン樹脂以外の樹脂
を使用しても良い。
In this shorting bar type pressure sensor, a pair of electrodes are arranged in a comb shape, and when receiving a load, the width of the contact surface between the pair of electrodes and the pressure sensitive resistor 1 increases. Things. In the first and second embodiments, the spherical silicon resin is used as the filler 3. However, the present invention is not limited to this, and other materials having the above-described characteristics may be used. For example, a thermal expansion capsule (micro balloon) or a resin other than a silicone resin may be used.

【0045】また,上述の実施形態例においては,感圧
抵抗体1の膜厚は,感圧センサ7の厚みを薄く形成する
ため,5〜20μmの範囲の任意の値を狙い膜厚とす
る。そして,感圧抵抗体1に分散される充填材3の平均
粒径は,その狙い膜厚に応じて5〜40μmの範囲に設
定することにより,感圧抵抗体1の狙い膜厚に対する充
填材3の平均粒径の比を0.25〜2の範囲とすること
ができる。さらに,感圧抵抗体1の膜厚を5〜20μm
の範囲の任意の値とし,かつ,充填材3の平均粒径を5
〜40μmに設定することにより,感圧抵抗体1の表面
粗度を,Rz5〜20μmとすることができる。
In the above-described embodiment, the thickness of the pressure-sensitive resistor 1 is set to an arbitrary value in the range of 5 to 20 μm in order to reduce the thickness of the pressure-sensitive sensor 7. . The average particle size of the filler 3 dispersed in the pressure-sensitive resistor 1 is set in the range of 5 to 40 μm in accordance with the target film thickness. The ratio of the average particle size of No. 3 can be in the range of 0.25 to 2. Further, the thickness of the pressure-sensitive resistor 1 is set to 5 to 20 μm.
And the average particle size of the filler 3 is 5
By setting the thickness to 40 μm, the surface roughness of the pressure-sensitive resistor 1 can be set to Rz 5 to 20 μm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,感圧抵抗体の構成を示
す説明図。
FIG. 1 is an explanatory diagram illustrating a configuration of a pressure-sensitive resistor according to a first embodiment.

【図2】実施形態例1における,感圧抵抗体の表面状態
を示す説明図。
FIG. 2 is an explanatory diagram showing a surface state of a pressure-sensitive resistor according to the first embodiment.

【図3】実施形態例1における,(a)加圧前,(b)
加圧後,における導電材料による導電ネットワーク状態
を示す説明図。
FIGS. 3A and 3B show a first embodiment (a) before pressurization and (b).
Explanatory drawing which shows the state of the conductive network by the conductive material after pressurization.

【図4】実施形態例2における,感圧センサの構成を示
す説明図。
FIG. 4 is an explanatory diagram illustrating a configuration of a pressure-sensitive sensor according to a second embodiment.

【図5】実施形態例2における,他の感圧センサの構成
を示す説明図。
FIG. 5 is an explanatory diagram showing a configuration of another pressure-sensitive sensor according to the second embodiment.

【符号の説明】[Explanation of symbols]

1...感圧抵抗体, 10...ベースポリマー, 2...導電材料(カーボンブラック), 3...充填材(球状シリコン樹脂), 1. . . 9. pressure-sensitive resistor, . . 1. base polymer; . . 2. conductive material (carbon black); . . Filler (spherical silicone resin),

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 ショア硬度がJIS A50以上,JI
S D80以下の範囲内にある樹脂よりなるベースポリ
マーと,導電材料と,前記ベースポリマーよりも弾性率
が高く,かつ,狙い膜厚に対する平均粒径の比が0.2
5〜2の充填材とからなり,前記導電材料及び前記充填
材とが上記ベースポリマー内に分散され,膜状に形成さ
れることを特徴とする感圧抵抗体。
1. Shore hardness is JIS A50 or more, JI
A base polymer made of a resin having an SD of 80 or less, a conductive material, and a material having an elastic modulus higher than that of the base polymer and having a ratio of an average particle diameter to a target film thickness of 0.2;
5. A pressure-sensitive resistor comprising: 5 to 2 fillers, wherein the conductive material and the filler are dispersed in the base polymer to form a film.
【請求項2】 請求項1において,前記膜状に形成され
る感圧抵抗体の表面粗度は,Rz5〜20μmの範囲内
の値であることを特徴とする感圧抵抗体。
2. The pressure-sensitive resistor according to claim 1, wherein the surface roughness of the pressure-sensitive resistor formed in a film shape has a value within a range of Rz5 to 20 μm.
【請求項3】 請求項1又は2において,前記ベースポ
リマーはポリエステル樹脂あるいはエポキシ樹脂のいず
れかであることを特徴とする感圧抵抗体。
3. The pressure-sensitive resistor according to claim 1, wherein the base polymer is one of a polyester resin and an epoxy resin.
【請求項4】 請求項1〜3のいずれか1項において,
前記導電部材はカーボンブラックであることを特徴とす
る感圧抵抗体。
4. The method according to claim 1, wherein:
A pressure-sensitive resistor, wherein the conductive member is carbon black.
【請求項5】 請求項4において,前記カーボンブラッ
クはアセチレンブラックあるいはファーネスブラックの
いずれかであることを特徴とする感圧抵抗体。
5. The pressure-sensitive resistor according to claim 4, wherein said carbon black is one of acetylene black and furnace black.
【請求項6】 請求項1〜5のいずれか1項において,
前記導電部材の平均粒径は,20〜100nmであるこ
とを特徴とする感圧抵抗体。
6. The method according to claim 1, wherein:
The pressure-sensitive resistor according to claim 1, wherein the conductive member has an average particle size of 20 to 100 nm.
【請求項7】 請求項1〜6のいずれか1項において,
前記充填材は球状シリコシ樹脂であることを特徴とする
感圧抵抗体。
7. The method according to claim 1, wherein:
A pressure-sensitive resistor, wherein the filler is a spherical silicone resin.
【請求項8】 請求項1〜7のいずれか1項において,
前記充填材の添加量は,5〜40重量%であることを特
徴とする感圧抵抗体。
8. The method according to claim 1, wherein:
The amount of the filler added is 5 to 40% by weight.
【請求項9】 請求項1〜8のいずれか1項に記載の感
圧抵抗体を所定のギャップを介して対向配置するととも
に,前記対向配置された感圧抵抗体を両側から挟むよう
に配置された一対の電極と,前記一対の電極を両側から
挟むように配置されたフィルムとからなることを特徴と
する感圧センサ。
9. The pressure-sensitive resistor according to any one of claims 1 to 8, wherein the pressure-sensitive resistor is opposed to the pressure-sensitive resistor via a predetermined gap, and is arranged so as to sandwich the opposed pressure-sensitive resistor from both sides. A pressure-sensitive sensor comprising: a pair of electrodes formed as described above; and a film disposed so as to sandwich the pair of electrodes from both sides.
【請求項10】 第1のフィルム上に形成された請求項
1〜8のいずれか1項に記載の感圧抵抗体と,前記感圧
抵抗体と所定のギャップを介して配置される複数の電極
と,前記複数の電極を支持する第2のフィルムとからな
ることを特徴とする感圧センサ。
10. The pressure-sensitive resistor according to claim 1, formed on a first film, and a plurality of pressure-sensitive resistors arranged with a predetermined gap from the pressure-sensitive resistor. A pressure-sensitive sensor comprising: an electrode; and a second film supporting the plurality of electrodes.
【請求項11】 所定のギャップを介して配置された一
対の感圧抵抗体と,前記対向配置された一対の感圧抵抗
体を両側から挟むように配置された一対の電極と,前記
一対の電極を両側から挟むように配置されたフィルムと
からなり,前記フィルムに印加される荷重が低荷重範囲
にあるとき,その印加荷重の増加に応じて一対の感圧抵
抗体の接触面積が徐々に増加し,前記フィルムに印加さ
れる荷重が高荷重範囲となり,前記一対の感圧抵抗体の
接触面積の増加が飽和した後には,印加荷重の増加に応
じて前記一対の感圧抵抗体自体の変形により内部抵抗を
減少させるように構成されることを特徴とする感圧セン
サ。
11. A pair of pressure-sensitive resistors arranged via a predetermined gap, a pair of electrodes arranged to sandwich the pair of opposed pressure-sensitive resistors from both sides, and the pair of pressure-sensitive resistors. When the load applied to the film is in a low load range, the contact area of the pair of pressure-sensitive resistors gradually increases in accordance with the increase in the applied load. After the load applied to the film becomes a high load range and the increase in the contact area of the pair of pressure-sensitive resistors is saturated, the pair of pressure-sensitive resistors themselves are increased in accordance with the applied load. A pressure-sensitive sensor configured to reduce internal resistance by deformation.
【請求項12】 第1のフィルム上に形成された感圧抵
抗体と,前記感圧抵抗体と所定のギャップを介して配置
される少なくとも2個の電極と,前記複数の電極を支持
する第2のフィルムとからなり,前記第1及び第2のフ
ィルムの少なくとも一方に印加される荷重が低荷重範囲
にあるとき,その印加荷重の増加に応じて前記2個の電
極と感圧抵抗体との接触面積が徐々に増加し,前記第1
及び第2のフィルムの少なくとも一方に印加される荷重
が高荷重範囲となり,前記2個の電極と感圧抵抗体との
接触面積の増加が飽和した後には,印加荷重の増加に応
じて前記感圧抵抗体自体の変形により内部抵抗を減少さ
せるように構成されることを特徴とする感圧センサ。
12. A pressure-sensitive resistor formed on a first film, at least two electrodes disposed with a predetermined gap from the pressure-sensitive resistor, and a second electrode supporting the plurality of electrodes. And when the load applied to at least one of the first and second films is in a low load range, the two electrodes and the pressure-sensitive resistor are increased in accordance with the increase in the applied load. Gradually increases the contact area of
And the load applied to at least one of the second film and the second film is in a high load range, and after the increase in the contact area between the two electrodes and the pressure-sensitive resistor is saturated, the load is increased in accordance with the applied load. A pressure-sensitive sensor configured to reduce internal resistance by deformation of a piezoresistor itself.
JP11196176A 1998-07-09 1999-07-09 Pressure sensitive resistor and pressure sensitive sensor Pending JP2000082608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11196176A JP2000082608A (en) 1998-07-09 1999-07-09 Pressure sensitive resistor and pressure sensitive sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-194088 1998-07-09
JP19408898 1998-07-09
JP11196176A JP2000082608A (en) 1998-07-09 1999-07-09 Pressure sensitive resistor and pressure sensitive sensor

Publications (1)

Publication Number Publication Date
JP2000082608A true JP2000082608A (en) 2000-03-21

Family

ID=26508299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11196176A Pending JP2000082608A (en) 1998-07-09 1999-07-09 Pressure sensitive resistor and pressure sensitive sensor

Country Status (1)

Country Link
JP (1) JP2000082608A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225315A (en) * 2006-02-21 2007-09-06 Tokai Rubber Ind Ltd Complex for sensor
JP2008175570A (en) * 2007-01-16 2008-07-31 Fujikura Ltd Pressure-sensitive membrane sensor
JP2009528689A (en) * 2006-03-01 2009-08-06 ダヴ Electric control device
JP2009218029A (en) * 2008-03-10 2009-09-24 Panasonic Corp Pressure-sensitive conductive sheet and panel switch using the same
JP2010085233A (en) * 2008-09-30 2010-04-15 Nissha Printing Co Ltd Pressure sensitive sensor
JP2012501087A (en) * 2008-08-29 2012-01-12 ペラテック リミテッド Electrically responsive composite material, method of manufacturing the same, and transducer manufactured using the material
WO2017026610A1 (en) * 2015-08-07 2017-02-16 전자부품연구원 Flexible tactile sensor and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225315A (en) * 2006-02-21 2007-09-06 Tokai Rubber Ind Ltd Complex for sensor
JP2009528689A (en) * 2006-03-01 2009-08-06 ダヴ Electric control device
JP2008175570A (en) * 2007-01-16 2008-07-31 Fujikura Ltd Pressure-sensitive membrane sensor
JP2009218029A (en) * 2008-03-10 2009-09-24 Panasonic Corp Pressure-sensitive conductive sheet and panel switch using the same
JP2012501087A (en) * 2008-08-29 2012-01-12 ペラテック リミテッド Electrically responsive composite material, method of manufacturing the same, and transducer manufactured using the material
JP2010085233A (en) * 2008-09-30 2010-04-15 Nissha Printing Co Ltd Pressure sensitive sensor
WO2017026610A1 (en) * 2015-08-07 2017-02-16 전자부품연구원 Flexible tactile sensor and manufacturing method therefor
KR101817966B1 (en) 2015-08-07 2018-01-11 전자부품연구원 Flexible tactile sensor and manufacturing method for the same
US10578501B2 (en) 2015-08-07 2020-03-03 Korea Electronics Technology Institute Flexible tactile sensor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
CN111399682B (en) Nano composite force sensing material
JP3980300B2 (en) Membrane pressure sensitive resistor and pressure sensor
TWI467601B (en) Micro-deformable piezo-resistive material and manufacturing method thereof
US5296837A (en) Stannous oxide force transducer and composition
JP5166714B2 (en) Cross-linked elastomer for sensor and method for producing the same
CN110132120B (en) Stretchable pressure and stretching deformation sensor
JP3986985B2 (en) Pressure-sensitive resistor and pressure-sensitive sensor
JP2001159569A (en) Pressure sensor
CN110375895A (en) Multi-functional Grazing condition finger print touch sensor
US9618403B2 (en) Strain sensors and methods of manufacture and use
JP4089082B2 (en) Pressure sensitive conversion device
JP2000082608A (en) Pressure sensitive resistor and pressure sensitive sensor
WO2023147831A1 (en) Tactile sensor, matrix of tactile sensors; and methods of producing such
CN114812879A (en) Flexible pressure sensor with ultra-wide and adjustable linear range and preparation method thereof
CN111103075A (en) Flexible piezoresistive pressure sensor with adjustable measuring range and sensitivity
Jia et al. Flexible and highly sensitive piezoresistive pressure sensor with sandpaper as a mold
Hou et al. Miura‐ori Metastructure Enhanced Conductive Elastomers
CN110140036B (en) Pressure-sensitive sensor
Wang Piezoresistive sensor based on conductive polymer composite with transverse electrodes
JP2003344185A (en) Pressure sensitive sensor
JPH11248557A (en) Pressure-sensitive conductive sensor
US11204292B1 (en) Deformable pressure sensor and methods of use thereof
JP3907431B2 (en) Resistor for pressure sensor and pressure sensor using the same
JPH0436627A (en) Pressure-sensitive and conductive elastomer composition and pressure sensor using same
Wang Temperature interference reduction for pressure sensor made of conductive polymer composite