JP3900456B2 - Conductive spin chuck - Google Patents

Conductive spin chuck Download PDF

Info

Publication number
JP3900456B2
JP3900456B2 JP2000053715A JP2000053715A JP3900456B2 JP 3900456 B2 JP3900456 B2 JP 3900456B2 JP 2000053715 A JP2000053715 A JP 2000053715A JP 2000053715 A JP2000053715 A JP 2000053715A JP 3900456 B2 JP3900456 B2 JP 3900456B2
Authority
JP
Japan
Prior art keywords
spin chuck
conductive
conductive carbon
carbon fiber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000053715A
Other languages
Japanese (ja)
Other versions
JP2001244318A (en
Inventor
雅一 尾崎
洋司 上野
出 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2000053715A priority Critical patent/JP3900456B2/en
Publication of JP2001244318A publication Critical patent/JP2001244318A/en
Application granted granted Critical
Publication of JP3900456B2 publication Critical patent/JP3900456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導電性スピンチャックに関するものである。
【0002】
【従来の技術】
シリコンウェハ等の半導体ウェハは、最終製品であるICチップが得られるまでに多岐にわたる加工・処理工程を必要とし、このような半導体ウェハのレジスト塗布処理、洗浄処理、現像処理等にはスピンチャックが用いられている。スピンチャックは、先端に半導体ウェハの真空吸引が可能な吸着保持部を有すると共に、回転処理装置の軸等にはめ込まれて該半導体ウェハを保持したまま高速回転可能な構造を有する半導体ウェハ保持部材である。
【0003】
スピンチャックには、破損や変形等により半導体ウェハの真空吸着が不可能にならないように引張強度、曲げ強度や曲げ弾性率が高いこと、及びレジスト塗布等の際の高速回転で空気等との摩擦で生じる静電気でパーティクルが付着したり該静電気により半導体ウェハが破損されないように帯電を防止できること等の性能が要求される。ここで、スピンチャックが良好な帯電防止性能を発現するためには、スピンチャックの表面固有抵抗値が106 〜1010Ω程度であることが好ましい。
【0004】
スピンチャックにある程度の導電性を持たせ、帯電を防止するようにしたものとしては、例えば、特開平9−36216号公報に、ポリエーテルエーテルケトン樹脂70〜97重量%及び導電性カーボンブラック3〜30重量%からなり、テーバー摩耗試験の摩耗質量が所定量である樹脂組成物から成形した帯電防止ウエハキャリアが開示されており、該ウエハキャリアは、静電気によるゴミ、ホコリ等の付着がなく、低発塵性で、耐熱性、機械特性等に優れる等の効果を有する。
【0005】
【発明が解決しようとする課題】
しかしながら、該ウエハキャリアは、導電性材料として配合されるカーボンブラックが細かく凝集し易いために分散性が悪く、スピンチャックの全体にわたり均一に表面固有抵抗値を106 〜1010Ω程度にするようことがかなり困難であるという問題があった。また、近年、スピンチャックの軽量化、コンパクト化が望まれているが、上記スピンチャックを軽量化等のために薄肉化すると、曲げ強度や曲げ弾性率等が不十分であるという問題もあった。
【0006】
従って、本発明の目的は、表面固有抵抗値が106 〜1010Ωで、導電性の制御が容易であり、且つ、薄肉化に対応しうる曲げ強度や曲げ弾性率等の剛性の高い導電性スピンチャックを提供することにある。
【0007】
【課題を解決するための手段】
かかる実情において、本発明者は鋭意検討を行った結果、ポリエーテルエーテルケトン樹脂と特定の体積固有抵抗値を有する導電性カーボンファイバーとからなる組成物から形成したスピンチャックによれば、容易に表面固有抵抗値を106 〜1010Ωにすることができると共に表面固有抵抗値のバラツキも少なく、さらに、曲げ強度や曲げ弾性率等の高い導電性スピンチャックが得られることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、ポリエーテルエーテルケトン樹脂60〜90重量%と、
体積固有抵抗値10 〜10 Ωcm、繊維径10〜13μm、繊維長100μm 〜3mm、且つ引張弾性率40000MPa以上の導電性カーボンファイバー10〜40重量%、
のみからなることを特徴とする導電性スピンチャックを提供するものである。
【0009】
【発明の実施の形態】
本発明に係る導電性スピンチャックは、ポリエーテルエーテルケトン樹脂60〜90重量%と、体積固有抵抗値100 Ωcm以上の導電性カーボンファイバー10〜40重量%とからなる。本発明で用いられるポリエーテルエーテルケトン樹脂(以下、「PEEK樹脂」ともいう)としては、特に限定されず通常のものを用いることができるが、例えば、下記式(1)で表される繰り返し単位を有するものが挙げられる。
【0010】
【化1】

Figure 0003900456
【0011】
また、本発明で用いられるPEEK樹脂は対数粘度が通常0.65〜0.95dl/g、好ましくは0.74〜0.90dl/gである。該対数粘度が0.65未満であるとスピンチャックの引張強度、曲げ強度及び曲げ弾性率等の機械的強度が小さくなり易いため好ましくない。また、対数粘度が0.95dl/gを越えると樹脂組成物の流動性が小さくなりスピンチャックの成形加工性が低下し易いため好ましくない。
【0012】
ここで対数粘度とは、下式(2)で定義されるものであり、98%濃硫酸に重合体を溶解し30℃の条件下、オストワルド法により測定した値である。
対数粘度=ln(t/t0 )/C (2)
t:試料溶液の落下時間
0 :濃硫酸の落下時間
C:試料濃度 0.1g/dl
【0013】
なお、スピンチャック等電子部品用の樹脂としては、ポリエーテルエーテルケトン樹脂以外にも、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリアリレート等が成形性、寸法安定性、機械特性(剛性)に優れるものとして知られているが、これらは耐磨耗性が低くなり易いため好ましくない。
【0014】
本発明に係る導電性スピンチャックに用いられる導電性カーボンファイバーは体積固有抵抗値が通常100 Ωcm以上、好ましくは100 〜103 Ωcm、さらに好ましくは101 〜102 Ωcmである。体積固有抵抗値が100 Ωcm未満であると表面固有抵抗値の制御が困難になるため好ましくない。ここで、体積固有抵抗値とはJIS K−6911に採用されている体積抵抗率と同じ意味を指す語である。
【0015】
また、上記導電性カーボンファイバーは、繊維径が通常3〜25μm 、好ましくは10〜13μm であり、繊維長が通常5μm 〜5cm、好ましくは100μm 〜3mmである。繊維径及び繊維長が上記範囲内にあると導電性スピンチャックの剛性を高めることができるため好ましい。また、上記導電性カーボンファイバーは、引張弾性率が通常40000MPa 以上、好ましくは45000MPa 以上である。曲げ弾性率が該範囲内にあると機械的強度が向上するため好ましい。上記導電性カーボンファイバーは、導電性であることから導電性スピンチャックに所定の導電性を付与して表面固有抵抗値を大幅に低下させると共に、ポリエーテルエーテルケトンとなじみ易くしかも所定の強度を有する繊維状のものであることから導電性スピンチャックの引張強度、曲げ強度及び曲げ弾性率等を高くする作用を有する。
【0016】
本発明に係る導電性スピンチャックは、実質的にポリエーテルエーテルケトン樹脂と上記導電性カーボンファイバーからなり、両者を所定の比率で配合した組成物から形成される。該組成物中の配合比は、通常、ポリエーテルエーテルケトン樹脂60〜90重量%に対し体積固有抵抗値100 Ωcm以上の導電性カーボンファイバー10〜40重量%であり、好ましくはポリエーテルエーテルケトン樹脂65〜75重量%に対し上記導電性カーボンファイバー25〜35重量%である。導電性カーボンファイバーの配合比が10重量%未満であると、スピンチャックの表面固有抵抗値の制御が困難になり易いと共に、導電性カーボンファイバーの補強効果が小さいため好ましくない。また、導電性カーボンファイバーの配合比が40重量%を越えると成形加工性が悪くなり易いため好ましくない。また、本発明に係る導電性スピンチャックは、目的とする物性値を損なわない範囲で他の任意成分が少量含まれていてもよい。他の任意成分としては、カーボンブラック、導電性ウィスカ等が挙げられる。
【0017】
本発明に係る導電性スピンチャックは、引張強度が通常200MPa 以上であり、曲げ強度が通常300MPa 以上であり、曲げ弾性率が通常18GPa 以上である。引張強度、曲げ強度及び曲げ弾性率が上記範囲よりも小さいと導電性スピンチャックの剛性が不足し、薄肉化できないため好ましくない。また、本発明に係る導電性スピンチャックは、表面固有抵抗値が106 〜1010Ω、好ましくは106 〜108 Ωである。該表面固有抵抗値が上記範囲外であると、導電性スピンチャックの帯電防止効果が少ないため好ましくない。ここで表面固有抵抗値とは、JIS K−6911に採用されている表面抵抗率と同じ意味を指す語である。
【0018】
本発明に係る導電性スピンチャックの製造方法としては、特に限定されず、通常の公知の方法を採用することができる。例えば、ポリエーテルエーテルケトン樹脂及び上記導電性カーボンファイバーをタンブラ等の混合機で均一混合した後、二軸押出機で溶融混練してペレットを得、該ペレットを溶融した後、射出成形法、圧縮成形法等を採用して導電性スピンチャックを製造することができる。
【0019】
本発明に係る導電性スピンチャックは、半導体ウェハ等の保持部材として使用できる。
【0020】
【実施例】
次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。
【0021】
実施例及び比較例で用いられるPEEK樹脂、導電性カーボンファイバー又は導電性カーボンブラックは以下の通りである。
・PEEK樹脂:「PEEKポリマー 450P」(ビクトレックス・エムシー株式会社製)、対数粘度0.86dl/g
・導電性カーボンファイバーA:ピッチ系炭素繊維「ザイラス GC−03J−301」(大阪ガスケミカル株式会社製)
・導電性カーボンブラックB:「ダイアブラックG」(三菱化学株式会社製)
・導電性カーボンブラックC:「FTカーボン」(新日化カーボン株式会社製)
・導電性カーボンブラックD:「MTカーボン」(Cancarb 社製)
・導電性カーボンファイバーE:「ピッチ系カーボンファイバー」(株式会社ドナック製)
上記導電性カーボンファイバー又は導電性カーボンブラックの物性等を表1に示す。
【0022】
【表1】
Figure 0003900456
【0023】
実施例1〜3
PEEK樹脂と、導電性カーボンファイバーAとを表2に示す割合で配合し、二軸押出機で溶融、混練した後ペレット化した。次に、このペレットを射出成形機でスピンチャック形状に成形し、導電性スピンチャックを得た。得られた導電性スピンチャックについて、表面固有抵抗値及びそのバラツキ、引張強度、曲げ強度、曲げ弾性率を測定した。結果を表2に示す。
なお、表面固有抵抗値、引張強度、曲げ強度及び曲げ弾性率は以下のようにして測定した。
・表面固有抵抗値:絶縁抵抗計「MODEL/9329A HIGH RESISTANCE METER 」(横河ヒューレット・パッカード株式会社製)を用い、円盤状にした導電性スピンチャックをSUSの電極ではさみ、印加電圧100Vで1分間電圧をかけて測定することにより表面固有抵抗値を求めた。
・引張強度:ASTM1号ダンベルの試験体を成形し、ASTM D638に準拠して測定した。
・曲げ強度及び曲げ弾性率:3.2t mm×12.7W mm×127L mmの試験体を使用し、ASTM D790に準拠して測定した。
【0024】
【表2】
Figure 0003900456
【0025】
実施例1〜3の導電性スピンチャックはいずれも表面固有抵抗値が106 〜1010Ωの範囲内にあり帯電防止性能に優れると共に、表面固有抵抗値のバラツキが小さく、さらに、導電性カーボンファイバーの配合量の変化に対する表面固有抵抗値の変化が急激に起こらないため実用価値に優れたものであった。また、引張強度、曲げ強度、曲げ弾性率がいずれも高く剛性に優れたものであった。
【0026】
比較例1〜6
導電性カーボンファイバーAに代えて導電性カーボンブラックB〜D又は導電性カーボンファイバーEを用い、PEEK樹脂との配合比率を表3に示すようにした以外は実施例1と同様にしてスピンチャックを得た。
得られたスピンチャックについて、実施例1と同様に表面固有抵抗値及びそのバラツキ、引張強度、曲げ強度、曲げ弾性率を測定した。結果を表2に示す。
【0027】
【表3】
Figure 0003900456
【0028】
比較例1〜6のスピンチャックはいずれも表面固有抵抗値が106 〜1010Ωの範囲外にあり帯電防止性能が劣る。また、比較例3〜6では表面固有抵抗値のバラツキが大きい。さらに、比較例3及び比較例4の結果より、導電性カーボンブラックの配合量の微小な変化により表面固有抵抗値や剛性が急激に変化してしまうため実用価値が高くないことが分かる。
【0029】
【発明の効果】
本発明の導電性スピンチャックは、帯電防止効果に化ぐれ、またバラツキも小さく実用価値が大きい。また、剛性が高いため、経時による変形が少なく耐久性に優れ、スピンチャックの薄肉化を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive spin chuck.
[0002]
[Prior art]
Semiconductor wafers such as silicon wafers require a wide variety of processing and processing steps until the final product IC chip is obtained, and spin chucks are used for resist coating, cleaning, and development of such semiconductor wafers. It is used. The spin chuck is a semiconductor wafer holding member having a suction holding unit capable of vacuum suction of a semiconductor wafer at the tip and a structure capable of rotating at high speed while holding the semiconductor wafer by being inserted into a shaft of a rotation processing apparatus. is there.
[0003]
Spin chucks have high tensile strength, bending strength and bending elastic modulus so that vacuum suction of semiconductor wafers is not impossible due to breakage or deformation, etc., and friction with air etc. at high speed during resist coating Therefore, it is required to have performance such as prevention of electrification so that particles are not attached due to static electricity generated in the process and the semiconductor wafer is not damaged by the static electricity. Here, in order for the spin chuck to exhibit good antistatic performance, the surface specific resistance value of the spin chuck is preferably about 10 6 to 10 10 Ω.
[0004]
For example, JP-A-9-36216 discloses a polyether ether ketone resin of 70 to 97% by weight and a conductive carbon black of 3 to give a certain degree of conductivity to the spin chuck to prevent charging. An antistatic wafer carrier formed from a resin composition comprising 30% by weight and having a predetermined amount of wear mass in a Taber abrasion test is disclosed, and the wafer carrier is free from adhesion of dust, dust, etc. due to static electricity and low It is dust-generating and has effects such as excellent heat resistance and mechanical properties.
[0005]
[Problems to be solved by the invention]
However, the wafer carrier has poor dispersibility because the carbon black blended as the conductive material tends to agglomerate finely, so that the surface specific resistance value is uniformly 10 6 to 10 10 Ω throughout the spin chuck. There was a problem that it was quite difficult. In recent years, there has been a demand for lighter and more compact spin chucks. However, when the spin chuck is thinned to reduce the weight, there is a problem that bending strength, bending elastic modulus, etc. are insufficient. .
[0006]
Accordingly, an object of the present invention is to have a surface specific resistance value of 10 6 to 10 10 Ω, easy to control the conductivity, and a conductive material having high rigidity such as bending strength and bending elastic modulus that can cope with thinning. It is in providing a sex spin chuck.
[0007]
[Means for Solving the Problems]
In such a situation, the present inventors have intensively studied, and as a result, according to a spin chuck formed from a composition comprising a polyether ether ketone resin and a conductive carbon fiber having a specific volume resistivity, the surface can be easily obtained. It has been found that a specific resistance value can be 10 6 to 10 10 Ω, and there is little variation in the surface specific resistance value, and further, a conductive spin chuck having a high bending strength and a high bending elastic modulus can be obtained. It came to be completed.
[0008]
That is, the present invention is a polyether ether ketone resin 60-90 wt%,
Volume resistivity value 10 0 to 10 3 Ωcm, fiber diameter 10-13 μm, fiber length 100 μm 10 to 40% by weight of conductive carbon fiber having a tensile modulus of 40000 MPa or more , up to 3 mm ,
It is an object of the present invention to provide a conductive spin chuck characterized by comprising only the above.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The conductive spin chuck according to the present invention comprises 60 to 90% by weight of polyetheretherketone resin and 10 to 40% by weight of conductive carbon fiber having a volume resistivity of 10 0 Ωcm or more. The polyether ether ketone resin (hereinafter, also referred to as “PEEK resin”) used in the present invention is not particularly limited, and a normal one can be used. For example, the repeating unit represented by the following formula (1) The thing which has is mentioned.
[0010]
[Chemical 1]
Figure 0003900456
[0011]
The PEEK resin used in the present invention has a logarithmic viscosity of usually 0.65 to 0.95 dl / g, preferably 0.74 to 0.90 dl / g. When the logarithmic viscosity is less than 0.65, the mechanical strength such as the tensile strength, bending strength, and bending elastic modulus of the spin chuck tends to decrease, which is not preferable. On the other hand, when the logarithmic viscosity exceeds 0.95 dl / g, the fluidity of the resin composition becomes small, and the moldability of the spin chuck tends to be lowered, which is not preferable.
[0012]
Here, the logarithmic viscosity is defined by the following formula (2), and is a value measured by the Ostwald method under the condition of 30 ° C. by dissolving the polymer in 98% concentrated sulfuric acid.
Logarithmic viscosity = ln (t / t 0 ) / C (2)
t: Sample solution drop time t 0 : Concentrated sulfuric acid drop time C: Sample concentration 0.1 g / dl
[0013]
As resins for electronic components such as spin chucks, in addition to polyether ether ketone resins, polyether sulfone, polyphenylene sulfide, polyarylate, etc. are known as having excellent moldability, dimensional stability, and mechanical properties (rigidity). However, these are not preferred because they tend to have low wear resistance.
[0014]
The conductive carbon fiber used in the conductive spin chuck according to the present invention has a volume resistivity of usually 10 0 Ωcm or more, preferably 10 0 to 10 3 Ωcm, more preferably 10 1 to 10 2 Ωcm. If the volume resistivity value is less than 10 0 Ωcm, it is not preferable because it becomes difficult to control the surface resistivity value. Here, the volume specific resistance value is a term indicating the same meaning as the volume resistivity adopted in JIS K-6911.
[0015]
The conductive carbon fiber has a fiber diameter of usually 3 to 25 μm, preferably 10 to 13 μm, and a fiber length of usually 5 μm to 5 cm, preferably 100 μm to 3 mm. It is preferable that the fiber diameter and the fiber length are within the above ranges because the rigidity of the conductive spin chuck can be increased. The conductive carbon fiber has a tensile modulus of usually 40000 MPa or more, preferably 45000 MPa or more. It is preferable for the flexural modulus to be in this range because the mechanical strength is improved. Since the conductive carbon fiber is conductive, it imparts a predetermined conductivity to the conductive spin chuck to greatly reduce the surface resistivity, and is easily compatible with the polyetheretherketone and has a predetermined strength. Since it is fibrous, it has the effect of increasing the tensile strength, bending strength, bending elastic modulus, etc. of the conductive spin chuck.
[0016]
The conductive spin chuck according to the present invention is formed of a composition substantially composed of a polyether ether ketone resin and the above conductive carbon fiber and blended at a predetermined ratio. The blending ratio in the composition is usually 10 to 40% by weight of conductive carbon fiber having a volume resistivity of 10 0 Ωcm or more with respect to 60 to 90% by weight of the polyetheretherketone resin, preferably polyetheretherketone. The conductive carbon fiber is 25 to 35% by weight with respect to 65 to 75% by weight of the resin. When the blending ratio of the conductive carbon fibers is less than 10% by weight, it is not preferable because it is difficult to control the surface resistivity of the spin chuck and the reinforcing effect of the conductive carbon fibers is small. Further, if the blending ratio of the conductive carbon fiber exceeds 40% by weight, the moldability is liable to deteriorate, which is not preferable. In addition, the conductive spin chuck according to the present invention may contain a small amount of other optional components as long as the target physical property value is not impaired. Examples of other optional components include carbon black and conductive whiskers.
[0017]
The conductive spin chuck according to the present invention has a tensile strength of usually 200 MPa or more, a bending strength of usually 300 MPa or more, and a bending elastic modulus of usually 18 GPa or more. If the tensile strength, bending strength, and bending elastic modulus are smaller than the above ranges, the rigidity of the conductive spin chuck is insufficient and it is not preferable because the thickness cannot be reduced. In addition, the conductive spin chuck according to the present invention has a surface resistivity of 10 6 to 10 10 Ω, preferably 10 6 to 10 8 Ω. It is not preferable that the surface specific resistance value is outside the above range because the antistatic effect of the conductive spin chuck is small. Here, the surface specific resistance value is a term indicating the same meaning as the surface resistivity employed in JIS K-6911.
[0018]
The method for producing the conductive spin chuck according to the present invention is not particularly limited, and a normal known method can be employed. For example, after polyether ether ketone resin and the above conductive carbon fiber are uniformly mixed with a mixer such as a tumbler, the mixture is melt kneaded with a twin screw extruder to obtain pellets, and after the pellets are melted, the injection molding method, compression A conductive spin chuck can be manufactured by employing a molding method or the like.
[0019]
The conductive spin chuck according to the present invention can be used as a holding member for a semiconductor wafer or the like.
[0020]
【Example】
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[0021]
The PEEK resin, conductive carbon fiber, or conductive carbon black used in the examples and comparative examples is as follows.
-PEEK resin: "PEEK polymer 450P" (manufactured by Victorex MC Corporation), logarithmic viscosity 0.86 dl / g
Conductive carbon fiber A: pitch-based carbon fiber “Zyrus GC-03J-301” (Osaka Gas Chemical Co., Ltd.)
-Conductive carbon black B: "Dia Black G" (Mitsubishi Chemical Corporation)
-Conductive carbon black C: "FT carbon" (manufactured by Nippon Kayaku Carbon Co., Ltd.)
-Conductive carbon black D: "MT carbon" (Cancarb)
Conductive carbon fiber E: “Pitch carbon fiber” (Donac Co., Ltd.)
Table 1 shows the physical properties of the conductive carbon fiber or conductive carbon black.
[0022]
[Table 1]
Figure 0003900456
[0023]
Examples 1-3
PEEK resin and conductive carbon fiber A were blended in the proportions shown in Table 2, and melted and kneaded with a twin-screw extruder, and then pelletized. Next, this pellet was formed into a spin chuck shape by an injection molding machine to obtain a conductive spin chuck. About the obtained electroconductive spin chuck, the surface specific resistance value and its variation, tensile strength, bending strength, and bending elastic modulus were measured. The results are shown in Table 2.
The surface resistivity, tensile strength, bending strength, and bending elastic modulus were measured as follows.
-Surface resistivity: Insulation resistance meter "MODEL / 9329A HIGH RESISTANCE METER" (manufactured by Yokogawa Hewlett-Packard Co., Ltd.), sandwiching a disk-shaped conductive spin chuck between SUS electrodes, 1 at an applied voltage of 100V The surface resistivity was determined by applying a voltage for minutes.
-Tensile strength: A test specimen of ASTM No. 1 dumbbell was molded and measured in accordance with ASTM D638.
-Flexural strength and flexural modulus: Measured according to ASTM D790 using a specimen of 3.2 t mm x 12.7 W mm x 127 L mm.
[0024]
[Table 2]
Figure 0003900456
[0025]
Each of the conductive spin chucks of Examples 1 to 3 has a surface resistivity value in the range of 10 6 to 10 10 Ω, excellent antistatic performance, small variations in the surface resistivity value, and conductive carbon. Since the change in the surface resistivity with respect to the change in the blending amount of the fiber did not occur rapidly, it was excellent in practical value. Further, the tensile strength, bending strength, and flexural modulus were all high and the rigidity was excellent.
[0026]
Comparative Examples 1-6
A spin chuck was prepared in the same manner as in Example 1 except that conductive carbon blacks B to D or conductive carbon fibers E were used instead of the conductive carbon fibers A, and the blending ratio with the PEEK resin was as shown in Table 3. Obtained.
About the obtained spin chuck, the surface specific resistance value and its variation, tensile strength, bending strength, and bending elastic modulus were measured in the same manner as in Example 1. The results are shown in Table 2.
[0027]
[Table 3]
Figure 0003900456
[0028]
Each of the spin chucks of Comparative Examples 1 to 6 has a surface specific resistance value outside the range of 10 6 to 10 10 Ω and is inferior in antistatic performance. Further, in Comparative Examples 3 to 6, the variation in the surface specific resistance value is large. Furthermore, from the results of Comparative Example 3 and Comparative Example 4, it can be seen that the practical value is not high because the surface specific resistance value and the rigidity change suddenly due to a minute change in the blending amount of the conductive carbon black.
[0029]
【The invention's effect】
The conductive spin chuck of the present invention has an antistatic effect and has little variation and great practical value. In addition, since the rigidity is high, deformation with time is small, durability is excellent, and the spin chuck can be thinned.

Claims (1)

ポリエーテルエーテルケトン樹脂60〜90重量%と、
体積固有抵抗値10 〜10 Ωcm、繊維径10〜13μm、繊維長100μm 〜3mm、且つ引張弾性率40000MPa以上の導電性カーボンファイバー10〜40重量%、
のみからなることを特徴とする導電性スピンチャック。
60 to 90% by weight of polyetheretherketone resin,
Volume resistivity value 10 0 to 10 3 Ωcm, fiber diameter 10-13 μm, fiber length 100 μm 10 to 40% by weight of conductive carbon fiber having a tensile modulus of 40000 MPa or more , up to 3 mm ,
A conductive spin chuck characterized by comprising only .
JP2000053715A 2000-02-29 2000-02-29 Conductive spin chuck Expired - Lifetime JP3900456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053715A JP3900456B2 (en) 2000-02-29 2000-02-29 Conductive spin chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053715A JP3900456B2 (en) 2000-02-29 2000-02-29 Conductive spin chuck

Publications (2)

Publication Number Publication Date
JP2001244318A JP2001244318A (en) 2001-09-07
JP3900456B2 true JP3900456B2 (en) 2007-04-04

Family

ID=18575061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053715A Expired - Lifetime JP3900456B2 (en) 2000-02-29 2000-02-29 Conductive spin chuck

Country Status (1)

Country Link
JP (1) JP3900456B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100350559C (en) * 2003-08-05 2007-11-21 大日本网目版制造株式会社 Substrate processing apparatus and substrate processing method
CN1296013C (en) * 2003-08-20 2007-01-24 中国科学院金属研究所 Carbon fiber inforced poly(ether-ether-ketone) composite bone fracture plate
JP4570054B2 (en) * 2009-10-13 2010-10-27 東京エレクトロン株式会社 Substrate processing equipment
KR102096967B1 (en) * 2017-11-24 2020-04-03 (주)신우에이엔티 Antistatic chuck pin, antistatic chuck body member and wafer handling unit comprising the antistatic chuck pin and the antistatic chuck body member
KR102616131B1 (en) 2020-08-24 2023-12-21 세메스 주식회사 Apparatus for treating substrate, ion impantation treatment apparatus and ion impantation treatment apparatus method
CN113774497B (en) * 2021-09-13 2023-03-24 广州傲群刷业科技有限公司 PEEK material wire drawing process and application thereof in electronic cigarette cleaning hairbrush

Also Published As

Publication number Publication date
JP2001244318A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP5341218B2 (en) Resin composition for sealing and semiconductor device sealed with resin
JP3020974B2 (en) Epoxy resin composition and semiconductor encapsulant using the same
CN1150279C (en) Aromatic polysulphone resin composition and its moulded product
JP3900456B2 (en) Conductive spin chuck
JP2004031008A (en) Fuel cell separator
US20080075953A1 (en) Electrically Conductive Composites with Resin and Vgcf, Production Process, and Use Thereof
KR101055620B1 (en) Polymer / carbon nanotube composite with excellent electrical properties and its manufacturing method
JP2007262295A (en) Thermoconductive resin composition and molded article consisting of the same
US20020086198A1 (en) Electrically conducting curable composition and cured product thereof
JPWO2002082592A1 (en) IC socket
KR100337804B1 (en) Resin composition and heat-resistant, returnable IC tray obtained by molding the same
JP3521680B2 (en) Aromatic polysulfone resin composition
JP3722065B2 (en) Antistatic resin molded product
JP2006291076A (en) Thermoplastic resin composition as coil-sealing material
JP2004075954A (en) Epoxy resin composition for fuel cell separator
JPH107898A (en) Polyether-ketone resin composition and carrier for processing and treating semiconductor wafer
JPH05226092A (en) Electrostatic diffusion resin complex
JP2757454B2 (en) Short carbon fiber aggregate and fiber-reinforced thermoplastic resin composition obtained by blending the same
JPH06145519A (en) Heat-resistant conductive resin composition
JP2003105676A (en) Carbon fiber, carbon fiber-reinforced thermoplastic resin composition, molding material and molded product
KR101281112B1 (en) Modified polyphenylene oxide composition for ic test socket
JP2855225B2 (en) Thermoplastic resin composition
JP2003217605A (en) Molding material for fuel cell separator, and fuel cell separator molded of the same
CN115044192B (en) High-filling heat-conducting master batch applied to polyester plastics and preparation method thereof
Yan et al. Effect of synergy between pyrolysis carbon black and carbon nanofibers on composite properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent or registration of utility model

Ref document number: 3900456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term