JPH0586982B2 - - Google Patents

Info

Publication number
JPH0586982B2
JPH0586982B2 JP61013884A JP1388486A JPH0586982B2 JP H0586982 B2 JPH0586982 B2 JP H0586982B2 JP 61013884 A JP61013884 A JP 61013884A JP 1388486 A JP1388486 A JP 1388486A JP H0586982 B2 JPH0586982 B2 JP H0586982B2
Authority
JP
Japan
Prior art keywords
amount
carbon black
added
graphite
changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61013884A
Other languages
Japanese (ja)
Other versions
JPS62172059A (en
Inventor
Takashi Sakai
Masahiro Aoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1388486A priority Critical patent/JPS62172059A/en
Publication of JPS62172059A publication Critical patent/JPS62172059A/en
Publication of JPH0586982B2 publication Critical patent/JPH0586982B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は帯電防止性を有するポリフエニレンサ
ルフアイド樹脂組成物に関するものである。 〈従来の技術〉 導電性樹脂組成物として熱可塑性樹脂または熱
硬化性樹脂にカーボンブラツク、黒鉛および非導
電性フイラーを混合・混練せしめた成形可能な樹
脂組成物が特開昭59−96142号公報により知られ
ている。 〈発明が解決しようとする問題点〉 この技術をポリフエニレンサルフアイドに適用
すると体積固有抵抗が103〜1010Ω・cmのレベル
の樹脂組成物が得られる。しかしながら上記技術
をいかにポリフエニレンサルフアイドに適用して
も、カーボンブラツクによる射出成形流動性およ
び機械的強度の低下が大きく、かつ不均一分散
や、強化材の配向から生じる寸法安定性低下のた
め、例えば光・磁気応用機器の心臓部に要求され
る精密射出成形部品を得ることは困難であつた。 本発明は高い帯電防止性を有しながら、従来技
術では得られなかつたレベルのポリフエニレンサ
ルフアイド樹脂の射出成形性および高い機械的強
度を維持し、かつ高い寸法安定性のある射出成形
品を与えるポリフエニレンサルフアイド樹脂組成
物を提供することを目的とするものである。 〈問題点を解決するための手段〉 本発明の目的は(a)ポリフエニレンサルフアイド
樹脂25〜75重量%、(b)DBP吸油量が400ml/100g
以上で、かつニツケルとバナジユウムの合計量が
200ppm以下の導電性カーボンブラツク0.5〜3.5
重量%、(c)天然鱗状黒鉛2〜18重量%、(d)カルシ
ウム、マグネシウム、バリウムの炭酸塩、硫酸
塩、リン酸塩、珪酸塩あるいはタルク、マイカか
ら選ばれる一種または二種以上の混合物からなる
無機充填剤5〜40重量%とを含有し、かつ(b)およ
び(c)成分の合計量を4〜20重量%にすることを特
徴とするポリフエニレンサルフアイド樹脂組成物
により達成された。 本発明が対象とするポリフエニレンサルフアイ
ド樹脂(以下PPSと略称する)にはポリ(パラ−
フエニレンサルフアイド)、ポリ(メタ−フエニ
レンサルフアイド)およびポリ(パラ−フエニレ
ンサルフアイド+メタ−フエニレンサルフアイ
ド)等が包含される。これらのPPSそれ自体は周
知であり、市場から容易に入手し得るものであ
る。 これらPPSの含有量はPPS組成物としての機械
的強度を保つために、25重量%以上を必要とす
る。一方、本発明の他成分による帯電防止性、寸
法安定性等の付与のためにPPSの上限は75重量%
となる。 次に本発明に使用するカーボンブラツクとし
て、DBP吸油量が400ml/100g以上で、かつニツ
ケルとバナジユウムの合計含有量が200ppm以下
の導電性カーボンブラツクが使用されるが、かか
るカーボンブラツクはPPS組成物に練込んだ場
合、従来のカーボンブラツクよりも高い導電性あ
るいは高い帯電防止性を与える。なおDBP吸油
量とはASTM−D2414−79に規定された方法に
従つて測定した吸油量を意味する。このカーボン
ブラツクのDBP吸油量が400ml/100gより小さく
なると、高帯電防止性のPPS組成物を得るにはカ
ーボンブラツクを多量に添加せねばならず、その
分最終組成物としての成形性、機械的強度が損な
われるので好ましくない。本発明が対象とするカ
ーボンブラツクについてはDBP吸油量の上限は
特に制限はないが製造上の都合から、通常、750
ml/100g以下のものが好ましく使用される。 さらに本発明の上記カーボンブラツクに含まれ
るニツケルとバナジユウムについては、その合計
量が200ppm以下であることが必要であり、特に
バナジユウム分80ppm以下、ニツケル分40ppm以
下の範囲にあることが好ましい。 この合計量が200ppmより多くなると、PPSが
重金属イオンの影響を受け、カーボンブラツクの
分散性が悪くなり、組成物の成形性が著しく低下
する。該カーボンブラツクの添加量は0.5〜3.5重
量%の範囲にあることが必要であり、さらに0.7
〜1.9重量%が好ましい。該カーボンブラツクの
添加量が0.5重量%より少ないと、最終のPPS組
成物として、帯電防止性を付与することが困難と
なり好ましくない。一方、3.5重量%より多くな
ると、最終のPPS組成物の機械的強度を十分に保
つことが困難になり好ましくない。 次に本発明に使用する黒鉛として、天然鱗状黒
鉛であることが必要である。一般に工業材料とし
ての黒鉛はコークス、タール、ピツチなどを高温
で黒鉛化処理した人造黒鉛と天然黒鉛に大別され
る。さらに天然黒鉛は産地により鱗状黒鉛と土状
黒鉛に分類される。本発明者らは天然鱗状黒鉛な
る特定の黒鉛が次の理由によつて特に優れている
ことを見い出した。 (1) 人造黒鉛および土状黒鉛に比べ高い帯電防止
効果を与える。 (2) 本発明に適用される導電性カーボンブラツク
の分散を高める効果が最も高いため、カーボン
ブラツク添加による成形性、機械的強度の低下
を著しく軽減する。 本発明においては天然鱗状黒鉛の粒度は特に制
限されないが、検鏡測定法による平均粒径が0.8
〜12μのものが比較的好ましい。 また該黒鉛の添加濃度は2〜18重量%の範囲に
あることが必要である。2重量%未満では黒鉛自
体による帯電防止性増大効果はもとより、導電性
カーボンブラツクの分散性を十分に高めることも
困難である。 一方、18重量%を越えると導電性カーボンブラ
ツクが0.5重量%未満でも黒鉛自体によつて、十
分高い帯電防止性が付与されるが、射出成形にお
ける配向の影響を増大せしめ、成形品の寸法安定
性を低下させるので好ましくない。この影響は例
えば、成形品の線膨張係数が樹脂組成物の流れ方
向と流れと垂直方向との差が大きくなるかたちで
現われ、高い寸法精度を要求する精密成形品の実
用的価値を損なわしめる。 さらに本発明が対象とする導電性カーボンブラ
ツクと天然鱗状黒鉛の合計量については4〜20重
量%の範囲にあることが必要である。該合計量が
4重量%未満である場合において、カーボンブラ
ツクの占める割合が少ない場合は、帯電防止性が
不十分であり、カーボンブラツクの占める割合が
多い場合は帯電防止性が十分でも、黒鉛が少な過
ぎるために導電性カーボンブラツクの分散性が悪
く、射出成形性および機械的強度が著しく損なわ
れる。また該合計量が20重量%を越すと、射出成
形における配向の悪影響が増大し、かつ成形品の
機械的強度レベルも大巾に低下するので好ましく
ない。 次に、本発明の樹脂組成物の第4成分として、
カルシウム、マグネシウム、バリウムの炭酸塩、
硫酸塩、リン酸塩、珪酸塩あるいはタルク、マイ
カから選ばれる一種又は二種以上の混合物からな
る無機充填材を5〜40重量%必要とする。本発明
の樹脂組成物においてはかかる無機充填材は射出
成形品に高い寸法安定性を与えるために必要であ
る。また、かかる無機充填材は導電性カーボンブ
ラツクと黒鉛の帯電防止効果を高める作用がある
他、剛性や耐熱性を高める点でも有用である。こ
れらの無機充填材の添加量は要求性能に応じて適
当に決める必要があるが、一般には5〜40重量%
の範囲が必要である。5重量%未満では寸法安定
化効果は乏しく、また40重量%を越えると機械的
強度の維持は困難となる。 また、かかる無機充填材の粒径は特に制限はな
いが、多くの場合50μ以下の平均粒径のものが好
適である。 さらに当然ながら、本発明の樹脂組成物におい
ては、上記4成分の他に、適当な他の充填材、熱
安定剤を添加して、強化、熱膨張抑制、摺動性増
大、耐熱性向上、寸法安定化増大等の効果を与え
ることもできる。この追加添加され得る充填材と
しては、特に限定しないが耐熱性の優れた繊維材
料や固体微粉末が有効である。繊維材料としては
硝子繊維、カーボン繊維、スチール繊維、黄銅繊
維、チタン酸カリウムウイスカー等の耐熱、耐久
性の優れたものが用いられる。また、固体微粉末
としては、コロイダルシリカ、石英粉末、二硫化
タングステン、二硫化モリブデン、窒化ホウ素、
フエライト粉末、マグネタイト粉末等が用いられ
る。これら充填材のうちカーボン繊維、スチール
繊維、黄銅繊維は帯電防止性の面から導電性カー
ボンブラツクおよび黒鉛を本発明の添加範囲内に
おいて減少させ得る効果がある。 また、本発明の樹脂組成物に対して、少量であ
れば、ポリサルホン、ポリエーテルサルホン、ポ
リアリルサルホン、ポリアリレート、ポリアミド
イミド、ポリエーテルイミド、芳香族ポリエステ
ル樹脂、ポリエーテルエーテルケトンなどの公知
の熱可塑性重合体を併用してもよい。 本発明の樹脂組成物は以上記述した成分原料を
混合、混練することによつて得られる。混練には
通常の方法、例えばバンバリーミキサー等による
バチ式混練で混練後粉砕するか、あるいはヘンシ
エルミキサーでドライブレンド後、押出機で連続
的に混練押出してペレツトに成形するか、または
粉砕して不定形粒状にする方法が採用できる。 〈実施例〉 次に実施例により詳細に説明する。 実施例および比較例に記す体積固有抵抗、タツ
プネジ強さおよび熱膨張率の等方性の測定方法は
次のとおりである。 (1) 体積固有抵抗 タケダ理研TR6877コンピユーテイング・デジ
タル・マルチメーターを用いて、射出成形した直
径40mm、厚さ3mmの円板を面荷重5Kg/cm2、雰囲
気23℃、60%RHで測定する。 (2) タツプネジ強さ タテ60mm、ヨコ12mm、厚さ6mmの角柱に射出成
形したテストピースの中央部を厚み方向に卓上タ
ツピング盤(吉良鉄工所製KRT−10型)でまず
下穴を径1.5mmのストレートシヤンクドリル針
(規格JIS B4301/PCS10)であけ、次に径2.0mm
のタツピングを規格M2×0.4のタツプ針で行な
う。得られたネジ穴にプラス型M2×4タイプの
ネジをトルクドライバー(東日製10FTD型)で
ねじ込み、テストピース側のネジ山が破壊される
に要するトルク(ねじが馬鹿になるときのトル
ク)を測定する。 (3) 線膨張率の等方性 フイルムゲートの金型で射出成形したサイズ30
mm角、厚さ3mmの平板の中央部分から断面3mm
角、長さ16mmの角柱を樹脂の流れ方向と流れと直
角方向に切出す。(1枚の平板からテストピース
1本作成)このテストピースの長さ方向の線膨張
率を理学電機製の熱機械解析装置(TMA)を用
いて、昇温速度1°K/min、測定温度範囲30〜80
℃の条件で測定する。線膨張率の等方性は樹脂の
流れ方向の線膨張率と流れと直角方向の線膨張率
との差で表示し、この差が小さい程、寸法安定性
が大きいと判定する。 実施例 1 PPS粉末(ライトンP−6、フイリツプスペト
ローリアム社製)2.5KgとDBP吸油量480ml/
100g、ニツケル分15ppm、バナジウム分50ppm
なる導電性カーボンブラツク(ライオンアクゾ
製、EC−DJ600)0.15Kgと天然鱗状黒鉛(CP、
日本黒鉛工業製)0.65Kgと炭酸カルシウム粉末
(KSS−1000、金平鉱業製)3.4Kgとガラス繊維
(チヨツプド・ストランド、TN−101、日本硝子
電気製)3.45Kgとを50のドラムタンブラーで10
分間均一に混合した後、45m/mφ2軸押出機
(PCM−45、池貝鉄工製)を用いて、シリンダー
温度323℃設定、スクリユー回転数80rpmで混練
押出し、ホツトカツトにてペレツト状にした。得
られたペレツトを75TON射出成形機(サイキヤ
ツプ、住友重機械工業製)でシリンダー温度318
℃、金型温度140℃、射出圧力1000Kg/cm3の条件
により、体積固有抵抗試験片(直径40mm、厚さ3
mm円板)、1号ダンベル(ASTM−D−638)、タ
ツプネジ強さ測定試験片(60mm×12mm×6mm角
柱)、線膨張率測定試験片(30mm×30mm×3mm、
正方形板)を成形し、帯電防止性能として体積固
有抵抗(Rv)を、強度として引張強度(TS)、
およびタツプネジ強さ(SSD)を、寸法安定性の
目安として線膨張率の等方性(ELE)を測定し
た。表−1に示すごとく得られた組成物は成形流
動性が実用上可であり、Rvは平均値6×104Ω・
cmを示し、バラツキ範囲(n=50)3×104〜8
×104で実用上十分に均一であり、TS700Kg/cm2
SSD3.7Kg・cm、ELE0.01×10-5/℃を示し、帯電
防止性に優れ、且つ強度、寸法安定性も成形材料
として充分なものであった。 実施例2および3 実施例1において、PPS配合量、炭酸カルシウ
ム添加量およびガラス繊維配合量を表−1に示す
ごとくに変えて組成物を得、実施例1と同様に試
験した。結果を表−1に示すごとく、いずれも成
形材料として十分なものであつた。 比較例 1 実施例1においてPPS配合量を2.0Kg、炭酸カ
ルシウム3.7Kg、ガラス繊維3.65Kgに変えた場合、
表−1に示すごとく強度レベルが低く、成形材料
として不充分なものであつた。 比較例 2 実施例1においてPPS配合量を8.0Kg、炭酸カ
ルシウム0.7Kg、ガラス繊維0.65Kgに変えた場合
の組成物は表−1に示すごとくRvのバラツキ範
囲が大きく、強度レベルも低く、かつELEが大
きいため、寸法安定性も悪く、成形材料として実
用的価値の乏しいものであつた。 実施例 4 PPS粉末(ライトンP−4、フイリツプスペト
ローリアム社製)5.0KgとDBP吸油量420ml/
100g、ニツケル分40ppm、バナジウム分140ppm
なる導電性カーボンブラツク0.2Kgと天然鱗状黒
鉛(CSP、日本黒鉛工業製)0.5Kgと硫酸カルシ
ウム二水和物(半井化学薬品製)の微粉末2.2Kg
とガラス繊維(グラスロン・チヨツプド・ストラ
ンドCS−06−MA−497、旭フアイバーグラス社
製)2.15Kgとを50のドラムタンブラーで10分間
均一に混合した後、以下、実施例1と同条件で混
練押出し、成形、評価を行った。結果を表−1に
示すごとく、得られた組成物は帯電防止性に優
れ、強度レベル、寸法安定性も高く実用価値の高
いものであつた。 比較例 3 実施例4において、導電性カーボンブラツクの
DBP吸油量を350ml/100gに変えた以外は実施例
4と同様に混練り押出し、各試験片を成形し、測
定した。結果を表−1に示すごとく、帯電防止性
は認められるもののバラツキが大きく、実用上不
満足なものであつた。 比較例 4 実施例4において導電性カーボンブラツク中の
ニツケルとバナジウムの合計量を300ppmに変え
た以外は実施例4と同様に試験した。結果を表−
1に示すごとく、カーボンブラツクの分散性が悪
いために成形流動性が悪く、体積固有抵抗のバラ
ツキが大きく、引張強度、寸法安定性も低いもの
であつた。 実施例 5 実施例1においてPPS配合量を4.5Kg、導電性
カーボンブラツク添加量を0.05Kg、炭酸カルシウ
ム3.4Kgをタルク(MST、竹原化学製)2.0Kg、ガ
ラス繊維配合量を2.95Kgにそれぞれ変えた以外は
実施例1と同様に試験した。評価結果を表−1に
示す。帯電防止性はやや低いが、バラツキが少な
いために実用範囲にあり、強度レベルおよび寸法
安定性は充分なものであつた。 実施例 6 実施例5において導電性カーボンブラツクを
0.35Kg、ガラス繊維配合量を2.65Kgににそれぞれ
変えた他は実施例5と同様に試験した。表−1に
示すごとく、得られた組成物は帯電防止性と寸法
安定性に優れ、成形流動性、強度も実用上問題な
いものであつた。 比較例 6 実施例5において導電性カーボンブラツク添加
量を0.40Kg、ガラス繊維配合量を2.60Kgにそれぞ
れ変えた以外は実施例5と同様に試験したとこ
ろ、成形流動性が悪く強度も著しく低いものであ
つた。 実施例 7 実施例1において、PPS配合量を4.5Kg、導電
性カーボンブラツク添加量を0.10Kg、黒鉛添加量
を1.0Kg、炭酸カルシウム3.4Kgをマイカ(スゾラ
イド・マイカ325−HK、マリエツタリソースイ
ンターナシヨナル社製)1.4Kg、ガラス繊維配合
量を3.0Kgにそれぞれ変えた他は実施例1と同様
に試験した。結果を表−1に示すごとく、成形
性、帯電防止性、強度、寸法安定性が成形材料と
して充分満足すべきものであつた。 比較例7および8 実施例7において、黒鉛の種類を天然土状
(AP、日本黒鉛工業製)あるいは人造黒鉛粉末
(日本カーボン製SEG−RH丸棒の粉砕品)に変
えた他は実施例7と同様に試験し、結果を表−1
に示す。いずれの組成物も帯電防止性が低く、線
膨張率の等方性からみて精密成形用の組成物とし
ては寸法安定性が不十分であつた。 実施例 8 実施例5において導電性カーボンブラツク添加
量を0.25Kg、黒鉛添加量を0.20Kg、タルク2.0Kgを
リン酸カルシウム(第三)(半井化学薬品製)の
微粉末1.6Kg、ガラス繊維配合量を3.45Kgに、そ
れぞれ変えた他は実施例5と同様に試験した。表
−1に示すごとく、得られた組成物は帯電防止
性、タツプネジ強さおよび寸法安定性に優れ、成
形流動性および引張強度も実用に耐えるものであ
つた。 実施例 9 実施例5において導電性カーボンブラツク添加
量を0.20Kg、黒鉛添加量を1.8Kgに、タルク2.0Kg
を炭酸マグネシウム(塩基性)(半井化学薬品製)
の粉末1.6Kgに、ガラス繊維配合量を1.90Kgに、
それぞれ変えた他は実施例5と同様に試験した。
得られた組成物は表−1に示すごとく、物性バラ
ンスに優れ、成形材料として充分なものであつ
た。 比較例 9 実施例8において、黒鉛を0.15Kg、ガラス繊維
配合量を3.50Kgに、それぞれ変えた他は実施例8
と同様に実施した。この結果、表−1に示すごと
く、導電性カーボンブラツクの分散性が悪いため
に体積固有抵抗値のバラツキが大きく、寸法安定
性も不十分なものであつた。 比較例 10 実施例9において導電性カーボンブラツク添加
量を0.10Kg、黒鉛添加量を1.9Kgに、それぞれ変
更した他は実施例9と同様に実施した。得られた
組成物は流動性が良好なるも、線膨張率の等方性
が低いため、成形材料としては不充分なものであ
つた。 実施例 10 実施例1において、PPS粉末2.5Kgをライトン
P−6とライトンV−1の70対30混合品4.5Kgに、
黒鉛添加量を0.25Kgに、炭酸カルシウム粉末3.4
Kgを炭酸バリウム粉末(半井化学薬品製)2.10Kg
に、ガラス繊維配合量を3.0Kgにそれぞれ変更し
た他は実施例1と同様に試験した。得られた組成
物は表−1に示すごとく、成形材料として満足な
ものであつた。 実施例 11 実施例10において、導電性カーボンブラツク添
加量(B)を0.20Kgに、黒鉛添加量(C)を1.8Kgに、炭
酸バリウム粉末2.10Kgを硫酸マグネシウム無水物
(半井化学薬品製)の粉末1.50Kgに、ガラス繊維
配合量を2.0Kgに、それぞれ変更した他は実施例
10と同様に試験した。表−1に結果を示すごと
く、得られた組成物は帯電防止性に優れ、強度レ
ベル、寸法安定性も問題ないものであつた。 比較例 11 実施例10において、導電性カーボンブラツク添
加量(B)を0.050Kgに、黒鉛添加量(C)を0.20Kg((B)
+(C)0.25Kg)に、炭酸バリウム粉末を2.25Kgに、
それぞれ変えた他は実施例10と同様に試験した。
得られた組成物は表−1に示すごとく帯電防止性
が不十分であつた。 比較例 12 実施例11において、導電性カーボンブラツク添
加量(B)を0.30Kg((B)+(C)2.1Kg)に、硫酸マグネ
シウム粉末を1.40Kgに変更した他は実施例11と同
様に実施した。得られた組成物は表−1に示すご
とく、帯電防止性が優れるも、強度レベルおよび
寸法安定性も低く、成形材料として不充分なもの
であつた。 実施例 12〜16 実施例10において、黒鉛添加量を0.65Kgに、第
4成分として、半井化学薬品製を粉末化した硫酸
バリウム粉末(実施例12)、リン酸マグネシウム
(第一)粉末(実施例13)、リン酸バリウム(メ
タ)粉末(実施例14)、ケイ酸カルシウム粉末
(実施例15)、ケイ酸マグネシウム粉末(実施例
16)のいずれか1.20Kgに、ガラス繊維配合量を
2.5Kgに、それぞれ変更した他は、実施例10と同
様に試験した。結果を表−1に示すごとく、得ら
れた組成物はいずれも物性バランスよく、射出成
形材料として充分なものであつた。 実施例 17 実施例1において、PPS配合量を5.5Kgに、黒
鉛添加量を0.65Kgに、炭酸カルシウム粉末の添加
量を0.50Kgに、ガラス繊維配合量を3.2Kgに、そ
れぞれ変更した他は実施例1と同様に実施したと
ころ、得られた組成物は表−1に示すごとく、物
性バランスに優れ、成形材料として満足なもので
あった。 た。 比較例 13 実施例17において、炭酸カルシウム添加量を
0.30Kgに、ガラス繊維配合量を3.4Kgに、それぞ
れ変えた他は実施例17と同様に試験したところ、
表1−に示すごとく、寸法安定性が悪く、成形材
料として不充分なものであつた。 実施例 18 実施例1において、PPS配合量を3.5Kgに、黒
鉛添加量を0.65Kgに、炭酸カルシウム添加量を
4.0Kgに、ガラス繊維配合量を1.7Kgに、それぞれ
変更した他は実施例1と同様に実施した。表−1
に示すごとく、得られた組成物は帯電防止性、タ
ツプネジ強さおよび寸法安定性にとくに優れ、成
形材料として好ましいものであつた。 比較例 14 実施例18において、炭酸カルシウム添加量を
4.5Kgに、ガラス繊維配合量を1.2Kgに、それぞれ
変更した他は実施例18と同様に試験したところ、
表−1に示すごとく、強度レベルが成形材料とし
て不充分なものであつた。
<Industrial Application Field> The present invention relates to a polyphenylene sulfide resin composition having antistatic properties. <Prior art> JP-A-59-96142 discloses a moldable resin composition prepared by mixing and kneading carbon black, graphite, and a non-conductive filler with a thermoplastic resin or thermosetting resin as a conductive resin composition. known by. <Problems to be Solved by the Invention> When this technique is applied to polyphenylene sulfide, a resin composition having a volume resistivity of 10 3 to 10 10 Ω·cm can be obtained. However, no matter how much the above technology is applied to polyphenylene sulfide, injection molding fluidity and mechanical strength are significantly reduced due to carbon black, and dimensional stability is reduced due to non-uniform dispersion and orientation of reinforcing materials. For example, it has been difficult to obtain precision injection molded parts required for the heart of optical/magnetic application equipment. The present invention provides an injection molded product that has high antistatic properties, maintains a level of injection moldability and high mechanical strength of polyphenylene sulfide resin that could not be obtained with conventional technology, and has high dimensional stability. The object of the present invention is to provide a polyphenylene sulfide resin composition that provides the following properties. <Means for solving the problems> The objects of the present invention are (a) polyphenylene sulfide resin of 25 to 75% by weight, (b) DBP oil absorption of 400ml/100g
Above, and the total amount of nickel and vanadium is
Conductive carbon black 0.5-3.5 below 200ppm
% by weight, (c) 2 to 18% by weight of natural flaky graphite, (d) one or a mixture of two or more selected from carbonates, sulfates, phosphates, silicates of calcium, magnesium, barium, talc, and mica. Achieved by a polyphenylene sulfide resin composition containing 5 to 40% by weight of an inorganic filler consisting of It was done. The polyphenylene sulfide resin (hereinafter abbreviated as PPS) targeted by the present invention includes poly(para-
phenylene sulfide), poly(meta-phenylene sulfide), poly(para-phenylene sulfide + meta-phenylene sulfide), and the like. These PPSs themselves are well known and readily available on the market. The content of these PPSs needs to be 25% by weight or more in order to maintain the mechanical strength of the PPS composition. On the other hand, the upper limit of PPS is 75% by weight due to the provision of antistatic properties, dimensional stability, etc. by other components of the present invention.
becomes. Next, as the carbon black used in the present invention, a conductive carbon black with a DBP oil absorption of 400 ml/100 g or more and a total content of nickel and vanadium of 200 ppm or less is used, but such carbon black is a PPS composition. When incorporated into carbon black, it provides higher conductivity or antistatic properties than conventional carbon black. Note that DBP oil absorption means oil absorption measured according to the method specified in ASTM-D2414-79. When the DBP oil absorption amount of carbon black is less than 400ml/100g, a large amount of carbon black must be added to obtain a PPS composition with high antistatic properties, which will affect the moldability and mechanical properties of the final composition. This is not preferable because the strength is impaired. Regarding carbon black, which is the subject of the present invention, there is no particular upper limit to the DBP oil absorption, but for manufacturing reasons, it is usually 750
ml/100g or less is preferably used. Furthermore, the total amount of nickel and vanadium contained in the carbon black of the present invention must be 200 ppm or less, and it is particularly preferable that the vanadium content is 80 ppm or less and the nickel content is 40 ppm or less. If this total amount exceeds 200 ppm, PPS will be affected by heavy metal ions, the dispersibility of carbon black will deteriorate, and the moldability of the composition will deteriorate significantly. The amount of carbon black added must be in the range of 0.5 to 3.5% by weight, and further 0.7% by weight.
~1.9% by weight is preferred. If the amount of carbon black added is less than 0.5% by weight, it will be difficult to impart antistatic properties to the final PPS composition, which is not preferable. On the other hand, if it exceeds 3.5% by weight, it becomes difficult to maintain sufficient mechanical strength of the final PPS composition, which is not preferable. Next, the graphite used in the present invention needs to be natural scaly graphite. Graphite as an industrial material is generally divided into artificial graphite, which is made by graphitizing coke, tar, pitch, etc. at high temperatures, and natural graphite. Furthermore, natural graphite is classified into scaly graphite and earthy graphite depending on the production area. The present inventors have discovered that a particular type of graphite, natural flaky graphite, is particularly excellent for the following reasons. (1) Provides higher antistatic effect than artificial graphite and earthy graphite. (2) Since it has the highest effect of increasing the dispersion of the conductive carbon black applied to the present invention, it significantly reduces the reduction in moldability and mechanical strength caused by the addition of carbon black. In the present invention, the particle size of natural flaky graphite is not particularly limited, but the average particle size determined by microscopic measurement is 0.8.
~12μ is relatively preferred. Further, the concentration of the graphite added must be in the range of 2 to 18% by weight. If the amount is less than 2% by weight, it is difficult not only to obtain the effect of increasing the antistatic property of the graphite itself, but also to sufficiently increase the dispersibility of the conductive carbon black. On the other hand, if the amount of conductive carbon black exceeds 18% by weight, the graphite itself will provide sufficiently high antistatic properties even if the content is less than 0.5% by weight, but the influence of orientation during injection molding will increase, resulting in dimensional stability of the molded product. This is not preferable because it reduces the quality of the product. This effect appears, for example, in the form of a larger difference in the linear expansion coefficient of the molded product between the flow direction of the resin composition and the direction perpendicular to the flow, impairing the practical value of precision molded products that require high dimensional accuracy. Furthermore, the total amount of conductive carbon black and natural flaky graphite, which are the object of the present invention, must be in the range of 4 to 20% by weight. When the total amount is less than 4% by weight, if the proportion of carbon black is small, the antistatic property is insufficient, and if the proportion of carbon black is large, even if the antistatic property is sufficient, the graphite If the amount is too small, the dispersibility of the conductive carbon black will be poor, and injection moldability and mechanical strength will be significantly impaired. Moreover, if the total amount exceeds 20% by weight, the adverse effects of orientation during injection molding will increase, and the mechanical strength level of the molded product will also decrease significantly, which is not preferable. Next, as the fourth component of the resin composition of the present invention,
Calcium, magnesium, barium carbonates,
5 to 40% by weight of an inorganic filler consisting of one or a mixture of two or more selected from sulfates, phosphates, silicates, talc, and mica is required. In the resin composition of the present invention, such an inorganic filler is necessary in order to impart high dimensional stability to the injection molded article. In addition, such inorganic fillers have the effect of enhancing the antistatic effect of conductive carbon black and graphite, and are also useful in terms of increasing rigidity and heat resistance. The amount of these inorganic fillers added must be determined appropriately depending on the required performance, but is generally 5 to 40% by weight.
A range of is required. If it is less than 5% by weight, the dimensional stabilizing effect will be poor, and if it exceeds 40% by weight, it will be difficult to maintain mechanical strength. Further, the particle size of such an inorganic filler is not particularly limited, but in most cases, an average particle size of 50 μm or less is suitable. Furthermore, of course, in the resin composition of the present invention, other appropriate fillers and heat stabilizers may be added in addition to the above four components to strengthen, suppress thermal expansion, increase sliding properties, improve heat resistance, etc. It is also possible to provide effects such as increased dimensional stability. The filler that can be added is not particularly limited, but fibrous materials and solid fine powders with excellent heat resistance are effective. As the fiber material, those having excellent heat resistance and durability, such as glass fiber, carbon fiber, steel fiber, brass fiber, and potassium titanate whisker, are used. In addition, solid fine powders include colloidal silica, quartz powder, tungsten disulfide, molybdenum disulfide, boron nitride,
Ferrite powder, magnetite powder, etc. are used. Among these fillers, carbon fibers, steel fibers, and brass fibers have the effect of reducing conductive carbon black and graphite within the addition range of the present invention from the viewpoint of antistatic properties. In addition, in small amounts, polysulfone, polyethersulfone, polyallylsulfone, polyarylate, polyamideimide, polyetherimide, aromatic polyester resin, polyetheretherketone, etc. may be added to the resin composition of the present invention. A known thermoplastic polymer may be used in combination. The resin composition of the present invention can be obtained by mixing and kneading the component raw materials described above. Kneading can be done by the usual methods, such as drum-type kneading using a Banbury mixer or the like, followed by pulverization, or dry blending using a Henschel mixer, followed by continuous kneading and extrusion using an extruder to form pellets, or pulverizing. A method of forming irregularly shaped particles can be adopted. <Example> Next, an example will be described in detail. The methods for measuring volume resistivity, tap screw strength, and isotropy of thermal expansion coefficient described in Examples and Comparative Examples are as follows. (1) Volume resistivity Measured using a Takeda Riken TR6877 Computing Digital Multimeter on an injection molded disk with a diameter of 40 mm and a thickness of 3 mm at a surface load of 5 Kg/cm 2 and an atmosphere of 23°C and 60% RH. do. (2) Tapping screw strength First, a pilot hole with a diameter of 1.5 mm was drilled in the center of the test piece, which was injection molded into a rectangular column with a length of 60 mm, a width of 12 mm, and a thickness of 6 mm, using a tabletop tapping machine (KRT-10 type manufactured by Kira Iron Works) in the thickness direction. Drill with a straight shank drill needle of mm (standard JIS B4301/PCS10), then drill with a diameter of 2.0 mm.
Tap with a standard M2 x 0.4 tapping needle. Screw a Phillips M2 x 4 type screw into the obtained screw hole with a torque driver (Tohnichi 10FTD type), and calculate the torque required to destroy the thread on the test piece side (torque when the screw becomes loose). Measure. (3) Isotropy of linear expansion coefficient Size 30 injection molded with a film gate mold
Cross section 3mm from the center of a mm square, 3mm thick flat plate
Cut out a square prism with a length of 16 mm in the flow direction of the resin and in a direction perpendicular to the flow. (One test piece was made from one flat plate.) The coefficient of linear expansion in the length direction of this test piece was measured using a thermomechanical analysis device (TMA) manufactured by Rigaku Denki at a heating rate of 1°K/min and a measurement temperature. Range 30-80
Measure at ℃. The isotropy of the coefficient of linear expansion is expressed as the difference between the coefficient of linear expansion in the flow direction of the resin and the coefficient of linear expansion in the direction perpendicular to the flow, and it is determined that the smaller this difference is, the greater the dimensional stability is. Example 1 PPS powder (Ryton P-6, manufactured by Phillips Petroleum) 2.5Kg and DBP oil absorption 480ml/
100g, nickel content 15ppm, vanadium content 50ppm
Conductive carbon black (manufactured by Lion Akzo, EC-DJ600) 0.15Kg and natural scale graphite (CP,
0.65 kg (manufactured by Nippon Graphite Industries), 3.4 kg of calcium carbonate powder (KSS-1000, manufactured by Kinpei Mining Co., Ltd.), and 3.45 kg of glass fiber (chopped strand, TN-101, manufactured by Nippon Glass Electric) were mixed in 10 drum tumblers of 50.
After uniformly mixing for a minute, the mixture was kneaded and extruded using a 45 m/mφ twin-screw extruder (PCM-45, manufactured by Ikegai Iron Works) at a cylinder temperature of 323°C and a screw rotation speed of 80 rpm, and then hot cut into pellets. The obtained pellets were heated to a cylinder temperature of 318°C using a 75TON injection molding machine (Sycap, manufactured by Sumitomo Heavy Industries).
℃, mold temperature 140℃, injection pressure 1000Kg/ cm3 , volume resistivity test piece (diameter 40mm, thickness 3
mm disk), No. 1 dumbbell (ASTM-D-638), tap screw strength measurement test piece (60 mm x 12 mm x 6 mm square column), linear expansion coefficient measurement test piece (30 mm x 30 mm x 3 mm,
A square plate) is molded, and the volume resistivity (Rv) is measured as antistatic property, the tensile strength (TS) is measured as strength,
and tap screw strength (SSD), and linear expansion coefficient isotropy (ELE) was measured as a measure of dimensional stability. As shown in Table 1, the obtained composition has practically acceptable molding fluidity, and the average value of Rv is 6×10 4 Ω・
cm, variation range (n=50) 3×10 4 to 8
×10 4 is sufficiently uniform for practical use, TS700Kg/cm 2 ,
It exhibited an SSD of 3.7 kg·cm and an ELE of 0.01×10 -5 /°C, indicating excellent antistatic properties and sufficient strength and dimensional stability as a molding material. Examples 2 and 3 In Example 1, compositions were obtained by changing the amount of PPS, the amount of calcium carbonate added, and the amount of glass fiber added as shown in Table 1, and the compositions were tested in the same manner as in Example 1. As the results are shown in Table 1, all of them were sufficient as molding materials. Comparative Example 1 When the PPS blending amount was changed to 2.0Kg, calcium carbonate 3.7Kg, and glass fiber 3.65Kg in Example 1,
As shown in Table 1, the strength level was low and it was insufficient as a molding material. Comparative Example 2 In Example 1, the composition was changed to 8.0 kg of PPS, 0.7 kg of calcium carbonate, and 0.65 kg of glass fiber, and as shown in Table 1, the range of variation in Rv was large, the strength level was low, and Due to the large ELE, the dimensional stability was poor and the material had little practical value as a molding material. Example 4 PPS powder (Ryton P-4, manufactured by Phillips Petroleum) 5.0Kg and DBP oil absorption 420ml/
100g, nickel content 40ppm, vanadium content 140ppm
0.2 kg of conductive carbon black, 0.5 kg of natural scale graphite (CSP, manufactured by Nippon Graphite Industries), and 2.2 kg of fine powder of calcium sulfate dihydrate (manufactured by Hanui Chemicals).
and 2.15 kg of glass fiber (Glasron chopped strand CS-06-MA-497, manufactured by Asahi Fiberglass Co., Ltd.) were uniformly mixed in a 50 mm drum tumbler for 10 minutes, and then kneaded under the same conditions as in Example 1. Extrusion, molding, and evaluation were performed. As the results are shown in Table 1, the obtained composition had excellent antistatic properties, high strength level and dimensional stability, and was of high practical value. Comparative Example 3 In Example 4, conductive carbon black
The mixture was kneaded and extruded in the same manner as in Example 4, except that the DBP oil absorption was changed to 350 ml/100 g, and each test piece was molded and measured. As the results are shown in Table 1, although antistatic properties were observed, the variation was large and unsatisfactory for practical use. Comparative Example 4 A test was carried out in the same manner as in Example 4, except that the total amount of nickel and vanadium in the conductive carbon black was changed to 300 ppm. Display the results -
As shown in No. 1, the dispersibility of carbon black was poor, resulting in poor molding fluidity, large variations in volume resistivity, and low tensile strength and dimensional stability. Example 5 In Example 1, the amount of PPS added was changed to 4.5Kg, the amount of conductive carbon black added was changed to 0.05Kg, the amount of calcium carbonate added was changed from 3.4Kg to 2.0Kg of talc (MST, manufactured by Takehara Chemical), and the amount of glass fiber added was changed to 2.95Kg. The test was conducted in the same manner as in Example 1 except for the following. The evaluation results are shown in Table-1. Although the antistatic property was somewhat low, it was within the practical range due to little variation, and the strength level and dimensional stability were sufficient. Example 6 In Example 5, conductive carbon black was used.
The test was carried out in the same manner as in Example 5, except that the amount of glass fiber was changed to 0.35 kg and 2.65 kg. As shown in Table 1, the obtained composition had excellent antistatic properties and dimensional stability, and had no practical problems in molding fluidity and strength. Comparative Example 6 A test was carried out in the same manner as in Example 5, except that the amount of conductive carbon black added was changed to 0.40 kg and the amount of glass fiber added was changed to 2.60 kg. As a result, the molding fluidity was poor and the strength was extremely low. It was hot. Example 7 In Example 1, the amount of PPS added was 4.5Kg, the amount of conductive carbon black added was 0.10Kg, the amount of graphite added was 1.0Kg, and calcium carbonate 3.4Kg was mixed with mica (Susolide Mica 325-HK, Marietta Resource Interchanger). The test was conducted in the same manner as in Example 1, except that the glass fiber content was changed to 1.4 kg (manufactured by Nacional) and 3.0 kg. As shown in Table 1, the moldability, antistatic properties, strength, and dimensional stability were sufficiently satisfactory as a molding material. Comparative Examples 7 and 8 Example 7 except that the type of graphite was changed to natural clay (AP, manufactured by Nippon Graphite Industries) or artificial graphite powder (pulverized SEG-RH round bar manufactured by Nippon Carbon). The results are shown in Table 1.
Shown below. All of the compositions had low antistatic properties and insufficient dimensional stability as compositions for precision molding in view of the isotropy of linear expansion coefficients. Example 8 In Example 5, the amount of conductive carbon black added was 0.25Kg, the amount of graphite added was 0.20Kg, talc was 2.0Kg, calcium phosphate (Daisan) (manufactured by Hanui Chemical Co., Ltd.) fine powder 1.6Kg, and glass fiber was added. The test was conducted in the same manner as in Example 5, except that the weight was changed to 3.45Kg. As shown in Table 1, the obtained composition had excellent antistatic properties, tap screw strength, and dimensional stability, and also had molding fluidity and tensile strength that were suitable for practical use. Example 9 In Example 5, the amount of conductive carbon black added was 0.20Kg, the amount of graphite added was 1.8Kg, and talc was 2.0Kg.
Magnesium carbonate (basic) (manufactured by Hanui Chemicals)
1.6Kg of powder, 1.90Kg of glass fiber,
The test was carried out in the same manner as in Example 5, except for the following changes.
As shown in Table 1, the obtained composition had an excellent balance of physical properties and was sufficient as a molding material. Comparative Example 9 Same as Example 8 except that the graphite content was changed to 0.15Kg and the glass fiber content was changed to 3.50Kg.
It was carried out in the same way. As a result, as shown in Table 1, due to the poor dispersibility of the conductive carbon black, the volume resistivity value varied greatly and the dimensional stability was also insufficient. Comparative Example 10 The same procedure as in Example 9 was carried out except that the amount of conductive carbon black added was changed to 0.10 kg and the amount of graphite added was changed to 1.9 kg. Although the obtained composition had good fluidity, it was unsatisfactory as a molding material because of its low linear expansion coefficient isotropy. Example 10 In Example 1, 2.5 kg of PPS powder was added to 4.5 kg of a 70:30 mixture of Ryton P-6 and Ryton V-1,
Added graphite amount to 0.25Kg, calcium carbonate powder 3.4
Kg to barium carbonate powder (manufactured by Hanui Chemicals) 2.10Kg
The test was conducted in the same manner as in Example 1, except that the amount of glass fiber blended was changed to 3.0 kg. As shown in Table 1, the obtained composition was satisfactory as a molding material. Example 11 In Example 10, the amount of conductive carbon black added (B) was set to 0.20Kg, the amount of graphite added (C) was set to 1.8Kg, and barium carbonate powder 2.10Kg was added to magnesium sulfate anhydride (manufactured by Hanui Chemicals). Same as the example except that the powder content was changed to 1.50Kg and the glass fiber content was changed to 2.0Kg.
Tested in the same manner as in 10. As shown in Table 1, the obtained composition had excellent antistatic properties, and had no problems in strength level and dimensional stability. Comparative Example 11 In Example 10, the amount of conductive carbon black added (B) was set to 0.050Kg, and the amount of graphite added (C) was set to 0.20Kg ((B)
+(C)0.25Kg), barium carbonate powder to 2.25Kg,
The test was carried out in the same manner as in Example 10, except for the following changes.
The resulting composition had insufficient antistatic properties as shown in Table 1. Comparative Example 12 Same as Example 11 except that the amount of conductive carbon black added (B) was changed to 0.30Kg ((B) + (C) 2.1Kg) and the magnesium sulfate powder was changed to 1.40Kg. carried out. As shown in Table 1, the obtained composition had excellent antistatic properties, but had low strength levels and dimensional stability, and was unsatisfactory as a molding material. Examples 12 to 16 In Example 10, the amount of graphite added was 0.65 kg, and as the fourth component, barium sulfate powder (Example 12) powdered from Hani Chemical Co., Ltd. and magnesium phosphate (Daiichi) powder (Implementation) were used. Example 13), barium (meth) phosphate powder (Example 14), calcium silicate powder (Example 15), magnesium silicate powder (Example
Add glass fiber to 1.20Kg of any of 16).
The test was conducted in the same manner as in Example 10, except that the weight was changed to 2.5 kg. As shown in Table 1, all of the obtained compositions had well-balanced physical properties and were sufficient as injection molding materials. Example 17 Same as Example 1 except that the amount of PPS added was changed to 5.5Kg, the amount of graphite added was changed to 0.65Kg, the amount of calcium carbonate powder added was changed to 0.50Kg, and the amount of glass fiber added was changed to 3.2Kg. When carried out in the same manner as in Example 1, the obtained composition had an excellent balance of physical properties and was satisfactory as a molding material, as shown in Table 1. Ta. Comparative Example 13 In Example 17, the amount of calcium carbonate added was
The test was conducted in the same manner as in Example 17, except that the amount of glass fiber was changed to 0.30Kg and 3.4Kg.
As shown in Table 1, the dimensional stability was poor and it was unsatisfactory as a molding material. Example 18 In Example 1, the amount of PPS added was 3.5Kg, the amount of graphite added was 0.65Kg, and the amount of calcium carbonate added was changed to 3.5Kg.
The test was carried out in the same manner as in Example 1 except that the amount of glass fiber was changed to 4.0Kg and the amount of glass fiber blended to 1.7Kg. Table-1
As shown in Figure 2, the obtained composition was particularly excellent in antistatic properties, tap screw strength, and dimensional stability, and was preferred as a molding material. Comparative Example 14 In Example 18, the amount of calcium carbonate added was
The test was conducted in the same manner as in Example 18, except that the amount of glass fiber was changed to 4.5Kg and the glass fiber content was changed to 1.2Kg.
As shown in Table 1, the strength level was insufficient as a molding material.

【表】【table】

【表】 ※印:本発明の範囲外の条件を示す。
〈発明の効果〉 本発明により、PPS本来の成形流動性および機
械的強度の低下を少なくして、かつ高い帯電防止
性と優れた寸法安定性を有するPPS組成物を得る
ことができるので、従来の耐熱性帯電防止性樹脂
組成物の場合とは異なり、特に精密射出成形用材
料として優れた組成物を提供できる。従つて、本
発明のPPS樹脂組成物は種々の用途に適用するこ
とができる。例えば、VTR、ビデオデイスク、
コンパクトデイスク等における光・磁気応用機器
において帯電防止性が要求される種々のメカ部品
用成形材料など多くの分野において利用すること
ができる。
[Table] *: Indicates conditions outside the scope of the present invention.
<Effects of the Invention> According to the present invention, it is possible to obtain a PPS composition that has high antistatic properties and excellent dimensional stability while minimizing deterioration in the molding fluidity and mechanical strength inherent in PPS. Unlike the case of the heat-resistant antistatic resin composition, it is possible to provide a composition that is particularly excellent as a material for precision injection molding. Therefore, the PPS resin composition of the present invention can be applied to various uses. For example, VTR, video disc,
It can be used in many fields, including molding materials for various mechanical parts that require antistatic properties in optical/magnetic application equipment such as compact disks.

Claims (1)

【特許請求の範囲】 1 (a) ポリフエニレンサルフアイド樹脂 25〜
75重量% (b) DBP吸油量が400ml/100g以上で、かつニツ
ケルとバナジユウムの合計量が200ppm以下の
導電性カーボンブラツク 0.5〜3.5重量% (c) 天然鱗状黒鉛 2〜18重量% (d) カルシウム、マグネシウム、バリウムの炭酸
塩、硫酸塩、リン酸塩、珪酸塩あるいはタル
ク、マイカから選ばれる一種または二種以上の
混合物からなる無機充填剤 5〜40重量% とを含有し、かつ(b)および(c)成分の合計量を4〜
20重量%にすることを特徴とするポリフエニレン
サルフアイド樹脂組成物。
[Claims] 1 (a) Polyphenylene sulfide resin 25~
75% by weight (b) Conductive carbon black with DBP oil absorption of 400ml/100g or more and total nickel and vanadium content of 200ppm or less 0.5 to 3.5% by weight (c) Natural scaly graphite 2 to 18% by weight (d) (b ) and (c) the total amount of ingredients is 4~
A polyphenylene sulfide resin composition characterized by having a content of 20% by weight.
JP1388486A 1986-01-27 1986-01-27 Polyphenylene sulfide resin composition Granted JPS62172059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1388486A JPS62172059A (en) 1986-01-27 1986-01-27 Polyphenylene sulfide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1388486A JPS62172059A (en) 1986-01-27 1986-01-27 Polyphenylene sulfide resin composition

Publications (2)

Publication Number Publication Date
JPS62172059A JPS62172059A (en) 1987-07-29
JPH0586982B2 true JPH0586982B2 (en) 1993-12-15

Family

ID=11845627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1388486A Granted JPS62172059A (en) 1986-01-27 1986-01-27 Polyphenylene sulfide resin composition

Country Status (1)

Country Link
JP (1) JPS62172059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199546A (en) * 1997-09-29 1999-04-13 Kureha Chem Ind Co Ltd Manufacture of polyallylene sulfide molding

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806664A1 (en) * 1988-02-13 1989-08-24 Bayer Ag CONDUCTIVE, CARBONATED POLYARYL SULFIDE MIXTURES
DE3828696A1 (en) * 1988-08-24 1990-03-01 Bayer Ag ELASTOMERMODIFIED CARBOHYLATED POLYARYLENE SULFIDE BLENDS
JPH0312454A (en) * 1989-06-12 1991-01-21 Toray Ind Inc Polyarylene sulfide resin composition
US5334636A (en) * 1992-03-26 1994-08-02 Sumitomo Chemical Company, Limited Thermoplastic composition
JP3578288B2 (en) * 1995-04-28 2004-10-20 出光石油化学株式会社 Polyarylene sulfide resin composition
CN1244887A (en) * 1996-11-27 2000-02-16 吴羽化学工业株式会社 Polyarylene sulfide resin composition
JP2006291076A (en) * 2005-04-12 2006-10-26 Asahi Kasei Chemicals Corp Thermoplastic resin composition as coil-sealing material
US8487035B2 (en) 2006-03-30 2013-07-16 Asahi Kasei Chemicals Corporation Resin composition and molded product thereof
JP2010031107A (en) * 2008-07-28 2010-02-12 Mitsubishi Plastics Inc Sheet with antistatic function
CN104144983A (en) * 2012-02-23 2014-11-12 东丽株式会社 Thermoplastic resin composition and molded article
CN104672902A (en) * 2013-12-02 2015-06-03 上海杰事杰新材料(集团)股份有限公司 Impact-resistant conductive polyphenylene sulfide material and preparation method thereof
KR101935133B1 (en) 2017-02-13 2019-01-03 스미카 프라스테크 가부시키가이샤 Thermoplastic resin mulitylayer sheet and corrugated cardboard structure made of thermoplastic resin
KR102480208B1 (en) * 2017-04-26 2022-12-26 세끼스이 테크노 세이께이 가부시끼가이샤 resin molding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652170A (en) * 1979-09-29 1981-05-11 Mitsubishi Heavy Ind Ltd Grinder processing apparatus
JPS5996142A (en) * 1982-11-24 1984-06-02 Mitsubishi Petrochem Co Ltd Electrically conductive resin composition
JPS59100139A (en) * 1982-11-30 1984-06-09 Shin Etsu Chem Co Ltd Polyphenylene sulfide resin composition
JPS6088073A (en) * 1983-10-21 1985-05-17 Mitsubishi Petrochem Co Ltd Composition containing highly electrically conductive carbon black
JPS6281450A (en) * 1985-10-04 1987-04-14 Toray Ind Inc Polyphenylene sulfide resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652170A (en) * 1979-09-29 1981-05-11 Mitsubishi Heavy Ind Ltd Grinder processing apparatus
JPS5996142A (en) * 1982-11-24 1984-06-02 Mitsubishi Petrochem Co Ltd Electrically conductive resin composition
JPS59100139A (en) * 1982-11-30 1984-06-09 Shin Etsu Chem Co Ltd Polyphenylene sulfide resin composition
JPS6088073A (en) * 1983-10-21 1985-05-17 Mitsubishi Petrochem Co Ltd Composition containing highly electrically conductive carbon black
JPS6281450A (en) * 1985-10-04 1987-04-14 Toray Ind Inc Polyphenylene sulfide resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199546A (en) * 1997-09-29 1999-04-13 Kureha Chem Ind Co Ltd Manufacture of polyallylene sulfide molding

Also Published As

Publication number Publication date
JPS62172059A (en) 1987-07-29

Similar Documents

Publication Publication Date Title
JPH0586982B2 (en)
KR101375928B1 (en) Thermally conducting and electrically insulating moldable compositions and methods of manufacture thereof
JP2883128B2 (en) Conductive thermoplastic resin composition
US5321071A (en) Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition
JP2001503799A (en) Conductive composition and method for producing the same
JPH0391556A (en) Conductive resin composition
KR20120078256A (en) High thermal conductive resin composition
US5093035A (en) Conductive polyarylenesulphide mixtures containing carbon
JPH0737570B2 (en) Antistatic resin composition
US4476265A (en) Pigmented compositions
JP3234316B2 (en) Polyimide resin composition for sliding material
JPH0395803A (en) Conductive resin composition for shielding electromagnetic wave
JPS6281450A (en) Polyphenylene sulfide resin composition
JP2004075954A (en) Epoxy resin composition for fuel cell separator
JPH10265671A (en) Polyarylene sulfide resin composition
JP4460672B2 (en) IC tray
JPH04264162A (en) Pitch carbon fiber-reinforced polyphenylene sulfide resin composition
JPH01242662A (en) Sliding resin composition
KR930008196B1 (en) Polyphenylene sulfide resin composition
JPS63272536A (en) Manufacture of conductive resin molded product
JP2855225B2 (en) Thermoplastic resin composition
KR20090066598A (en) High thermally conductive polymer composition
JPS6166755A (en) Electromagnetic wave-shielding resin composition
KR940001077B1 (en) Polyphenylene sulfide resin composition
JP3299313B2 (en) Heat-resistant conductive resin composition