JP2531871B2 - 高密度窒化ほう素常圧焼結体の製造方法 - Google Patents

高密度窒化ほう素常圧焼結体の製造方法

Info

Publication number
JP2531871B2
JP2531871B2 JP3174339A JP17433991A JP2531871B2 JP 2531871 B2 JP2531871 B2 JP 2531871B2 JP 3174339 A JP3174339 A JP 3174339A JP 17433991 A JP17433991 A JP 17433991A JP 2531871 B2 JP2531871 B2 JP 2531871B2
Authority
JP
Japan
Prior art keywords
amount
sintered body
powder
added
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3174339A
Other languages
English (en)
Other versions
JPH05854A (ja
Inventor
文夫 畠山
孝男 野田
景隆 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3174339A priority Critical patent/JP2531871B2/ja
Publication of JPH05854A publication Critical patent/JPH05854A/ja
Application granted granted Critical
Publication of JP2531871B2 publication Critical patent/JP2531871B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、耐熱衝撃性、耐蝕性、
潤滑性、電気絶縁性、高熱伝導性に優れた高密度六方晶
窒化ほう素常圧焼結体の製造方法に関するものである。
【0002】
【従来の技術】六方晶窒化ほう素は、熱的、化学的、電
気的特性に優れ、かつ潤滑性を有し、機械加工が容易に
できるなど多くの優れた性能を有した材料である。しか
し、難焼結性であるため、高密度焼結体を得るにはこれ
まで加圧焼結法によらなければならず、コスト高なもの
となっていた。こうしたコストの問題が応用面における
制約の一つとなっていたため、六方晶窒化ほう素焼結体
の用途拡大に伴い、安価な常圧焼結法の研究が行われる
ようになってきている。
【0003】現在までに特許・文献等によって開示され
ている六方晶窒化ほう素の常圧焼結法については、以下
のものがある。微粉砕した高純度のBN粉末若しくは
低純度の非晶質BNを、2t/cm2 で金型成形またはラ
バープレス成形した後、成形体をBN詰め粉と共に坩堝
に収め、Ar中1400〜2000℃で常圧焼結する方
法(特開平2−9763,J.Am.Ceram.So
c.,72(1989)1482)。純度の低い乱層
構造BNに非晶質Bを加え、N2 中1500〜1800
℃で反応焼結させる方法(資源素材学会誌,105(1
989)201)。純度の低い乱層構造BNに非晶質
BおよびXO・B2 3 (Xは、アルカリ土類金属)で
示される化合物を加え、N2 中で反応焼結させる方法
(特開昭62−123070)。BNに対してSiO
2 ・B2 3 を30wt%加えて常圧焼結する方法(特公
昭47−38047)。Si,Al,TiおよびCr
等の金属をBNに対し10〜50wt%加えて反応焼結す
る方法(特開昭59−169982)。B2 3 を加
えて常圧焼結する方法(特公昭38−12547)。こ
れに対し、本発明者らによって開発された方法として、
純度の高い高結晶性BNを5m2 /g以上、望ましく
は20m2 /g以上に微粉砕し、0.1〜20重量%の
炭化ほう素と0.1〜20重量%のアルカリ土類金属化
合物の1種以上を加え、N2 中1600〜1800℃で
常圧焼結する方法(特開昭64−3074)。30m
2 /g以上に粉砕したBN粉末に対して0.1〜40重
量%の炭化ほう素を加えて窒素中で焼成する方法(特開
平1−103960)。1〜30m2 /gの粉末と1
00m2 /g以上の粉末を配合して成るBN粉末に対し
て0.1〜40重量%の炭化ほう素を加えて窒素中で焼
成する方法(特開平1−103959)。などがある。
【0004】
【発明が解決しようとする課題】しかし、開示されたこ
れらのBN常圧焼結体製造方法には、以下のような問題
点を含んでいる。
【0005】例えば、の方法では、焼結体の強度は僅
か5kg/cm2 であり、実用に耐えるとは考え難い。〜
の方法のように、添加物を多量に加えて焼結させる方
法では、得られる焼結体のBN純度が低下し、BN本来
の特性である耐蝕性、絶縁性、易加工性等が損なわれ
る。また、高温で使用した場合、添加物の揮発による付
近の汚染やBN焼結体自身の亀裂発生などが起こり、使
用温度が限定されることも考えられる。
【0006】一方、〜の方法は、比較的BN純度の
高い焼結体が得られる方法である。しかし、いずれも焼
結時に体積膨張と重量減少を伴うため、高密度の焼結体
を得るのが難しい。焼結体の密度が低い場合、耐蝕性が
低下し、過酷な条件下での使用が制限される可能性があ
る。
【0007】体積膨張は、BN常圧焼結体の特徴の一つ
であり、焼結時に収縮を起こさせるような焼結助剤が発
見されていない現在では避けることができない。重量減
少は、主に原料中に初めから不純物として含まれている
酸素、あるいはBNを微粉砕した際に酸化・加水分解に
よって導入された酸素が、焼結時にB2 3 となって揮
発することにより生ずる。しかし、重量減少を減らすた
めに結晶性の高い高純度BNを粉砕せずに用いても、活
性が乏しいために焼結は全く起こらない。
【0008】これに対して、本発明者らによって開示さ
れた〜の方法は、これらの問題点を考慮してなされ
たものであり、これまで高密度で低純度若しくは低密度
で高純度の焼結体しか得られなかった従来の方法とは異
なり、高密度かつ高純度焼結体の製造方法を提供するも
のであった。
【0009】これらの方法の特徴は、炭化ほう素を焼結
助剤として用いるところにある。炭化ほう素を焼結助剤
に用いても、他の多くの常圧焼結法と同様、焼結時に収
縮は起こらず、また膨張率が低下することもない。しか
し、炭化ほう素がBN粉末中に含まれる酸素(B
2 3 )と反応してBNを生成する際、重量増が生じる
ため、他の方法と比べて焼結後の密度低下が小さく、し
かも純度が高いというものである。よって、これらの方
法によれば、BN純度99%以上、焼結体密度1.80
g/cm3 以上のBN常圧焼結体を得ることができる。
【0010】しかし、前記方法においても改良されるべ
き余地は残っていた。即ち、助剤として加えた炭化ほう
素を完全に窒化(BN化)させることが難しく、焼結体
の厚さが数mm以上になると、焼結体中心部に未反応の炭
化ほう素が黒芯となって残ることであった。
【0011】窒化ほう素焼結体は、通常、薄板あるいは
坩堝等の薄肉形状物として用いられることが多いので、
窒化可能な厚さが数mm程度の技術でも応用は可能である
が、形状に対する制約が大きい。従って、応用範囲を拡
大するためには、高密度かつ高純度であり、より厚いB
N常圧焼結体が作れることが望ましく、その製造方法を
提供することが本発明の目的である。
【0012】
【課題を解決するための手段】本発明者は、上記の従来
技術の欠点を補うべく鋭意検討を重ねた結果、六方晶窒
化ほう素に対して、炭化ほう素およびほう酸若しくは無
水ほう酸を加えて常圧焼結すれば、従来の倍以上の厚さ
でも完全窒化可能な高密度かつ高純度のBN常圧焼結体
が得られることを見出し、本発明、即ち、比表面積5〜
50m2 /gの六方晶窒化ほう素に、5〜20wt%の
炭化ほう素、およびB23 に換算した量として2.1
〜16wt%より該六方晶窒化ほう素に含まれる酸素量
をB23 に換算しその量を差し引いたB23 換算量
に相当する無水ほう酸若しくはほう酸を添加して成形
し、窒素ガスまたは窒素を含んだ非酸化性ガス雰囲気中
で常圧焼結することを特徴とする高密度窒化ほう素常圧
焼結体の製造方法を見出した。
【0013】本発明によれば、どのような履歴の窒化ほ
う素粉末を用いても同様の効果が得られるが、窒化ほう
素常圧焼結体が焼結時に体積膨張を伴い、かつ、焼結密
度が生密度にほぼ比例する傾向があるので、使用する窒
化ほう素粉末としては、充填性の高い高結晶性粉末を用
いることが望ましい。しかし、高結晶性のBN粉末は、
そのまま用いても活性が乏しく、焼結しないので、粉末
は微粉砕したものを用いた方が良い。
【0014】従って、本発明に使用する窒化ほう素粉末
の比表面積は5〜50m2 /gの範囲のものである必要
があり、5m2 /g未満では得られる焼結体の密度は高
いが、強度が低くなる。一方、50m2/gを超える
と、充填性が低下し、焼結体の密度が低下する。
【0015】助剤として添加した炭化ほう素は、窒素中
で焼成する際、窒化ほう素中に含まれる酸素若しくは、
外部から添加した無水ほう酸あるいはほう酸と反応し
て、窒化ほう素を生成する。BN粉末中に含まれる酸素
には、酸洗処理等によって完全に除去しきれなかった不
可避的な不純物としての酸素と、微粉砕処理の際に粉末
が酸化されることによって導入された酸素がある。これ
らは、一般的には、B−O−N中間体として存在すると
考えられているが、高温に加熱する際、B2 3 として
遊離するので、基本的にはB2 3 として存在すると考
えてよい。従って、焼結中に生じている反応は、下式の
ように表すことができる。 3B4 C+B2 3 +7N2 →14BN+3CO (1) (1)式は、重量増加を伴う反応であり、炭化ほう素添
加量が多くなるほど、焼結後の重量増加を増やすことに
なる。そのため、高密度化するという点では、炭化ほう
素添加量が多いほど有利である。しかし、炭化ほう素添
加量が20wt%を超えると、数mm厚程度の焼結体であっ
ても内部まで完全に窒化させることが難しく、未反応の
炭化ほう素が黒芯となって残りやすい。また、(1)式
の反応で発生する多量のCOガスによって、焼結体に亀
裂が発生しやすくなる。一方、炭化ほう素添加量が5wt
%未満では、30mm以上の厚さを有する焼結体でも完全
に窒化させることが可能であるが、重量増加が少ないの
で、高密度の焼結体が得られない。従って、炭化ほう素
添加量としては、5〜20wt%の範囲でなければならな
い。
【0016】無水ほう酸あるいは、ほう酸は助剤として
加えた炭化ほう素を窒化させるために加えるものであ
り、その添加量は、炭化ほう素を窒化させるのに必要な
量であればよい。(1)式によれば、助剤として加えた
5〜20wt%の炭化ほう素を窒化させるためには、理論
的には2.1〜8.1wt%のB2 3 が原料中に含まれ
ている必要量である。しかし、無水ほう酸は融点が低
く、焼結中に揮発しやすいので、実際には、(1)式で
示される理論値よりも過剰に加えないと、焼結体中心部
に黒芯を残すことになる。
【0017】無水ほう酸をどの程度過剰に加えるかにつ
いては、作製しようとする焼結体の厚さおよびB4 C添
加量に依存しており、焼結体が厚くなるほど、あるいは
4 C添加量が多くなるほどより過剰のB2 3 を加え
る必要がある。しかし、必要以上に添加すると、B2
3 の揮発による重量減によって密度が低下し、場合によ
っては焼結体の亀裂発生の原因となるので、理論値の
2.0倍を超えて添加してはならない。
【0018】また、BN粉には、製造法に由来する不純
物としての酸素、あるいは粉砕の際の酸化によって導入
された酸素が含まれているので、これらの含有量が多い
場合には、外部から添加するほう酸あるいは無水ほう酸
の量を減ずることができる。これらの点を考慮すると、
無水ほう酸若しくはほう酸の添加量は、B23 に換算
した量として2.1〜16wt%より、六方晶窒化ほう
素に含まれる酸素量をB23 に換算しその量を差し引
いたB23 換算量に相当する量である。
【0019】次に、製造方法の手順等につき説明する。
原料BN粉に対し、5〜20wt%の炭化ほう素、およ
びB23 に換算した量として2.1〜16wt%よ
り、該BN粉に含まれる酸素量をB23 に換算しその
量を差し引いたB23 換算量に相当する無水ほう酸若
しくはほう酸を加え、水若しくはアセトン、エタノール
等、一般的な有機溶剤で十分に混合する。得られたスラ
リーを、スプレードライヤー等、適当な乾燥手段を用い
て乾燥・造粒し、金型成形若しくはラバープレス成形あ
るいはこれらの組合せにより所定形状に成形する。成形
密度を上げるには、1t/cm2 以上、好ましくは2t
/cm2 程度で加圧成形する。もっとも、成形体の密度
が十分に上げられるならば、加圧成形方法に限定される
ことはなく、スリップキャスト法、押し出し成形法等、
何れの方法でも構わない。
【0020】このようにして得られた成形体は黒いがこ
れを窒素ガスまたは窒素を含んだ非酸化性ガス雰囲気中
で常圧焼結することにより白い焼結体となる。(1)式
の反応は、実際には約600℃から進行するが、一定以
上の大きさを持った焼結体を窒化させる場合、1000
℃以下では反応速度が遅く完全に白い焼結体とすること
ができない。一方、2200℃以上で焼結させると、炭
化ほう素の窒化は容易に進行するが、結晶粒が粗大化
し、焼結体強度が低下する。従って、焼結温度としては
1000℃以上2200℃以下、好ましくは1600℃
以上2100℃以下が好ましい。
【0021】窒化ほう素粉末を微粉砕するか、あるい
は、粗粉砕した粉末と超微粉を粒度配合すると、粉末全
体に含まれる酸素量は増加する。例えば、酸素量0.7
%程度の高純度・高結晶性窒化ほう素粉末を50m2
g程度に微粉砕すると、酸素量は約3%まで増加する。
これは、約4.35重量%のB2 3 が含まれているこ
とに相当しており、焼成中にB2 3 の揮発ロスが無い
とすれば、最大10.36wt%の炭化ほう素まで窒化さ
せることが可能である。しかし、実際には、焼成中にB
2 3 の揮発ロスが生じるため、10.36wt%の炭化
ほう素を加えても、完全には窒化しきれず、試料中心部
に未反応部分が黒芯となって残る。
【0022】酸素量を更に増加させる方法として、粉砕
粉の比表面積を上げるか、若しくは、超微粉の配合比率
を高めるという方法も考えられる(特開平1−1039
59,103960)。しかし、粉砕粉の比表面積が高
くなる程、あるいは、超微粉の配合比率が高くなる程、
充填性が低下して焼結体密度が上がり難くなる。また、
同一密度で比較した場合、比表面積が高くなるほど成形
体の開気孔径が小さくなる傾向がある。本発明の特徴で
ある炭化ほう素の窒化反応は、固体−気体間の反応であ
り、窒化反応に必要な窒素は、成形体の開気孔を介して
内部に運ばれると考えられる。そのため、比表面積の高
い粉末を用いると、酸素量は十分であっても、成形体の
気孔径が小さいために窒化反応が進み難くなる。このよ
うな場合、数mm厚程度の薄い焼結体であれば完全に窒化
させることはできるが、焼結体が厚くなると、内部まで
窒化するのに時間がかかり、炭化ほう素の窒化が完了す
る前にB2 3 の揮発ロスが生ずるため、結果的に焼結
体内部でB2 3 が不足し、黒芯が残りやすくなる。
【0023】一方、粉砕粉の比表面積を低く抑えた粉末
を用いた場合、成形体の開気孔径が大きくなるため、窒
化反応は比較的速やかに進行する。しかし、粉末に含ま
れている酸素量が少ないため、そのままでは、少量の炭
化ほう素しか窒化させることができず、高密度の焼結体
が得にくい。
【0024】これに対し、本発明のように比較的比表面
積の小さい原料中に、炭化ほう素の窒化反応に必要な酸
素をほう酸若しくは無水ほう酸として加えておくと、成
形体の開気孔径を大きく保ったまま酸素量のみを増加さ
せることが可能となるため、従来より厚い焼結体でも黒
芯を残さず容易に完全窒化させることができる。また、
炭化ほう素添加量を増加させても、それに見合ったほう
酸あるいは無水ほう酸を添加すれば黒芯が残ることはな
いので、より大きな重量増加が期待でき、焼結体の高密
度化が図れる。ほう酸若しくは無水ほう酸を加える以外
に、酸洗処理等の高純度化処理をする以前の酸素を多く
含んだ窒化ほう素粉末を使うか、あるいは、高純度粉末
を水中で湿式混合して酸素量を増加させるという方法で
も、作製した成形体の開気孔径がある程度大きく保たれ
ていれば、同様の効果が得られる。
【0025】
【実施例】本発明を実施例にて次に詳説する。 実施例1〜4 比表面積1.9m2 /gの高純度・高結晶性BN粉末を
ボールミルを用いて所定時間粉砕し、表1の如く比表面
積5.6m2 /g〜48.1m2 /gを有するBN粉砕
粉を得た。これらのそれぞれのBN粉砕粉に対して、B
4 Cを10wt%およびB2 3 を表1に示した量を添加
し、エタノールを分散媒として20hr湿式混合した。B
2 3 添加量は、BN粉砕粉に含まれる酸素量をB2
3 に換算した量と外部から加えるB2 3 の合計量が、
添加した10wt%のB4 Cを完全に窒化させるのに必要
なB2 3 理論量の1.2倍になるようにした。得られ
たスラリーを乾燥させた後に解砕し、2t/cm2 で径5
0mmφ、厚さ10mmtに成形した。これをN2 気流中
(流量100l/hr)、2000℃で10hrの条件で常
圧焼結した。得られた焼結体には、割れおよび黒芯はな
かった。密度は1.78〜1.83g/cm3 、強度は3
20〜570kg/cm2 を示し、比表面積の増加にともな
い、密度は低下し、強度は増加する傾向があった。これ
らの条件および結果をまとめて表1に示す。
【0026】比較例1〜2 比表面積が1.9m2 /gの高純度・高結晶性BN粉末
および比表面積が75.3m2 /gであるBN粉砕粉を
原料として用いた以外は、実施例1〜4と同様の手順で
BN常圧焼結体を作製した。
【0027】比表面積1.9m2 /gの高純度・高結晶
性BN粉末をそのまま用いた場合、焼結体密度は1.8
5g/cm3 と高かったが、原料粉末の活性が乏しいため
焼結が十分進行せず、強度は僅か170kg/cm2 であっ
た。また、75.3m2 /gのBN粉砕粉を用いた焼結
体は、焼結体表面が2〜3mm程度窒化したのみで、中心
部には黒芯が残っていた。条件、結果を表1に示す。
【0028】実施例5 比表面積1.9m2 /gの高純度・高結晶性BN粉末を
ボールミルを用いて粉砕し、比表面積11.1m2 /g
を有するBN粉砕粉を得た。このBN粉砕粉に対して、
4 Cを5wt%およびB2 3 を0.1wt%加え、エタ
ノールを分散媒として20hr湿式混合した。B2 3
加量は、BN粉砕粉に含まれる酸素量をB2 3 に換算
した量と外部から加えるB2 3 の合計量が、添加した
5wt%のB4 Cを完全に窒化させるのに必要なB2 3
理論量の1.1倍になるようにした。得られたスラリー
を乾燥させた後に解砕し、2t/cm2 で径50mmφ、厚
さ30mmtに成形した。これを、N2 気流中(流量10
0l/hr)、1800℃で5hrの条件で常圧焼結した。
得られた焼結体の密度および強度は、1.67g/cm3
および400kg/cm2 であり、割れおよび黒芯は認めら
れなかった。
【0029】比較例3 比表面積1.9m2 /gの高純度・高結晶性BN粉末を
ボールミルを用いて粉砕し、比表面積11.1m2 /g
を有するBN粉砕粉を得た。このBN粉砕粉に対して、
4 Cを1wt%加え、エタノールを分散媒として20hr
湿式混合した。その後は実施例5と同様の条件で成形、
焼結した。得られた焼結体には、割れおよび黒芯は認め
られなかったが、密度および強度は、1.58g/cm3
および220kg/cm2 であった。
【0030】実施例6 比表面積1.9m2 /gの高純度・高結晶性BN粉末を
ボールミルを用いて粉砕し、比表面積29.1m2 /g
を有するBN粉砕粉を得た。このBN粉砕粉に対して、
4 Cを20wt%およびB2 3 を9.6wt%加え、エ
タノールを分散媒として20hr湿式混合した。B2 3
添加量は、BN粉砕粉に含まれる酸素量をB2 3 に換
算した量と外部から加えるB2 3 の合計量が、添加し
た20wt%のB4 Cを完全に窒化させるのに必要なB2
3 理論量の1.5倍になるようにした。得られたスラ
リーを乾燥させた後に解砕し、2t/cm2 で径50mm
φ、厚さ30mmtに成形した。これを、N2 気流中(1
00l/hr)、2100℃で10hrの条件で常圧焼結し
た。得られた焼結体の密度および強度は、1.88g/
cm3 および550kg/cm2 であり、割れおよび黒芯は認
められなかった。
【0031】実施例7 比表面積1.9m2 /gの高純度・高結晶性BN粉末を
ボールミルを用いて粉砕し、比表面積29.1m2 /g
を有するBN粉砕粉を得た。このBN粉砕粉に対して、
4 Cを20wt%およびB2 3 を13.8wt%加え、
エタノールを分散媒として20hr湿式混合した。B2
3 添加量は、BN粉砕粉に含まれる酸素量をB2 3
換算した量と外部から加えるB2 3 の合計量が、添加
した20wt%のB4 Cを完全に窒化させるのに必要なB
2 3 理論量の2.0倍になるようにした。得られたス
ラリーを乾燥させた後に解砕し、2t/cm2 で50mm
φ、30mmtに成形した。これを、N2 気流中(100
l/hr)、2100℃で10hrの条件で常圧焼結した。
得られた焼結体の密度および強度は、1.85g/cm3
および520kg/cm2 であり、割れおよび黒芯は認めら
れなかった。
【0032】比較例4 比表面積1.9m2 /gの高純度・高結晶性BN粉末を
ボールミルを用いて粉砕し、比表面積29.1m2 /g
を有するBN粉砕粉を得た。このBN粉砕粉に対して、
4 Cを25wt%およびB2 3 を18.0wt%加え、
エタノールを分散媒として20hr湿式混合した。B2
3 添加量は、BN粉砕粉に含まれる酸素量をB2 3
換算した量と外部から加えるB2 3 の合計量が、添加
した25wt%のB4 Cを完全に窒化させるのに必要なB
2 3 理論量の2.0倍になるようにした。得られたス
ラリーを乾燥させた後に解砕し、2t/cm2 で50mm
φ、30mmtに成形した。これをN2 気流中(100l
/hr)、2100℃で10hrの条件で常圧焼結した。得
られた焼結体の密度は1.85g/cm3 であり、割れは
認められなかったが、焼結体表面の2〜3mm程度が窒化
したのみで、中心部に黒芯が認められた。
【0033】比較例5 比表面積1.9m2 /gの高純度・高結晶性BN粉末を
ボールミルを用いて粉砕し、比表面積29.1m2 /g
を有するBN粉砕粉を得た。このBN粉砕粉に対して、
4 Cを25wt%およびB2 3 を23.3wt%加え、
エタノールを分散媒として20hr湿式混合した。B2
3 添加量は、BN粉砕粉に含まれる酸素量をB2 3
換算した量と外部から加えるB2 3 の合計量が、添加
した25wt%のB4 Cを完全に窒化させるのに必要なB
2 3 理論量の2.5倍になるようにした。得られたス
ラリーを乾燥させた後に解砕し、2t/cm2 で50mm
φ、10mmtに成形した。これを、N2 気流中(100
l/hr)、2100℃で10hrの条件で常圧焼結した。
得られた焼結体の密度は1.82g/cm3 であったが、
焼結体には亀裂が発生しており、中心部には黒芯が認め
られた。
【0034】実施例5〜7および比較例4〜5について
も表1に結果等を示す。
【0035】
【表1】
【0036】比較例3の結果より、原料であるhBN粉
中、特に表面に存在する酸素(B2 3 に類似した形態
で存在している)が存在していても本発明のように新た
にB2 3 を添加しない場合には良質のBN焼結体は得
られないことがわかる。
【0037】
【発明の効果】本発明により、従来には得られていなか
った高密度かつ高純度であり、従来品より肉厚の六方晶
窒化ほう素常圧焼結体を製造することができる。

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 比表面積5〜50m2 /gの六方晶窒化
    ほう素に、5〜20wt%の炭化ほう素、およびB2
    3 に換算した量として2.1〜16wt%より該六方晶
    窒化ほう素に含まれる酸素量をB23 に換算しその量
    を差し引いたB23 換算量に相当する無水ほう酸若し
    くはほう酸を添加して成形し、窒素ガスまたは窒素を含
    んだ非酸化性ガス雰囲気中で常圧焼結することを特徴と
    する高密度窒化ほう素常圧焼結体の製造方法。
JP3174339A 1991-06-18 1991-06-18 高密度窒化ほう素常圧焼結体の製造方法 Expired - Lifetime JP2531871B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174339A JP2531871B2 (ja) 1991-06-18 1991-06-18 高密度窒化ほう素常圧焼結体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174339A JP2531871B2 (ja) 1991-06-18 1991-06-18 高密度窒化ほう素常圧焼結体の製造方法

Publications (2)

Publication Number Publication Date
JPH05854A JPH05854A (ja) 1993-01-08
JP2531871B2 true JP2531871B2 (ja) 1996-09-04

Family

ID=15976912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174339A Expired - Lifetime JP2531871B2 (ja) 1991-06-18 1991-06-18 高密度窒化ほう素常圧焼結体の製造方法

Country Status (1)

Country Link
JP (1) JP2531871B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494635B2 (en) 2003-08-21 2009-02-24 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder
US20200062654A1 (en) * 2018-08-13 2020-02-27 Skc Solmics Co., Ltd. Boron carbide sintered body and etcher including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735304B2 (ja) * 1987-10-16 1995-04-19 昭和電工株式会社 窒化ホウ素焼結体の製造法
JPH0735303B2 (ja) * 1987-10-16 1995-04-19 昭和電工株式会社 窒化ホウ素焼結体の製造方法

Also Published As

Publication number Publication date
JPH05854A (ja) 1993-01-08

Similar Documents

Publication Publication Date Title
US5603876A (en) Method for producing high density sintered silicon nitride (SI3 N.sub.4
EP0166073B1 (en) Aluminum nitride sintered body
JPS61111970A (ja) 窒化珪素焼結体及び製造法
AU560598B2 (en) Method of making a densified silicon nitride/oxynitride composite
JP2531871B2 (ja) 高密度窒化ほう素常圧焼結体の製造方法
JPS6152106B2 (ja)
JP2511337B2 (ja) 窒化ほう素常圧焼結体の製造方法
US5445776A (en) Method for producing high density sintered silicon nitride (Si3 N.sub.4
JP2649220B2 (ja) 窒化珪素/炭化珪素複合粉末及び複合成形体並びにそれらの製造方法及び窒化珪素/炭化珪素複合焼結体の製造方法
JPS6212663A (ja) B4c質複合体およびその製造方法
JPS638069B2 (ja)
JPS589785B2 (ja) 炭化珪素焼結体の製造法
JP2585506B2 (ja) 炭化珪素焼結体およびその製法
JPS63392B2 (ja)
JP3979680B2 (ja) 窒化ケイ素質焼結体用窒化ケイ素粉末ならびに窒化ケイ素質焼結体およびその製造方法
JPS6042188B2 (ja) 窒化珪素成形体の製法
JPH01167279A (ja) 窒化アルミニウムを主成分とする多結晶焼結体とその製造方法
JP3124867B2 (ja) 窒化珪素質焼結体及びその製造方法
JPS6321254A (ja) 窒化珪素セラミツクスの製造法
JPS6346029B2 (ja)
JPH06279124A (ja) 窒化ケイ素焼結体の製造方法
JPH0463028B2 (ja)
JPS6126514B2 (ja)
JP2826080B2 (ja) 窒化珪素/炭化珪素複合焼結体及び複合粉末の製造方法
JPS6344713B2 (ja)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 15

EXPY Cancellation because of completion of term