JP2526906B2 - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JP2526906B2
JP2526906B2 JP14593787A JP14593787A JP2526906B2 JP 2526906 B2 JP2526906 B2 JP 2526906B2 JP 14593787 A JP14593787 A JP 14593787A JP 14593787 A JP14593787 A JP 14593787A JP 2526906 B2 JP2526906 B2 JP 2526906B2
Authority
JP
Japan
Prior art keywords
film
transition metal
rare earth
magneto
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14593787A
Other languages
Japanese (ja)
Other versions
JPS63311641A (en
Inventor
和隆 羽生
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP14593787A priority Critical patent/JP2526906B2/en
Publication of JPS63311641A publication Critical patent/JPS63311641A/en
Application granted granted Critical
Publication of JP2526906B2 publication Critical patent/JP2526906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録媒体、特に希土類−遷移金属系
磁性膜を有する光磁気記録媒体に関する。
TECHNICAL FIELD The present invention relates to a magneto-optical recording medium, and more particularly to a magneto-optical recording medium having a rare earth-transition metal magnetic film.

〔発明の概要〕[Outline of Invention]

本発明は、希土類−遷移金属系磁性膜を有する光磁気
記録媒体において、遷移金属副格子磁気モーメントが優
勢な第1の希土類−遷移金属系磁性膜とこれに交換結合
した希土類副格子磁気モーメントが優勢な第2の希土類
−遷移金属系磁性膜を積層し、少なくとも第2の希土類
−遷移金属系磁性膜を希土類金属と遷移金属が交互に積
層された超格子構造に構成することによって、さらにC/
N比及び周波数特性を改善するようにしたものである。
According to the present invention, in a magneto-optical recording medium having a rare earth-transition metal magnetic film, a first rare earth-transition metal magnetic film having a dominant transition metal sublattice magnetic moment and a rare earth sublattice magnetic moment exchange-coupled to the first rare earth-transition metal magnetic film are provided. By stacking a dominant second rare earth-transition metal magnetic film and forming at least the second rare earth-transition metal magnetic film into a superlattice structure in which rare earth metal and transition metal are alternately stacked, C /
The N ratio and the frequency characteristic are improved.

〔従来の技術〕[Conventional technology]

書き替え可能な光磁気ディスク等の光磁気記録媒体を
構成する希土類−遷移金属系磁性膜(即ち垂直磁化膜)
は、通常単一組成の磁性膜(即ち単層膜)によって構成
されている。この希土類−遷移金属系磁性膜はその膜厚
方向、すなわち垂直方向に、希土類金属の副格子磁気モ
ーメントMREと遷移金属の副格子磁気モーメントMTMの結
合によって垂直磁化MSが得られているものである。
Rare earth-transition metal magnetic film (that is, perpendicular magnetization film) that constitutes a rewritable magneto-optical disk or other magneto-optical recording medium
Is usually composed of a magnetic film having a single composition (that is, a single layer film). In this rare earth-transition metal magnetic film, the perpendicular magnetization M S is obtained in the film thickness direction, that is, in the vertical direction, by the combination of the sublattice magnetic moment M RE of the rare earth metal and the sublattice magnetic moment M TM of the transition metal. It is a thing.

この希土類−遷移金属系磁性膜では希土類及び遷移金
属の種類によって一長一短をもつが、非晶質希土類−遷
移金属材料の光磁気ディスク特性(記録・消去特性、C/
N比、周波数特性等の再生特性)は更に組成に依存す
る。例えば補償組成に対して遷移金属組成の多い、従っ
て遷移金属副格子磁気モーメントMTMが優勢な組成の希
土類−遷移金属系磁性膜(以下、遷移金属多量膜とい
う)の単層膜の場合には、遷移金属組成が多いほど磁化
MSが大きくそれに伴い反磁界が大きい。昇温すると、こ
れらが更に大きくなる為垂直異方性磁界より大きくなる
ため磁化が反転しやすくなり記録感度は高くなる。即ち
低レーザパワーで記録ができる。又、カー回転角θK
大きく高いC/Nが得られる。しかし、消去特性について
みると、周囲の磁化が大きいため記録ビットが静磁気的
に安定になり消去が困難となる。即ち大きなレーザパワ
ーが必要となり、消去感度が低くなる。また磁化MSが大
きいので垂直異方性磁界が大きくなければ垂直異方性が
悪く、安定な記録ビットが得られない。その為、周波数
特性が悪くなる。
This rare earth-transition metal based magnetic film has advantages and disadvantages depending on the types of rare earth and transition metal, but the magneto-optical disk characteristics of amorphous rare earth-transition metal materials (recording / erasing characteristics, C /
Reproduction characteristics such as N ratio and frequency characteristics further depend on the composition. For example, in the case of a single-layer film of a rare earth-transition metal-based magnetic film (hereinafter referred to as a transition metal abundant film) having a composition having a large transition metal composition with respect to the compensating composition, and thus a composition having a dominant transition metal sublattice magnetic moment M TM , , The higher the transition metal composition, the more magnetized
M S is large and the demagnetizing field is large accordingly. When the temperature rises, these become larger and become larger than the perpendicular anisotropy magnetic field, so that the magnetization is easily reversed and the recording sensitivity becomes high. That is, recording can be performed with low laser power. Also, a high K / N with a large Kerr rotation angle θ K can be obtained. However, regarding the erasing characteristics, the recording bit is magnetostatically stable and the erasing becomes difficult because the surrounding magnetization is large. That is, a large laser power is required, and the erasing sensitivity becomes low. Further, since the magnetization M S is large, unless the perpendicular anisotropy magnetic field is large, the perpendicular anisotropy is poor and stable recording bits cannot be obtained. Therefore, the frequency characteristic is deteriorated.

次に、補償組成に対して希土類金属組成の多い、従っ
て希土類金属副格子磁気モーメントMREが優勢な組成の
希土類−遷移金属系磁性膜(以下、希土類金属多量膜と
いう)の単層膜の場合には、遷移金属多量膜に比してカ
ー回転角θKが小さいのでC/N比が悪い。また記録感度も
低く高いレーザパワーが必要となる。反面、磁化MSが小
さいので消去は容易であり、また周波数特性も良い。
Next, in the case of a single layer film of a rare earth-transition metal based magnetic film (hereinafter, referred to as a rare earth metal large amount film) having a composition with a large rare earth metal composition relative to the compensation composition, and thus a composition with a rare earth metal sublattice magnetic moment M RE predominant. , The Kerr rotation angle θ K is smaller than that of the transition metal large amount film, and thus the C / N ratio is poor. Also, the recording sensitivity is low and high laser power is required. On the other hand, since the magnetization M S is small, erasing is easy and frequency characteristics are good.

一方、近時、希土類−遷移金属系磁性膜として、遷移
金属多量膜と希土類金属多量膜を互いに交換結合するよ
うに積層して成る2層膜が提案された。この2層膜の希
土類−遷移金属系磁性膜の場合には、カー回転角θK
大きな遷移金属多量膜をカー効果で読み出す層に用いる
ために高いC/N比が得られる。記録感度の良い遷移金属
多量膜を加熱するため低レーザパワーで書き込みができ
記録感度が高い。希土類金属多量膜と遷移金属多量膜が
交換結合しているため、全体(トータル)の磁化MSは小
さくなっており、このため消去パワーは小さくして済
み、消去感度が高い。さらに、交換結合により遷移金属
多量膜の垂直異方性が確保されるため周波数特性は良
い。
On the other hand, recently, as a rare earth-transition metal based magnetic film, a two-layer film has been proposed which is formed by laminating a transition metal abundant film and a rare earth metal abundant film so as to exchange-couple with each other. In the case of this two-layer rare earth-transition metal magnetic film, a high C / N ratio can be obtained because a transition metal large amount film having a large Kerr rotation angle θ K is used as a layer for reading by the Kerr effect. Since a large amount of transition metal film with good recording sensitivity is heated, writing can be performed with low laser power and high recording sensitivity. Since the rare earth metal abundant film and the transition metal abundant film are exchange-coupled with each other, the total magnetization M S is small, so that the erasing power can be made small and the erasing sensitivity is high. Furthermore, the frequency characteristic is good because the vertical anisotropy of the transition metal large amount film is secured by the exchange coupling.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、更に、C/N比を高め、周波数特性を伸ばす
ことが望まれている。そこで2層膜において、C/N比を
高めるにはカー回転角θKを大きくする必要があり、遷
移金属多量膜をより遷移金属組成の大きい組成にするこ
とが考えられる。しかし、遷移金属組成を大きくすると
磁化MSが大きくなって遷移金属多量膜の磁化は倒れやす
くなり即ち垂直異方性が劣化し、結果的にC/N比が低く
なり、周波数特性も悪くなる。
By the way, it is desired to further increase the C / N ratio and extend the frequency characteristics. Therefore, in the two-layer film, in order to increase the C / N ratio, it is necessary to increase the Kerr rotation angle θ K, and it is conceivable that the transition metal abundant film has a composition with a larger transition metal composition. However, when the transition metal composition is increased, the magnetization M S is increased and the magnetization of the transition metal multi-layer film tends to collapse, that is, the perpendicular anisotropy is deteriorated, resulting in a low C / N ratio and poor frequency characteristics. .

本発明は、上述の点に鑑み、記録感度、消去感度が高
いと共に、C/N比、周波数特性が更に向上する光磁気記
録媒体を提供するものである。
In view of the above points, the present invention provides a magneto-optical recording medium having high recording sensitivity and erasing sensitivity, and further improved C / N ratio and frequency characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、基板(1)上に遷移金属副格子磁気モーメ
ントMTMが優勢な第1の希土類−遷移金属系磁性膜
(2)と、この第1の希土類−遷移金属系磁性膜(2)
に交換結合した希土類副格子磁気モーメントMREが優勢
な第2の希土類−遷移金属系磁性膜(6)を積層し、少
なくとも第2の希土類−遷移金属系磁性膜(6)を希土
類金属(22)と遷移金属(21)が超格子構造で交互に積
層するように形成して、垂直磁化膜(7)を有した光磁
気記録媒体(8)を構成する。
The present invention relates to a first rare earth-transition metal magnetic film (2) in which a transition metal sublattice magnetic moment M TM is predominant on a substrate (1), and the first rare earth-transition metal magnetic film (2).
A second rare earth-transition metal magnetic film (6) having a predominant rare earth sublattice magnetic moment M RE exchange-coupled with is laminated, and at least the second rare earth-transition metal magnetic film (6) is formed on the rare earth metal (22 ) And a transition metal (21) are alternately laminated in a superlattice structure to form a magneto-optical recording medium (8) having a perpendicular magnetization film (7).

即ちこの場合、第2の磁性膜(6)のみを超格子構造
としてもよく、又、第1及び第2の磁性膜(2)及び
(6)の両方を超格子構造とすることもできる。
That is, in this case, only the second magnetic film (6) may have a superlattice structure, or both the first and second magnetic films (2) and (6) may have a superlattice structure.

第1の磁性膜(2)及び第2の磁性膜(6)は、Tb,G
d,Dy,Ho・・・等の希土類金属と、Fe,Co,Ni・・・等の
遷移金属との各1種以上の元素によって構成し、夫々の
磁性膜(2)及び(6)には他の元素を少量添加しても
よく、例えば耐食性改善のために微量のCr,Ti,Pt,Al等
を添加しても良い。
The first magnetic film (2) and the second magnetic film (6) are made of Tb, G
Each magnetic film (2) and (6) is composed of one or more elements of a rare earth metal such as d, Dy, Ho ... and a transition metal such as Fe, Co, Ni. Other elements may be added in small amounts, for example, trace amounts of Cr, Ti, Pt, Al, etc. may be added to improve corrosion resistance.

第1の磁性膜(2)については室温を補償温度とする
組成即ち補償組成より遷移金属組成の多い組成即ち遷移
金属多量膜で形成し、第2の磁性膜(6)については同
様の補償組成より希土金属組成の多い組成即ち希土金属
多量膜で形成する。これによって、かかる磁性膜(2)
及び(6)がフエリ磁性であるため、室温では遷移金属
多量膜である第1の磁性膜(2)は遷移金属副格子磁気
モーメントMTMが支配的に作用して磁化MS1を発生し、希
土金属多量膜である第2の磁性膜(6)は希土類金属副
格子磁気モーメントMREが支配的に作用して磁化MS1と逆
向きの磁化MS2を発生する。このとき、磁化分布につい
ては各磁性膜(2)及び(6)の磁化が全体(トータ
ル)としてできるだけ小さく、即ち互いに打消し合うよ
うにするが、副格子磁気モーメントについてみれば第1
及び第2の磁性膜(2)及び(6)に関して同一副格子
磁気モーメントMTM同士、MRE同士が揃うように平行に配
列されることが必要であり、このような構造は概略とし
て各磁性膜(2)及び(6)の静磁力より各磁性膜
(2)及び(6)間の交換結合による実効的磁場が大き
い場合に達成することができる。
The first magnetic film (2) is formed of a composition having a transition metal composition higher than the composition having a compensation temperature at room temperature, that is, a transition metal content film, and a similar compensation composition for the second magnetic film (6). It is formed of a composition having a higher rare earth metal composition, that is, a rare earth metal large amount film. Thereby, the magnetic film (2)
Since (1) and (6) are ferrimagnetic, the transition metal sublattice magnetic moment M TM predominantly acts on the first magnetic film (2) which is a transition metal large amount film at room temperature to generate the magnetization M S1 . In the second magnetic film (6) which is a rare earth metal large amount film, the rare earth metal sublattice magnetic moment M RE acts predominantly to generate the magnetization M S2 opposite to the magnetization M S1 . At this time, regarding the magnetization distribution, the magnetizations of the magnetic films (2) and (6) are made as small as possible (total), that is, they cancel each other.
And the second magnetic films (2) and (6) are required to be arranged in parallel so that the same sub-lattice magnetic moments M TM and M RE are aligned. This can be achieved when the effective magnetic field due to the exchange coupling between the magnetic films (2) and (6) is larger than the static magnetic force of the films (2) and (6).

第2の磁性膜(6)の超格子構造の周期λ(希土類金
属層と遷移金属層の合計厚さ)としては5Å〜30Åとす
る。周期λが5Åより小さいと超格子構造とならず全体
が均質な膜となってしまい、30Åより大きいと多結晶と
なり非晶質とならないために使用不可となる。また、第
1及び第2の磁性膜(2)及び(6)を構成する希土類
−遷移金属組成としては、希土類金属が10〜40at%の範
囲にあるような希土類−遷移金属組成とする。希土類金
属が10at%より少ない場合及び40at%より多い場合いず
れも多結晶となり、また垂直磁化膜性を有しなくなる。
The period λ (total thickness of the rare earth metal layer and the transition metal layer) of the superlattice structure of the second magnetic film (6) is 5Å to 30Å. If the period λ is smaller than 5Å, the superlattice structure is not formed and the entire film becomes a homogeneous film. If the period λ is larger than 30Å, it becomes polycrystalline and does not become amorphous, so that it cannot be used. The rare earth-transition metal composition of the first and second magnetic films (2) and (6) is such that the rare earth metal is in the range of 10 to 40 at%. When the rare earth metal content is less than 10 at% or more than 40 at%, it becomes polycrystalline and has no perpendicular magnetic film property.

〔作用〕[Action]

希土類金属多量膜である第2の磁性膜(6)がミクロ
的にみて超格子構造に形成されることにより第2の磁性
膜の垂直異方性が大きくなり、これによって第2の磁性
膜(6)に交換結合した遷移金属多量膜である第1の磁
性膜(2)の垂直異方性が改善され、結果として、前述
の2層膜に比べて更にC/N比及び周波数特性が向上す
る。
Since the second magnetic film (6), which is a rare earth metal large amount film, is formed in a superlattice structure in a microscopic view, the vertical anisotropy of the second magnetic film is increased, and thus the second magnetic film ( The perpendicular anisotropy of the first magnetic film (2), which is a transition metal multi-layer film exchange-coupled to 6), is improved, and as a result, the C / N ratio and frequency characteristics are further improved compared to the above-mentioned two-layer film. To do.

又、マクロ的には遷移金属多量膜である第1の磁性膜
(2)と希土類金属多量膜である第2の磁性膜(6)を
交換結合された2層膜であるため、前述した通り記録感
度、消去感度は高くなる。
In addition, since it is a two-layer film in which the first magnetic film (2) which is a transition metal abundant film and the second magnetic film (6) which is a rare earth metal abundant film are exchange-coupled macroscopically, as described above. Recording sensitivity and erasing sensitivity are high.

〔実施例〕〔Example〕

第7図は希土類−遷移金属系磁性膜を形成するための
マグネトロン型スパッタリング装置の一例の略線的構成
を示す。これは、ベルジャ(図示せず)内に軸心0-0′
を中心として回転する基台(10)が設けられ、この基台
(10)に光磁気記録媒体を構成する基体(1)が配置さ
れる。この基体(1)に対向して軸0-0′を中心に180°
の角間隔を保持して2個のスパッター源(11)及び(1
2)が配置される。これらスパッタ源(11)及び(12)
と基台(10)すなわち基板(1)との間にはスパッター
源(11)及び(12)より夫々スパッターされる金属のス
パッター位置を規制するマスク(13)が配される。この
例ではスパッター源(11)は遷移金属ターゲット(14)
を有し、スパッター源(12)は希土類金属のターゲット
(15)を有して成る。(16)及び(13)は、夫々マグネ
ットを示す。マスク(13)は例えば第8図に示すように
ターゲット(14)及び(15)に対向する部分にこれらタ
ーゲット(14)及び(15)の中心を通る直線x方向に外
側に向って広がる例えばいちよう形の窓(18)及び(1
9)が穿設されて成る。この装置では、遷移金属ターゲ
ット(14)には直流電源が、希土類金属ターゲット(1
5)には高周波電源が接続され、基台(10)と共に基体
(1)を回転させながら2元同時スパッタリングを行う
ようになされるもので、この場合、直流電圧、直流電力
を制御して夫々のスパッタレートを制御することによっ
て所望組成の希土類−遷移金属系磁性膜が形成される。
FIG. 7 shows a schematic configuration of an example of a magnetron sputtering apparatus for forming a rare earth-transition metal magnetic film. This is the axis 0-0 'in the bell jar (not shown).
A base (10) that rotates around the center is provided, and a base (1) that constitutes the magneto-optical recording medium is arranged on the base (10). 180 ° centering on axis 0-0 'facing this base (1)
Two sputter sources (11) and (1
2) is placed. These sputter sources (11) and (12)
A mask (13) for controlling the sputter position of the metal sputtered by the sputter sources (11) and (12) is disposed between the base (10) and the substrate (1). In this example, the sputter source (11) is the transition metal target (14)
And the sputter source (12) comprises a rare earth metal target (15). (16) and (13) show magnets, respectively. For example, as shown in FIG. 8, the mask (13) spreads outward at a portion facing the targets (14) and (15) outward in a straight line x direction passing through the centers of the targets (14) and (15). Y-shaped windows (18) and (1
9) is drilled. In this device, the transition metal target (14) has a DC power source, and the rare earth metal target (1
A high-frequency power source is connected to 5) so that two-way simultaneous sputtering is performed while rotating the substrate (1) together with the base (10). In this case, the DC voltage and DC power are controlled respectively. A rare earth-transition metal based magnetic film having a desired composition is formed by controlling the sputtering rate of.

比較例1 第7図のスパッタリング装置(遷移金属ターゲット
(14)としてFe90Co10合金ターゲットを用い、希土類金
属ターゲット(15)としてTbターゲットを用いる)を用
い、基台(10)を60rpmの回転数で回転させながら、ポ
リカーボネート基板(1)上に厚さ300ÅのTb18(Fe90Co
10)82膜よりなる遷移金属多量膜(2)を形成し、引き
つづき遷移金属多量膜(2)上に回転数60rpmで厚さ300
ÅのTb25(Fe90Co10)75膜よりなる希土類金属多量膜
(3)を形成して垂直磁化膜(4)を形成し、第2図に
示す光磁気記録媒体即ち光磁気ディスク(5)を作成す
る。この条件で作成した遷移金属多量膜(2)及び希土
類金属多量膜(3)は、いずれも小角X線回析の結果、
周期構造ではなかった。
Comparative Example 1 Using the sputtering apparatus of FIG. 7 (using a Fe 90 Co 10 alloy target as the transition metal target (14) and using a Tb target as the rare earth metal target (15)), rotate the base (10) at 60 rpm. While rotating at a number, on the polycarbonate substrate (1), Tb 18 (Fe 90 Co) with a thickness of 300 Å
10 ) A transition metal abundant film (2) consisting of 82 films is formed, and subsequently, a thickness of 300 is formed on the transition metal abundant film (2) at a rotation speed of 60 rpm.
A rare-earth-metal-rich film (3) made of Å Tb 25 (Fe 90 Co 10 ) 75 film is formed to form a perpendicular magnetization film (4). ) Is created. The transition metal abundant film (2) and the rare earth metal abundant film (3) produced under these conditions were both small angle X-ray diffraction results,
It was not a periodic structure.

そして、この光磁気ディスク(5)に対して、1800rp
mで回転し、4.0mWのレーザー光で記録し、1.5mWののレ
ーザー光で読み出して、C/N比と周波数特性を測定し
た。その結果を第3図の曲線(I)に示す。なお、レー
ザ光は基板(1)側から照射した。
And, for this magneto-optical disk (5), 1800rp
C / N ratio and frequency characteristics were measured by rotating at m, recording with 4.0 mW laser light, and reading with 1.5 mW laser light. The result is shown in the curve (I) of FIG. The laser light was applied from the substrate (1) side.

実施例1 比較例1と同じスパッタリング装置を用い、基台(1
0)を60rpmの回転数で回転させながらポリカーボネート
基板(1)上に厚さ300ÅのTb18(Fe90Co10)82膜よりな
る遷移金属多量膜(2)を形成し、引きつづき、基台
(10)の回転数を20rpmにして遷移金属多量膜(2)上
に厚さ300ÅのTb25(Fe90Co10)75よりなる希土類金属多
量膜(6)を形成して垂直磁化膜(7)を形成し、第1
図に示す光磁気記録媒体即ち光磁気ディスク(8)を作
成する。この条件で作成した希土類金属多量膜(6)は
小角x線回析の結果、FeCo層(21)とTb層(22)が交互
に積層され6Åの周期λを有する超格子構造となってい
ることが確認された。そして、この光磁気ディスク
(8)に対して比較例1と同様の評価を行った。その結
果を第3図の曲線(II)に示す。
Example 1 The same sputtering apparatus as in Comparative Example 1 was used, and the base (1
0) rotating at 60 rpm, a transition metal abundant film (2) consisting of a 300 Å Tb 18 (Fe 90 Co 10 ) 82 film with a thickness of 300 Å is formed on the polycarbonate substrate (1), and subsequently, the base The rotation speed of (10) was set to 20 rpm, and a rare earth metal bulk film (6) of Tb 25 (Fe 90 Co 10 ) 75 with a thickness of 300 Å was formed on the transition metal bulk film (2) to form a perpendicular magnetization film (7). ) Forming the first
A magneto-optical recording medium shown in the figure, that is, a magneto-optical disk (8) is prepared. As a result of small-angle x-ray diffraction, the rare-earth metal multi-layer film (6) formed under these conditions has a superlattice structure with alternating FeCo layers (21) and Tb layers (22) with a period λ of 6Å. It was confirmed. Then, this magneto-optical disk (8) was evaluated in the same manner as in Comparative Example 1. The result is shown in the curve (II) of FIG.

比較例2 第7図のスパッタリング装置(遷移金属ターゲット
(14)としてCoターゲットを用い、希土類金属ターゲッ
ト(15)としてTbターゲットを用いる)を用い、基台
(10)を60rpmの回転数で回転させながら、ポリカーボ
ネート基板(1)上に厚さ300ÅのTb19Co21膜よりなる
遷移金属多量膜(31)膜を形成し、引きつづき遷移金属
多量膜(31)上に回転数を60rpmで厚さ300ÅのTb22Co21
膜よりなる希土類金属多量膜(32)を形成して垂直磁化
膜(33)を形成し、第4図に示す光磁気ディスク(34)
を作成する。この条件で作成した遷移金属多量膜(31)
及び希土類金属多量膜(32)は、いずれも小角x線回析
の結果、周期構造ではなかった。
Comparative Example 2 Using the sputtering apparatus of FIG. 7 (using a Co target as the transition metal target (14) and a Tb target as the rare earth metal target (15)), rotate the base (10) at a rotation speed of 60 rpm. On the other hand, a transition metal abundance film (31) made of a Tb 19 Co 21 film having a thickness of 300 Å is formed on the polycarbonate substrate (1), and then the rotation speed is 60 rpm at a speed of 60 rpm on the transition metal abundance film (31). 300Å Tb 22 Co 21
A magneto-optical disk (34) shown in FIG. 4 is formed by forming a rare earth metal large amount film (32) made of a film to form a perpendicular magnetization film (33).
Create Transition metal abundant film prepared under these conditions (31)
Neither the or the rare earth metal multi-layer film (32) was a periodic structure as a result of small-angle x-ray diffraction.

そして、この光磁気ディスク(34)に対して比較例1
と同様の評価を行った。その結果を第6図の曲線(II
I)に示す。
Then, Comparative Example 1 was applied to this magneto-optical disk (34).
The same evaluation as was done. The result is shown in Fig. 6 (II
I).

実施例2 比較例2と同じスパッタリング装置を用い、基台(1
0)を60rpmの回転数で回転させながらポリカーボネート
基板(1)上に厚さ300ÅのTb19Co21膜よりなる遷移金
属多量膜(31)を形成し、引きつづき基台(10)の回転
数を20rpmにして遷移金属多量膜(31)上に厚さ300Åの
Tb22Co21膜よりなる希土類金属多量膜(35)を形成して
垂直磁化膜(36)を形成し、光磁気ディスク(37)を作
成する。この条件で作成した希土類金属多量膜(36)は
小角x線回析の結果、Co層(38)とTb層(39)が交互に
積層された超格子構造となっていることが確認された。
Example 2 The same sputtering apparatus as in Comparative Example 2 was used, and the base (1
0) rotating at 60 rpm while forming a transition metal abundant film (31) made of Tb 19 Co 21 film having a thickness of 300 Å on the polycarbonate substrate (1), and then continuously rotating the base (10). At a rate of 20 rpm and a thickness of 300 Å on the transition metal mass film (31).
A magneto-optical disk (37) is prepared by forming a rare earth metal large amount film (35) made of a Tb 22 Co 21 film and forming a perpendicular magnetization film (36). As a result of small-angle x-ray diffraction, it was confirmed that the rare earth metal multi-layer film (36) formed under these conditions had a superlattice structure in which Co layers (38) and Tb layers (39) were alternately laminated. .

そして、この光磁気ディスク(37)に対して、比較例
1と同様の評価を行った。その結果を第6図の曲線(I
V)に示す。
Then, this magneto-optical disk (37) was evaluated in the same manner as in Comparative Example 1. The results are shown in the curve (I
V).

第5図及び第6図から明らかなように、遷移金属多量
膜と希土類金属多量膜を積層し、その希土類金属多量膜
を超格子構造とした本発明光磁気ディスク(8)及び
(37)の場合には、単なる遷移金属多量膜と希土類金属
多量膜の2層膜を有する比較例の光磁気ディスク(5)
及び(34)に比べて、高いC/N比が得られると共に周波
数特性が向上するものである。
As is clear from FIGS. 5 and 6, the magneto-optical disks (8) and (37) of the present invention in which a transition metal multi-layer film and a rare earth metal multi-layer film are laminated and the rare earth metal multi-layer film has a superlattice structure. In some cases, a magneto-optical disk of a comparative example (5) having a two-layer film of a simple transition metal multi-layer film and a rare earth metal multi-layer film.
Compared with (34) and (34), a high C / N ratio is obtained and the frequency characteristic is improved.

尚、上例では希土類金属多量膜のみを超格子構造とし
たが、遷移金属多量膜及び希土類金属多量膜の両方を超
格子構造とすることもできる。
In the above example, only the rare earth metal large amount film has the superlattice structure, but both the transition metal large amount film and the rare earth metal large amount film may have the superlattice structure.

〔発明の効果〕〔The invention's effect〕

本発明による光磁気記録媒体によれば、互いに交換結
合した遷移金属副格子磁気モーメントが優勢な第1の希
土類−遷移金属系磁性膜と、希土類副格子磁気モーメン
トが優勢な第2の希土類−遷移金属系磁性膜との積層し
た垂直磁化膜を有することによって、記録感度及び消去
感度が高くなると同時に、少なくとも第2の希土類−遷
移金属系磁性膜が超格子構造となっていることによりC/
N比及び周波数特性をさらに向上することができる。
According to the magneto-optical recording medium of the present invention, the first rare earth-transition metal based magnetic film in which the transition metal sublattice magnetic moments predominantly exchange-coupled with each other and the second rare earth-transition in which the rare earth sublattice magnetic moment predominates are used. By having a perpendicular magnetization film laminated with a metal-based magnetic film, the recording sensitivity and the erasing sensitivity are improved, and at the same time, at least the second rare earth-transition metal-based magnetic film has a superlattice structure so that C /
The N ratio and the frequency characteristic can be further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による光磁気記録媒体の一例を示す断面
図、第2図は比較のための光磁気記録媒体の一例を示す
断面図、第3図は本発明による光磁気記録媒体の他の例
を示す断面図、第4図は比較のための光磁気記録媒体の
他の例を示す断面図、第5図は第1図及び第2図の光磁
気記録媒体のC/N比及び周波数特性を示すグラフ、第6
図は第3図及び第4図の光磁気記録媒体のC/N比及び周
波数特性を示すグラフ、第7図はスパッタリング装置の
例を示す構成図、第8図はそのマスクの例を示す要部の
平面図である。 (1)は基体、(2)は第1の希土類−遷移金属系磁性
膜、(6)は超格子構造の第2の希土類−遷移金属系磁
性膜である。
1 is a sectional view showing an example of a magneto-optical recording medium according to the present invention, FIG. 2 is a sectional view showing an example of a magneto-optical recording medium for comparison, and FIG. 3 is another example of the magneto-optical recording medium according to the present invention. FIG. 4 is a cross-sectional view showing another example of a magneto-optical recording medium for comparison, and FIG. 5 is a C / N ratio of the magneto-optical recording medium of FIGS. 1 and 2. Graph showing frequency characteristics, No. 6
FIG. 7 is a graph showing the C / N ratio and frequency characteristics of the magneto-optical recording medium of FIGS. 3 and 4, FIG. 7 is a block diagram showing an example of a sputtering apparatus, and FIG. It is a top view of a part. (1) is a substrate, (2) is a first rare earth-transition metal magnetic film, and (6) is a second rare earth-transition metal magnetic film having a superlattice structure.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に遷移金属副格子磁気モーメントが
優勢な第1の希土類−遷移金属系磁性膜と、 該第1の希土類−遷移金属系磁性膜に交換結合した希土
類副格子磁気モーメントが優勢な第2の希土類−遷移金
属系磁性膜とが積層されてなり、 上記第2の希土類−遷移金属系磁性膜は希土類金属と遷
移金属が超格子構造で交互に積層されて成る光磁気記録
媒体。
1. A first rare earth-transition metal magnetic film having a dominant transition metal sublattice magnetic moment on a substrate, and a rare earth sublattice magnetic moment exchange-coupled to the first rare earth-transition metal magnetic film. A dominant second rare earth-transition metal magnetic film is laminated, and the second rare earth-transition metal magnetic film is formed by alternately laminating a rare earth metal and a transition metal in a superlattice structure. Medium.
JP14593787A 1987-06-11 1987-06-11 Magneto-optical recording medium Expired - Fee Related JP2526906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14593787A JP2526906B2 (en) 1987-06-11 1987-06-11 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14593787A JP2526906B2 (en) 1987-06-11 1987-06-11 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS63311641A JPS63311641A (en) 1988-12-20
JP2526906B2 true JP2526906B2 (en) 1996-08-21

Family

ID=15396514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14593787A Expired - Fee Related JP2526906B2 (en) 1987-06-11 1987-06-11 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2526906B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160641A (en) * 1989-11-17 1991-07-10 Nec Corp Magneto-optical recording medium
JP2903729B2 (en) * 1990-12-20 1999-06-14 ソニー株式会社 Magneto-optical recording medium
JPH056820A (en) * 1990-12-28 1993-01-14 Sony Corp Magneto-optical recording medium

Also Published As

Publication number Publication date
JPS63311641A (en) 1988-12-20

Similar Documents

Publication Publication Date Title
JPH0740380B2 (en) Magneto-optical recording material
JP2526906B2 (en) Magneto-optical recording medium
US5958575A (en) Magneto-optical recording medium
JPS6154059A (en) Magneto-optical recording film
JP2642656B2 (en) Magneto-optical recording medium
JP2707560B2 (en) Artificial lattice magneto-optical recording medium
JP2707561B2 (en) Artificial lattice magneto-optical recording medium
JPS60237655A (en) Optomagnetic recording medium
JPH06325419A (en) Magneto-optical recording medium
JPH0384755A (en) Magneto-optical recording medium
JPH05174436A (en) Magneto-optical recording medium
JPH04111302A (en) Artificial lattice film
JP2648623B2 (en) Magneto-optical recording medium
JPH03157838A (en) Magneto-optical recording device
JP3381960B2 (en) Magneto-optical recording medium
JPS63153749A (en) Magneto-optical recording medium
JPH01116945A (en) Magneto-optical recording medium
JPS62252546A (en) Magneto-optical recording medium
JPH04186545A (en) Structure of optomagnetic recording film
JPH07141708A (en) Magneto-optical thin film and magneto-optical recording medium
JPH06150409A (en) Magneto-optical recording medium
JPH0240151A (en) Magneto-optical recording medium
JPH0864419A (en) Magnetic material
PITCHER et al. HIGH COERCIVITY PT/CO MULTILAYERS
JPH03222112A (en) Magnetic film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees