JP2642656B2 - Magneto-optical recording medium - Google Patents
Magneto-optical recording mediumInfo
- Publication number
- JP2642656B2 JP2642656B2 JP63055055A JP5505588A JP2642656B2 JP 2642656 B2 JP2642656 B2 JP 2642656B2 JP 63055055 A JP63055055 A JP 63055055A JP 5505588 A JP5505588 A JP 5505588A JP 2642656 B2 JP2642656 B2 JP 2642656B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- coercive force
- low
- magneto
- magnetization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザービームと外部磁界とを用いて、反
転磁区のビットを形成することにより、情報の記録を行
い、偏光されたレーザービームを用い、磁気光学効果の
利用によって、情報の読み出しを行う光磁気記録媒体に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention records information by forming bits of reversed magnetic domains using a laser beam and an external magnetic field, thereby forming a polarized laser beam. The present invention relates to a magneto-optical recording medium for reading information by using a magneto-optical effect.
従来、光磁気記録媒体において、キュリー温度が低く
て記録が容易で、しかも保磁力が高くて保存安定性が高
く、さらに磁気光学カー回転角が大きくて読み出し特性
の良い単一の磁性材料を見い出すことは困難で、そのた
めに必要な機能を分離して2つの異なる磁性材料を積層
した光磁気記録媒体が提案されている(特開昭57−7865
2号)。Conventionally, in a magneto-optical recording medium, a single magnetic material having a low Curie temperature, easy recording, a high coercive force, high storage stability, a large magneto-optical Kerr rotation angle, and good read characteristics has been found. This is difficult, and a magneto-optical recording medium in which two different magnetic materials are laminated while separating the functions required for that purpose has been proposed (JP-A-57-7865).
No. 2).
この記録媒体は、垂直磁化可能な低キュリー温度を有
するTb−Feの高保磁力層と、垂直磁化可能な高キュリー
温度を有するGd−Feの低保磁力層の二層からなり、高保
磁力層と低保磁力層とは互いに交換結合しているもので
ある。そして、低キュリー温度を有する高保磁力層で情
報の記録と保存とがなされ、記録された情報は低保磁力
層に転写され、高キュリー温度を有しかつ磁気光学カー
回転角の大きな低保磁力層で情報の読み出しがなされ
る。This recording medium is composed of two layers, a high coercive force layer of Tb-Fe having a low Curie temperature capable of perpendicular magnetization, and a low coercive force layer of Gd-Fe having a high Curie temperature capable of perpendicular magnetization. The low coercive force layers are exchange-coupled to each other. Then, information is recorded and stored in the high coercive force layer having a low Curie temperature, and the recorded information is transferred to the low coercive force layer, and has a high Curie temperature and a large low coercive force of the magneto-optical Kerr rotation angle. Reading of information is performed in the layer.
この交換結合二層膜の構造材料としては、この他に高
保磁力層として、鉄族副格子磁化優勢なTb−Fe、低保磁
力層としてもやはり鉄族副格子磁化優勢なGd−Fe−Coか
ら成る光磁気記録媒体(特開昭61−117747号)、あるい
は高保磁力層として室温とキュリー温度との間に補償温
度を有する希土類副格子磁化優勢なTb−Fe、Tb−Fe−Co
またはDy−Fe−Co、低保磁力層として鉄族副格子磁化優
勢なGd−Fe、またはGd−Fe−Coからなる光磁気記録媒体
も提案されている。As the structural material of the exchange-coupling two-layer film, in addition to the above, a high coercive force layer such as Tb-Fe, which is predominant in iron group sublattice magnetization, and a low coercive force layer, which is also Gd-Fe-Co in which iron group sublattice magnetization predominates Tb-Fe, Tb-Fe-Co predominant in rare-earth sublattice magnetization having a compensation temperature between room temperature and Curie temperature as a high coercive force layer comprising a magneto-optical recording medium comprising
Alternatively, a magneto-optical recording medium comprising Dy-Fe-Co, Gd-Fe or Gd-Fe-Co in which the iron-group sublattice magnetization is dominant as a low coercivity layer has been proposed.
このような光磁気記録媒体も、他の記録媒体と同様
に、記録・再生特性ばかりでなく、記録の安定性が問題
となる。記録情報の安定性を考える場合、室温のみなら
ず、室温よりやや高い温度における安定性についても考
える必要がある。それは、光磁気ドライブ装置内は、様
々な熱の発生源が存在するので、その中は50〜60℃程度
に温度が上昇することがあり、さらに情報の読み出しに
おいては情報を記録しない程度の弱いレーザー光を媒体
に照射して読み出しを行うが、それでもある程度の媒体
の温度上昇は避けられないからである。また、ドライブ
装置の動作の都度上、記録・消去用のバイアス磁界が印
加された状態で読み出しをしなければならない場合もあ
るためである。従って、50〜60℃程度のドライブ装置の
中で、バイアス磁界の印加のもとで、読み出し光によっ
てさらに媒体の温度が上昇しても、記録情報が安定であ
る必要がある。Such a magneto-optical recording medium, like other recording media, poses a problem not only in recording / reproducing characteristics but also in recording stability. When considering the stability of recorded information, it is necessary to consider not only room temperature but also stability at a temperature slightly higher than room temperature. Because there are various sources of heat in the magneto-optical drive device, the temperature may rise to about 50 to 60 ° C. among them, and it is weak enough not to record information when reading information This is because reading is performed by irradiating the medium with laser light, but a certain degree of temperature rise of the medium is inevitable. Further, this is because, in each operation of the drive device, it is necessary to perform reading in a state where a bias magnetic field for recording / erasing is applied. Therefore, in a drive device of about 50 to 60 ° C., even if the temperature of the medium is further increased by the reading light under the application of the bias magnetic field, the recorded information needs to be stable.
こうした特性が要求される、希土類−鉄族非晶質合金
を用いた交換結合二層膜には、大きく分けて4種類の媒
体が存在する。Exchange-coupled two-layer films using rare earth-iron group amorphous alloys that require such characteristics include roughly four types of media.
(1)高保磁力層が希土類副格子磁化優勢、低保磁力層
が希土類副格子磁化優勢 (2)高保磁力層が鉄族副格子磁化優勢、低保磁力層が
希土類福格子磁化優勢 (3)高保磁力層が鉄族副格子磁化優勢、低保磁力層が
鉄族副格子磁化優勢 (4)高保磁力層が希土類副格子磁化優勢、低保磁力層
が鉄族副格子磁化優勢 このうち、低保磁力層が希土類副格子磁化優勢である
(1)と(2)の媒体では、記録・再生特性が悪い。ま
た、(3)と(4)との媒体では記録・再生特性は良い
が、互いの記録安定性は異なる。(1) High coercivity layer is predominant in rare-earth sublattice magnetization, low coercivity layer is predominant in rare-earth sublattice magnetization (2) High coercivity layer is predominant in iron group sublattice magnetization, low coercivity layer is predominant in rare earth sublattice magnetization (3) The high coercivity layer is predominant in iron group sublattice magnetization, the low coercivity layer is predominant in iron group sublattice magnetization. (4) The high coercivity layer is predominant in rare earth sublattice magnetization, and the low coercivity layer is predominant in iron group sublattice magnetization. The media of (1) and (2), in which the coercivity layer is dominant in rare earth sublattice magnetization, have poor recording / reproducing characteristics. The media (3) and (4) have good recording / reproducing characteristics, but have different recording stability.
一般に、交換結合二層膜においては、二層間の交換相
互作用により、各層の磁化過程(保磁力)が単層膜のと
きと比べてかなり変化する。二層化によって変化した磁
化反転磁界のことを見かけの保磁力と呼ぶこととにす
る。ここで問題としているような高保磁力層と低保磁力
層の組み合わせの場合には、低保磁力層の見かけの保持
力は(3)、(4)のいずれの媒体においても増加し、
低保磁力層における記録情報の安定性は改善される。In general, in an exchange-coupled two-layer film, the magnetization process (coercive force) of each layer changes considerably compared to a single-layer film due to exchange interaction between the two layers. The magnetization reversal magnetic field changed by the two layers is called an apparent coercive force. In the case of the combination of the high coercive force layer and the low coercive force layer in question here, the apparent coercive force of the low coercive force layer increases in any of the media (3) and (4),
The stability of recorded information in the low coercivity layer is improved.
ところが、高保磁力層も低保磁力層からの交換相互作
用により、磁化過程が変化するが、(3)の媒体におい
ては、単層膜のときと比べて見かけの保磁力が減少し、
(4)の媒体においては見かけの保磁力が増加する。し
たがって、(3)の媒体においては、見かけの保磁力が
減少するので、記録情報の安定性に問題がある。また、
(4)の媒体においては、記録再生特性から高保磁力層
は室温とキュリー温度の間に補償温度を有する希土類副
格子磁化優勢な希土類鉄族非晶質合金が好ましいが、こ
の媒体でもっ補償温度とキュリー温度の間の温度では
(3)の磁性に変化するので、この温度範囲では記録情
報の安定性に問題がある。However, the magnetization process of the high coercivity layer also changes due to the exchange interaction from the low coercivity layer, but in the medium (3), the apparent coercivity decreases as compared with the case of the single layer film,
In the medium (4), the apparent coercive force increases. Therefore, in the medium (3), the apparent coercive force is reduced, and there is a problem in the stability of recorded information. Also,
In the medium of (4), the high coercive force layer is preferably a rare earth iron-group amorphous alloy in which the rare earth sublattice magnetization is dominant and has a compensation temperature between room temperature and Curie temperature from the recording / reproducing characteristics. At a temperature between the temperature and the Curie temperature, the magnetism changes to (3), and there is a problem in the stability of recorded information in this temperature range.
このように、(4)の媒体においては、(3)の媒体
に比べて記録安定姓はかなり改善されているが、上記範
囲内で問題となり、実用上まだ不十分である。As described above, the recording stability of the medium (4) is considerably improved as compared with the medium (3), but the recording stability becomes a problem within the above-mentioned range and is still insufficient for practical use.
上記従来例の問題点を解決する本発明は、 垂直磁化可能な低キュリー温度を有する希土類−鉄族
非晶質合金からなる高保磁力層と垂直磁化可能な高キュ
リー温度を有する希土類−鉄族非晶質合金からなる低保
磁力層とを有し、該高保磁力層と該低保磁力層とが交換
結合している光磁気記録媒体において、前記低保磁力層
がGdとDyを含み、かつ該低保磁力層は鉄族副格子磁化優
勢であり、前記高保磁力層は希土類副格子磁化優勢であ
って、かつ該高保磁力層は室温とキュリー温度との間に
補償温度を有することを特徴とする光磁気記録媒体であ
る。The present invention that solves the above-mentioned problems of the prior art includes a high coercive force layer made of a rare earth-iron group amorphous alloy having a low Curie temperature capable of perpendicular magnetization and a rare earth-iron group non-magnetic material having a high Curie temperature capable of perpendicular magnetization. A low-coercivity layer made of a crystalline alloy, wherein the high-coercivity layer and the low-coercivity layer are exchange-coupled in a magneto-optical recording medium, wherein the low-coercivity layer contains Gd and Dy, and The low coercivity layer is predominant in iron group sublattice magnetization, the high coercivity layer is predominant in rare earth sublattice magnetization, and the high coercivity layer has a compensation temperature between room temperature and Curie temperature. Magneto-optical recording medium.
このような媒体を用いることにより、記録が容易で、
読み出し特性が良く、しかも記録情報の安定性に優れた
媒体を得ることができる。By using such a medium, recording is easy,
A medium having good read characteristics and excellent stability of recorded information can be obtained.
以下、本発明について、詳細に説明する。光磁気記録
媒体用交換結合二層膜において、記録情報の安定性を左
右する因子として、高保磁力層のキュリー温度、高保磁
力層の見かけの保磁力の大きさ、各層の膜厚とともに、
低保磁力層の保磁力の大きさがあることが、本発明の創
作段階でわかった。Hereinafter, the present invention will be described in detail. In the exchange-coupled two-layer film for the magneto-optical recording medium, as factors affecting the stability of the recorded information, the Curie temperature of the high coercivity layer, the magnitude of the apparent coercive force of the high coercivity layer, and the thickness of each layer,
It was found at the stage of creation of the present invention that the coercive force of the low coercive force layer was large.
記録情報の安定性を左右する第1の因子として高保磁
力層のキュリー温度がある。キュリー温度が高いほど記
録情報の安定性は増すが、記録感度が悪くなる。高保磁
力層の望ましいキュリー温度は100℃以上、より好まし
くは130℃以上、さらに望ましくは150℃以上である。高
保磁力層の希土類元素としては保持力層を大きくするた
めにTb,Dyなどの非S状態の元素を用いることが好まし
い。Tb−Fe、Dy−Feのキュリー温度はそれぞれ約130
℃、約70℃であり、さらにCoを添加することによって、
キュリー温度を自由に制御することができる。The first factor that affects the stability of recorded information is the Curie temperature of the high coercivity layer. The higher the Curie temperature, the higher the stability of the recorded information, but the lower the recording sensitivity. Desirable Curie temperature of the high coercivity layer is 100 ° C. or higher, more preferably 130 ° C. or higher, and still more preferably 150 ° C. or higher. As the rare earth element of the high coercive force layer, it is preferable to use a non-S state element such as Tb or Dy in order to enlarge the coercive force layer. The Curie temperatures of Tb-Fe and Dy-Fe are each about 130
° C, about 70 ° C, and by further adding Co,
Curie temperature can be controlled freely.
Tb−(Fe100-XCoX)、Dy−(Fe100-YCoY)のキュリー
温度はそれぞれ近似的に、 130+6X(℃) 70+6Y(℃) と表わされるので、この式を用いて、所望のキュリー温
度になるようにCoを添加すればよい。The Curie temperatures of Tb- (Fe 100-X Co X ) and Dy- (Fe 100-Y Co Y ) are approximately expressed as 130 + 6X (° C.) 70 + 6Y (° C.). Co may be added so as to reach the Curie temperature.
記録情報の安定性を左右する第2の因子として、高保
磁力層の見かけの保磁力の大きさがある。この因子に基
づき記録情報の安定化を図るには、高保磁力層が希土類
副格子磁化優勢、低保磁力層が鉄族副格子磁化優勢であ
り(前記(4)の媒体)、高保磁力層はキュリー温度と
の間に補償温度を有する交換結合二層膜を用いるとよ
い。室温と補償温度との間では、二層化によって高保磁
力層の見かけの保磁力は単独の保磁力よりも大きくな
り、記録安定性が増加する。ただし、補償温度とキュリ
ー温度の間では、見かけの保磁力が減少するので問題が
ある。The second factor that affects the stability of recorded information is the apparent coercive force of the high coercivity layer. In order to stabilize the recorded information based on this factor, the high coercivity layer has the rare earth sublattice magnetization dominance, the low coercivity layer has the iron group sublattice magnetization dominance (the medium of (4)), and the high coercivity layer has It is preferable to use an exchange-coupled bilayer film having a compensation temperature between the Curie temperature and the Curie temperature. Between room temperature and the compensation temperature, the apparent coercive force of the high coercive force layer becomes larger than the coercive force of a single layer due to the two layers, and the recording stability increases. However, there is a problem between the compensation temperature and the Curie temperature because the apparent coercive force decreases.
記録情報の安定性を左右する第3の因子として、各層
の膜厚がある。例えば、低保磁力層と高保磁力層の膜厚
をそれぞれ500Å、500Åとするよりも、400Å、600Åあ
るいはさらに300Å、700Åと低保磁力層の膜厚を薄く
し、高保磁力層の膜厚を厚くした方が記録安定性が向上
する。ただし、低保磁力層の膜厚を薄くしすぎると、磁
気光学効果が小さくなり、再生特性が悪くなる。A third factor that affects the stability of recorded information is the thickness of each layer. For example, the thickness of the low coercivity layer and the thickness of the high coercivity layer are reduced to 400Å, 600Å, or even 300Å, 700Å, and the thickness of the high coercivity layer is set to be less than 500 膜厚 and 500 保, respectively. Thickness improves recording stability. However, if the thickness of the low coercive force layer is too thin, the magneto-optical effect is reduced, and the reproduction characteristics are deteriorated.
前述したように、記録特性の安定性を左右する因子と
して、以上の他に、低保磁力層の保磁力の大きさも関係
することを見い出した。As described above, it has been found that the magnitude of the coercive force of the low coercive force layer is also involved as a factor affecting the stability of the recording characteristics.
従来、低保磁力層の希土類元素としては、保磁力を小
さくするためにS状態の元素を用いるのが好ましいと考
えられていた。S状態の元素としては、EuやGdがある
が、Euは反応性が高いので、主にGdが用いられていた。Conventionally, it has been considered that it is preferable to use an element in the S state as the rare earth element of the low coercive force layer in order to reduce the coercive force. Elements in the S state include Eu and Gd, but Gd is mainly used because Eu has high reactivity.
Gdを用いた合金のうち、Gd−Feはキュリー温度が約22
0℃と高く低保磁力層に適しているが、さらにCoを添加
することによって、キュリー温度が上昇し磁気光学カー
回転角が増加し、読み出し特性が良くなる。ただし、Gd
−(Fe100-ZCoZ)において、Z30では鉄族磁気モーメ
ントが減少するので、Z50が望ましいとされている。Among alloys using Gd, Gd-Fe has a Curie temperature of about 22.
Although it is as high as 0 ° C. and suitable for a low coercive force layer, the addition of Co increases the Curie temperature, increases the magneto-optical Kerr rotation angle, and improves readout characteristics. However, Gd
In-(Fe 100-Z Co Z ), Z50 is considered desirable because Z30 decreases the iron group magnetic moment.
本発明は、低保磁力層を構成するこのGd−Fe、Gd−Fe
−Coに、非S状態の元素であるDyを添加することを試み
たところ、低保磁力層の保磁力変化に起因して、記録情
報の安定性が改善されることを見い出し、完成された。The present invention relates to Gd-Fe, Gd-Fe
Attempts to add Dy, a non-S state element, to -Co, found that the stability of recorded information was improved due to the change in coercive force of the low coercive force layer, which was completed. .
すなわち、交換結合二層膜の低保磁力層はGd−Fe、Gd
−Fe−Coでは保磁力が小さすぎ、また、Tb−Fe−Co、Dy
−Fe−Coは保磁力が大きすぎる。That is, the low coercivity layer of the exchange-coupled two-layer film is Gd-Fe, Gd
-Fe-Co has too small coercive force, and Tb-Fe-Co, Dy
-Fe-Co has too large a coercive force.
そこで、両者の中間の性質を有するGd−Dy−Fe、Gd−
Dy−Fe−Coを用いたところ、記録・再生特性はほとんど
変わらず、記録安定性、特に再生光による記録情報の劣
化に対する耐久性が向上することがわかった。Therefore, Gd-Dy-Fe, Gd-
When Dy-Fe-Co was used, it was found that the recording / reproducing characteristics were hardly changed, and that the recording stability, especially the durability against the deterioration of the recorded information due to the reproducing light was improved.
Gd−Dyの他ベース元素は、主としてFe、Coだが、Ni、
Cr、Ti、Al、Si、Pt、In、Cuなどを添加してもよい。Gd
−Dyの添加量は、(Gd−Dy)XM1-X(MはFe、Coなど、
X:原子%)において、0.15<X<0.30程度がよい。Other base elements of Gd-Dy are mainly Fe and Co, but Ni,
Cr, Ti, Al, Si, Pt, In, Cu and the like may be added. Gd
The amount of -Dy added is (Gd-Dy) X M 1-X (M is Fe, Co, etc.
(X: atomic%) is preferably about 0.15 <X <0.30.
実施例1 130mmφのプリグループの付いているポリカーボネー
ト基板上に、酸化防止と干渉効果を得るために、Si3N4
を700Å、低保磁力層としてGd−Dy−Fe−Coを400Å、高
保磁力層としてTb−Fe−Coを600Å、そして酸化防止の
ためSi3N4を700Å、順次真空を破ることなく連続してマ
グネトロンスパッタリング装置を用いて成膜し、交換結
合二層膜の光磁気ディスクを作製した。磁性層のターゲ
ットとしてGd、Dy、Tb、Fe70Co30とFe94Co6を用い、G
d、DyとFe70Co30を使ってTb−Fe−Coを成膜し、TbとFe
94Co6を使ってTb−Fe−Coを成膜した。GdとDyの組成比
あるいは希土類と鉄族の組成比はターゲットに加える電
力を変えることによって制御した。作製された(GdXDy
100-X)−(Fe100-YCoY)膜のXは約75、Yは約30であ
った。また、Arガス圧は0.15Paとし、Si3N4の成膜速度
は約40Å/min、各磁性層の成膜速度は約100Å/minであ
った。作製された交換結合二層膜の界面磁壁エネルギー
密度は約2erg/cm2であり、両層間に良好な交換相互作用
が働いていることを確認した。Example 1 To prevent oxidation and obtain an interference effect, a Si 3 N 4
700 °, Gd-Dy-Fe-Co as a low coercive force layer, 400 °, Tb-Fe-Co as a high coercive force layer, 600 °, and Si 3 N 4 for oxidation prevention, 700 °, continuously without breaking vacuum. The film was formed using a magnetron sputtering apparatus to produce a magneto-optical disk having an exchange-coupled two-layer film. Gd, Dy, Tb, Fe 70 Co 30 and Fe 94 Co 6 were used as targets for the magnetic layer.
d, Dy and Fe 70 Co 30 are used to deposit Tb-Fe-Co, and Tb and Fe
It was formed the Tb-Fe-Co with a 94 Co 6. The composition ratio of Gd and Dy or the composition ratio of rare earth and iron group was controlled by changing the power applied to the target. (Gd X Dy
X of the ( 100-X )-(Fe 100-Y Co Y ) film was about 75 and Y was about 30. The Ar gas pressure was 0.15 Pa, the deposition rate of Si 3 N 4 was about 40 ° / min, and the deposition rate of each magnetic layer was about 100 ° / min. The interface domain wall energy density of the fabricated exchange-coupling bilayer film was about 2 erg / cm 2 , confirming that good exchange interaction was working between both layers.
ディスクの記録・再生特性は、回転数1500、半径60mm
の位置においてバイアス磁界200Oeを用いて測定した。The recording and playback characteristics of the disc are 1500 revolutions and a radius of 60 mm
Was measured using a bias magnetic field of 200 Oe.
低保磁力層が鉄族副格子磁化優勢なGd−Dy−Fe−Coで
その飽和磁化が50〜200emu/cm3、高保磁力層が希土類副
格子磁化優勢なTb−Fe−Coでその飽和磁化が25〜175emu
/cm3の範囲では、記録感度が約6.8mW、再生CN比が約56d
Bであり、良好な記録再生特性が得られた。The low coercivity layer is Gd-Dy-Fe-Co with iron group sub-lattice magnetization dominant and its saturation magnetization is 50-200 emu / cm 3 , and the high coercivity layer is rare earth sub-lattice magnetization dominant Tb-Fe-Co and its saturation magnetization Is 25 to 175 emu
/ cm 3 range, recording sensitivity is about 6.8mW, playback CN ratio is about 56d
B and good recording / reproducing characteristics were obtained.
また、記録情報が劣化しない最大パワーは、600Oeの
磁界中において約2.7mWと高かった。The maximum power at which the recorded information did not deteriorate was as high as about 2.7 mW in a magnetic field of 600 Oe.
比較例1 実施例1の比較として、それと同じターゲットを用い
て、低保磁力層が鉄族副格子磁化優勢なGd−Fe−Coで、
その飽和磁化が50〜150emu/cm3、高保磁力層は実施例1
のものと同特性のディスクを作製したところ、記録感度
が約6.7mW、再生CN比が約58dBであり、良好な記録・再
生特性が得られたが、600Oeの磁界中の最大再生パワー
は約2.1mWと低かった。Comparative Example 1 As a comparison with Example 1, the same target was used, and the low coercive force layer was Gd-Fe-Co in which the iron group sublattice magnetization was dominant,
The saturation magnetization is 50 to 150 emu / cm 3 , and the high coercivity layer is
When a disc having the same characteristics as that of the above was produced, the recording sensitivity was about 6.7 mW and the playback CN ratio was about 58 dB, and good recording and playback characteristics were obtained.However, the maximum playback power in a 600 Oe magnetic field was about It was as low as 2.1mW.
実施例2 磁性層のターゲットとして、Gd、Dy、Fe70Co30とFe85
Co15を用い、低保磁力層としてGd、DyとFe70Co30を使っ
て、Gd−Dy−Fe−Coを成膜し、高保磁力層としてDyとFe
85Co15を使って、Dy−Fe−Coを成膜した。他の条件はす
べて実施例と同一である。Example 2 Gd, Dy, Fe 70 Co 30 and Fe 85 were used as targets for the magnetic layer.
Using Co 15 , Gd, Dy and Fe 70 Co 30 as a low coercive force layer, Gd-Dy-Fe-Co is deposited, and Dy and Fe as a high coercive force layer.
Using 85 Co 15, it was deposited Dy-Fe-Co. All other conditions are the same as in the embodiment.
保持力層が鉄族副格子磁化優勢なGd−Dy−Fe−Coでそ
の飽和磁化が50〜200emu/cm3、高保磁力層が希土類副格
子磁化優勢なDy−Fe−Coでその飽和磁化が25〜175emu/c
m3の範囲では、記録感度が約6.5mW、再生CN比が約56dB
であり、良好な記録再生特性が得られた。The coercivity layer has a saturation magnetization of 50 to 200 emu / cm 3 in Gd-Dy-Fe-Co in which iron group sublattice magnetization is dominant, and the saturation magnetization in Dy-Fe-Co in which the high coercivity layer has rare earth sublattice magnetization dominance. 25-175emu / c
The range of m 3, the recording sensitivity is about 6.5 mW, the reproduction CN ratio is about 56dB
And good recording / reproducing characteristics were obtained.
また、記録情報が劣化しない最大パワーは、600Oeの
磁界中において約2.6mWと高かった。The maximum power at which the recorded information did not deteriorate was as high as about 2.6 mW in a magnetic field of 600 Oe.
比較例2 実施例2の比較として、それと同じターゲットを用い
て、低保磁力層が鉄族副格子磁化優勢なGd−Fe−Coで、
その飽和磁化が50〜150emu/cm3、高保磁力層は実施例2
のものと同特性のディスクを作製したところ、記録感度
が約6.7mW、再生CN比が約56dBであり、良好な記録・再
生特性が得られたが、600Oeの磁界中の最大再生パワー
は約1.9mWと低かった。Comparative Example 2 As a comparison with Example 2, using the same target, the low coercive force layer was made of Gd-Fe-Co in which the iron group sublattice magnetization was dominant,
The saturation magnetization is 50 to 150 emu / cm 3 , and the high coercivity layer is
When a disc having the same characteristics as that of the above was produced, the recording sensitivity was about 6.7 mW and the reproduction CN ratio was about 56 dB, and good recording and reproduction characteristics were obtained.However, the maximum reproduction power in a 600 Oe magnetic field was about It was as low as 1.9mW.
実施例3 実施例1において、xを50とし、他はすべて同じ条件
で、低保磁力層が鉄族副格子磁化優勢なGd−Fe−Coであ
ってその飽和磁化が50〜250emu/cm3、高保磁力層が希土
類副格子磁化優勢なTb−Fe−Coであってその飽和磁化が
25〜175emu/cm3の範囲のディスクを作製したところ、記
録感度が約7.0mW、再生CN約55dBであり、良好な記録再
生特性が得られた。また、600Oeの磁界中の最大再生パ
ワーは約2.9mWと高かった。Example 3 In Example 1, x was set to 50, and the other conditions were the same, except that the low coercive force layer was Gd-Fe-Co in which the iron group sublattice magnetization was dominant and the saturation magnetization was 50 to 250 emu / cm 3. , The high coercivity layer is rare earth sublattice magnetization dominant Tb-Fe-Co whose saturation magnetization is
When a disk having a range of 25 to 175 emu / cm 3 was produced, the recording sensitivity was about 7.0 mW and the reproducing CN was about 55 dB, and good recording and reproducing characteristics were obtained. The maximum read power in a 600 Oe magnetic field was as high as about 2.9 mW.
以上詳細に説明したように、光磁気記録用交換結合二
層膜において、低保磁力層として、GdとDyを含む特定の
希土類−鉄族非晶質合金を用いることにより、記録・再
生特性に優れ、かつ記録情報の安定性、特に再生光によ
る情報の劣化に対する耐久性に優れた光磁気記録媒体を
得ることができる。As described in detail above, in the exchange coupling bilayer film for magneto-optical recording, by using a specific rare earth-iron group amorphous alloy containing Gd and Dy as the low coercive force layer, the recording / reproducing characteristics are improved. It is possible to obtain a magneto-optical recording medium which is excellent and has excellent stability of recorded information, especially durability against deterioration of information due to reproduction light.
Claims (1)
土類−鉄族非晶質合金からなる高保磁力層と垂直磁化可
能な高キュリー温度を有する希土類−鉄族非晶質合金か
らなる低保磁力層とを有し、該高保磁力層と該低保磁力
層とが交換結合している光磁気記録媒体において、 前記低保磁力層がGdとDyを含み、かつ該低保磁力層は鉄
族副格子磁化優勢であり、前記高保磁力層は希土類副格
子磁化優勢であって、かつ該高保磁力層は室温とキュリ
ー温度との間に補償温度を有することを特徴とする光磁
気記録媒体。A high coercive force layer comprising a rare earth-iron group amorphous alloy having a low Curie temperature capable of perpendicular magnetization and a low coercive force comprising a rare earth-iron group amorphous alloy having a high Curie temperature capable of perpendicular magnetization. A magneto-optical recording medium, wherein the high coercivity layer and the low coercivity layer are exchange-coupled to each other, wherein the low coercivity layer contains Gd and Dy, and the low coercivity layer is an iron group. A magneto-optical recording medium, wherein the sub-lattice magnetization is dominant, the high coercivity layer is a rare earth sub-lattice magnetization dominant, and the high coercivity layer has a compensation temperature between room temperature and Curie temperature.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63055055A JP2642656B2 (en) | 1988-03-10 | 1988-03-10 | Magneto-optical recording medium |
DE1989626826 DE68926826T2 (en) | 1988-02-22 | 1989-02-20 | Two-layer magneto-optical recording medium with a layer of low coercive force, consisting of Gd and at least Tb or Dy |
EP89301599A EP0330394B1 (en) | 1988-02-22 | 1989-02-20 | Two-layered type opto-magnetic recording medium having low-coercive force layer containing Gd and at least one of Tb and Dy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63055055A JP2642656B2 (en) | 1988-03-10 | 1988-03-10 | Magneto-optical recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01229443A JPH01229443A (en) | 1989-09-13 |
JP2642656B2 true JP2642656B2 (en) | 1997-08-20 |
Family
ID=12987995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63055055A Expired - Lifetime JP2642656B2 (en) | 1988-02-22 | 1988-03-10 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2642656B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0319155A (en) * | 1989-06-15 | 1991-01-28 | Nec Corp | Magneto-optical recording medium |
US5094925A (en) * | 1989-06-30 | 1992-03-10 | Sharp Kabushiki Kaisha | Opto-magnetic recording medium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH061564B2 (en) * | 1984-02-22 | 1994-01-05 | 株式会社ニコン | Magneto-optical recording medium |
JPH01124131A (en) * | 1987-11-09 | 1989-05-17 | Hitachi Ltd | Magneto-optical recording medium |
-
1988
- 1988-03-10 JP JP63055055A patent/JP2642656B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01229443A (en) | 1989-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62119760A (en) | Photomagnetic recording material | |
US5965286A (en) | Magneto-optical recording medium | |
US5958575A (en) | Magneto-optical recording medium | |
JP2642656B2 (en) | Magneto-optical recording medium | |
US6436524B1 (en) | Magneto-optical recording medium | |
JP2556563B2 (en) | Magneto-optical recording medium | |
US5100741A (en) | Magneto-optic recording systems | |
JPH0550400B2 (en) | ||
JP3093340B2 (en) | Magneto-optical recording medium | |
JP2550633B2 (en) | Photothermal magnetic recording medium | |
US5529854A (en) | Magneto-optic recording systems | |
JP2629062B2 (en) | Medium for magneto-optical memory | |
JP2957260B2 (en) | Magneto-optical recording medium | |
JP2648623B2 (en) | Magneto-optical recording medium | |
JP2647958B2 (en) | Magneto-optical recording medium | |
JPH01213847A (en) | Magneto-optical recording medium | |
JPH01140446A (en) | Magneto-optical memory medium | |
JP2705066B2 (en) | Photothermal magnetic recording media | |
JP3381960B2 (en) | Magneto-optical recording medium | |
Das et al. | Thin films for secondary data storage | |
JPS61243977A (en) | Photomagnetic recording medium | |
JPH0620314A (en) | Magneto-optical recording medium | |
JPS6190349A (en) | Photomagnetic recording medium | |
JPH01263960A (en) | Medium for magneto-optical memory | |
JPH01263961A (en) | Medium for magneto-optical memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |